JP2019121783A - スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及びスピン軌道トルク型磁化回転素子の製造方法 - Google Patents

スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及びスピン軌道トルク型磁化回転素子の製造方法 Download PDF

Info

Publication number
JP2019121783A
JP2019121783A JP2018204508A JP2018204508A JP2019121783A JP 2019121783 A JP2019121783 A JP 2019121783A JP 2018204508 A JP2018204508 A JP 2018204508A JP 2018204508 A JP2018204508 A JP 2018204508A JP 2019121783 A JP2019121783 A JP 2019121783A
Authority
JP
Japan
Prior art keywords
spin
ferromagnetic layer
orbit torque
layer
spin orbit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018204508A
Other languages
English (en)
Other versions
JP7183704B2 (ja
Inventor
智生 佐々木
Tomoo Sasaki
智生 佐々木
陽平 塩川
Yohei SHIOKAWA
陽平 塩川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to US16/222,037 priority Critical patent/US10971293B2/en
Publication of JP2019121783A publication Critical patent/JP2019121783A/ja
Priority to US17/123,514 priority patent/US11521776B2/en
Application granted granted Critical
Publication of JP7183704B2 publication Critical patent/JP7183704B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】スピン軌道トルク配線層を流れる電流を大きくすることなく、外部磁場を印加せずに磁化回転を起こすことが可能なスピン軌道トルク型磁化回転素子を提供することを目的とする。【解決手段】このスピン軌道トルク型磁化回転素子は、X方向に延在するスピン軌道トルク配線層と、スピン軌道トルク配線層に、積層された第1強磁性層と、を備え、第1強磁性層は形状異方性を有し、スピン軌道トルク配線層が延在する平面においてX方向と直交するY方向に長軸を有し、スピン軌道トルク配線層が延在する平面において、第1強磁性層の磁化容易軸は、X方向及び、X方向と直交するY方向に対して傾斜している。【選択図】図1

