JP6215111B2 - Alumina-silica brick for blast furnace hot air tube or lining of hot air furnace - Google Patents

Alumina-silica brick for blast furnace hot air tube or lining of hot air furnace Download PDF

Info

Publication number
JP6215111B2
JP6215111B2 JP2014068864A JP2014068864A JP6215111B2 JP 6215111 B2 JP6215111 B2 JP 6215111B2 JP 2014068864 A JP2014068864 A JP 2014068864A JP 2014068864 A JP2014068864 A JP 2014068864A JP 6215111 B2 JP6215111 B2 JP 6215111B2
Authority
JP
Japan
Prior art keywords
alumina
mass
hot air
brick
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014068864A
Other languages
Japanese (ja)
Other versions
JP2015189641A (en
Inventor
三島 昌昭
昌昭 三島
吉隆 小出石
吉隆 小出石
倫 中村
倫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Nippon Steel Corp
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Krosaki Harima Corp filed Critical Nippon Steel Corp
Priority to JP2014068864A priority Critical patent/JP6215111B2/en
Publication of JP2015189641A publication Critical patent/JP2015189641A/en
Application granted granted Critical
Publication of JP6215111B2 publication Critical patent/JP6215111B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

本発明は高炉熱風管設備、特に環状管及び熱風本管、熱風炉の連絡管、混合室、又はバーナーダクト部などに内張り耐火物として使用されるアルミナ−シリカ系れんがに関する。   The present invention relates to blast furnace hot air tube equipment, and more particularly to an alumina-silica brick used as a lining refractory for an annular tube and a hot air main tube, a hot air furnace connecting tube, a mixing chamber, or a burner duct.

高炉熱風管あるいは熱風炉の内張り耐火物は耐熱衝撃性と耐クリープ性が要求されるため、一般的にアルミナ−シリカ系れんがが使用されている。特に近年は、熱風炉で高温熱風を発生する操業へ移りつつあり、内張り耐火物としてはより高い耐クリープ性と耐熱衝撃性が要求されるようになってきている。   Since the blast furnace blast furnace or the refractory lining the hot blast furnace is required to have thermal shock resistance and creep resistance, generally, an alumina-silica brick is used. In particular, in recent years, the operation has been shifted to an operation for generating high-temperature hot air in a hot stove, and higher creep resistance and thermal shock resistance have been demanded as lining refractories.

従来、アルミナ−シリカ系れんがとしては、特許文献1に、コランダム、ムライト、シリマナイト、アンダルサイト、シャモット、珪石のうち1種又は2種類以上の耐火原料と粘土とを組み合わせて得られる、化学成分がSiO:30〜10wt%、Al:65〜80wt%のアルミナ−シリカ系れんがが開示されている。 Conventionally, as an alumina-silica-based brick, there is a chemical component obtained by combining Patent Document 1 with one or more refractory raw materials and clay among corundum, mullite, sillimanite, andalusite, chamotte, and silica. SiO 2: 30~10wt%, Al 2 O 3: 65~80wt% alumina - silica brick is disclosed.

また、特許文献2には、コランダム・シリマナイト質原料10〜40wt%、アンダルサイト40〜75wt%、ろう石3〜40wt%、粘土2〜10wt%よりなる配合物を混練、成形後、1000℃以上で焼成してなり、かつ、化学成分がAl:35〜70wt%、SiO:25〜60wt%、残部:7wt%以下のアルミナ−シリカ系れんがが開示されている。 Patent Document 2 discloses that a composition comprising 10 to 40 wt% corundum and sillimanite raw material, 40 to 75 wt% andalusite, 3 to 40 wt% wax, and 2 to 10 wt% clay is kneaded and molded at 1000 ° C. or higher. in baked becomes in and chemical composition Al 2 O 3: 35~70wt%, SiO 2: 25~60wt%, the balance: 7 wt% or less of the alumina - silica brick is disclosed.

特開昭59−39764号公報JP 59-39964 A 特開昭59−227768号公報JP 59-227768 A

高炉熱風管及び熱風炉の連絡管、混合室又はバーナーダクト部などの内張り耐火物は、高炉の操業過程で1000℃以上の高温熱風と100℃前後の低温熱風とに長期間繰り返し晒される。したがって、これらの内張り耐火物には長期間の使用において耐クリープ性と耐熱衝撃性とが要請される。これらを両立できれば、炉寿命の延長及び熱風炉の高温操業化が図れることでエネルギー効率も向上することが期待できる。   Lined refractories such as blast furnace hot air tubes and hot air furnace connection tubes, mixing chambers or burner ducts are repeatedly exposed to high temperature hot air of 1000 ° C. or higher and low temperature hot air of around 100 ° C. for a long time during the operation of the blast furnace. Therefore, these lining refractories are required to have creep resistance and thermal shock resistance in long-term use. If both of these can be achieved, it is expected that the energy efficiency can be improved by extending the life of the furnace and increasing the temperature of the hot stove.

