JP2011032118A - COATING MATERIAL WITH FeO RESISTANCE - Google Patents

COATING MATERIAL WITH FeO RESISTANCE Download PDF

Info

Publication number
JP2011032118A
JP2011032118A JP2009178676A JP2009178676A JP2011032118A JP 2011032118 A JP2011032118 A JP 2011032118A JP 2009178676 A JP2009178676 A JP 2009178676A JP 2009178676 A JP2009178676 A JP 2009178676A JP 2011032118 A JP2011032118 A JP 2011032118A
Authority
JP
Japan
Prior art keywords
alumina
coating material
feo
spinel
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009178676A
Other languages
Japanese (ja)
Other versions
JP5110539B2 (en
Inventor
Michiya Yamada
美智也 山田
Koji Kono
幸次 河野
Motokuni Itakusu
元邦 板楠
Masaharu Sato
正治 佐藤
Yoshiji Okanaka
義次 岡中
Kenji Takahashi
研二 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIN NIPPON THERMAL CERAMICS CORP
SHIN-NIPPON THERMAL CERAMICS CORP
Nippon Steel Corp
Original Assignee
SHIN NIPPON THERMAL CERAMICS CORP
SHIN-NIPPON THERMAL CERAMICS CORP
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIN NIPPON THERMAL CERAMICS CORP, SHIN-NIPPON THERMAL CERAMICS CORP, Nippon Steel Corp filed Critical SHIN NIPPON THERMAL CERAMICS CORP
Priority to JP2009178676A priority Critical patent/JP5110539B2/en
Publication of JP2011032118A publication Critical patent/JP2011032118A/en
Application granted granted Critical
Publication of JP5110539B2 publication Critical patent/JP5110539B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coating material which is excellent in FeO resistance, cracking resistance and releasing property and which is coated on the surface of a heat insulating ceramic fiber material constructed for a heating furnace and the like to prevent erosion by FeO. <P>SOLUTION: The coating material with FeO resistance coated on the surface of the fire-resistant, heat insulating ceramic fiber material includes spinel having a particle diameter of 1 mm or less and alumina having a particle diameter of 1 mm or less as aggregates, and further a crystalline fiber and colloidal silica. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、製銑、製鋼、圧延工程等で使用される加熱炉、均熱炉、熱処理炉、炉蓋、カバー等に施工されたセラミックファイバーブロックやスキッドポスト用セラミックファイバー成形体などの耐火性セラミックファイバー断熱材の表面に塗布される耐FeO性コーティング材に関する。   The present invention relates to a fire resistance such as a ceramic fiber block or a ceramic fiber molded body for a skid post applied to a heating furnace, a soaking furnace, a heat treatment furnace, a furnace lid, a cover, etc. used in steelmaking, steel making, rolling processes, etc. The present invention relates to a FeO-resistant coating material applied to the surface of a ceramic fiber heat insulating material.

近年、加熱炉等の各種窯炉設備の省エネや、断熱を目的にセラミックファイバーが使用されている。セラミックファイバーは、熱伝導率が低いのみならず、軽量かつ低嵩比重であるため、熱慣性に優れ、炉の降温、昇温時間が短くてすむ等の利点があり、セラミックファイバーブランケットの圧縮積層材や、セラミックファイバーブランケットを折り畳んで取付け金具と一体化したセラミックファイバーブロックが、溶融金属と接触しない部位で、主なライニングとして採用されている。また、スキッドポスト用断熱材としてセラミックファイバー成形体が使用されている。   In recent years, ceramic fibers have been used for the purpose of energy saving and heat insulation of various kiln facilities such as a heating furnace. Ceramic fiber not only has low thermal conductivity, but also has a light weight and low bulk specific gravity, so it has advantages such as excellent thermal inertia, lowering furnace temperature, and shorter heating time, and compression lamination of ceramic fiber blankets. A ceramic fiber block in which a material or a ceramic fiber blanket is folded and integrated with a mounting bracket is employed as a main lining at a portion that does not come into contact with molten metal. Moreover, the ceramic fiber molded object is used as a heat insulating material for skid posts.

しかし、これらのようなセラミックファイバーからなる断熱材は、前記のような優れた特性を有しているものの、鋼片が加熱された場合に生成するFeOに対する侵食抵抗性に劣り、低融点物質のファイヤライト等の生成により溶融、収縮・焼結が促進されて断熱厚みが減少したり、目地開きを生じ、断熱性が低下するという問題がある。   However, although these heat insulating materials made of ceramic fibers have the excellent characteristics as described above, they are inferior in erosion resistance to FeO produced when a steel slab is heated, and are low melting point materials. There is a problem that the generation of firelite or the like promotes melting, shrinkage, and sintering, thereby reducing the heat insulation thickness, causing joint opening, and lowering the heat insulation.