Description

本発明は、スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及びスピン軌道トルク型磁化回転素子の製造方法に関する。
非磁性層に絶縁層(トンネルバリア層、バリア層)を用いたトンネル磁気抵抗(TMR)素子において、電流が作る磁場を利用して書き込み(磁化回転)を行う方式や磁気抵抗効果素子の積層方向に電流を流して生ずるスピントランスファートルク(STT)を利用して書き込み(磁化回転)を行う方式が知られている。STTを用いたTMR素子の磁化回転はエネルギーの効率の視点から考えると効率的ではあるが、磁化回転をさせるために磁気抵抗効果素子の積層方向に電流を印加するため、TMR素子を劣化させる恐れがある。
そこで近年、磁気抵抗効果素子の積層方向に電流を流さずに磁化回転を可能とする手段としてスピン軌道相互作用により生成された純スピン流を利用したスピン軌道トルク型磁化回転素子に注目が集まっている。スピン軌道トルク配線層に電流が流れると、スピン軌道相互作用や異種材料の界面におけるラシュバ効果によって純スピン流が生じる。この純スピン流はスピン軌道トルク(SOT)を誘起し、SOTによりスピン軌道トルク配線上に配設された強磁性体の磁化回転を起こす。純スピン流は上向きスピンの電子と下向きスピン電子が同数で互いに逆向きに流れることで生み出されるものであり、電荷の流れは相殺されている。そのため磁気抵抗効果素子に流れる回転電流はゼロであり、磁気抵抗効果素子の長寿命化が期待されている。スピン軌道トルク型磁化回転素子は、スピン軌道トルク配線に流す電流密度が高いほど磁化回転を容易に行うことができる。
スピン軌道トルク型磁化回転素子は、スピン軌道トルク配線に流れる電流の方向と、強磁性体の磁化容易軸の方向との関係により、いくつかの種類に分類される。スピン軌道トルク型磁化回転素子は、X方向に延在するスピン軌道トルク配線層と、その一面に積層された第1強磁性層と、を備える。この第1強磁性層の磁化容易軸の向きによって、X型、Y型、Z型磁化回転素子に分類される。X型磁化回転素子は、スピン軌道トルク配線層と同じX方向に磁化容易軸を有する。Y型磁化回転素子は、面内方向においてX方向と直交するY方向に磁化容易軸を有する。Z型磁化回転素子は、面内方向と直交するZ方向(積層方向)に磁化容易軸を有する。X型及びZ型磁化回転素子は、磁化回転に要する時間が短く、高速で動作することが可能である。また、X型磁化回転素子はスピン軌道トルク配線層がX方向を長軸としているため、Y方向の幅を狭くすることができる。そのため、X型磁化回転素子はY型磁化回転素子より少ない電流での磁化反転が可能となる。しかし、X型及びZ型磁化回転素子は、磁化回転をアシストするためにそれぞれZ方向及びX方向の外部磁場を素子に印加しなければならない。そのため、X型及びZ型磁化回転素子は、エネルギー消費や集積度の点で問題を有する。一方、Y型磁化回転素子の場合は、磁化回転をアシストするための外部磁場は不要であるが、磁化回転に要する時間が長くなるという欠点がある。
この問題を解決するために、第1強磁性層の磁化容易軸をX方向及びY方向のいずれに対しても傾斜させたXY型磁化回転素子が提案されている(例えば、非特許文献1)。図11に、このようなXY型磁化回転素子501を示す。XY型磁化回転素子501は、スピン軌道トルク配線層502と、第1強磁性層504と、電極506とを備える。第1強磁性層504及び電極506は、スピン軌道トルク配線層502の一面に積層され、電極506は、平面視で第1強磁性層504を挟んでいる。また第1強磁性層504は、X方向に長軸を有するスピン軌道トルク配線層502と異なり、平面視でX方向及びY方向に対して傾斜させた長軸を有する。第1強磁性層504の磁化容易軸508は、形状異方性により第1強磁性層504の長軸と平行な方向に配向される。
このように構成されたXY型磁化回転素子501は、磁化容易軸がY方向成分を有するため、外部磁場を印加されなくても磁化回転を起こす。また、磁化容易軸がX方向成分を有するため、Y型磁化回転素子と比較して磁化回転に要する時間が短く、高速動作に適している。
S. Fukami, et al., Nature Nanotechnology, DOI: 10.1038/NNANO.2016.29 Supplement
しかしながら、図11に示すようなXY型磁化回転素子は、第1強磁性層の長軸がX方向及びY方向に対して傾斜しているため、第1強磁性層504のX方向の幅が大きくなる。第1強磁性層504には、スピン軌道トルク配線層502からスピンが注入される。このスピンの注入量は、スピン軌道トルク配線層502の平面視で第1強磁性層504と重なる位置における電流が乱れると、安定化しない。そのため、電極506と第1強磁性層504との距離をある程度確保することが好ましい。これらの間に充分な距離を確保すると、XY型磁化回転素子501はX方向にある程度の大きさが必要となり、XY型磁化回転素子501は複数の素子を集積した際の集積性に劣る。
本発明は上記問題に鑑みてなされたものであり、スピン軌道トルク配線層を流れる電流を大きくすることなく、外部磁場を印加せずに磁化回転を起こすことが可能で、集積性に優れたスピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及びスピン軌道トルク型磁化回転素子の製造方法を提供することを目的とする。
本発明者らは、第1強磁性層の長軸をスピン軌道トルク配線層の短軸と一致させつつ、第1強磁性層の磁化容易軸のみをスピン軌道トルク配線層の長軸から傾斜させることにより、磁化のY方向成分を大きくし、スピン軌道トルク配線層を流れる電流を大きくすることなく、外部磁場を印加せずに磁化回転を容易に行うことができることを見出した。また第1強磁性層の長軸がスピン軌道トルク配線層の短軸と一致していることで、X方向に必要なスペースを小さくすることができ、複数の素子を集積した際の集積性を高めることができることを見出した。すなわち、本発明は、上記課題を解決するため、以下の手段を提供する。
(1)第1の態様に係るスピン軌道トルク型磁化回転素子は、X方向に延在するスピン軌道トルク配線層と、スピン軌道トルク配線層に積層された第1強磁性層と、を備え、第1強磁性層は形状異方性を有し、前記スピン軌道トルク配線層が延在する平面においてX方向と直交するY方向に長軸を有し、スピン軌道トルク配線層が延在する平面において、第1強磁性層の磁化容易軸は、X方向及びX方向と直交するY方向に対して傾斜している。
(2)上記態様に係るスピン軌道トルク型磁化回転素子において、第1強磁性層は、HoCo合金、SmFe合金、FePt合金、CoPt合金又はCoCrPt合金でありうる。
(3)第2の態様に係るスピン軌道トルク型磁気抵抗効果素子は、上記態様に係るスピン軌道トルク型磁化回転素子と、第1強磁性層のスピン軌道トルク配線層と反対側に配設され、磁化の向きが固定された第2強磁性層と、第1強磁性層と第2強磁性層との間に配設された非磁性層と、を備える。
(4)上記態様に係るスピン軌道トルク型磁気抵抗効果素子は、第1強磁性層と非磁性層との間に配設された拡散防止層をさらに備えうる。
(5)上記態様に係るスピン軌道トルク型磁気抵抗効果素子において、拡散防止層が非磁性重金属を含みうる。
(6)上記態様に係るスピン軌道トルク型磁気抵抗効果素子において、拡散防止層が、拡散防止層を構成する元素のイオン半径の2倍以下の厚さを有しうる。