上述の特許文献1及び特許文献2に開示されているアルミナ−シリカ系れんがは、高炉の熱風管や熱風炉の内張り耐火物として使用するには耐クリープ性あるいは耐熱衝撃性が不十分という問題がある。また、一般に、耐クリープ性を向上しようとすると耐熱衝撃性が低下する問題もある。   The alumina-silica bricks disclosed in Patent Document 1 and Patent Document 2 described above have a problem of insufficient creep resistance or thermal shock resistance for use as a blast furnace hot-air tube or a hot-blast furnace lining refractory. is there. In general, there is a problem that the thermal shock resistance is lowered when an attempt is made to improve creep resistance.

そこで、本発明が解決しようとする課題は、高炉熱風管及び熱風炉の内張り耐火物に要請される耐熱衝撃性と耐クリープ性に優れたアルミナ−シリカ系れんがを提供することにある。   Therefore, the problem to be solved by the present invention is to provide an alumina-silica brick excellent in thermal shock resistance and creep resistance required for blast furnace hot air tubes and lining refractories of hot air furnaces.

本発明の一観点によれば、電融アルミナを38質量%以上70質量%以下、シリマナイト族鉱物を20質量%以上50質量%以下含有し、かつ、電融アルミナとシリマナイト族鉱物との合量が75質量%以上95質量%以下で、残部が電融アルミナ及びシリマナイト族鉱物以外のアルミナ系原料、シリカ系原料及びアルミナ−シリカ系原料のうちの1種以上からなる配合物を、混練し、成形後、焼成して得られたれんがであって、該れんが中のシリマナイト族鉱物の残存率が90質量%以上である、高炉熱風管又は熱風炉の内張り用アルミナ−シリカ系れんがが提供される。 According to one aspect of the present invention, the amount of fused alumina is 38% by mass or more and 70% by mass or less, and the amount of silimanite group mineral is 20% by mass or more and 50% by mass or less. Knead a mixture of 75 mass% or more and 95 mass% or less, with the balance being one or more of alumina-based materials other than fused alumina and silimanite group minerals, silica-based materials, and alumina-silica-based materials, Provided is an alumina-silica-based brick for blast furnace hot-air tube or hot-blast furnace lining, which is a brick obtained by firing after molding and having a residual ratio of silimanite group mineral in the brick of 90% by mass or more. .

本発明によれば、原料配合物として電融アルミナとシリマナイト族鉱物とを組み合わせて配合したことで、高炉熱風管及び熱風炉用として優れた耐熱衝撃性と耐クリープ性とを両立したアルミナ−シリカ系れんが得ることができる。したがって、高炉熱風管及び熱風炉の長寿命化を図ることができる。また、熱風炉の操業条件を高温へ移行できることでエネルギー効率が向上し、地球環境負荷の低減に寄与することができる。   According to the present invention, alumina-silica having both excellent thermal shock resistance and creep resistance for blast furnace hot air tubes and hot air furnaces by combining electrofused alumina and silimanite group minerals as a raw material composition. A system brick can be obtained. Therefore, the lifetime of the blast furnace hot blast tube and the hot blast furnace can be extended. Moreover, energy efficiency improves by being able to transfer the operating conditions of a hot stove to high temperature, and it can contribute to reduction of a global environmental load.

本発明のアルミナ−シリカ系れんがは、その原料配合物として電融アルミナとシリマナイト族鉱物とを組み合わせて配合することに特徴がある。電融アルミナは耐クリープ性に優れる原料であるが、熱膨張率が大きいため耐熱衝撃性に劣る問題がある。また、シリマナイト族鉱物の熱膨張率は更に大きい。具体的には、電融アルミナの熱膨張率は1000℃で0.6〜0.8%であり、シリマナイト族鉱物の熱膨張率は1000℃で0.8〜1.3%である。   The alumina-silica brick of the present invention is characterized in that it is blended in combination with a fused alumina and a sillimanite group mineral as a raw material blend. Electrofused alumina is a raw material with excellent creep resistance, but has a problem of poor thermal shock resistance due to its high coefficient of thermal expansion. Further, the thermal expansion coefficient of the sillimanite group mineral is even greater. Specifically, the thermal expansion coefficient of fused alumina is 0.6 to 0.8% at 1000 ° C., and the thermal expansion coefficient of sillimanite group mineral is 0.8 to 1.3% at 1000 ° C.