このような問題を解決するために、セラミックファイバー断熱材の表面にスプレーガン等により施工するコーティング材が使用されている。例えば、特許文献1には、アルミナを含む耐火骨材粉末と、結晶形態がα−石英型であるシリカ粉末と、硼酸と、可塑剤含有合成樹脂エマルジョンとを、所定の割合で含んだセラミックファイバー用のコーティング材が開示されている。このコーティング材中には、主要骨材としてアルミナ(70%以上)、アルミナ以外の骨材(0〜30%)としてスピネル、マグネシア、シリカ、炭化珪素、窒化ケイ素など通常耐火物に使用される耐火物質が使用されている。また、特許文献2には、セラミックファイバーの表面にセラミックファイバー含有吹付け材を吹付け、その施工面に更にアルミナを含むコーティング材を塗布する方法が開示されている。更に、特許文献3には、結晶質ファイバー、無機バインダー、有機バインダー及びアルミナ粉を必須成分として含有し、結晶質ファイバーとアルミナ粉の合計が全焼成分の90質量%以上となるようにした、加熱炉の耐スケール性コーティング材が開示されている。   In order to solve such a problem, a coating material applied on the surface of the ceramic fiber heat insulating material by a spray gun or the like is used. For example, Patent Document 1 discloses a ceramic fiber containing a refractory aggregate powder containing alumina, silica powder having an α-quartz crystal form, boric acid, and a plasticizer-containing synthetic resin emulsion in a predetermined ratio. A coating material is disclosed. In this coating material, the main aggregate is alumina (70% or more), the aggregate other than alumina (0 to 30%) is spinel, magnesia, silica, silicon carbide, silicon nitride, and other refractories usually used for refractories. Substance is being used. Patent Document 2 discloses a method in which a ceramic fiber-containing spray material is sprayed on the surface of a ceramic fiber, and a coating material containing alumina is further applied to the construction surface. Furthermore, Patent Document 3 contains a crystalline fiber, an inorganic binder, an organic binder, and alumina powder as essential components, and the total of the crystalline fiber and the alumina powder is 90% by mass or more for the total firing. A furnace scale resistant coating material is disclosed.

しかしながら、操業が過酷になるにつれて、鋼片より発生するFeO量が増大し、また、操業温度が上昇すると、アルミナを主体とするコーティング材では、上記のようにスピネルを添加した場合でも耐FeO性が不十分である。また、上述したような従来のコーティング材では、熱間で液相が生じ易く、使用中にセラミックファイバー断熱材の表面に施工されたコーティング材が収縮し、亀裂、剥離が生じ、それによりセラミックファイバー断熱材がFeOに侵食され、断熱材厚みの減少と目地開きによる断熱性低下等のトラブルが多発する問題がある。更には、従来のコ−ティング材では、冷間に冷やす際に残存収縮が大きいことから、冷却時にセラミックファイバー断熱材から剥離することがあり、耐用性にも課題がある。   However, as the operation becomes severe, the amount of FeO generated from the steel slab increases, and when the operation temperature rises, the coating material mainly composed of alumina has FeO resistance even when spinel is added as described above. Is insufficient. In addition, in the conventional coating material as described above, a liquid phase is likely to occur between the heat, and during use, the coating material applied to the surface of the ceramic fiber heat-insulating material shrinks, causing cracks and peeling, thereby causing the ceramic fiber. There is a problem that the heat insulating material is eroded by FeO, and troubles such as a decrease in the heat insulating material thickness and a decrease in heat insulating property due to joint opening occur frequently. Furthermore, since the conventional coating material has a large residual shrinkage when cooled in the cold, it may be peeled off from the ceramic fiber heat insulating material during cooling, and there is a problem in durability.

ところで、セラミックファイバー断熱材の表面をコーティングするコーティング材料とは技術分野が異なる溶融金属容器ライニング用不定形耐火物として、アルミナ・スピネル質不定形耐火物が公知であり、例えば特許文献4には、MgO・Al23を主要構成成分としてなるスピネルを50〜95重量%含み、残部がAl23を主成分とする、耐FeO性に優れた溶銑脱用流込み材が記載されている。しかしながら、上記アルミナ・スピネル質不定形耐火物は、骨材として比較的大きい粒子(数mm以上)を主として使用しているため、後述するようにアルミナリッチの2次スピネルが生成しづらく、耐亀裂・剥離性が不十分である。 By the way, as an amorphous refractory for molten metal container lining having a different technical field from the coating material for coating the surface of the ceramic fiber heat insulating material, an alumina / spinel amorphous refractory is known. the spinel made a MgO · Al 2 O 3 as a main component contains 50 to 95 wt%, the balance being mainly composed of Al 2 O 3, molten iron removal flow lump material having excellent FeO resistance have been described . However, since the above-mentioned alumina-spinel amorphous refractory mainly uses relatively large particles (several mm or more) as an aggregate, it is difficult to produce an alumina-rich secondary spinel, as will be described later. -The peelability is insufficient.

特公昭63−56194号公報Japanese Examined Patent Publication No. 63-56194 特開2000−283656号公報JP 2000-283656 A 特開2004−168565号公報JP 2004-168565 A 特開昭59−128271号公報JP 59-128271 A

本発明では、加熱炉などに施工されるセラミックファイバー断熱材のFeOによる侵食を防止するために、その表面にコーティングするコ−ティング材の耐FeO性、熱間収縮の抑制、及び残存収縮の抑制を図ることを目的とし、耐FeO性に優れると共に、耐亀裂性、剥離性等に優れたコーティング材を提供する。   In the present invention, in order to prevent erosion of the ceramic fiber heat insulating material applied to a heating furnace or the like by FeO, the coating material coated on the surface has FeO resistance, suppression of hot shrinkage, and suppression of residual shrinkage. In addition to providing excellent resistance to FeO, a coating material excellent in crack resistance, peelability and the like is provided.

