JP2019100915A - 測量装置、測量装置の校正方法および測量装置の校正用プログラム - Google Patents

測量装置、測量装置の校正方法および測量装置の校正用プログラム Download PDF

Info

Publication number
JP2019100915A
JP2019100915A JP2017233469A JP2017233469A JP2019100915A JP 2019100915 A JP2019100915 A JP 2019100915A JP 2017233469 A JP2017233469 A JP 2017233469A JP 2017233469 A JP2017233469 A JP 2017233469A JP 2019100915 A JP2019100915 A JP 2019100915A
Authority
JP
Japan
Prior art keywords
laser
positioning
unit
laser scanner
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017233469A
Other languages
English (en)
Other versions
JP7007167B2 (ja
Inventor
陽 佐々木
Akira Sasaki
陽 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2017233469A priority Critical patent/JP7007167B2/ja
Priority to EP18206442.8A priority patent/EP3495769B1/en
Priority to US16/205,420 priority patent/US11460561B2/en
Publication of JP2019100915A publication Critical patent/JP2019100915A/ja
Application granted granted Critical
Publication of JP7007167B2 publication Critical patent/JP7007167B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass

Abstract

【課題】レーザースキャナを備えたTS(トータルステーション)において、測量現場で校正の状態の確認が可能な技術を提供する。【解決手段】測位対象の視準に利用される光学系201と、光学系201を介してレーザー光を前記測位対象に照射し、前記測位対象の測位を行うレーザー測位部200と、レーザー測位部200の測位結果に基づき特定の面の方程式を算出する面の方程式算出部114と、前記面のレーザースキャンを行うレーザースキャナ109と、面の方程式算出部114が特定した前記特定の面とレーザースキャナ109が得た複数のスキャン点それぞれとの離れ量を算出する離れ量算出部115と、前記離れ量が小さくなるように前記レーザー測位部200および前記レーザースキャナ109の少なくとも一方の外部標定要素を算出する外部標定要素算出部116を備えるTS(トータルステーション)100。【選択図】図3

Description

本発明は、測量装置の校正に係る技術に関する。
測量装置としてTS(トータルステーション)が知られている(例えば、特許文献1および2を参照)。また、光学系を回転させることで、高速にレーザースキャンを行うレーザースキャナ(特許文献3参照)や電子式にスキャン方向の制御を行うレーザースキャナ(特許文献3参照)が知られている。
特開2009−229192号公報 特開2012―202821号公報 米国特許第8767190号公報 米国公開公報US2015/0293224号公報
ところで、TSのレーザー測距機能を利用したレーザースキャナが知られている。この場合、TSの光学系を上下左右に振り、点々とレーザー測距を行うことでレーザースキャンが行われる。この方法は、簡易的なものであり、スキャン速度やスキャン密度の点で、専用のレーザースキャナに比べて見劣りする。
