JP6386317B2 - Silica brick for hot repair - Google Patents

Silica brick for hot repair Download PDF

Info

Publication number
JP6386317B2
JP6386317B2 JP2014195383A JP2014195383A JP6386317B2 JP 6386317 B2 JP6386317 B2 JP 6386317B2 JP 2014195383 A JP2014195383 A JP 2014195383A JP 2014195383 A JP2014195383 A JP 2014195383A JP 6386317 B2 JP6386317 B2 JP 6386317B2
Authority
JP
Japan
Prior art keywords
silica
mass
brick
less
hot repair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014195383A
Other languages
Japanese (ja)
Other versions
JP2016064956A (en
Inventor
三島 昌昭
昌昭 三島
信泰 河本
信泰 河本
博文 酒井
博文 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2014195383A priority Critical patent/JP6386317B2/en
Publication of JP2016064956A publication Critical patent/JP2016064956A/en
Application granted granted Critical
Publication of JP6386317B2 publication Critical patent/JP6386317B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

本発明は、コークス炉などの炉壁を熱間で補修するための熱間補修用珪石れんがに関する。   The present invention relates to a hot repair silica brick for hot repair of a furnace wall such as a coke oven.

例えばコークス炉の炉壁を構成する珪石れんがにおいて、損傷した珪石れんがは300℃以上の熱間で熱間補修用珪石れんがに交換される。この熱間補修用珪石れんがには、最初にライニングされたれんがと比べて耐スポーリング性が要求される。このため、熱間補修用珪石れんがには、耐スポーリング性を付与するために耐火原料として溶融シリカなどの非晶質シリカが使用されている。この非晶質シリカは熱膨張率が非常に小さいため、熱間補修用れんがの熱膨張を小さくすることができ、れんがの耐スポーリング性を向上することができる。   For example, in a silica brick constituting a furnace wall of a coke oven, a damaged silica brick is replaced with a hot repair silica brick at a temperature of 300 ° C. or higher. This hot repair silica brick is required to have a spalling resistance as compared to the first lined brick. For this reason, amorphous silica such as fused silica is used as a refractory raw material for hot repair silica bricks in order to impart spalling resistance. Since this amorphous silica has a very small coefficient of thermal expansion, the thermal expansion of the hot repair brick can be reduced, and the spalling resistance of the brick can be improved.

例えば特許文献1には、溶融石英(非晶質シリカ)の含有量が35〜50重量%であり、溶融石英の粒度構成において粒径1mm未満が15〜30重量%であり、粒径1mm以上が30重量%未満であり、かつ、残部の焼成珪石(結晶質シリカ)の粒度構成が0.5mm以下の微粉が15〜35重量%である熱間補修用珪石れんがが開示されている。0.5mm以下の焼成珪石の微粉は圧縮強度200kg/cmを達成するために必要とされている(特許文献1の段落0014)。 For example, in Patent Document 1, the content of fused silica (amorphous silica) is 35 to 50% by weight, the particle size of fused quartz is 15 to 30% by weight when the particle size is less than 1 mm, and the particle size is 1 mm or more. Is disclosed, and a silica particle brick for hot repair is disclosed in which the fine particle size composition of the remaining fired silica (crystalline silica) is 0.5 to 35% by weight is 15 to 35% by weight. A fine powder of calcined quartzite of 0.5 mm or less is required to achieve a compressive strength of 200 kg / cm 2 (paragraph 0014 of Patent Document 1).

しかしながら、この熱間補修用珪石れんがでは、れんがのマトリックス相を形成する1mm未満の微粉部の溶融石英が最大30重量%しか使用されないためマトリックス相の溶融石英の含有量が不足し、耐スポーリング性が十分とはいえない。   However, in this hot repair silica brick, only a maximum of 30% by weight of fused silica in a fine powder portion of less than 1 mm that forms the matrix phase of the brick is used, so the content of the fused silica in the matrix phase is insufficient and anti-spalling resistance. Sex is not enough.