本発明者らは、耐FeO性に優れるスピネルやMgO原料に着目して、鋭意、研究・開発を行った結果、スピネル(MgO・Al2O3)は高温で液相が生成し、収縮により耐亀裂性に劣る原料であるが、驚くべきことに、1mm以下のスピネルと1mm以下のアルミナとを所定の濃度で併用することにより、アルミナリッチの二次スピネルが生成し、その膨張により高温での収縮及び残存収縮が抑制され、耐亀裂・剥離性が格段に向上することを見出し、本発明を完成した。
本発明の要旨は、以下の通りである。
As a result of diligent research and development focusing on spinel and MgO raw materials excellent in FeO resistance, the present inventors have formed a liquid phase at a high temperature, and due to shrinkage, spinel (MgO · Al 2 O 3 ) Although it is a raw material inferior in crack resistance, surprisingly, by using a combination of spinel of 1 mm or less and alumina of 1 mm or less at a predetermined concentration, an alumina-rich secondary spinel is generated, and its expansion causes a high temperature. The present inventors completed the present invention by finding that the shrinkage and residual shrinkage were suppressed and the crack resistance and releasability were remarkably improved.
The gist of the present invention is as follows.

(1)耐火性のセラミックファイバー断熱材の表面に塗布される耐FeO性コーティング材であって、骨材として、粒径1mm以下のスピネル、及び、粒径1mm以下のアルミナを含有し、更に、結晶質ファイバー、及びコロイダルシリカを含有することを特徴とするコーティング材。
(2)前記粒径1mm以下のスピネルを20〜60質量%、前記粒径1mm以下のアルミナを20〜60質量%、及び前記結晶質ファイバーを5〜30質量%含有することを特徴とする(1)に記載のコーティング材。
(3)前記結晶質ファイバーが、ムライト系結晶質ファイバーであることを特徴とする(1)又は(2)に記載のコーティング材。
(1) A FeO-resistant coating material applied to the surface of a fire-resistant ceramic fiber heat insulating material, and as an aggregate, containing spinel having a particle size of 1 mm or less and alumina having a particle size of 1 mm or less; A coating material comprising crystalline fiber and colloidal silica.
(2) The spinel having a particle size of 1 mm or less is contained in an amount of 20 to 60% by mass, the alumina having a particle size of 1 mm or less is contained in an amount of 20 to 60% by mass, and the crystalline fiber is contained in an amount of 5 to 30% by mass ( The coating material as described in 1).
(3) The coating material according to (1) or (2), wherein the crystalline fiber is a mullite crystalline fiber.

耐FeO性に優れるものの高温での収縮により耐亀裂性に劣るスピネルは、本発明のようにアルミナと併用することでアルミナリッチの二次スピネルが生成し、その膨張により高温での収縮が抑制されて耐亀裂性が格段に向上し、耐FeO性及び耐亀裂・剥離性に優れた、耐FeO性コーティング材を得ることができる。そのため、本発明によれば、セラミックファイバーブロック等の寿命を延長させることができ、尚且つ安定操業が可能となる。   A spinel that is excellent in FeO resistance but inferior in crack resistance due to shrinkage at high temperature produces an alumina-rich secondary spinel when used in combination with alumina as in the present invention, and its expansion suppresses shrinkage at high temperature. Thus, it is possible to obtain a FeO-resistant coating material with significantly improved crack resistance and excellent FeO resistance and crack / peeling resistance. Therefore, according to the present invention, the lifetime of the ceramic fiber block and the like can be extended, and stable operation is possible.

図1は、実施例1のコーティング材の熱膨張試験による熱膨張率の変化を表すグラフである。FIG. 1 is a graph showing a change in thermal expansion coefficient of the coating material of Example 1 according to a thermal expansion test. 図2は、比較例1のコーティング材の熱膨張試験による熱膨張率の変化を表すグラフである。FIG. 2 is a graph showing a change in thermal expansion coefficient of the coating material of Comparative Example 1 by a thermal expansion test. 図3は、比較例2のコーティング材の熱膨張試験による熱膨張率の変化を表すグラフである。FIG. 3 is a graph showing changes in the coefficient of thermal expansion of the coating material of Comparative Example 2 according to the thermal expansion test.

以下に、好適な実施形態を挙げて、本発明の耐FeO性コーティング材を更に説明する。   The FeO-resistant coating material of the present invention will be further described below with reference to preferred embodiments.

本発明は、耐火性のセラミックファイバー断熱材の表面に塗布される耐FeO性コーティング材であって、骨材として、粒径1mm以下のスピネル、及び、粒径1mm以下のアルミナを含有し、更に、結晶質ファイバー、及びコロイダルシリカを含有することを特徴とする。また、セラミックファイバーは、アルミナ(Al2O3)とシリカ(SiO2)を主成分とした人造無機繊維のことであり、アルミナ成分の含有量等により、耐熱性が異なる。アルミナ含有量が70%以上の結晶質繊維はアルミナファイバー(ムライトファイバーを含む)とも言い、特に耐熱性が高い。本発明に係るコーティング材は、これらアルミナとシリカを主成分とすることで共通するいずれのセラミックファイバーに対しても適用可能である。 The present invention is a FeO-resistant coating material applied to the surface of a refractory ceramic fiber heat insulating material, and contains, as an aggregate, a spinel having a particle diameter of 1 mm or less and an alumina having a particle diameter of 1 mm or less, Further, it contains crystalline fiber and colloidal silica. The ceramic fiber is an artificial inorganic fiber mainly composed of alumina (Al 2 O 3 ) and silica (SiO 2 ), and has different heat resistance depending on the content of the alumina component. Crystalline fibers having an alumina content of 70% or more are also referred to as alumina fibers (including mullite fibers), and have particularly high heat resistance. The coating material according to the present invention can be applied to any of the common ceramic fibers by using these alumina and silica as main components.