(7)上記態様に係るスピン軌道トルク型磁気抵抗効果素子は、非磁性層と拡散防止層との間に配設された第3強磁性層をさらに備えうる。
(8)第3の態様に係るスピン軌道トルク型磁化回転素子を製造する方法は、上記態様に係るスピン軌道トルク型磁化回転素子を製造する方法であって、少なくとも第1強磁性層を、X方向を含む方向に磁場を印加した状態で成膜する。
(9)上記態様に係る製造方法は、少なくとも第1強磁性層の成膜後、X方向を含む方向に磁場を印加した状態でアニールを行う段階を含みうる。
(10)第4の態様に係るスピン軌道トルク型磁化回転素子を製造する方法は、上記態様に係るスピン軌道トルク型磁化回転素子を製造する方法であって、少なくとも第1強磁性層の成膜後、X方向を含む方向に磁場を印加した状態でアニールを行う。
上記態様に係るスピン軌道トルク型磁化回転素子によれば、スピン軌道トルク配線層を流れる電流を大きくすることなく、外部磁場を印加せずに磁化回転を起こすことが可能であり、集積性に優れる。
本発明の一実施形態に係るスピン軌道トルク型磁化回転素子を模式的に示した斜視図である。 図1に係るスピン軌道トルク型磁化回転素子を模式的に示した平面図である。 本発明の一実施形態に係るスピン軌道トルク型磁化回転素子の製造方法を模式的に示した平面図である。 本発明の一実施形態に係るスピン軌道トルク型磁気抵抗効果素子を模式的に示した断面図である。 図4に係るスピン軌道トルク型磁気抵抗効果素子を模式的に示した平面図である。 図4に係るスピン軌道トルク型磁気抵抗効果素子であって、磁化が反転した状態を模式的に示した平面図である。 本発明の一実施形態に係るスピン軌道トルク型磁気抵抗効果素子を模式的に示した断面図である。 本発明の一実施形態に係るスピン軌道トルク型磁気抵抗効果素子を模式的に示した断面図である。 図8に係るスピン軌道トルク型磁気抵抗効果素子を模式的に示した平面図である。 第4実施形態にかかる磁気記録アレイの平面図である。 従来のスピン軌道トルク型磁化回転素子を模式的に示した平面図である。 スピン軌道トルク型磁化回転素子の別の例を模式的に示した斜視図である。
以下、本発明について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。
(スピン軌道トルク型磁化回転素子)
図1は、本発明の一態様に係るスピン軌道トルク型磁化回転素子1を模式的に示した斜視図である。図2は、図1に係るスピン軌道トルク型磁化回転素子1を模式的に示した平面図である。本発明の一態様に係るスピン軌道トルク型磁化回転素子1は、スピン軌道トルク配線層2と、スピン軌道トルク配線層2に積層されて配設された第1強磁性層4と、第1強磁性層4をはさんで、スピン軌道トルク配線層2に積層されて配設された電極6と、を備える。以下、スピン軌道トルク配線層2の長軸が延在する方向をX方向、スピン軌道トルク配線層2が延在する面内においてX方向と直交する方向をY方向、X方向及びY方向のいずれにも直交する方向をZ方向とする。図1において、第1強磁性層4の積層方向はZ方向である。第1強磁性層4は、その長軸がY方向に延在する形状異方性を有する。また、第1強磁性層4は、X方向及びY方向に対して傾斜している磁化容易軸に沿った磁化8を有する。
<スピン軌道トルク配線>
スピン軌道トルク配線層2は、X方向に延在する。スピン軌道トルク配線層2は、第1強磁性層4のZ方向の一面に接続されている。スピン軌道トルク配線層2は、第1強磁性層4に直接接続されていてもよいし、他の層を介して接続されていてもよい。
スピン軌道トルク配線層2と第1強磁性層4との間に介在する層は、スピン軌道トルク配線層2から伝搬するスピンを散逸しないことが好ましい。例えば、銀、銅、マグネシウム、及び、アルミニウム等は、スピン拡散長が100nm以上と長く、スピンが散逸しにくいことが知られている。
また、この層の厚みは、層を構成する物質のスピン拡散長以下であることが好ましい。層の厚みがスピン拡散長以下であれば、スピン軌道トルク配線層2から伝搬するスピンを第1強磁性層4に十分に伝えることができる。
スピン軌道トルク配線層2は、電流が流れるとスピンホール効果によってスピン流が生成される材料からなる。かかる材料としては、スピン軌道トルク配線層2中にスピン流が生成される構成のものであれば足りる。従って、単体の元素からなる材料に限らないし、スピン流が生成される材料で構成される部分とスピン流が生成されない材料で構成される部分とからなるものであってよい。
材料に電流を流した場合にスピン軌道相互作用に基づき、電流の向きに直交する方向に第1スピンS1と第2スピンS2とが逆方向に曲げられ、スピン流が誘起される現象を、スピンホール効果と呼ぶ。通常のホール効果とスピンホール効果とは運動(移動)する電荷(電子)が運動(移動)方向を曲げられる点で共通するが、通常のホール効果は磁場中で運動する荷電粒子がローレンツ力を受けて運動方向を曲げられるのに対して、スピンホール効果では磁場が存在しないのに電子が移動するだけ(電流が流れるだけ)で移動方向が曲げられる点で大きく異なる。
非磁性体(強磁性体ではない材料)では第1スピンS1の電子数と第2スピンS2の電子数とが等しいので、図中でスピン軌道トルク配線層2の第1強磁性層8が配設された面の方向へ向かう第1スピンS1の電子数と、第1スピンS1の電子とは反対の方向へ向かう第2スピンS2の電子数が等しい。そのため、電荷の正味の流れとしての電流はゼロである。この電流を伴わないスピン流は特に純スピン流と呼ばれる。
ここで、第1スピンS1の電子の流れをJ、第2スピンS2の電子の流れをJ、スピン流をJと表すと、J=J−Jで定義される。図1においては、純スピン流としてJが図中の上方向に流れる。ここで、Jは分極率が100%の電子の流れである。
スピン軌道トルク配線層2は、非磁性の重金属を含んでもよい。ここで、重金属とは、イットリウム以上の比重を有する金属の意味で用いている。スピン軌道トルク配線層2は、非磁性の重金属だけからなってもよい。
この場合、非磁性の重金属は最外殻にd電子又はf電子を有する原子番号39以上の原子番号が大きい非磁性金属であることが好ましい。かかる非磁性金属は、スピンホール効果を生じさせるスピン軌道相互作用が大きいからである。スピン軌道トルク配線2は、最外殻にd電子又はf電子を有する原子番号39以上の原子番号が大きい非磁性金属だけからなってもよい。
通常、金属に電流を流すとすべての電子はそのスピンの向きに関わりなく、電流とは逆向きに動くのに対して、最外殻にd電子又はf電子を有する原子番号が大きい非磁性金属はスピン軌道相互作用が大きいためにスピンホール効果によって電子の動く方向が電子のスピンの向きに依存し、純スピン流Jが発生しやすい。
また、スピン軌道トルク配線層2は、磁性金属を含んでもよい。磁性金属とは、強磁性金属、あるいは、反強磁性金属を指す。非磁性金属に微量な磁性金属が含まれるとスピン軌道相互作用が増強され、スピン軌道トルク配線層2に流す電流に対するスピン流生成効率を高くできるからである。スピン軌道トルク配線層2は、反強磁性金属だけからなってもよい。
スピン軌道相互作用はスピン軌道トルク配線材料の物質の固有の内場によって生じるため、非磁性材料でも純スピン流が生じる。スピン軌道トルク配線材料に微量の磁性金属を添加すると、磁性金属自体が流れる電子スピンを散乱するためにスピン流生成効率が向上する。ただし、磁性金属の添加量が増大し過ぎると、発生したスピン流が添加された磁性金属によって散乱されるため、結果としてスピン流が減少する作用が強くなる。したがって、添加される磁性金属のモル比はスピン軌道トルク配線におけるスピン生成部の主成分のモル比よりも十分小さい方が好ましい。目安で言えば、添加される磁性金属のモル比は3%以下であることが好ましい。