しかし、本発明者らは、これらの原料を使用した配合物を成形して焼成すると、焼成中に電融アルミナとシリマナイト族鉱物との熱膨張差に起因する微小な隙間がれんが組織内に発生し、この微小な隙間によって弾性率が低下するとともに亀裂進展が阻止されるために、耐熱衝撃性に優れるれんがとなり、更に、電融アルミナ本来の耐クリープ性に優れる特性も維持されることから、耐熱衝撃性と耐クリープ性を両立したれんがが得られることを知見した。   However, when the present inventors molded and fired a blend using these raw materials, a minute gap due to the difference in thermal expansion between the fused alumina and the sillimanite group mineral occurs in the structure during firing. However, since the elastic modulus is reduced by this minute gap and crack growth is prevented, it becomes a brick with excellent thermal shock resistance, and furthermore, the characteristics excellent in the creep resistance inherent in fused alumina are maintained. It was found that bricks with both thermal shock resistance and creep resistance can be obtained.

電融アルミナは38質量%以上70質量%以下で使用する。38質量%未満では耐クリープ性が不十分となり、70質量%を超えると耐熱衝撃性が低下する。電融アルミナは焼結アルミナと比較して、その粒子をコランダム結晶の集合体であると考えたとき、電融アルミナの結晶粒界は焼結アルミナのそれに比較して少ない。その結果、高温での機械的特性、例えば強度、クリープ抵抗性などに差が生じてくる。このことから、本発明では電融アルミナを使用する。電融アルミナとしては、通常の耐火物の原料として使用されているものであれば特に問題なく使用することができる。Al含有量としては95質量%以上のものが好ましい。 Electrofused alumina is used at 38 mass% or more and 70 mass% or less. If it is less than 38% by mass, the creep resistance becomes insufficient, and if it exceeds 70% by mass, the thermal shock resistance is lowered. Compared with sintered alumina, fused alumina has fewer crystal grain boundaries than fused alumina when it is considered that the particles are aggregates of corundum crystals. As a result, differences occur in mechanical properties at high temperatures, such as strength and creep resistance. For this reason, electrofused alumina is used in the present invention. Any electrofused alumina can be used as long as it is used as a raw material for ordinary refractories. The Al 2 O 3 content is preferably 95% by mass or more.

シリマナイト族鉱物は20質量%以上50質量%以下で使用する。20質量%未満では耐熱衝撃性が不十分となり、50質量%を超えると耐クリープ性が低下する。本発明で使用するシリマナイト族鉱物は、シリマナイト、アンダルサイト及びカイアナイトのうち1種又は2種以上を組み合わせて使用することができる。これらのシリマナイト族鉱物の熱膨張率はいずれも電融アルミナのそれより大きいので、電融アルミナとシリマナイト族鉱物とを組み合わせて配合することにより得られる耐熱衝撃性向上という特徴は、シリマナイト族鉱物が1種の場合はもちろん、2種以上を組み合わせても同様に得られる。これらの原料は、天然から採掘される鉱物であり、それらを精製して使用することができる。より耐クリープ性を確保したい場合には、不純物としての酸化鉄が約2質量%以下、好ましくは1質量%以下とすることもできる。   The sillimanite group mineral is used in an amount of 20% by mass to 50% by mass. If it is less than 20% by mass, the thermal shock resistance is insufficient, and if it exceeds 50% by mass, the creep resistance is lowered. The sillimanite group mineral used in the present invention can be used alone or in combination of two or more of sillimanite, andalusite, and kyanite. The thermal expansion coefficient of these sillimanite group minerals is greater than that of fused alumina, so the characteristic of improved thermal shock resistance obtained by combining fused alumina and sillimanite group minerals is that In the case of one type, of course, it can be similarly obtained by combining two or more types. These raw materials are minerals mined from nature and can be used by refining them. When it is desired to further secure creep resistance, the iron oxide as an impurity can be about 2% by mass or less, preferably 1% by mass or less.