一方、特許文献2には、粒径0.5mm以上の珪石質材料(結晶質シリカ)の骨材を40〜70重量%含み、残部が0.5mm未満の溶融石英(非晶質シリカ)又は溶融石英と珪石質材料の骨材とからなり、前記溶融石英の含有量は全量に対して10重量%より多く50重量%以内であり、かつ、マトリックス相が緻密な溶融石英質の組織を形成している熱衝撃抵抗性熱間補修用珪石れんがが開示されている。そして、マトリックス相が緻密な溶融石英質の組織を形成したことで、熱衝撃抵抗性(耐スポーリング性)発現と強度発現とを両立させたものである。このように、れんがのマトリックス相を緻密な溶融石英質からなる組織とすれば、粗粒部分は、必ずしも低熱膨張性で熱衝撃抵抗性が高い溶融石英である必要はなく、通常の珪石れんがを構成する結晶質の珪石、すなわち、クリストバライトやトリジマイトあるいは石英であっても熱衝撃抵抗性が発揮されるとされている(特許文献2の段落0012)。   On the other hand, Patent Document 2 includes fused silica (amorphous silica) containing 40 to 70% by weight of an aggregate of a siliceous material (crystalline silica) having a particle size of 0.5 mm or more, and the balance being less than 0.5 mm. Consists of fused quartz and siliceous material aggregate, the content of fused quartz is more than 10% by weight and less than 50% by weight, and the matrix phase forms a dense fused quartz structure A heat shock resistant hot repair silica brick is disclosed. And, by forming a dense fused quartz structure in the matrix phase, both the thermal shock resistance (spalling resistance) expression and the strength expression are compatible. Thus, if the matrix phase of the brick is made of a dense fused quartz structure, the coarse grain portion does not necessarily need to be fused quartz with low thermal expansion and high thermal shock resistance, and ordinary silica bricks are used. It is said that thermal shock resistance is exhibited even with crystalline quartzite, that is, cristobalite, tridymite, or quartz constituting the structure (paragraph 0012 of Patent Document 2).

この特許文献2のれんがにおいて、その実施例では0.5mm以下の溶融石英が25〜50重量%使用されているものの、同時に1mm以下の珪石質材料も30〜55重量%使用されており、この影響によって耐スポーリング性が十分とはいえない。   In the brick of this Patent Document 2, in the example, 25 to 50% by weight of fused silica of 0.5 mm or less is used, but at the same time, 30 to 55% by weight of siliceous material of 1 mm or less is used. The spalling resistance is not sufficient due to the influence.

具体的には、熱間補修はコークス炉の温度が300〜500℃で行うが、熱間補修用れんがの耐スポーリング性が不十分な場合には、熱間補修用れんがのライニング直後に熱衝撃による亀裂が発生することがあり、再度新しい熱間補修用れんがを使用しなければならない場合がある。したがって、施工直後に発生する亀裂を防止するために炉内温度をより下げなければならず、施工時間すなわち操業停止期間が長くなってしまう問題がある。また、施工直後に亀裂がなくても、操業開始直後の炉内観察で亀裂が見つかる場合もあり、この場合にも再度の補修が必要になる。   Specifically, hot repair is performed at a coke oven temperature of 300 to 500 ° C. If the spalling resistance of the hot repair brick is insufficient, heat is applied immediately after lining the hot repair brick. Cracks due to impact may occur and new hot repair bricks may have to be used again. Therefore, in order to prevent the crack which generate | occur | produces immediately after construction, the furnace temperature must be lowered more, and there exists a problem that construction time, ie, an operation stop period, will become long. Even if there are no cracks immediately after construction, cracks may be found by observation in the furnace immediately after the start of operation. In this case, repairs are required again.

特開平5−132355号公報JP-A-5-132355 特許第3811315号公報Japanese Patent No. 3811315

本発明が解決しようとする課題は、耐スポーリング性が高く、かつ短時間で補修施工を実施可能な熱間補修用珪石れんがを提供することにある。   The problem to be solved by the present invention is to provide a hot repair silica brick that has high spalling resistance and can be repaired in a short time.

本発明者らは、熱間補修用珪石れんがの耐火原料配合物において粒度が1mm以上の結晶質シリカを15質量%以上25質量%以下で使用し、かつ粒度が1mm未満の非晶質シリカの含有量を30〜60質量%と多くすることで、熱間補修用珪石れんがの耐摩耗性を維持しつつ耐スポーリング性を飛躍的に向上させうることを見出した。 The inventors of the present invention use crystalline silica having a particle size of 1 mm or more in a refractory raw material composition for hot repair silica bricks in an amount of 15% by mass or more and 25% by mass or less , and an amorphous silica having a particle size of less than 1 mm. It has been found that by increasing the content to 30 to 60% by mass, the spalling resistance can be dramatically improved while maintaining the wear resistance of the hot repair silica brick.