また、スピン軌道トルク配線層2は、トポロジカル絶縁体を含んでもよい。スピン軌道トルク配線層2は、トポロジカル絶縁体だけからなってもよい。トポロジカル絶縁体とは、物質内部が絶縁体、あるいは、高抵抗体であるが、その表面にスピン偏極した金属状態が生じている物質である。物質にはスピン軌道相互作用という内部磁場のようなものがある。そこで外部磁場が無くてもスピン軌道相互作用の効果で新たなトポロジカル相が発現する。これがトポロジカル絶縁体であり、強いスピン軌道相互作用とエッジにおける反転対称性の破れにより純スピン流を高効率に生成することができる。
トポロジカル絶縁体としては例えば、SnTe,Bi1.5Sb0.5Te1.7Se1.3,TlBiSe,BiTe,Bi1−xSb,(Bi1−xSbTeなどが好ましい。これらのトポロジカル絶縁体は、高効率にスピン流を生成することが可能である。
<第1強磁性層>
第1強磁性層4は、スピン軌道トルク配線層2に、X方向に直交するZ方向に積層されて配設される。第1強磁性層4は、その長軸がX方向と直交するY方向に延在する形状異方性を有する。また、第1強磁性層4は、スピン軌道トルク配線層2が延在する平面において、X方向及びY方向に対して傾斜する方向に磁化容易軸を有する磁化8を有する。第1強磁性層4は、例えば、HoCo合金、SmFe合金、FePt合金、CoPt合金、CoCrPt合金を含むことが好ましい。第1強磁性層4の材料としては、c軸長がa軸長より短い正方晶の磁性材料であることが好ましい。c軸長がa軸長より短いと、第1強磁性層4の磁化容易軸が面内方向に配向しやすい。例えば、SmFe合金(SmFe12)等が好ましい。また、c軸長がa軸長より長いと、第1強磁性層4の磁化容易軸が面直方向に配向しやすいが、磁場中で成膜した場合や磁場中アニールをすることによって、c軸を面内の磁場方向に向けることができる。例えば、HoCo合金(HoCo)等が好ましい。これらの合金は、結晶磁気異方性が強く、ダンピング定数が大きいため、磁化回転が生じにくい。従って、これらの材料を用いて形成された第1強磁性層4は、強いデータ保持力を有する。
第1強磁性層4の長軸方向と第1強磁性層4の磁化容易軸の方向とが異なる。この場合、第1強磁性層4の磁化114の磁化容易軸の方向は、例えば、以下の方法で求めることができる。
第1の方法は、同一の条件で作製した第1強磁性層4を複数配設し、その磁気特性を測定するものである。磁気特性は、振動試料型磁力計(VSM)、超伝導量子干渉計(SQUID)、物理特性測定装置(PPMS)等を用いて行うことができる。
まず長軸を一方向に揃えた第1強磁性層4を、例えばアレイ状に複数配列する。そして第1強磁性層4の素子集合体に対して一定磁場をxy面内の所定の方向(基準方向)から印加し、第1強磁性層4の所定の方向の磁化を測定する。第1強磁性層4が複数集まることで、素子集合体は測定可能な磁化を示す。この作業を、磁場を印加する角度を変えながら、素子集合体の面内方向の周囲の複数点で測定する。
所定の方向への磁化の大きさを縦軸、素子集合体に印加する磁場の基準方向からの傾き角を横軸としてプロットすると、素子集合体の磁化特性が求められる。第1強磁性層4がxy面内において等方な形状の場合(例えば、平面視円形)は、測定される磁化特性はサインカーブを描く。また、第1強磁性層4が一方向に長軸を有し、第1強磁性層4の磁化容易軸の方向と第1強磁性層4の長軸方向とが一致する場合は、コサインカーブの形状(グラフの各点における傾き角)は変化するが、最大磁化を示す傾き角は等方形状の場合と一致する。これに対し、第1強磁性層4が一方向に長軸を有し、第1強磁性層4の磁化容易軸の方向と第1強磁性層4の長軸方向とが異なる場合は、コサインカーブの形状(グラフの各点における傾き角)が変化すると共に、最大磁化を示す傾き角がシフトする。すなわち、グラフにおいて磁化がピークを示す位置における基準方向に対する傾き角と、第1強磁性層4の長軸方向の基準方向に対する傾き角と、が異なる場合は、第1強磁性層4の長軸方向と第1強磁性層4の磁化容易軸の方向とが異なっていることが分かる。
また第2の方法は、スピン軌道トルク型磁化回転素子1の抵抗値を、スピン軌道トルク型磁化回転素子1に印加しながら測定する方法である。スピン軌道トルク型磁化回転素子1の抵抗値は、一定磁場をxy面内の所定の方向(基準方向)から印加する角度を変えながら測定する。スピン軌道トルク型磁化回転素子1の抵抗値は、第1強磁性層4の上面と、スピン軌道トルク配線層2の一端との間の抵抗値であり、主に第1強磁性層4の抵抗値である。
スピン軌道トルク型磁化回転素子1の抵抗値を縦軸、第1強磁性層4に印加する磁場の基準方向からの傾き角を横軸としてプロットすると、スピン軌道トルク型磁化回転素子1の抵抗特性が求められる。抵抗特性は、上述の磁化特性と同様の挙動を示す。第1強磁性層4がxy面内において等方な形状の場合(例えば、平面視円形)は、測定される抵抗特性はコサインカーブを描く。また、第1強磁性層4が一方向に長軸を有し、第1強磁性層4の磁化容易軸の方向と第1強磁性層4の長軸方向とが一致する場合は、コサインカーブの形状(グラフの各点における傾き角)は変化するが、最大抵抗を示す傾き角は等方形状の場合と一致する。これに対し、第1強磁性層4が一方向に長軸を有し、第1強磁性層4の磁化容易軸の方向と第1強磁性層4の長軸方向とが異なる場合は、コサインカーブの形状(グラフの各点における傾き角)が変化すると共に、最大磁化を示す傾き角がシフトする。すなわち、グラフにおいて抵抗値がピークを示す位置における基準方向に対する傾き角と、第1強磁性層4の長軸方向の基準方向に対する傾き角と、が異なる場合は、第1強磁性層4の長軸方向と第1強磁性層4の磁化容易軸の方向とが異なっていることが分かる。
<スピン軌道トルク型磁化回転素子の原理>
次に、図1及び2を参照しながら、スピン軌道トルク型磁化回転素子1の原理について説明する。
図1に示すように、スピン軌道トルク配線層2に電流Iを印加すると、第1スピンS1と第2スピンS2とがスピンホール効果によって曲げられる。その結果、純スピン流JがZ方向に生じる。
図1において、第1強磁性層4は、スピン軌道トルク配線層にZ方向に積層して配設されているため、純スピン流は第1強磁性層4中に拡散して流れ込む。すなわち、第1強磁性層4にスピンが注入される。注入されたスピンは、第1強磁性層4の磁化8にスピン軌道トルク(SOT)を与え、磁化回転が生じる。図1及び2では、第1強磁性層4の磁化8を、第1強磁性層4の重心に位置する1つの磁化として模式的に表している。