本発明の耐FeO性コーティング材では、スピネルの耐FeO性を活用し、かつ耐亀裂・剥離性に優れるコーティング層を形成するために、スピネルとアルミナを併用する。好ましくは、粒径1mm以下のスピネルを20〜60質量%、更に好ましくは20〜50質量%含有すると共に、粒径1mm以下のアルミナを好ましくは20〜60質量%、更に好ましくは20〜50質量%含有する。スピネルとアルミナを併用する効果は、例えば下記実施例及び比較例で説明する内容から確認することができる。すなわち、常温から1400℃まで4℃/minの昇温速度で昇温した場合の熱膨張率曲線と、その後、4℃/minの冷却速度で常温まで降温した場合の熱膨張曲線とを測定すると、骨材としてスピネル又はアルミナのいずれか一方のみを含んだコーティング材の場合には、粒径1mm以下であっても、図2(骨材はアルミナのみ)又は図3(骨材はスピネルのみ)から明らかなように、所定の温度以上の高温で一度収縮することから、このような高温から冷間に冷やす際の更なる収縮により、熱履歴後の残存収縮が大きいことが分かる。それに対し、粒径1mm以下のスピネルと粒径1mm以下のアルミナとを併用したコーティング材の場合には、図1から明らかなように、1200℃過ぎから一端収縮することが確認されるが、その後膨張に転じ、高温での収縮が殆ど生じないため、その後冷間で冷やす際に収縮は生じるが、熱履歴後の残存収縮は図2又は図3の場合に比べてはるかに小さいことが分かる。   In the FeO resistant coating material of the present invention, spinel and alumina are used in combination in order to utilize the FeO resistance of the spinel and to form a coating layer having excellent crack resistance and peelability. Preferably, spinel having a particle size of 1 mm or less is contained in an amount of 20 to 60% by mass, more preferably 20 to 50% by mass, and alumina having a particle size of 1 mm or less is preferably 20 to 60% by mass, more preferably 20 to 50% by mass. %contains. The effect of using spinel and alumina in combination can be confirmed, for example, from the contents described in the following examples and comparative examples. That is, when measuring the thermal expansion coefficient curve when the temperature is increased from room temperature to 1400 ° C. at a rate of 4 ° C./min, and then the thermal expansion curve when the temperature is decreased to room temperature at a cooling rate of 4 ° C./min. In the case of a coating material containing only one of spinel or alumina as an aggregate, even if the particle diameter is 1 mm or less, FIG. 2 (aggregate is only alumina) or FIG. 3 (aggregate is only spinel) As is apparent from the above, since shrinkage is once performed at a high temperature of a predetermined temperature or higher, it can be understood that the remaining shrinkage after the heat history is large due to further shrinkage when cooling from such high temperature to cold. On the other hand, in the case of a coating material using both a spinel having a particle size of 1 mm or less and an alumina having a particle size of 1 mm or less, it is confirmed from FIG. Since it turns into expansion and shrinkage at high temperature hardly occurs, shrinkage occurs when it is cooled in the cold after that, but it can be seen that the residual shrinkage after the thermal history is much smaller than in the case of FIG. 2 or FIG.

この理由について、本発明者らが推測するに、粒径1mm以下のスピネルと粒径1mm以下のアルミナが反応してアルミナリッチな二次スピネルが生成し、その膨張により高温時の熱収縮が抑制されて残存収縮が抑制されるためと考えられ、その結果、亀裂が防止されると推測する。この際、スピネルの粒径が1mmより大きかったり、アルミナの粒径が1mmより大きいと、スピネルとアルミナを併用しても二次スピネルが生成しにくくなり、収縮が抑制できず、亀裂が発生しやすくなる。また、粒径1mmを超えるスピネルやアルミナが混入していても、粒径1mm以下のスピネルと粒径1mm以下のアルミナが両方存在していれば、アルミナリッチな二次スピネルは生成すると考えられるため、本発明として適用することができる。但し、耐火性セラミックファイバー断熱材の表面への塗布が、吹きつけ作業を前提とした場合、骨材として含有するスピネルやアルミナの粒径が1mmを超えるとスプレーガン等での作業ができなくなるおそれがあるため、スピネルとアルミナは共に、ほぼ全量、粒径1mm以下のものを使用することが好ましい。また、粒径1mm超のスピネルやアルミナを取り除く場合には、篩いを使用すればよい。なお、スピネルとアルミナの粒径は、いずれもレーザー回折・散乱式測定法による粒径を指す。   For this reason, the present inventors speculate that spinel with a particle size of 1 mm or less and alumina with a particle size of 1 mm or less react to form an alumina-rich secondary spinel, and its expansion suppresses thermal shrinkage at high temperatures. It is thought that this is because residual shrinkage is suppressed, and as a result, it is assumed that cracking is prevented. At this time, if the spinel particle size is larger than 1 mm or the alumina particle size is larger than 1 mm, secondary spinel is hardly generated even if spinel and alumina are used in combination, shrinkage cannot be suppressed, and cracking occurs. It becomes easy. In addition, even if spinel or alumina having a particle size exceeding 1 mm is mixed, if both a spinel having a particle size of 1 mm or less and an alumina having a particle size of 1 mm or less exist, it is considered that an alumina-rich secondary spinel is generated. The present invention can be applied. However, if the application to the surface of the refractory ceramic fiber heat insulating material is premised on the spraying work, if the particle size of the spinel or alumina contained as the aggregate exceeds 1 mm, the work with the spray gun or the like may not be possible. Therefore, it is preferable to use almost all spinel and alumina having a particle diameter of 1 mm or less. Further, when removing spinel or alumina having a particle diameter of more than 1 mm, a sieve may be used. The particle diameters of spinel and alumina both indicate the particle diameter obtained by a laser diffraction / scattering measurement method.