すなわち本発明の一観点によれば、粒度が1mm以上の非晶質シリカを15質量%以上45質量%以下、粒度が1mm未満の非晶質シリカを30質量%以上60質量%以下、粒度が1mm以上の結晶質シリカを15質量%以上25質量%以下含み、粒度が1mm未満の結晶質シリカの含有量が15質量%以下(0を含む)であって、非晶質シリカと結晶質シリカとの合量が95質量%以上である耐火原料配合物を、混練、成形後、熱処理してなる熱間補修用珪石れんがが提供される。 That is, according to one aspect of the present invention, the amorphous silica having a particle size of 1 mm or more is 15% by mass to 45% by mass, the amorphous silica having a particle size of less than 1 mm is 30% by mass to 60% by mass, and the particle size is Amorphous silica and crystalline silica containing 15% by mass or more and 25% by mass or less of crystalline silica having a particle size of less than 1 mm and containing 15% by mass or less (including 0) of crystalline silica of 1 mm or more Thus, there is provided a hot repair silica brick obtained by kneading, forming, and heat-treating a refractory raw material composition having a total amount of 95% by mass or more.

以下、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described.

例えば、コークス炉炭化室の壁れんがとしての操業中の条件を考えた場合、当該壁れんがは、単に高温にさらされるだけでなく、投入物の石炭あるいは生成物のコークス塊による繰り返しの摩耗作用を受ける。非晶質シリカ粗粒の摩耗抵抗性は結晶質シリカ粗粒のそれに比較して劣り、熱間では更に劣る。結果として非晶質シリカ粗粒が多いと、熱間補修後の操業開始早期における補修部分の摩耗損耗が顕著となる。このため、粒度1mm以上の粗粒域での非晶質シリカと結晶質シリカとのバランスが重要である。   For example, when considering the operating conditions as wall bricks in a coke oven carbonization chamber, the wall bricks are not only exposed to high temperatures, but are also subject to repeated wear due to the input coal or product coke mass. receive. The abrasion resistance of the amorphous silica coarse particles is inferior to that of the crystalline silica coarse particles, and is further inferior in the hot state. As a result, when there are many amorphous silica coarse particles, the wear and wear of the repaired part at the early stage of the operation start after the hot repair becomes remarkable. For this reason, the balance between the amorphous silica and the crystalline silica in a coarse particle region having a particle size of 1 mm or more is important.

粒度が1mm以上の非晶質シリカは、耐スポーリング性を向上するために15質量%以上45質量%以下、好ましくは25質量%以上45質量%で使用する。その使用量が15質量%未満では耐スポーリング性が不十分となり、45質量%を超えると相対的に結晶質シリカが不足するため耐摩耗性が不十分となる。   Amorphous silica having a particle size of 1 mm or more is used in an amount of 15 to 45% by mass, preferably 25 to 45% by mass, in order to improve the spalling resistance. If the amount used is less than 15% by mass, the spalling resistance is insufficient, and if it exceeds 45% by mass, the crystalline silica is relatively insufficient, resulting in insufficient wear resistance.

粒度が1mm未満の非晶質シリカは、耐スポーリング性を向上すると同時にマトリックスを形成し強固な結合組織を形成するために30質量%以上60質量%以下、好ましくは35質量%以上50質量%以下で使用する。その使用量が30質量%未満では耐スポーリング性が不十分となり、60質量%を超えると耐摩耗性が不十分となる。   Amorphous silica having a particle size of less than 1 mm is 30% by mass to 60% by mass, preferably 35% by mass to 50% by mass in order to improve spalling resistance and at the same time form a matrix and form a strong connective structure. Used in the following. When the amount used is less than 30% by mass, the spalling resistance is insufficient, and when it exceeds 60% by mass, the wear resistance is insufficient.

粒度が1mm以上の結晶質シリカは耐摩耗性の向上に有効であるため、10質量%以上30質量%以下、好ましくは15質量%以上25質量%で使用する。その使用量が10質量%未満では耐摩耗性が不十分となり、30質量%を超えると相対的に非晶質シリカが不足するため耐スポーリング性が低下する。   Crystalline silica having a particle size of 1 mm or more is effective in improving abrasion resistance, and is used in an amount of 10% by mass to 30% by mass, preferably 15% by mass to 25% by mass. If the amount used is less than 10% by mass, the wear resistance is insufficient, and if it exceeds 30% by mass, the amorphous silica is relatively insufficient and the spalling resistance is lowered.