強磁性層に注入されるスピンの向きと磁化の向きが直交している場合には、磁化回転を生じさせるために、外部磁場を印加して磁化の対称性を乱す必要がある。しかし、図1に示すスピン軌道型磁化回転素子1において、スピン軌道トルク配線層2から第1強磁性層4に注入されるスピンの向きはY方向に配向しているのに対し、第1強磁性層4の磁化8の向きはX方向及びY方向のいずれに対しても傾斜しており、X方向成分及びY方向成分を有する。従って、磁化8がスピンの向きと直交しないY方向成分を有するため、外部磁場を印加せずに磁化回転を実現することができる。外部磁場印加が不要になれば、エネルギー消費を低減し、素子の集積度を向上することができる。また、磁化8がX方向成分を有するため、図1に示すスピン軌道型磁化回転素子1は、磁化8がY方向に延在している場合と異なり、反転電流の電流密度に対する磁化回転の依存性が小さくなる。そのため、磁化回転に要する時間を低減することができ、高速動作に適している。また、図11に示す従来のXY型磁化回転素子と異なり、第1強磁性層4の長軸はY方向に沿って配設されているため、第1強磁性層4のY方向の幅を狭めることができる。第1強磁性層4には、スピン軌道トルク配線層2からスピンが注入される。このスピンの注入量を安定化させるためには、スピン軌道トルク配線層2の平面視で第1強磁性層4と重なる位置における電流を安定化させる必要があり、電極6と第1強磁性層4との距離をある程度確保することが好ましい。つまり、第1強磁性層4のY方向の幅を狭めることができれば、スピン軌道トルク型磁化回転素子1全体のX方向の大きさを小さくすることができる。従って、複数のスピン軌道トルク型磁化回転素子1を集積する際の集積性を高めることができる。
磁化8の磁化反転の安定性を高めるためには、磁化8のY方向成分はX方向成分より大きいことが好ましい。他方、磁化8の磁化回転の反応性を高めるためには、磁化8のX方向成分はY方向成分より大きいことが好ましい。
(スピン軌道トルク型磁化回転素子の製造方法)
図3は、本発明の一実施形態に係るスピン軌道トルク型磁化回転素子の製造方法を模式的に示した平面図である。まず、支持体となる基板上に、スピン軌道トルク配線層2を作製する。スピン軌道トルク配線層2は、スパッタ等の公知の成膜手段を用いて作製できる。
次いで、第1強磁性層4を作製する。第1強磁性層1はスパッタ等の公知の成膜手段を用いて作製できる。しかし、第1強磁性層4を単に成膜し、Y方向に沿った長軸を有する形状とすると、形状異方性により、磁化容易軸もY方向に延在するため、XY型磁化回転素子を実現することができない。そこで、図3に示すように、X方向成分を有する磁場Bを外部から印加しつつ、第1強磁性層4を成膜する。すると、形状異方性及び磁場Bの作用により、第1強磁性層4の磁化容易軸はX方向及びY方向のいずれに対しても傾斜する。
また、第1強磁性層4の成膜時には磁場Bを印加せず、第1強磁性層4の成膜後、X方向成分を有する磁場Bを印加しつつ、所定の温度、例えば250から400℃の温度でアニールしても、X方向及びY方向のいずれに対しても傾斜した磁化容易軸が得られる。また、第1強磁性層4の成膜時にX方向成分を有する磁場Bを印加して第1強磁性層4の成膜後、さらにX方向成分を有する磁場Bを印加しつつ、所定の温度、例えば250から400℃の温度でアニールしてもよい。
(第1実施形態に係るスピン軌道トルク型磁気抵抗効果素子)
図4は、本発明の第1実施形態に係るスピン軌道トルク型磁気抵抗効果素子101を模式的に示した断面図であり、図5は図4に係るスピン軌道トルク型磁気抵抗効果素子101を模式的に示した平面図である。図6は、図4に係るスピン軌道トルク型磁気抵抗効果素子101であって、磁化が反転した状態を模式的に示した平面図である。
スピン軌道トルク型磁気抵抗効果素子101は、X方向に延在する長軸を有するスピン軌道トルク配線層102と、スピン軌道トルク配線層102に、X方向に対して垂直なZ方向に積層して配設された第1強磁性層104と、を備えたスピン軌道トルク型磁化回転素子と、第1強磁性層104のスピン軌道トルク配線層102と反対側に配設され、磁化の向きが固定された第2強磁性層112と、第1強磁性層104と第2強磁性層112との間に配設された非磁性層110と、を備える。スピン軌道トルク型磁化回転素子の構成については、図1及び2を参照して説明したスピン軌道トルク型磁化回転素子1の構成と同様であるので、詳細な説明を省略する。
<第2強磁性層>
スピン軌道トルク型磁気抵抗効果素子101は、第2強磁性層112の磁化が一方向に固定され、第1強磁性層104の磁化の向きが相対的に変化することで機能する。保磁力差型(疑似スピンバルブ型;Pseudo spin valve型)のMRAMに適用する場合には、第2強磁性層112の保磁力は第1強磁性層104の保磁力よりも大きいものとする。交換バイアス型(スピンバルブ型;spin valve型)のMRAMに適用する場合には、反強磁性層との交換結合によって第2強磁性層112の磁化方向を固定する。
また、スピン軌道トルク型磁気抵抗効果素子101は、非磁性層110が絶縁体からなる場合は、トンネル磁気抵抗(TMR:Tunneling Magnetoresistance)素子であり、非磁性層110が金属からなる場合は巨大磁気抵抗(GMR:Giant Magnetoresistance)素子である。
スピン軌道トルク型磁気抵抗効果素子101の積層構成は、公知のスピン軌道トルク型磁気抵抗効果素子の積層構成を採用できる。例えば、各層は複数の層からなるものでもよいし、第2強磁性層112の磁化方向を固定するための反強磁性層などの他の層を備えてもよい。第2強磁性層112は固定層や参照層、第1強磁性層102は自由層や記憶層などと呼ばれる。
第2強磁性層112は、Y方向に沿った長軸を有する。磁化114の方向は種々の方向をとることができるが、例えば、図5に示すように第1強磁性層104の磁化容易軸(磁化108に沿った方向)と平行な方向であってもよく、Y方向に沿った方向であってもよい。
第2強磁性層112の材料には、公知の材料を用いることができ、第1強磁性層104と同様の材料を用いることができる。第1強磁性層104が面内磁化膜であるため、第2強磁性層112も面内磁化膜であることが好ましい。
また、第2強磁性層112の第1強磁性層104に対する保磁力をより大きくするために、第2強磁性層112と接する材料としてIrMn、PtMnなどの反強磁性材料を用いてもよい。さらに、第2強磁性層112の漏れ磁場を第1強磁性層102に影響させないようにするため、シンセティック強磁性結合の構造としてもよい。
<非磁性層>
非磁性層110には、公知の材料を用いることができる。例えば、非磁性層110が絶縁体からなる場合(トンネルバリア層である場合)、その材料としては、Al、SiO、MgO、及びMgAlなどを用いることができる。また、これらのほかにも、Al、Si、Mgの一部が、Zn、Beなどに置換された材料なども用いることができる。これらの中でも、MgOやMgAlはコヒーレントトンネルが実現できる材料であるため、スピンを効率よく注入できる。また、非磁性層110が金属からなる場合、その材料としてはCu、Au、Agなどを用いることができる。さらに、非磁性層70が半導体からなる場合、その材料としては、Si、Ge、CuInSe、CuGaSe、Cu(In,Ga)Se等を用いることができる。
また、スピン軌道トルク型磁気抵抗効果素子101は、その他の層を有していてもよい。例えば、第1強磁性層104の非磁性層110と反対側の面に下地層を有していてもよいし、第2強磁性層112の非磁性層110と反対側の面にキャップ層を有していてもよい。
(スピン軌道トルク型磁気抵抗効果素子の原理)
次いで、スピン軌道トルク型磁気抵抗効果素子101の原理について説明する。
図5は、磁化114が磁化108に沿った第2強磁性層112を有するスピン軌道トルク型磁気抵抗効果素子101の平面図を示している。第1強磁性層104の磁化108はX方向及びY方向のいずれに対しても傾斜しており、図5では磁化108の方向が第2強磁性層112の磁化114と平行で向きが一致している。この場合、第1強磁性層104と第2強磁性層112との間の電気抵抗は低抵抗状態となる。