このうち、アルミナは熱安定性の高いα−アルミナを使用するのが好ましい。一方、スピネルは各種のアルミナ・マグネシウムスピネルが使用され、理論組成スピネル、理論組成スピネルよりアルミナの多いアルミナリッチスピネル、理論組成スピネルよりマグネシアの多いマグネシアリッチスピネルなどがある。本発明で使用するスピネルはMgO含有量が5質量%〜35質量%のものが好ましい。MgOの含有量が5質量%未満だとアルミナの組成に近づき、二次スピネルが生成しづらくなる。反対にMgOの含有量が35質量%を超えると、後述するように添加する水との反応で、水和が起こり、消化による亀裂が入り易くなる。   Of these, α-alumina having high thermal stability is preferably used as alumina. On the other hand, various types of alumina / magnesium spinels are used as the spinel, including a theoretical composition spinel, an alumina rich spinel with more alumina than the theoretical composition spinel, and a magnesia rich spinel with more magnesia than the theoretical composition spinel. The spinel used in the present invention preferably has an MgO content of 5% by mass to 35% by mass. If the content of MgO is less than 5% by mass, the composition of alumina approaches and secondary spinel is difficult to be generated. On the other hand, when the content of MgO exceeds 35% by mass, hydration occurs due to reaction with water added as described later, and cracks due to digestion are likely to occur.

結晶質ファイバーは、養生、乾燥時の亀裂発生を抑制し、コーティング材が使用されるセラミックファイバー断熱材の表面との結合力を高めるためのものであり、好ましくは、アルミナ系またはアルミナ分が72%質量以上のムライト系結晶質ファイバーを使用するのがよい。結晶質ファイバーの濃度範囲は5〜40質量%が好ましい。5質量%より少ないと結合力を高める効果が望めず、反対に40質量%より多くなると、結晶質ファイバーがコーティング材に均一に分散しにくくなる。結合力と均一分散の観点からより好ましくは7〜30質量%である。また、結晶質ファイバーはスケールとの反応が激しく、30質量%より多くなると耐FeO性が極端に低下する。更にまた、結晶質ファイバーは殆ど膨張しないため、添加量が増えるほど熱膨張率が小さくなり好ましい方向ではあるが、耐FeO性は悪化するため、この点も考慮すると、総合的に5〜30質量%が好ましく、7〜30質量%が更に好ましい。なお、非晶質ファイバーは、耐熱性が低いため高温で収縮し亀裂が生成し、またスケールと反応しやすいため、耐亀裂・剥離性と耐FeO性に劣る。   The crystalline fiber is for suppressing cracking during curing and drying, and for increasing the bonding strength with the surface of the ceramic fiber heat insulating material used for the coating material. Preferably, the alumina fiber or alumina content is 72. It is preferable to use mullite crystalline fiber having a mass of at least%. The concentration range of the crystalline fiber is preferably 5 to 40% by mass. If the amount is less than 5% by mass, the effect of increasing the bonding force cannot be expected. On the other hand, if the amount exceeds 40% by mass, the crystalline fibers are difficult to uniformly disperse in the coating material. More preferably, it is 7-30 mass% from a viewpoint of bonding strength and uniform dispersion. Further, the crystalline fiber has a strong reaction with the scale, and when it exceeds 30% by mass, the FeO resistance is extremely lowered. Furthermore, since the crystalline fiber hardly expands, the thermal expansion coefficient decreases as the amount added increases, which is a preferable direction, but the FeO resistance deteriorates. % Is preferable, and 7 to 30% by mass is more preferable. In addition, since the amorphous fiber has low heat resistance, it shrinks at a high temperature to generate a crack, and easily reacts with the scale, so that it is inferior in crack resistance / peeling resistance and FeO resistance.