粒度が1mm未満の結晶質シリカは少ないほど耐スポーリング性が向上するため、耐スポーリング性の点からは使用しない方が良いが、その使用量が30質量%以下、好ましくは15質量%以下あれば、耐スポーリング性の低下幅が小さく耐摩耗性が向上するため、耐摩耗性を重視する場合には使用することができる。ただし、30質量%を超えると耐スポーリング性が実用レベルではなくなる。   Since the spalling resistance improves as the amount of crystalline silica having a particle size of less than 1 mm decreases, it is better not to use from the viewpoint of spalling resistance, but the amount used is 30% by mass or less, preferably 15% by mass or less. If there is, the decrease in the spalling resistance is small and the wear resistance is improved, so that it can be used when importance is attached to the wear resistance. However, if it exceeds 30% by mass, the spalling resistance is not at a practical level.

非晶質シリカと結晶質シリカは合量で、耐火原料配合物中に95質量%以上、好ましくは98質量%含有するようにする。つまり、5質量%未満であれば他の耐火原料を含むこともできる。他の耐火原料としては、アルミナ、ジルコニア、アルミナシリカなどが挙げられる。   The total amount of amorphous silica and crystalline silica is 95% by mass or more, preferably 98% by mass in the refractory raw material composition. That is, if it is less than 5 mass%, another refractory raw material can also be included. Examples of other refractory raw materials include alumina, zirconia, and alumina silica.

耐火原料配合物中の非晶質シリカの含有量は、耐スポーリング性を更に向上するためには50質量%以上80質量%以下とすることが好ましく、より好ましくは60質量%以上80質量%以下とする。また、耐火原料配合物中の結晶質シリカの含有量は、20質量%以上50質量%以下とすることが好ましく、より好ましくは20質量%以上40質量%未満とする。これにより、耐摩耗性及び耐スポーリング性に更に優れた熱間補修用珪石れんがとすることができる。   In order to further improve the spalling resistance, the content of amorphous silica in the refractory raw material composition is preferably 50% by mass to 80% by mass, more preferably 60% by mass to 80% by mass. The following. The content of crystalline silica in the refractory raw material composition is preferably 20% by mass or more and 50% by mass or less, and more preferably 20% by mass or more and less than 40% by mass. Thereby, it is possible to obtain a hot repair silica brick which is further excellent in wear resistance and spalling resistance.

本発明の熱間補修用珪石れんがは、従来の熱間補修用珪石れんがより耐スポーリング性に優れるため、補修後に熱衝撃等によるれんがへの亀裂が入りにくい。したがって、再補修の頻度を低減できる。また、必要以上に低温で補修する必要がないので、炉内を冷却する時間が短くなり作業能率が向上するとともに、短時間で補修施工を実施可能で補修施工に伴う操業停止期間も短縮できる。   The silica brick for hot repair according to the present invention is more excellent in spalling resistance than the conventional silica brick for hot repair, so that the brick due to thermal shock or the like is hardly cracked after repair. Therefore, the frequency of re-repair can be reduced. Moreover, since it is not necessary to repair at a lower temperature than necessary, the time for cooling the inside of the furnace is shortened, the work efficiency is improved, the repair work can be performed in a short time, and the operation stoppage period accompanying the repair work can be shortened.

本発明の熱間補修用珪石れんがの耐火原料配合物に配合する結晶質シリカとしては、通常の珪石れんがの原料として汎用されている石英、焼成石英すなわちクリストバライトやトリジマイトからなる珪石、及び珪石れんがのリサイクル原料等のうち1種又は2種以上を使用することができる。   As the crystalline silica to be blended in the refractory raw material composition of the hot repair silica brick according to the present invention, quartz, calcined quartz that is commonly used as a raw material of ordinary silica brick, fired quartz, that is, quartzite composed of cristobalite and tridymite, and silica brick 1 type (s) or 2 or more types can be used among recycling raw materials.