他方で、特許文献3等に記載されたレーザースキャナは、高速スキャンが可能であるが、スキャン点それぞれの測位精度はTSが備えるレーザー測位機能に及ばない。これは、スキャンが高速に行われる関係で、レーザー測距光を用いた測距のタイミングと、当該レーザー測距光の照射方位の検出タイミングとにズレが生じ、それが測位精度の誤差となるからである。そこで、両者の優位性を共に得る構成として、TSが備える精密なレーザー測距装置とレーザースキャナとを別構成とし、それらを複合化したものが考えられる。
この場合、両者の光学的な原点の位置が物理的にずれる。このずれは、オフセット値として設計時に予め設定され、測位データが補正されるようにされているが、完全ではなく、製品の完成後に校正が必要である。通常、校正は、製品の出荷時に行なわれる。また、この校正は、販売後も製造メーカやメンテナンス会社のサービスとして行うことができる。しかしながら、上記の校正は、専用の設備が必要であり、また煩雑な手順を踏まなくてはならない。
ところで、上記の校正は、予め想定した特定の環境で行われるものであり、実際に測量が行なわれる環境では、校正の状態にズレが生じる場合がある。また、経時変化により校正の状態に変化が生じる場合がある。しがって、上記の校正は、定期的あるいは使用する前に行う必要がある。
このような背景において、本発明は、レーザースキャナを備えたTSにおいて、測量現場等で校正が可能な技術の提供を目的とする。
本発明は、測位対象の視準に利用される光学系と、前記光学系を介してレーザー光を前記測位対象に照射し、前記測位対象の測位を行うレーザー測位部と、前記レーザー測位部の測位結果に基づき特定の面の位置を特定する面特定部と、前記特定の面のレーザースキャンを行うレーザースキャナと、前記面特定部が位置を特定した前記特定の面と前記レーザースキャナが得た複数のスキャン点それぞれとの離れ量を算出する離れ量算出部と、前記離れ量に基づき前記レーザー測位部および前記レーザースキャナの少なくとも一方の外部標定要素を算出する外部標定要素算出部とを備える測量装置である。
他の本発明は、測位対象の視準に利用される光学系と、前記光学系を介してレーザー光を前記測位対象に照射し、前記測位対象の測位を行うレーザー測位部と、前記レーザー測位部の測位結果に基づき特定の面の位置を特定する面特定部と、前記特定の面のレーザースキャンを行うレーザースキャナと、前記面特定部が位置を特定した前記特定の面と前記レーザースキャナが得た複数のスキャン点それぞれとの離れ量を算出する離れ量算出部と、前記離れ量に基づき、前記レーザー測位部と前記レーザースキャナの外部標定要素に係る校正の状態の良否を判定する良否判定部を備える測量装置である。
本発明において、前記特定の面として、法線ベクトルの異なる複数の面が選択される態様は好ましい。本発明において、前記レーザー測位部による前記特定の面の3点以上の点の測位により、前記特定の面の位置が特定される態様は好ましい。更にこの態様において、前記3点以上の点の分布範囲と前記レーザースキャナのレーザースキャン範囲とは重複することは好ましい。また、前記3点以上の点の分布範囲内に前記レーザースキャナのレーザースキャン範囲が設定される態様は好ましい。
本発明において、前記複数のスキャン点がフィッティングするフィッティング面を求め、前記フィッティング面からの離れ量が規定の値以上であるスキャン点をノイズ点として除去するノイズ除去部を備える態様は好ましい。また本発明において、前記離れ量として、前記面特定部が位置を特定した前記特定の面と前記レーザースキャナが得た複数のスキャン点にフィッティングするフィッティング面との間の距離が採用される態様は好ましい。
本発明は、レーザー測位部を用いた特定の面の3点以上の測位により前記特定の面の位置を特定する面特定ステップと、レーザースキャナにより前記特定の面のレーザースキャンを行うレーザースキャンステップと、前記位置が特定された前記特定の面と前記レーザースキャンによって得た複数のスキャン点それぞれとの離れ量を算出する離れ量算出ステップと、前記離れ量に基づき前記レーザー測位部および前記レーザースキャナの少なくとも一方の外部標定要素を算出する外部標定要素算出ステップとを有する測量装置の校正方法である。