電融アルミナとシリマナイト族鉱物との合量は75質量%以上95質量%以下とする。75質量%未満では耐クリープ性及び耐熱衝撃性を満足できず、95質量%を超えると強度が不十分になる。   The total amount of the fused alumina and the silimanite group mineral is 75% by mass or more and 95% by mass or less. If it is less than 75% by mass, the creep resistance and the thermal shock resistance cannot be satisfied, and if it exceeds 95% by mass, the strength becomes insufficient.

残部は、電融アルミナ及びシリマナイト族鉱物以外のアルミナ系原料、シリカ系原料及びアルミナ−シリカ系原料のうちの1種以上とする。すなわち、残部の量は5質量%以上25質量%以下である。残部を構成するアルミナ系原料としては仮焼アルミナなどの活性アルミナの他に焼結アルミナなど、シリカ系原料としては 石英、トリジマイト、クリストバライトなどからなる結晶性シリカの他に非晶質のシリカガラスなど、アルミナ−シリカ系原料としては、粘土、ムライトなどが使用できる。例えば、残部としては仮焼アルミナと粘土を合量で2質量%以上15質量%以下で使用することもできる。仮焼アルミナと粘土は、焼結助剤として強度向上効果がある。   The balance is one or more of alumina-based materials, silica-based materials, and alumina-silica-based materials other than fused alumina and sillimanite group minerals. That is, the remaining amount is 5% by mass or more and 25% by mass or less. The remaining alumina-based material includes sintered alumina in addition to activated alumina such as calcined alumina, and the silica-based material includes amorphous silica glass in addition to crystalline silica made of quartz, tridymite, cristobalite, etc. As the alumina-silica-based material, clay, mullite and the like can be used. For example, as the balance, calcined alumina and clay can be used in a total amount of 2% by mass to 15% by mass. Calcinated alumina and clay have a strength improving effect as a sintering aid.

本発明のアルミナ−シリカ系れんがは、上述の配合物を、混練し、成形後、焼成する通常の方法によって得られる。   The alumina-silica brick of the present invention can be obtained by an ordinary method of kneading, molding and firing the above-mentioned blend.

そして、本発明のアルミナ−シリカ系れんがは、焼成後のれんが中のシリマナイト族鉱物の残存率を90%質量以上とすることでより耐熱衝撃性を向上させることができる。ここで、焼成後のれんが中のシリマナイト族鉱物の残存率とは[100×(焼成後のれんが中のシリマナイト族鉱物の割合(質量%)/配合物中のシリマナイト族鉱物の割合(質量%))](質量%)である。   And the alumina-silica-type brick of this invention can improve a thermal shock resistance more by making the residual rate of the sillimanite group mineral in the brick after baking into 90% mass or more. Here, the residual ratio of the silimanite group mineral in the brick after firing is [100 × (the proportion of the silimanite group mineral in the brick after firing (mass%) / the proportion of the silimanite group mineral in the blend (mass%). )] (Mass%).

その理由は次のとおりである。シリマナイト族鉱物は、高温になると鉱物組成がムライトとクリストバライトに変化する。本発明によるれんがの耐熱衝撃性と耐クリープ性の両立には電融アルミナとシリマナイト族鉱物との熱膨張差に起因する微小な隙間がれんが組織内に発生することが必須である。焼成過程でシリマナイト族鉱物がムライトとクリストバライトへ変化すると、前述のれんが組織内に発生する微小な隙間が不足して本発明による効果が不十分となる。したがって、焼成後のれんが中にシリマナイト族鉱物をある程度含有する状態で焼成することで更に耐熱衝撃性が向上する。この焼成後のれんが中のシリナマイト族鉱物の残存率を焼成温度の指標とすることで、より正確にれんが組成を制御することができる。そして、数回シリマナイト族鉱物の残存率を測定した後は、焼成温度でシリマナイト族鉱物の残存率を管理することができる。例えば、1600℃以下で焼成することでシリマナイト族鉱物の残存率を90質量%以上とすることができる。なお、焼成温度の下限は、焼成が実現できる限り制限はないが、一般的には1000℃程度である。   The reason is as follows. Silimanite group minerals change to mullite and cristobalite at high temperatures. In order to achieve both the thermal shock resistance and the creep resistance of the brick according to the present invention, it is essential that a minute gap due to the difference in thermal expansion between the fused alumina and the silimanite group mineral is generated in the brick. When the sillimanite group mineral is changed to mullite and cristobalite in the firing process, the above-mentioned bricks are not sufficiently formed in the structure and the effect of the present invention becomes insufficient. Therefore, the thermal shock resistance is further improved by firing in a state in which the fired brick contains some silimanite group mineral. By using the residual rate of the silinamite group mineral in the brick after firing as an index of the firing temperature, the brick composition can be controlled more accurately. And after measuring the residual rate of a sillimanite group mineral several times, the residual rate of a sillimanite group mineral can be managed with a calcination temperature. For example, the residual rate of the sillimanite group mineral can be 90% by mass or more by firing at 1600 ° C. or less. The lower limit of the firing temperature is not limited as long as firing can be realized, but is generally about 1000 ° C.