非晶質シリカとしては、従来の熱間補修用珪石れんがの原料として汎用されている溶融シリカ、溶融シリカ耐火物のリサイクル品、及び溶融シリカを含有する珪石れんがのリサイクル品等のうち1種又は2種以上を使用することができる。なお、熱間補修用れんがの強度を向上したい場合には、非晶質シリカの粒度の小さいもの、すなわち44μm以下の割合を増やすことができる。   As amorphous silica, one of fused silica, a fused silica refractory recycled product that is widely used as a raw material for conventional hot repair silica brick, and a recycled silica brick containing fused silica, or the like Two or more types can be used. In addition, when it is desired to improve the strength of hot repair bricks, the amorphous silica having a small particle size, that is, a ratio of 44 μm or less can be increased.

また、本発明の熱間補修用珪石れんがの製法としては、耐火原料配合物に焼結助剤とバインダーを添加し、混練して坏土とし、この坏土を成形し、熱処理するという従来法を採用することができる。   Further, as a method of manufacturing the hot repair silica brick of the present invention, a conventional method of adding a sintering aid and a binder to a refractory raw material composition, kneading to form a clay, molding the clay, and heat-treating. Can be adopted.

焼結助剤は、耐火原料の微粉部の焼結を促進するために使用するもので、珪石れんがや熱間補修用珪石れんがの焼結助剤として公知のものを使用することができる。例えば、ベントナイト等の粘土、石灰、及び酸化鉄等のうち1種又は2種以上を使用することができる。   The sintering aid is used for accelerating the sintering of the fine powder portion of the refractory raw material, and a known one can be used as a sintering aid for silica brick or hot repair silica brick. For example, 1 type (s) or 2 or more types can be used among clay, such as bentonite, lime, and iron oxide.

バインダーは、焼成れんがあるいは不焼成れんがのバインダーとしてそれぞれ公知のものを適量使用することができ、例えばフェノール樹脂、フラン樹脂、ポリウレタン樹脂、ピッチ等の有機バインダーなどを使用することができる。   As the binder, an appropriate amount of a known binder can be used for each of the fired brick and the non-fired brick. For example, an organic binder such as a phenol resin, a furan resin, a polyurethane resin, or a pitch can be used.

本発明の熱間補修用珪石れんがは、100〜400℃で熱処理した場合には不焼成タイプとなり、1000〜1400℃で熱処理した場合には焼成タイプとなる。   The silica brick for hot repair of the present invention becomes a non-fired type when heat treated at 100 to 400 ° C, and becomes a fired type when heat treated at 1000 to 1400 ° C.

不焼成タイプの熱間補修用珪石れんがは、補修部位に施工されると、操業中のコークス炉壁等からの熱によって焼結が進行することで炉壁材として必要な機械的強度、耐摩耗性、耐スポーリング性等が発現する。これにより長期間安定した炉壁材としての機能を持続する。すなわち、補修後の炉の昇温によって焼成と同じ効果が得られるので、焼成れんがと同じ効果が得られ、長期間安定して使用することができる。   Non-fired type hot repair silica bricks, when installed at the repair site, have the necessary mechanical strength and wear resistance as furnace wall materials because the sintering progresses due to heat from the coke oven walls during operation. And spalling resistance are exhibited. Thereby, the function as a furnace wall material stable for a long time is maintained. That is, since the same effect as firing is obtained by raising the temperature of the furnace after repair, the same effect as fired brick can be obtained and can be used stably for a long time.

本発明の実施例及び比較例を表1及び表2に示す。   Examples and Comparative Examples of the present invention are shown in Tables 1 and 2.

Figure 0006386317
Figure 0006386317

Figure 0006386317
Figure 0006386317

表1及び表2に示す耐火原料配合物及び焼結助剤に対して、バインダーとしてフェノール樹脂を外掛けで2質量%添加し混練して坏土とし、この坏土を250トンのフリクションプレスで300×100×100mmの形状に成形し、乾燥後、1200℃で5時間焼成して供試れんがを得、その特性を調べた。   Add 2% by mass phenolic resin as a binder to the refractory raw material composition and sintering aid shown in Table 1 and Table 2 and knead to make a clay. It was molded into a shape of 300 × 100 × 100 mm, dried, and fired at 1200 ° C. for 5 hours to obtain a test brick, and its properties were examined.