本発明は、コンピュータに読み取らせて実行するプログラムであって、コンピュータにレーザー測位部を用いた特定の面の3点以上の測位により前記特定の面の位置を特定する面特定ステップと、レーザースキャナにより前記特定の面のレーザースキャンを行うレーザースキャンステップと、前記位置が特定された前記特定の面と前記レーザースキャンによって得た複数のスキャン点それぞれとの離れ量を算出する離れ量算出ステップと、前記離れ量に基づき前記レーザー測位部および前記レーザースキャナの少なくとも一方の外部標定要素を算出する外部標定要素算出ステップとを実行させる測量装置の校正用プログラムである。
本発明によれば、レーザースキャナを備えたTSにおいて、測量現場等で校正の状態の確認が可能な技術が得られる。
発明を利用したTS(トータルステーション)の斜視図である。 発明を利用したTSの正面図である。 発明を利用したTSのブロック図である。 測位点の分布範囲内にスキャン範囲が設定される様子を示す図である。 測位点位置データ取得部111が取得した複数の点に基づく面(校正用対象面)とスキャン点との関係を示す図である。 処理の手順の一例を示すフローチャートである。
1.第1の実施形態
(概要)
図1には、発明を利用したレーザースキャナ付きTS(トータルステーション)100の斜視図が示されている。図2には、TS100の正面図が示されている。TS100の機能は、後述するレーザースキャナ109を備えている点、およびTSの機能(レーザー測位部200の機能)とレーザースキャナ109の校正に係る処理を行う機能以外は、通常のTSと同じである。TSの詳細な構造については、例えば特開2009−229192号公報、特開2012―202821号公報に記載されている。
TS100は、TS本体150とレーザースキャナ109を結合(複合化)した構造を有している。TS100は、本体部11を有している。本体部11は、台座12に水平回転が可能な状態で保持されている。台座12は図示しない三脚の上部に固定される。本体部11は、Y軸の方向から見て上方に向かって延在する2つの延在部を有する略コの字形状を有し、この2つの延在部の間に可動部13が鉛直角(仰角および俯角)の制御が可能な状態で保持されている。
本体部11は、台座12に対して電動で回転する。すなわち、本体部11は、モータにより台座12に対する水平回転角の角度制御が行われる。また、可動部13は、モータにより鉛直角の角度制御が行なわれる。この水平回転角と鉛直角の角度制御のための駆動は、本体部11に内蔵された鉛直・水平回転駆動部106(図3のブロック図を参照)により行われる。
本体部11には、水平回転角制御ダイヤル14aと鉛直角制御ダイヤル14bが配置されている。水平回転角制御ダイヤル14aを操作することで、本体部11(可動部13)の水平回転角の調整が行なわれ、鉛直角制御ダイヤル14bを操作することで、可動部13の鉛直角の調整が行なわれる。
可動部13の上部には、大凡の照準を付ける角筒状の照準器15aが配置されている。また、可動部13には、照準器15aよりも視野が狭い光学式の照準器15bと、より精密な視準が可能な望遠鏡16が配置されている。
照準器15bと望遠鏡16が捉えた像は、接眼部17を覗くことで視認できる。望遠鏡16は、測距用のレーザー光と測距対象(例えばターゲットとなる専用の反射プリズム)を追尾および捕捉するための追尾光の光学系を兼ねている。測距光と追尾光の光軸は、望遠鏡16の光軸と一致するように光学系の設計が行なわれている。この部分の構造は、市販されているTSと同じである。
本体部11には、ディスプレイ18と19が取り付けられている。ディスプレイ18は、操作部101と一体化されている。操作部101には、テンキーや十字操作ボタン等が配され、TS100に係る各種の操作やデータの入力が行なわれる。ディスプレイ18と19には、TS100の操作に必要な各種の情報や測量データ等が表示される。前後に2つディスプレイがあるのは、本体部11を回転させなくても前後のいずれの側からでもディスプレイを視認できるようにするためである。
本体部11の上部には、レーザースキャナ109が固定されている。レーザースキャナ109は、第1の塔部301と第2の塔部302を有している。第1の塔部301と第2の塔部302は、結合部303で結合され、結合部の上方の空間(第1の塔部301と第2の塔部302の間の空間)は、スキャンレーザー光を透過する部材で構成された保護ケース304で覆われている。保護ケース304の内側には、第1の塔部301からX軸方向に突出した回転部305が配置されている。回転部305の先端は、斜めに切り落とされた形状を有し、その先端部には、斜めミラー306が固定されている。