他の観点からいうと、焼成後のれんが中のシリマナイト族鉱物のX線最強回折強度が500cps以上となるように焼成することで耐熱衝撃性が向上する。ここで、天然産シリマナイト族鉱物としてはアンダルサイト、カイアナイト、シリマナイトの3種類があり、これらのX線最強回折面は、アンダルサイトが(110)、カイアナイトが(0−21)、シリマナイトが(210)である。本発明でいうシリマナイト族鉱物のX線最強回折強度は、シリマナイト、アンダルサイト、カイアナイトそれぞれのX線最強回折面から生じる回折強度の和である。なお、コランダムのX線最強回折面は(104)である。   From another viewpoint, the thermal shock resistance is improved by firing so that the X-ray strongest diffraction intensity of the sillimanite group mineral in the brick after firing becomes 500 cps or more. Here, there are three kinds of natural sillimanite group minerals, andalusite, kyanite, and sillimanite, and these X-ray strongest diffraction planes are (110) for andalusite, (0-21) for kyanite, and (210) for sillimanite. ). The X-ray strongest diffraction intensity of the sillimanite group mineral referred to in the present invention is the sum of diffraction intensities generated from the X-ray strongest diffraction surfaces of sillimanite, andalusite, and kyanite. The corundum X-ray strongest diffraction surface is (104).

本発明のアルミナ−シリカ系れんがは、高炉熱風管又は熱風炉の連絡管、混合室、バーナーダクト部などの内張り耐火物として使用することで高炉熱風管及び熱風炉の寿命を延長することができる。更に、熱風炉の操業条件を高温へ移行できることでエネルギー効率が向上し、地球環境負荷の低減に寄与できる。   The alumina-silica-based brick of the present invention can extend the life of blast furnace hot air tubes and hot air furnaces when used as lining refractories such as blast furnace hot air tubes or hot air furnace connecting tubes, mixing chambers, and burner ducts. . Furthermore, energy efficiency is improved because the operating conditions of the hot stove can be shifted to high temperatures, which can contribute to reduction of the global environmental load.

本発明の実施例と比較例とを表1及び表2に示す。   Examples and comparative examples of the present invention are shown in Tables 1 and 2.

Figure 0006215111
Figure 0006215111

Figure 0006215111
Figure 0006215111

表1及び表2に示す配合物に水系のバインダーを添加して混練し、プレス機で230mm×115mm×75mmのれんがを成形し、乾燥後、1500℃で焼成してアルミナ−シリカ系れんがを得た。なお、実施例13は1550℃、実施例14は1600℃、比較例9は1640℃、比較例10は1680℃で焼成したものである。   A water-based binder is added to the formulations shown in Tables 1 and 2 and kneaded. A 230 mm × 115 mm × 75 mm brick is formed with a press, dried, and fired at 1500 ° C. to obtain an alumina-silica brick. It was. Note that Example 13 was fired at 1550 ° C., Example 14 at 1600 ° C., Comparative Example 9 at 1640 ° C., and Comparative Example 10 at 1680 ° C.

配合物には、電融アルミナはAl含有量が99.5質量%のものを、粘土はAl含有量が40質量%のものを、仮焼アルミナはAl含有量が99.0質量%のものを使用した。また、シリマナイト族鉱物としてアンダルサイトは、Al含有量が60質量%、SiO含有量が37質量%のものを、カイアナイトはAl含有量が58質量%、SiO含有量が39質量%のものを、シリマナイトはAl含有量が75質量%、SiO含有量が20質量%のものを使用した。 In the blend, fused alumina has an Al 2 O 3 content of 99.5% by mass, clay has an Al 2 O 3 content of 40% by mass, and calcined alumina contains Al 2 O 3 An amount of 99.0% by mass was used. Further, as the sillimanite group mineral, andalusite has an Al 2 O 3 content of 60% by mass and SiO 2 content of 37% by mass, and kyanite has an Al 2 O 3 content of 58% by mass and SiO 2 content. There those 39 wt%, sillimanite is Al 2 O 3 content 75 wt%, SiO 2 content was used in 20 mass%.