各表中の耐スポーリング性は、300×100×100mmの常温の供試れんがを1000℃の温度に保定した炉に挿入した後の状態を観察した結果である。表中の○はれんがに全く異常が認められなかったことを、△は微少亀裂の発生を、また、×は割れ又は亀裂の発生を意味する。   The spalling resistance in each table is a result of observing the state after inserting a 300 × 100 × 100 mm room temperature test brick into a furnace maintained at a temperature of 1000 ° C. In the table, ○ indicates that no abnormality was found in the brick, Δ indicates the occurrence of a microcrack, and × indicates the occurrence of a crack or a crack.

補修後の定常的な実炉稼働時には熱間補修用珪石れんが中の非晶質シリカ(溶融シリカ)は全て結晶化していることが予想されるため、耐摩耗性の評価は、供試れんがを1400℃で長時間再焼成して、非晶質シリカをクリストバライト及び/又はトリジマイトに完全に結晶化させた後に行った。表中の耐摩耗性は、ジルコンサンドの所定量をサンドブラスト試験器で供試れんがに吹き付けたときのれんがの重量減少率(%)を表示したものである。   Since it is expected that all amorphous silica (fused silica) in the hot repair silica brick is crystallized during regular operation of the actual furnace after repair, the evaluation of wear resistance is based on the test brick. This was carried out after re-baking at 1400 ° C. for a long time to completely crystallize amorphous silica into cristobalite and / or tridymite. The wear resistance in the table indicates the weight reduction rate (%) of brick when a predetermined amount of zircon sand is sprayed on the test brick with a sand blast tester.

見掛け比重及び見掛け気孔率は、供試れんがから試験体を切断採取し、JIS R 2205に記載の手順で測定した。また、圧縮強さはJIS−R2206の方法で測定し、熱膨張率はJIS−R2207−1の方法で測定した。   The apparent specific gravity and the apparent porosity were measured by cutting a specimen from a test brick and measuring it according to the procedure described in JIS R 2205. Moreover, the compressive strength was measured by the method of JIS-R2206, and the thermal expansion coefficient was measured by the method of JIS-R2207-1.

表1中、参考例1、実施例2,3、参考例4,5及び比較例1,2は結晶質シリカ(珪石)の配合量が一定でその粒度構成が異なる例である。結晶質シリカの粗粒(1mm以上3mm以下)が減るにつれて耐摩耗性が低下しており、比較例2では実用上問題となる程度に大きく低下している。なお、比較例1は、耐摩耗性は良好であるが、耐スポーリング性が実用上問題となる程度に低い。 In Table 1, Reference Example 1, Examples 2 and 3, Reference Examples 4 and 5, and Comparative Examples 1 and 2 are examples in which the amount of crystalline silica (silica stone) is constant and the particle size configuration is different. As the coarse particles of crystalline silica (1 mm or more and 3 mm or less) are reduced, the wear resistance is reduced, and in Comparative Example 2, it is greatly reduced to a practically problematic level. In Comparative Example 1, the wear resistance is good, but the spalling resistance is low enough to cause a practical problem.

実施例6、参考例7及び比較例3は、1mm未満の結晶質シリカの配合量が異なる例である。同配合量が本発明の範囲内にある実施例6は、耐スポーリング性、耐摩耗性ともに良好である。これに対して比較例3は、1mm未満の結晶質シリカが40質量%と本発明の上限を超えており、耐スポーリング性に劣る。 Example 6 , Reference Example 7 and Comparative Example 3 are examples in which the compounding amount of crystalline silica of less than 1 mm is different. In Example 6 in which the blending amount is within the range of the present invention, both the spalling resistance and the abrasion resistance are good. On the other hand, in Comparative Example 3, the crystalline silica of less than 1 mm exceeds 40% by mass and exceeds the upper limit of the present invention, and is inferior in spalling resistance.

表2中、実施例8〜11及び比較例4〜6は、1mm未満の非晶質シリカ(溶融シリカ)の配合量が異なる例である。同配合量が本発明の範囲内にある実施例8〜11は、耐スポーリング性、耐摩耗性ともに良好である。これに対して、比較例4及び比較例5は、1mm未満の非晶質シリカが少ないため耐スポーリング性に劣る。また、比較例6は、1mm未満の非晶質シリカが多すぎるため耐スポーリング性は良好であるが、耐摩耗性に劣る。   In Table 2, Examples 8 to 11 and Comparative Examples 4 to 6 are examples in which the blending amount of amorphous silica (fused silica) of less than 1 mm is different. In Examples 8 to 11 in which the blending amount is within the range of the present invention, both the spalling resistance and the abrasion resistance are good. On the other hand, Comparative Example 4 and Comparative Example 5 are inferior in spalling resistance because there are few amorphous silicas of less than 1 mm. Moreover, since the comparative example 6 has too many amorphous silicas less than 1 mm, spalling resistance is favorable, but it is inferior to abrasion resistance.