回転部305は、第1の塔部301に納められたモータにより駆動され、X軸を回転軸として回転する。第1の塔部301には、上記のモータに加え、このモータを駆動する駆動回路と、その制御回路、回転部305の回転角を検出するセンサ、該センサの周辺回路が納められている。
第2の塔部302の内部には、複数条のレーザースキャン光を発光するための発光部、対象物から反射してきたスキャン光を受光する受光部、発光部と受光部に関係する光学系、スキャン点までの距離を算出する距離算出部が納められている。また、レーザースキャナ109は、回転部305の回転角度位置、本体部11の水平回転角およびスキャン点までの距離に基づきスキャン点の三次元座標を算出するスキャン点位置算出部が納められている。レーザースキャン光は、第2の塔部302の内部から斜めミラー306に向けて照射され、そこで反射され、透明なケース304を介して外部に照射される。また、対象物から反射したスキャン光は、照射光と逆の経路を辿り、第1の塔部302内部の受光部で受光される。
スキャン光の発光タイミングと受光タイミング、さらにその際の回転部305の角度位置と本体部11の水平回転角により、スキャン点(スキャン光の反射点)の測位が行なわれる。測位の原理は、後述するレーザー測位部200と同じである。
レーザースキャン用の複数条のパルスレーザー光は、回転部305の回転軸の延在方向に沿った開き角が20°〜45°程度の扇状に透明な保護ケース304から外部に向かって間欠的に出射される。この際、回転部305が回転しながらレーザースキャン光の照射が行われる。これにより、X軸方向にある程度の幅を持った扇形のレーザースキャン光が、X軸回りでスキャンされつつレーザースキャナ109から出射される。ここで、本体部11を水平回転(Z軸回りの回転)させながら上記のレーザースキャン光の出射を行うことで、周囲全体(あるいは必要とする範囲)のレーザースキャンが行なわれる。レーザースキャン光が1条であり、望遠鏡16の光軸を含む鉛直面に沿ってレーザースキャンを行う形態も可能である。
なお、レーザースキャナに係る技術については、特開2010−151682号公報、特開2008−268004号公報、米国特許第8767190号公報等に記載されている。また、レーザースキャナとして、米国公開公報US2015/0293224号公報に記載されているような、スキャンを電子式に行う形態も採用可能である。
(ブロック図)
図3には、TS(トータルステーション)100のブロック図が示されている。TS100のトータルステーションとしての基本的な機能は、従来のものと同じである。TS100が従来のトータルステーションと異なるのは、別構成のレーザースキャナ109と複合化されている点、さらにこの複合化されたレーザースキャナ109とTS100が有する測位機能(レーザー測位部200の機能)との間における校正を行う機能を備える点にある。
TS100は、操作部101、撮像部102、ディスプレイ18,19、レーザー測位部200、レーザースキャナ109、校正処理部110、校正の状態の良否判定部117、動作制御部121、記憶部122、光学系201を備える。
レーザー測位部200は、TS本来の測位を行う部分である。レーザー測位部200は、測距光発光部104、測距光受光部105、鉛直・水平回転駆動部106、鉛直・水平回転角度検出部107、三次元位置算出部108を有している。光学系201は、照準器15b(図2参照)、望遠鏡16(図2参照)、レーザー測位部200の光学系、撮像部102の光学系、図示省略した追尾光の光路を構成する光学系を含んでいる。
光学系201の構成は、同様の構成を有する通常のTSと同じであり、各種のレンズ、ミラー、光路の分離や合成のためのダイクロイックミラー、ハーフミラー、偏光ミラー等を有している。光学系201により、測距光発光部104からの測距用レーザー光が望遠鏡16を介して測位対象に照射され、測位対象から反射された測距用レーザー光が望遠鏡16を介して測距光受光部105で受光される。また、光学系201により望遠鏡16が捉えた像が接眼部17に導かれると共に撮像部102に導かれる。