図6は、第1強磁性層104の磁化108が図5の場合とは反対方向に反転した状態を示したスピン軌道トルク型磁気抵抗効果素子101の平面図を示している。スピン軌道トルク型磁化回転素子の原理において説明したように、スピン軌道トルク配線層102から第1強磁性層104にスピンが注入されると、磁化108が回転して反転する。すると、磁化108は第2強磁性層112の磁化114と平行で向きが反対となる(反平行)。この場合、第1強磁性層104と第2強磁性層112との間の電気抵抗は高抵抗状態となる。従って、磁化108と磁化114との向きが平行であるか反平行であるかによって、スピン軌道トルク型磁気抵抗効果素子101は、第1強磁性層104と第2強磁性層112との間の電気抵抗の状態に対応した0/1のデータを保持する磁気メモリとして働く。
なお、ここでは第2強磁性層112の磁化114をX方向及びY方向に傾斜させた場合を例に説明した。この場合、第1強磁性層104の磁化108と第2強磁性層112の磁化114とが、完全平行または完全反平行状態となる。つまり、スピン軌道トルク型磁気抵抗効果素子101のMR比をより高めることができる。しかし、第2強磁性層112の磁化114は、第2強磁性層112の形状異方性に基づいて、Y方向に沿っていてもよい。この場合であっても、第1強磁性層104の磁化108のY方向成分が、第2強磁性層112の磁化114に対して平行または反平行状態をとることができ、磁気メモリとして働くことができる。
(第2実施形態に係るスピン軌道トルク型磁気抵抗効果素子)
図7は、本発明の第2実施形態に係るスピン軌道トルク型磁気抵抗効果素子201を模式的に示した断面図である。スピン軌道トルク型磁気抵抗効果素子201において、第1強磁性層204は拡散防止層216を有してもよい。拡散防止層216は、第1強磁性層204の非磁性層210側の面に設けられていてもよいし、第1強磁性層204の厚み方向のいずれかの部分に設けられていてもよい。後者の場合、第1強磁性層は、下層、拡散防止層、上層の3層構造となる。そのほかの構成は、第1実施形態に係るスピン軌道トルク型磁気抵抗効果素子101と同様であるため、詳細な説明を省略する。
<拡散防止層>
拡散防止層216の材料として、非磁性重金属を用いることができる。例えばX方向及びY方向のいずれに対しても傾斜した磁化を有する第1強磁性層204を実現する場合のように、アニールを行うと、第1強磁性層204の内部から第2強磁性層212への元素拡散が生じ、磁気特性が劣化しうる。しかし、第1強磁性層204に拡散防止層216が配設されると、第1強磁性層及び第2強磁性層の形成後に高温でアニールを行った場合であっても、第1強磁性層204の内部から第2強磁性層212への元素拡散が生じることを抑制することができ、磁気特性が劣化しない。
また、拡散防止層216は非磁性重金属を含んでもよい。重金属はアニールによっても元素が動きにくいため、第1強磁性層及び第2強磁性層の形成後に高温でアニールを行った場合であっても、第1強磁性層204及び第2強磁性層212の元素が元素拡散することを抑制する。その結果、第1強磁性層204と第2強磁性層212の磁気特性の劣化を抑制できる。
拡散防止層216は、構成する元素のイオン半径の2倍以下の厚さを有しうる。この程度の厚さの場合、厳密には重金属元素が島状に点在しており、上層または下層と重金属元素の混合層が拡散防止層となる。
(第3実施形態に係るスピン軌道トルク型磁気抵抗効果素子)
図8は、本発明の第3実施形態に係るスピン軌道トルク型磁気抵抗効果素子301を模式的に示した断面図であり、図9は、図8に係るスピン軌道トルク型磁気抵抗効果素子301を模式的に示した平面図である。スピン軌道トルク型磁気抵抗効果素子301は、第1強磁性層304と非磁性層310との間に配設された第3強磁性層318を備える。そのほかの構成は、第2実施形態に係るスピン軌道トルク型磁気抵抗効果素子301と同様であるため、詳細な説明を省略する。なお、図8では、第1強磁性層304が拡散防止層316を有する構成を示しているが、拡散防止層316を省略してもよい。
第3強磁性層318の材料として、CoFeB,CoB,FeBを用いることができる。また、第3強磁性層318は、第1強磁性層304の磁化308と平行な方向に沿った磁化320を有する。第3強磁性層318が第1強磁性層304と非磁性層310との間に配設されると、第1強磁性層304と第3強磁性層318とが磁気的に結合し、1つの磁化として回転することが可能になる。従って、第3強磁性層318を配設することにより、磁気抵抗効果が大きくなるという効果を有する。
(第4実施形態に係る磁気記録アレイ)
図10は、第4実施形態にかかる磁気記録アレイ400の平面図である。図10に示す磁気記録アレイ400は、スピン軌道トルク型磁気抵抗効果素子101が3×3のマトリックス配置をしている。図10は、磁気記録アレイの一例であり、スピン軌道トルク型磁気抵抗効果素子101の種類、数及び配置は任意である。また制御部は、全てのスピン軌道トルク型磁気抵抗効果素子101に渡って存在してもよいし、スピン軌道トルク型磁気抵抗効果素子101毎に設けてもよい。
磁壁移動型磁気記録素子100には、それぞれ1本のワードラインWL1〜3と、それぞれ1本のビットラインBL1〜3、それぞれ1本のリードラインRL1〜3が接続されている。
電流を印加するワードラインWL1〜3及びビットラインBL1〜3を選択することで、任意のスピン軌道トルク型磁気抵抗効果素子101の第1強磁性層104にパルス電流を流し、書き込み動作を行う。また電流を印加するリードラインRL1〜3及びビットラインBL1〜3を選択することで、任意のスピン軌道トルク型磁気抵抗効果素子101の積層方向に電流を流し、読み込み動作を行う。電流を印加するワードラインWL1〜3、ビットラインBL1〜3、及びリードラインRL1〜3はトランジスタ等により選択できる。それぞれのスピン軌道トルク型磁気抵抗効果素子101が多値で情報を記録することで、磁気記録アレイの高容量化を実現できる。
以上、本発明の好ましい実施の形態について詳述したが、本発明は特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
ここで図12に示すスピン軌道トルク型磁化回転素子は、第1強磁性層14がz方向からの平面視で円形である。平面視形状が円形であるため、形状異方性を有さない。
しかしながら、第1強磁性層14の磁化18の向きはX方向及びY方向のいずれに対しても傾斜しており、X方向成分及びY方向成分を有する。従って、磁化18がスピンの向きと直交しないY方向成分を有するため、当該構成でも外部磁場を印加せずに磁化回転を実現することができる。磁化18の磁化容易方向は、形状異方性を有さない場合でも、成膜時又はアニール時に磁場を印加することで自由に設定できる。この構成に伴う効果は、スピン軌道トルク型磁化回転素子に限られず、スピン軌道トルク型磁気抵抗効果素子でも同様である。
1…スピン軌道トルク型磁化回転素子、2,102,202,302,502…スピントルク配線層、4,104,204,304,504…第1強磁性層、6,106,206,306,506…電極、108,208,308,508…第1強磁性層の磁気容易軸、110,210,310…非磁性層、112,212,312…第2強磁性層、114,314…第2強磁性層の磁化、216,316…拡散防止層、318…第3強磁性層、320…第3強磁性層の磁化、S1…第1スピン、S2…第2スピン、I…電流、Js…純スピン流