実施例12と実施例13は、結晶質シリカと非晶質シリカ以外の耐火原料を含む例であるが、耐スポーリング性及び耐摩耗性ともに良好である。結晶質シリカと非晶質シリカ以外の耐火原料としては、実施例12と実施例13のもののほか、スピネル、ジルコン、シリマナイト及びその同質異像等を使用できる。   Examples 12 and 13 are examples containing refractory raw materials other than crystalline silica and amorphous silica, but both spalling resistance and wear resistance are good. As refractory raw materials other than crystalline silica and amorphous silica, spinel, zircon, sillimanite, and homogeneous images thereof can be used in addition to those in Examples 12 and 13.

比較例7は前記特許文献2に開示されたれんがであるが、1mm未満の結晶質シリカ(珪石)の配合量が40質量%と多いため耐スポーリング性に劣る。   Although the comparative example 7 is the brick disclosed by the said patent document 2, since there are many compounding quantities of crystalline silica (silica stone) less than 1 mm as 40 mass%, it is inferior to spalling resistance.

次に、不焼成タイプの実施例を表3に示す。   Next, Table 3 shows examples of non-fired types.

Figure 0006386317
Figure 0006386317

表3に示す耐火原料配合物及び焼結助剤に対して、バインダーとしてフェノール樹脂を外掛けで3質量%添加し混練して坏土とし、この坏土を250トンのフリクションプレスで300×100×100mmの形状に成形し、250℃で5時間熱処理して供試れんがを得、その特性を前述した表1及び表2と同じ方法で調べた。   To the refractory raw material composition and the sintering aid shown in Table 3, 3% by mass of phenol resin as an outer binder is added and kneaded to form a clay, and this clay is 300 × 100 using a 250-ton friction press. It was molded into a shape of × 100 mm and heat-treated at 250 ° C. for 5 hours to obtain a test brick, and its characteristics were examined by the same method as in Tables 1 and 2 described above.

実施例15,参考例16は、それぞれ実施例6,参考例4と同じ耐火原料配合物から得られたものであり、熱処理温度が異なるのみである Example 15 and Reference Example 16 were obtained from the same refractory raw material composition as Example 6 and Reference Example 4, respectively, and only the heat treatment temperature was different .

実施例15,参考例16の特性、中でも耐スポーリング性と耐摩耗性は、いずれも実施例6,参考例4とほぼ同等であることがわかる。すなわち、本発明に規定の耐火原料配合物を使用すれば、熱処理温度の高低に関わらず、コークス炉炉壁材として長期間安定した機能を持続しうるといえる。 It can be seen that the characteristics of Example 15 and Reference Example 16, particularly the spalling resistance and wear resistance, are almost the same as those of Example 6 and Reference Example 4. That is, if the refractory raw material composition specified in the present invention is used, it can be said that a stable function as a coke oven furnace wall material can be maintained for a long time regardless of the heat treatment temperature.

Claims (4)