得られたアルミナ−シリカ系れんがについて、表1及び表2に結果を示すように、X線最強回折強度、かさ比重、見掛け気孔率、圧縮強さ、クリープ、荷重軟化点及び耐熱衝撃性を測定した。   As shown in Tables 1 and 2, the obtained alumina-silica brick was measured for X-ray strongest diffraction intensity, bulk specific gravity, apparent porosity, compressive strength, creep, load softening point, and thermal shock resistance. did.

れんが中あるいは配合物中のシリマナイト族鉱物の割合(質量%)は内標準物質としてシリコンを使用した内部標準法によりX線最強回折強度から求めた。なお、内部標準法とは、内部標準物質と試料を一定の割合で混合し、成分濃度と回折線強度比との間には直線比例関係が得られることを利用して、濃度が既知の標準試料で検量線を作成し分析する公知の方法である。   The ratio (mass%) of the silimanite group mineral in the brick or the blend was determined from the X-ray strongest diffraction intensity by an internal standard method using silicon as an internal standard substance. In addition, the internal standard method is a standard whose concentration is known by using the fact that the internal standard substance and the sample are mixed at a certain ratio and a linear proportional relationship is obtained between the component concentration and the diffraction line intensity ratio. This is a known method for preparing and analyzing a calibration curve with a sample.

X線最強回折強度とは、粉末X線解析法で得られたそれぞれの鉱物の回折パターンにおいて最も強い回折ピークの強度(cps)である。本実施例では、加速電圧が45kV、電流200mAで発生したX線をφ10mmの円盤面に照射したときに生じる回折X線をスキャンスピード8.0deg/minの条件で測定した。   The X-ray strongest diffraction intensity is the intensity (cps) of the strongest diffraction peak in the diffraction pattern of each mineral obtained by the powder X-ray analysis method. In this example, diffracted X-rays generated when an X-ray generated at an acceleration voltage of 45 kV and a current of 200 mA was irradiated onto a disk surface of φ10 mm were measured under a scan speed of 8.0 deg / min.

かさ比重と見掛け気孔率はJIS−R2205、圧縮強さはJIS−R2206に従い測定した。クリープはJIS−R2658に従い1550℃で5時間、0.2MPaの条件で測定した。荷重軟化点はJIS−R2209に従い0.2MPaの条件で測定した。耐熱衝撃性はJIS−R2657に従い800℃加熱後の水冷法により、剥落発生までの回数を測定した。   Bulk specific gravity and apparent porosity were measured according to JIS-R2205, and compressive strength was measured according to JIS-R2206. Creep was measured in accordance with JIS-R2658 at 1550 ° C. for 5 hours at 0.2 MPa. The load softening point was measured under the condition of 0.2 MPa according to JIS-R2209. For thermal shock resistance, the number of times until peeling occurred was measured by a water cooling method after heating at 800 ° C. in accordance with JIS-R2657.

実施例1から実施例5は、配合物中の電融アルミナとアンダルサイトとの含有量が異なる例であるが、いずれも本発明の範囲内であり耐熱衝撃性及び耐クリープ性に優れている。   Examples 1 to 5 are examples in which the contents of the fused alumina and the andalusite in the blend are different, but both are within the scope of the present invention and are excellent in thermal shock resistance and creep resistance. .

実施例6は、電融アルミナとアンダルサイト以外に、焼結アルミナとシャモットを使用した例、実施例7は仮焼アルミナに代えて焼結アルミナを使用した例であるが、いずれも本発明の範囲内であり耐熱衝撃性及び耐クリープ性に優れている。   Example 6 is an example using sintered alumina and chamotte in addition to electrofused alumina and andalusite, and Example 7 is an example using sintered alumina instead of calcined alumina. It is within the range and has excellent thermal shock resistance and creep resistance.

実施例8〜実施例12は、種々のシリマナイト族鉱物を使用した例であるが、いずれも本発明の範囲内であり耐熱衝撃性及び耐クリープ性に優れる。   Examples 8 to 12 are examples using various sillimanite group minerals, all of which are within the scope of the present invention and are excellent in thermal shock resistance and creep resistance.