コロイダルシリカは結合剤であり、一般的な配合割合で使用すれば良いが、濃度範囲は例えば5〜30質量%、好ましくは10〜25質量%であるのがよい。5質量%より少ないと接着性が低下し、30質量%より多いと熱間での液相が多量に生成し、耐熱性が低下するのみならず、収縮も大きくなる。   Colloidal silica is a binder and may be used in a general blending ratio, but the concentration range is, for example, 5 to 30% by mass, preferably 10 to 25% by mass. When the amount is less than 5% by mass, the adhesiveness is lowered. When the amount is more than 30% by mass, a large amount of hot liquid phase is generated, not only the heat resistance is lowered, but also the shrinkage is increased.

本発明の耐FeO性コーティング材をセラミックファイバー断熱材に塗布する方法については特に制限はないが、一般には、スプレーガン等によりセラミックファイバー断熱材に施工する方法が採用される。この際、本発明の耐FeO性コーティング材に水を加えて通常8000〜20000cP程度の粘度にして、施工厚みが0.5〜10mm程度となるように、スプレーガン等によりセラミックファイバー断熱材に施工するのが好ましい。施工厚みがこれより薄い場合には耐FeO性コーティング材の効果が十分ではなく、反対にこれより厚い場合には、自重に耐えられずに落下するおそれがある。また、水添加量(外掛け)は通常25〜60質量%であるのがよい。更には、本発明の耐FeO性セラミックファイバーコーティング材には、必要により上記成分のほか、吹付けまたは塗布時ダレを防止し、接着性を向上させるために、有機バインダーのCMC(カルボキシメチルセルロース)やPVA(ポリビニルアルコール)等を配合したり、ベントナイト等の耐火材を配合したり、界面活性剤などの微量調整剤を配合して保存安定性などを向上させたりすることができる。しかし、これらの追加成分は耐FeO性を損なわないように、耐FeO性コーティング材の8質量%以下とすることが望ましい。   Although there is no restriction | limiting in particular about the method of apply | coating the FeO-resistant coating material of this invention to a ceramic fiber heat insulating material, Generally, the method of applying to a ceramic fiber heat insulating material with a spray gun etc. is employ | adopted. At this time, water is added to the FeO-resistant coating material of the present invention so that the viscosity is usually about 8000 to 20000 cP, and the construction thickness is about 0.5 to 10 mm. It is preferable to do this. When the construction thickness is thinner than this, the effect of the FeO-resistant coating material is not sufficient. On the other hand, when the construction thickness is thicker than this, there is a risk that it will fall without being able to withstand its own weight. The amount of water added (outer coating) is usually 25 to 60% by mass. Furthermore, the FeO-resistant ceramic fiber coating material of the present invention includes, in addition to the above components, if necessary, in order to prevent sag during spraying or application and to improve adhesion, an organic binder such as CMC (carboxymethylcellulose) or PVA (polyvinyl alcohol) etc. can be mix | blended, refractory materials, such as bentonite, can be mix | blended, and trace control agents, such as surfactant, can be mix | blended, and storage stability etc. can be improved. However, these additional components are desirably 8% by mass or less of the FeO resistant coating material so as not to impair the FeO resistance.

[実施例1〜9、比較例1〜7]
以下の表1に記載する骨材を用いて、表2に示す材料及び配合にて実施例1〜49及び比較例1〜7に係るコーティング材を調製した。また、実施例及び比較例で得られたコーティング材の諸特性を表2に併記した。
[Examples 1-9, Comparative Examples 1-7]
Using the aggregates described in Table 1 below, coating materials according to Examples 1 to 49 and Comparative Examples 1 to 7 were prepared using the materials and blends shown in Table 2. In addition, Table 2 shows various properties of the coating materials obtained in Examples and Comparative Examples.

Figure 2011032118
Figure 2011032118

Figure 2011032118
Figure 2011032118

上記で調製した各コーティング材を水で混練後、鋳込み枠に流し込み室温にて24時間養生後、100×100×厚み10(mm)の試験用コーティングサンプルを作製し、その表面に発生した亀裂の有無を目視にて確認した。また、試験用コーティングサンプルを1400℃で3時間焼成して、その表面に発生した亀裂の有無を観察した。更に、耐FeO性評価として、上記試験用コーティングサンプルに25mmφの円盤状のFeOを置き、その状態のまま1400℃で3時間焼成して、FeOとの反応によって形成された反応変色径を測定した。そして、比較例1でFeOと反応して円形に広がった長さの2点の平均長さを100とし、各サンプルの反応変色径の平均長さを反応変色比として表示した。更にまた、20×20×長さ70mmの試験用コーティングサンプルを用いて1400℃までの熱膨張試験を行い、常温まで冷却した時の残存線変化を測定した(昇温速度及び冷却速度はいずれも4℃/min)。残存線変化率は、加熱前のサンプル長さを基準にして、1400℃に加熱して常温まで冷却した後のサンプル長さから収縮した割合(収縮量)を求めた。結果を表2に示す。また、実施例1と比較例1、2の場合については熱膨張試験による熱膨張率の変化をそれぞれ図1〜3に示す。   Each coating material prepared above is kneaded with water, poured into a casting frame, cured at room temperature for 24 hours, and then a test coating sample of 100 × 100 × thickness 10 (mm) was prepared, and cracks generated on the surface thereof were produced. The presence or absence was confirmed visually. Moreover, the test coating sample was baked at 1400 ° C. for 3 hours, and the presence or absence of a crack generated on the surface was observed. Further, as an evaluation of FeO resistance, a disc-shaped FeO of 25 mmφ was placed on the test coating sample and fired at 1400 ° C. for 3 hours in that state, and the reaction discoloration diameter formed by the reaction with FeO was measured. . Then, in Comparative Example 1, the average length of the two points that reacted with FeO and spread in a circular shape was defined as 100, and the average length of the reaction discoloration diameter of each sample was displayed as the reaction discoloration ratio. Furthermore, a thermal expansion test up to 1400 ° C. was carried out using a test sample of 20 × 20 × 70 mm in length, and the residual line change when cooled to room temperature was measured (both the heating rate and the cooling rate were both 4 ° C / min). The residual line change rate was determined by the ratio (shrinkage amount) of shrinkage from the sample length after heating to 1400 ° C. and cooling to room temperature based on the sample length before heating. The results are shown in Table 2. Moreover, about the case of Example 1 and Comparative Examples 1 and 2, the change of the thermal expansion coefficient by a thermal expansion test is shown in FIGS. 1-3, respectively.