Claims (10)

  1. X方向に延在するスピン軌道トルク配線層と、
    前記スピン軌道トルク配線層に、積層された第1強磁性層と、
    を備え、
    前記第1強磁性層は形状異方性を有し、前記スピン軌道トルク配線層が延在する平面において前記X方向と直交するY方向に長軸を有し、
    前記スピン軌道トルク配線層が延在する平面において、前記第1強磁性層の磁化容易軸は、前記X方向及び、前記X方向と直交するY方向に対して傾斜している、
    スピン軌道トルク型磁化回転素子。
  2. 前記第1強磁性層が、HoCo合金、SmFe合金、FePt合金、CoPt合金又はCoCrPt合金である、請求項1に記載のスピン軌道トルク型磁化回転素子。
  3. 請求項1または2に記載のスピン軌道トルク型磁化回転素子と、
    前記第1強磁性層の前記スピン軌道トルク配線層と反対側に配設され、磁化の向きが固定された第2強磁性層と、
    前記第1強磁性層と前記第2強磁性層との間に配設された非磁性層と、
    を備える、スピン軌道トルク型磁気抵抗効果素子。
  4. 前記第1強磁性層と前記非磁性層との間に配設された第3強磁性層をさらに備える、請求項3に記載のスピン軌道トルク型磁気抵抗効果素子。
  5. 前記第1強磁性層が、前記第1強磁性層の前記非磁性層側の面に拡散防止層を備える、請求項3または4に記載のスピン軌道トルク型磁気抵抗効果素子。
  6. 前記拡散防止層が非磁性重金属を含む、請求項5に記載のスピン軌道トルク型磁気抵抗効果素子。
  7. 前記拡散防止層が、前記拡散防止層を構成する元素のイオン半径の2倍以下の厚さを有する、請求項5または6に記載のスピン軌道トルク型磁気抵抗効果素子。
  8. 請求項1または2に記載のスピン軌道トルク型磁化回転素子を製造する方法であって、 少なくとも前記第1強磁性層を、前記X方向を含む方向に磁場を印加した状態で成膜する、スピン軌道トルク型磁化回転素子の製造方法。
  9. 少なくとも前記第1強磁性層の成膜後、前記X方向を含む方向に磁場を印加した状態でアニールを行う段階を含む、請求項8に記載のスピン軌道トルク型磁化回転素子の製造方法。
  10. 請求項1または2に記載のスピン軌道トルク型磁化回転素子を製造する方法であって、 少なくとも前記第1強磁性層の成膜後、前記X方向を含む方向に磁場を印加した状態でアニールを行う、スピン軌道トルク型磁化回転素子の製造方法。
JP2018204508A 2017-12-28 2018-10-30 スピン軌道トルク型磁気抵抗効果素子及びスピン軌道トルク型磁気抵抗効果素子の製造方法 Active JP7183704B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/222,037 US10971293B2 (en) 2017-12-28 2018-12-17 Spin-orbit-torque magnetization rotational element, spin-orbit-torque magnetoresistance effect element, and spin-orbit-torque magnetization rotational element manufacturing method
US17/123,514 US11521776B2 (en) 2017-12-28 2020-12-16 Spin-orbit-torque magnetization rotational element, spin-orbit-torque magnetoresistance effect element, and spin-orbit-torque magnetization rotational element manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017252907 2017-12-28
JP2017252907 2017-12-28