粒度が1mm以上の非晶質シリカを15質量%以上45質量%以下、粒度が1mm未満の非晶質シリカを30質量%以上60質量%以下、粒度が1mm以上の結晶質シリカを15質量%以上25質量%以下含み、粒度が1mm未満の結晶質シリカの含有量が15質量%以下(0を含む)であって、非晶質シリカと結晶質シリカとの合量が95質量%以上である耐火原料配合物を、混練、成形後、熱処理してなる熱間補修用珪石れんが。 15% by mass to 45% by mass of amorphous silica having a particle size of 1 mm or more, 30% by mass to 60% by mass of amorphous silica having a particle size of less than 1 mm, and 15% by mass of crystalline silica having a particle size of 1 mm or more The content of crystalline silica containing 25% by mass or less and having a particle size of less than 1 mm is 15% by mass or less (including 0), and the total amount of amorphous silica and crystalline silica is 95% by mass or more. Silica brick for hot repair, which is obtained by kneading, molding, and heat-treating a certain refractory raw material composition. 前記耐火原料配合物中の粒度が1mm以上の非晶質シリカの含有量が、25質量%以上45質量%以下である請求項1に記載の熱間補修用珪石れんが。   2. The silica brick for hot repair according to claim 1, wherein the content of amorphous silica having a particle size of 1 mm or more in the refractory raw material composition is 25% by mass or more and 45% by mass or less. 前記耐火原料配合物中の粒度が1mm未満の非晶質シリカの含有量が、35質量%以上50質量%以下である請求項1又は請求項2に記載の熱間補修用珪石れんが。   The hot repair silica brick according to claim 1 or 2, wherein the content of amorphous silica having a particle size of less than 1 mm in the refractory raw material composition is 35% by mass or more and 50% by mass or less. 前記耐火原料配合物中の結晶質シリカの含有量が20質量%以上40質量%以下、非晶質シリカの含有量が60質量%以上80質量%以下である請求項1から請求項3のいずれかに記載の熱間補修用珪石れんが。 The content of crystalline silica in the refractory raw material formulation is 20 wt% to 40 wt% or less, one of claims 1 to 3 content of amorphous silica is 80 wt% or less than 60 wt% Silica brick for hot repair as described in Crab.
JP2014195383A 2014-09-25 2014-09-25 Silica brick for hot repair Active JP6386317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014195383A JP6386317B2 (en) 2014-09-25 2014-09-25 Silica brick for hot repair

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014195383A JP6386317B2 (en) 2014-09-25 2014-09-25 Silica brick for hot repair

Publications (2)

Publication Number Publication Date
JP2016064956A JP2016064956A (en) 2016-04-28
JP6386317B2 true JP6386317B2 (en) 2018-09-05

Family

ID=55803966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014195383A Active JP6386317B2 (en) 2014-09-25 2014-09-25 Silica brick for hot repair

Country Status (1)

Country Link
JP (1) JP6386317B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6166854B1 (en) * 2017-02-24 2017-07-19 東京窯業株式会社 Silicic refractory brick and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4700560B2 (en) * 2006-05-15 2011-06-15 黒崎播磨株式会社 Manufacturing method for hot repair silica brick
JP5763569B2 (en) * 2012-02-13 2015-08-12 日本特殊炉材株式会社 Silica castable refractories and siliceous precast block refractories

Also Published As

Publication number Publication date
JP2016064956A (en) 2016-04-28

Similar Documents

Publication Publication Date Title
JP6541535B2 (en) Alumina-silica brick
JP6818022B2 (en) Sintered zirconia mullite refractory composite, its production method, and its use
JP2009509898A (en) Sintered refractories with improved thermal shock resistance
JP7304175B2 (en) Manufacturing method of mullite brick
JP5943032B2 (en) Manufacturing method of lightweight heat-insulating alumina / magnesia refractory
JP5878884B2 (en) Refractories and refractory structures
JP6498515B2 (en) Refractory composition and refractory concrete block using the same
JP6427456B2 (en) Unshaped refractory composition and unshaped refractory
JP2013234092A (en) Cast refractory
JP6386317B2 (en) Silica brick for hot repair
JP7041523B2 (en) Magnesia Alumina Carbon Brick
JP6758147B2 (en) How to make cordierite-containing alumina-silica brick
JP6823042B2 (en) Precast block refractory for coke oven
JP6215111B2 (en) Alumina-silica brick for blast furnace hot air tube or lining of hot air furnace
JP6358272B2 (en) Magnesia spinel refractory brick
JP6419555B2 (en) Cast refractory
JP6441684B2 (en) Castable refractories for lids of molten metal containers
US10093576B2 (en) Unshaped refractory material
JP2018052757A (en) Castable refractory for coke oven
JP7032084B2 (en) Amorphous refractory
JP2021004160A (en) Brick for hot metal ladle, and hot metal ladle lined with the same
JP6583968B2 (en) Refractory brick
JP4700560B2 (en) Manufacturing method for hot repair silica brick
JP2000327408A (en) Thermal shock resistant silica brick for hot repairing and its production
JP6432869B2 (en) Refractory brick manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180809

R150 Certificate of patent or registration of utility model

Ref document number: 6386317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250