比較例1は、電融アルミナとシリマナイト族鉱物の合量が97質量%と本発明の上限を超えており、強度低下が著しく、耐熱衝撃性も劣ることから実用上問題となる。   Comparative Example 1 is practically problematic because the total amount of fused alumina and silimanite group mineral is 97% by mass, exceeding the upper limit of the present invention, the strength is significantly reduced, and the thermal shock resistance is inferior.

比較例2は、電融アルミナとシリマナイト族鉱物の合量が70質量%と本発明の下限を下回っており、耐熱衝撃性と耐クリープ性が実用上問題となる。   In Comparative Example 2, the total amount of fused alumina and sillimanite group mineral is 70 mass%, which is lower than the lower limit of the present invention, and thermal shock resistance and creep resistance are practically problematic.

比較例3は、電融アルミナが30質量%と本発明の下限を下回っており、耐熱衝撃性は優れるが耐クリープ性が実用上問題となる。   In Comparative Example 3, the fused alumina is 30% by mass, which is below the lower limit of the present invention, and the thermal shock resistance is excellent, but the creep resistance becomes a practical problem.

比較例4は、電融アルミナが80質量%と本発明の上限を超えており、耐熱衝撃性が劣っている。   In Comparative Example 4, the fused alumina is 80% by mass, exceeding the upper limit of the present invention, and the thermal shock resistance is inferior.

比較例5は、シリマナイト族鉱物が55質量%と本発明の上限を超えており、耐熱衝撃性は優れるが耐クリープ性が実用上問題となる。   In Comparative Example 5, 55% by mass of the sillimanite group mineral exceeds the upper limit of the present invention, and the thermal shock resistance is excellent, but creep resistance becomes a practical problem.

比較例6は、シリマナイト族鉱物が15質量%と本発明の下限を下回っており、耐クリープ性は優れるが耐熱衝撃性が実用上問題となる。   In Comparative Example 6, the sillimanite group mineral is 15 mass%, which is lower than the lower limit of the present invention, and the creep resistance is excellent, but the thermal shock resistance is a practical problem.

比較例7は、シリマナイト族鉱物を使用せず、代わりにムライトを使用したものである。耐クリープ性は良好であるものの、低強度であり、耐熱衝撃性が実用上問題となる。   In Comparative Example 7, no sillimanite group mineral was used, and mullite was used instead. Although the creep resistance is good, the strength is low and the thermal shock resistance is a problem in practice.

比較例8は、電融アルミナの代わりに焼結アルミナを使用したものであるが、耐クリープ性が実用上問題となる。   In Comparative Example 8, sintered alumina is used instead of fused alumina, but creep resistance becomes a practical problem.

実施例13は1550℃、実施例14は1600℃で焼成したものであり、シリマナイトの残存率はそれぞれ95質量%及び90質量%と本発明の範囲内であるが、比較例9は焼成温度が1640℃と高いためシリマナイトの残存率は85質量%と本発明の下限値を下回った。その結果、耐熱衝撃性が低下する結果となった。   Example 13 was calcined at 1550 ° C. and Example 14 was calcined at 1600 ° C., and the remaining ratio of sillimanite was 95% by mass and 90% by mass, respectively, within the scope of the present invention. Since it was as high as 1640 ° C., the residual rate of sillimanite was 85% by mass, which was lower than the lower limit of the present invention. As a result, the thermal shock resistance was lowered.

比較例10は焼成温度が1680℃でありシリマナイト残存率が60質量%と本発明の下限値を下回った。その結果、耐熱衝撃性が更に低下する結果となった。   In Comparative Example 10, the firing temperature was 1680 ° C., and the sillimanite residual rate was 60% by mass, which was lower than the lower limit of the present invention. As a result, the thermal shock resistance was further reduced.

本発明の実施例1のれんがを熱風炉の混合室の内張りれんがとして使用した結果、操業から5年経過後もれんがの脱落、損傷等の不具合は発生せず、順調に稼働中である。   As a result of using the brick of Example 1 of the present invention as the lining brick of the mixing chamber of the hot stove, after 5 years from the operation, there are no problems such as falling off or damage of the brick, and it is operating smoothly.