比較例1は従来のアルミナ単独使用のケースである。亀裂が生成し、残存線変化率が大きく、耐FeO性に劣ることが分る。比較例2はスピネル単独使用のケースであるが、残存収縮が大きく、焼成後には亀裂も発生し、耐FeO性も劣る結果であった。比較例3及び4は、マグネシアとアルミナを併用したケースであるが、マグネシアの消化により亀裂が生成したものと考えられる。比較例5及び6は、スピネル又はアルミナの粒径が1mmより大きいものを使用したため、二次スピネルが生成しにくく、収縮が抑制できずに亀裂が発生したものと考えられる。比較例7では、非晶質ファイバーを用いたため耐FeO性に劣り、亀裂も発生した。これに対し、実施例1〜9のコーティング材は、スピネルとアルミナとの併用により高温での収縮が抑制され、残存収縮も少なく、亀裂が生成せず、尚且つ、耐FeO性に優れることが分る。   Comparative Example 1 is a case of using conventional alumina alone. It can be seen that cracks are generated, the residual line change rate is large, and the FeO resistance is poor. Comparative Example 2 was a case where spinel was used alone, but the residual shrinkage was large, cracking occurred after firing, and FeO resistance was poor. Comparative Examples 3 and 4 are cases in which magnesia and alumina are used in combination, but it is considered that cracks were generated by digestion of magnesia. In Comparative Examples 5 and 6, since spinel or alumina having a particle size larger than 1 mm was used, secondary spinel was hardly generated, and it was considered that shrinkage could not be suppressed and cracking occurred. In Comparative Example 7, since amorphous fibers were used, the FeO resistance was inferior and cracks also occurred. On the other hand, the coating materials of Examples 1 to 9 can be prevented from shrinking at a high temperature by the combined use of spinel and alumina, have little residual shrinkage, do not generate cracks, and have excellent FeO resistance. I understand.

また、上記実施例1及び2、並びに比較例1で得られたコーティング材をA製鉄所の熱延加熱炉天井ブロック(耐熱温度1600℃のセラミックファイバー使用)に、スプレーガンにて2mm厚で施工したところ、4ヶ月後の炉内点検で、比較例1のコーティング材はFeOと反応し、亀裂が生成し剥離していたが、実施例1及び2のコーティング材はFeOとの反応は見られず、亀裂、剥離の生成はなかった。   In addition, the coating materials obtained in Examples 1 and 2 and Comparative Example 1 were applied to a hot rolled heating furnace ceiling block (using ceramic fiber with a heat-resistant temperature of 1600 ° C) at A Steel Works to a thickness of 2 mm using a spray gun. As a result, in the in-furnace inspection after 4 months, the coating material of Comparative Example 1 reacted with FeO and cracks were generated and peeled off, but the coating materials of Examples 1 and 2 showed a reaction with FeO. Neither crack nor peeling was generated.

Claims (3)

耐火性のセラミックファイバー断熱材の表面に塗布される耐FeO性コーティング材であって、骨材として、粒径1mm以下のスピネル、及び、粒径1mm以下のアルミナを含有し、更に、結晶質ファイバー、及びコロイダルシリカを含有することを特徴とするコーティング材。   A FeO-resistant coating material applied to the surface of a refractory ceramic fiber heat-insulating material, comprising spinel having a particle diameter of 1 mm or less and alumina having a particle diameter of 1 mm or less as an aggregate, and further comprising a crystalline fiber And a coating material characterized by containing colloidal silica. 前記粒径1mm以下のスピネルを20〜60質量%、前記粒径1mm以下のアルミナを20〜60質量%、及び前記結晶質ファイバーを5〜30質量%含有することを特徴とする請求項1に記載のコーティング材。   The spinel having a particle diameter of 1 mm or less is contained in an amount of 20 to 60 mass%, the alumina having a particle diameter of 1 mm or less is contained in an amount of 20 to 60 mass%, and the crystalline fiber is contained in an amount of 5 to 30 mass%. The coating material described. 前記結晶質ファイバーが、ムライト系結晶質ファイバーであることを特徴とする請求項1又は2に記載のコーティング材。   The coating material according to claim 1, wherein the crystalline fiber is a mullite crystalline fiber.
JP2009178676A 2009-07-31 2009-07-31 FeO resistant coating material Active JP5110539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009178676A JP5110539B2 (en) 2009-07-31 2009-07-31 FeO resistant coating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009178676A JP5110539B2 (en) 2009-07-31 2009-07-31 FeO resistant coating material