Publications (2)

Publication Number Publication Date
JP2019121783A true JP2019121783A (ja) 2019-07-22
JP7183704B2 JP7183704B2 (ja) 2022-12-06

Family

ID=67307994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018204508A Active JP7183704B2 (ja) 2017-12-28 2018-10-30 スピン軌道トルク型磁気抵抗効果素子及びスピン軌道トルク型磁気抵抗効果素子の製造方法

Country Status (1)

Country Link
JP (1) JP7183704B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021240796A1 (ja) * 2020-05-29 2021-12-02 Tdk株式会社 磁性膜、磁気抵抗効果素子及び磁性膜の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004128026A (ja) * 2002-09-30 2004-04-22 Matsushita Electric Ind Co Ltd 磁気抵抗効果素子、磁気ヘッド、磁気記録装置
JP2005142508A (ja) * 2003-11-10 2005-06-02 Sony Corp 磁気記憶素子及び磁気メモリ
JP2007150265A (ja) * 2005-10-28 2007-06-14 Toshiba Corp 磁気抵抗効果素子および磁気記憶装置
JP2017112351A (ja) * 2015-12-14 2017-06-22 株式会社東芝 磁気メモリ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004128026A (ja) * 2002-09-30 2004-04-22 Matsushita Electric Ind Co Ltd 磁気抵抗効果素子、磁気ヘッド、磁気記録装置
JP2005142508A (ja) * 2003-11-10 2005-06-02 Sony Corp 磁気記憶素子及び磁気メモリ
JP2007150265A (ja) * 2005-10-28 2007-06-14 Toshiba Corp 磁気抵抗効果素子および磁気記憶装置
JP2017112351A (ja) * 2015-12-14 2017-06-22 株式会社東芝 磁気メモリ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021240796A1 (ja) * 2020-05-29 2021-12-02 Tdk株式会社 磁性膜、磁気抵抗効果素子及び磁性膜の製造方法

Also Published As

Publication number Publication date
JP7183704B2 (ja) 2022-12-06

Similar Documents

Publication Publication Date Title
JP5867030B2 (ja) 記憶素子、記憶装置
TWI530945B (zh) Memory elements and memory devices
CN103151455B (zh) 存储元件和存储装置
US11521776B2 (en) Spin-orbit-torque magnetization rotational element, spin-orbit-torque magnetoresistance effect element, and spin-orbit-torque magnetization rotational element manufacturing method
CN106887247B (zh) 信息存储元件和存储装置
US11211547B2 (en) Spin-orbit-torque type magnetization rotating element, spin-orbit-torque type magnetoresistance effect element, and magnetic memory
TWI487155B (zh) Memory elements and memory devices
JP5987613B2 (ja) 記憶素子、記憶装置、磁気ヘッド
US9196336B2 (en) Storage cell, storage device, and magnetic head
CN109994598B (zh) 自旋轨道转矩型磁化旋转元件及磁阻效应元件
US11239411B2 (en) Spin-orbit-torque magnetization rotational element, spin-orbit-torque magnetoresistance effect element, magnetic memory, and oscillator
US11391794B2 (en) Spin-orbit-torque magnetization rotational element, spin-orbit-torque type magnetoresistance effect element, and magnetic memory
US20190267540A1 (en) Spin current magnetized rotation element, magnetoresistance effect element and magnetic memory
JP2020035971A (ja) スピン流磁化回転型磁気素子、スピン流磁化回転型磁気抵抗効果素子及び磁気メモリ
JPWO2019167198A1 (ja) スピン素子の安定化方法及びスピン素子の製造方法
JP2019204948A (ja) スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
JP2013115399A (ja) 記憶素子、記憶装置
JP2020035792A (ja) スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ
JP7056316B2 (ja) 磁壁移動型磁気記録素子、磁壁移動型磁気抵抗効果素子及び磁気メモリ
JP7183704B2 (ja) スピン軌道トルク型磁気抵抗効果素子及びスピン軌道トルク型磁気抵抗効果素子の製造方法
JP7183703B2 (ja) スピン軌道トルク型磁気抵抗効果素子及びスピン軌道トルク型磁気抵抗効果素子の製造方法
US11264071B2 (en) Magnetoresistance effect element and magnetic memory

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221107

R150 Certificate of patent or registration of utility model

Ref document number: 7183704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150