Claims (1)

電融アルミナを38質量%以上70質量%以下、シリマナイト族鉱物を20質量%以上50質量%以下含有し、かつ、電融アルミナとシリマナイト族鉱物との合量が75質量%以上95質量%以下で、残部が電融アルミナ及びシリマナイト族鉱物以外のアルミナ系原料、シリカ系原料及びアルミナ−シリカ系原料のうちの1種以上からなる配合物を、混練し、成形後、焼成して得られたれんがであって、該れんが中のシリマナイト族鉱物の残存率が90質量%以上である、高炉熱風管又は熱風炉の内張り用アルミナ−シリカ系れんが。 The molten alumina is contained in an amount of 38% to 70% by mass, the sillimanite group mineral is contained in an amount of 20% to 50% by mass, and the total amount of the fused alumina and the sillimanite group mineral is 75% to 95% by mass. Thus, the balance was obtained by kneading, molding, and firing a mixture composed of one or more of alumina-based raw materials other than fused alumina and silimanite group minerals, silica-based raw materials, and alumina-silica-based raw materials. An alumina-silica-based brick for blast furnace hot-air tube or hot-blast furnace lining , wherein the residual ratio of the silimanite group mineral in the brick is 90% by mass or more.
JP2014068864A 2014-03-28 2014-03-28 Alumina-silica brick for blast furnace hot air tube or lining of hot air furnace Active JP6215111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014068864A JP6215111B2 (en) 2014-03-28 2014-03-28 Alumina-silica brick for blast furnace hot air tube or lining of hot air furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014068864A JP6215111B2 (en) 2014-03-28 2014-03-28 Alumina-silica brick for blast furnace hot air tube or lining of hot air furnace

Publications (2)

Publication Number Publication Date
JP2015189641A JP2015189641A (en) 2015-11-02
JP6215111B2 true JP6215111B2 (en) 2017-10-18

Family

ID=54424471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014068864A Active JP6215111B2 (en) 2014-03-28 2014-03-28 Alumina-silica brick for blast furnace hot air tube or lining of hot air furnace

Country Status (1)

Country Link
JP (1) JP6215111B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6758147B2 (en) * 2016-10-11 2020-09-23 黒崎播磨株式会社 How to make cordierite-containing alumina-silica brick
JP7304175B2 (en) * 2019-03-15 2023-07-06 黒崎播磨株式会社 Manufacturing method of mullite brick

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5192805A (en) * 1975-02-13 1976-08-14
JP4494667B2 (en) * 2001-04-11 2010-06-30 株式会社ノリタケカンパニーリミテド Refractory and manufacturing method thereof
JP2003313609A (en) * 2002-04-25 2003-11-06 Sumitomo Metal Ind Ltd Method for disposing refractory material in regenerator of hot stove

Also Published As

Publication number Publication date
JP2015189641A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
JP6541535B2 (en) Alumina-silica brick
JP7304175B2 (en) Manufacturing method of mullite brick
JP6215111B2 (en) Alumina-silica brick for blast furnace hot air tube or lining of hot air furnace
JP6427456B2 (en) Unshaped refractory composition and unshaped refractory
AU2008333636B2 (en) Fireproof ceramic mix, fireproof ceramic molded body formed of said mix, and the use thereof
US20210101835A1 (en) Chromia-based brick
JP2018154516A (en) Manufacturing method of magnesia-spinel fired brick
JP6758147B2 (en) How to make cordierite-containing alumina-silica brick
JP6823042B2 (en) Precast block refractory for coke oven
JP6358272B2 (en) Magnesia spinel refractory brick
JP6583968B2 (en) Refractory brick
JP6344621B2 (en) Magnesia spinel fired brick manufacturing method
JP6386317B2 (en) Silica brick for hot repair
JP6266968B2 (en) Blast furnace hearth lining structure
JP2021147275A (en) Magnesia-spinel refractory brick
JP2017206414A (en) Method for producing alumina-chromia fired brick
JP6166854B1 (en) Silicic refractory brick and manufacturing method thereof
JP4700560B2 (en) Manufacturing method for hot repair silica brick
JP2000327408A (en) Thermal shock resistant silica brick for hot repairing and its production
CN106278293A (en) Far infrared high-temperature wearable energy-saving coatings and preparation method thereof
JP2020128320A (en) Magnesia-spinel refractory
JP2015067457A (en) Magnesia-based brick
JP7277712B2 (en) Magnesia-spinel refractory bricks
TW202413307A (en) Magnesia-alumina based castable and refractory brick
CN109641801B (en) Refractory ceramic batch and method for producing refractory ceramic products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170920

R150 Certificate of patent or registration of utility model

Ref document number: 6215111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250