Publications (2)

Publication Number Publication Date
JP2011032118A true JP2011032118A (en) 2011-02-17
JP5110539B2 JP5110539B2 (en) 2012-12-26

Family

ID=43761567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009178676A Active JP5110539B2 (en) 2009-07-31 2009-07-31 FeO resistant coating material

Country Status (1)

Country Link
JP (1) JP5110539B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035646A1 (en) 2011-09-08 2013-03-14 三菱樹脂株式会社 Molded inorganic-fiber object
CN104108941A (en) * 2014-05-09 2014-10-22 长兴三重窑炉科技有限公司 Coal-injection duct precast brick pouring material
JP2015081753A (en) * 2013-10-24 2015-04-27 新日鐵住金株式会社 Inorganic fiber fireproof heat insulation lining construction method and furnace
JP2016030715A (en) * 2014-07-30 2016-03-07 クアーズテック株式会社 Composite heat insulator
JP2017072267A (en) * 2015-10-05 2017-04-13 品川リフラクトリーズ株式会社 Method for constructing lining for industrial kiln and lining for industrial kiln
JP2020059612A (en) * 2018-10-04 2020-04-16 日本製鉄株式会社 Method for evaluating peeling resistance of alumina-magnesia quality castable refractory

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221165A (en) * 1989-02-23 1990-09-04 Harima Ceramic Co Ltd Monolithic refractory for molten steel ladle bed part
JP2004168565A (en) * 2002-11-18 2004-06-17 Shinnikka Thermal Ceramics Corp Scale-resistant coating material for heating furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221165A (en) * 1989-02-23 1990-09-04 Harima Ceramic Co Ltd Monolithic refractory for molten steel ladle bed part
JP2004168565A (en) * 2002-11-18 2004-06-17 Shinnikka Thermal Ceramics Corp Scale-resistant coating material for heating furnace

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035646A1 (en) 2011-09-08 2013-03-14 三菱樹脂株式会社 Molded inorganic-fiber object
JP5376097B2 (en) * 2011-09-08 2013-12-25 三菱樹脂株式会社 Inorganic fiber molded body
KR20140058568A (en) 2011-09-08 2014-05-14 미쓰비시 쥬시 가부시끼가이샤 Molded inorganic-fiber object
JP2015081753A (en) * 2013-10-24 2015-04-27 新日鐵住金株式会社 Inorganic fiber fireproof heat insulation lining construction method and furnace
CN104108941A (en) * 2014-05-09 2014-10-22 长兴三重窑炉科技有限公司 Coal-injection duct precast brick pouring material
JP2016030715A (en) * 2014-07-30 2016-03-07 クアーズテック株式会社 Composite heat insulator
JP2017072267A (en) * 2015-10-05 2017-04-13 品川リフラクトリーズ株式会社 Method for constructing lining for industrial kiln and lining for industrial kiln
JP2020059612A (en) * 2018-10-04 2020-04-16 日本製鉄株式会社 Method for evaluating peeling resistance of alumina-magnesia quality castable refractory
JP7070304B2 (en) 2018-10-04 2022-05-18 日本製鉄株式会社 Alumina-Magnesian castable refractory evaluation method for peeling resistance

Also Published As

Publication number Publication date
JP5110539B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
JP5110540B2 (en) FeO resistant coating material
JP5110539B2 (en) FeO resistant coating material
CN102452836A (en) Cement-free aluminum-magnesium castable for rapidly baking ladle
US20100093513A1 (en) Refractory composition, formed refractory article, and sintered refractory article
JPS62265151A (en) Forming material
JP2008081360A (en) Monolithic refractory molding material and monolithic refractory molded product
JP5361795B2 (en) Lined casting material
JP2011093726A (en) Molded refractory for metal casting, method for manufacturing molded refractory for metal casting, castable refractory composition, and holding member of molten metal for metal casting
CA2242243C (en) Nozzle for use in continuous casting of steel
JP7029299B2 (en) Amorphous refractory
JP2010280540A (en) Chromia-enriched castable refractory substance, and precast block using the same
JP2004131310A (en) Castable refractory for lining tundish
JP5676207B2 (en) Fibers suitable for improving the explosion resistance of amorphous refractories and amorphous refractories added with them
JP2008247720A (en) Monolithic refractory forming material and monolithic refractory formed body
JP5676343B2 (en) Explosion-resistant hydraulic hardened body
JP2005008496A (en) Monolithic refractory
JP2019137561A (en) Monolithic refractory composition
JP2021084115A (en) Tundish coating material
JP4704263B2 (en) Amorphous refractory molding material and Amorphous refractory molding
JP6537286B2 (en) Unshaped refractory composition for metal casting, method for producing the same, cured product of unshaped refractory composition for metal casting
JP3212856B2 (en) Irregular cast refractories and their moldings
JPH10101441A (en) Composition for castable refractory and formation of furnace wall using the same composition
Si et al. Effect of silicon addition on the properties of carbon fiber reinforced mullite based castable composites
JPH06199575A (en) Alumina-spinel castable refractory
JP2018062438A (en) Thermal insulation coating material for continuous casting nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121002

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5110539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250