また、TS100は、ターゲット(例えば反射プリズム)を追尾するための追尾光を発光する追尾光発光部、ターゲットで反射した追尾光を受光する追尾光受光部、追尾光が望遠鏡16の視野の視準位置にくるように鉛直・水平回転駆動部106に制御信号を出力する追尾制御部を備える。このあたりの構成は、現在市場に供給されている製品と同じであるので、詳細な説明は省略する。TSの追尾光に係る構成については、例えば日本国特許第5124319号公報に記載されている。
操作部101は、オペレータによるTS100の操作の内容を受け付ける。TS100の操作は、TS100が備えるボタンスイッチ等により行われる。タブレットやスマートフォンを操作部として利用する形態も可能である。この場合、専用のアプリケーションソフトウェアをタブレットやスマートフォンにインストールすることで、タブレットやスマートフォンをTS100の操作手段として機能させる。
撮像部102は、望遠鏡16が捉えた画像を撮像する。撮像は、例えばCCDイメージセンサやCMOSイメージセンサにより行われる。ディスプレイ18,19は、撮像部102が撮像した画像、TS100の操作に必要な情報、TS100の動作に係る情報(測距データやターゲットの方位等)等が表示される。ディスプレイ18,19としては、液晶ディスプレイやELディスプレイ等が用いられる。また、ディスプレイ18.19には、レーザースキャナ109が取得した点群データの3D表示画面が表示される。点群データの3D表示に関しては、例えば特願2016−173468号に記載されている。
測距光発光部104は、測距用のレーザー光(測距光)を発光する。測距用のレーザー光は、望遠鏡16を介して望遠鏡16の光軸と同軸の方向に照射される。測距光受光部105は、対象物で反射され望遠鏡を介して受け入れた測距光を受光する。測距光受光部105は、フォトダイオード等の光検出デバイスを用いて構成されている。
測距光発光部104から出射する測距光の光軸と測距光受光部105に入射する測距光(対象物から反射されTS100に戻ってきた測距光)の光軸とは、光学系(例えば、ダイクロイックミラー、ハーフミラー、偏光ミラー等)を用いて合成される。
鉛直・水平回転駆動部106は、本体部11の水平回転の駆動および可動部13の鉛直回転の駆動を行う。鉛直・水平回転駆動部106は、上記駆動のためのモータ、ギア機構および駆動回路を備えている。
鉛直・水平回転角度検出部107は、本体部11の水平回転角の検出、可動部13の鉛直角(仰角および俯角)の値を検出する。角度の検出は、ロータリーエンコーダによって行われる。水平回転角は、例えば北を基準(0°)として、上方から見た時計回り方向の角度で測られる。仰角および俯角は、水平方向を基準(0°)として仰角方向を+、俯角方向を−として測角する。
三次元位置算出部108は、測距光発光部104からの測距光の飛翔時間に基づき算出される測距対象までの距離と測距光の照射方向とから、TS100を原点とした対象物(測距光の反射点)の三次元座標の値を算出する。測距対象の三次元座標は、TS100を原点とした座標系(以下、TS座標系)上での値として得られる。
通常、TS100は、絶対座標系上における既知の位置に設置されるので、TS座標系で得られた位置データは、平行移動および必要であれば回転させることで絶対座標系に座標変換される。絶対座標系というのは、地上に固定されたグローバル座標系のことである。例えば、GNSS等で用いられる座標系が絶対座標系である。一般的に地図を記述するための座標系が絶対座標系である。絶対座標系では、例えば経度,緯度,標高(平均海面に対する高度)によって位置が特定される。
TS100から測距対象までの距離は、以下のようにして算出される。TS100の内部には、測距光発光部104から発光された光が導かれる光路長が既知の基準光路が設けられている。測距光発光部104からの光は2分され、一方は、望遠鏡16→測位点→望遠鏡16→測距光受光部105の光路を進み、他方は、基準光路→測距光受光部105と進む。測距光はパルス光であり、上記一方の光路を進んだ測距光と他方の光路を進んだ測距光は、測距光受光部105で受光されるタイミングにズレが生じ、測距光受光部105での検出波形に位相差を生じる。この位相差から反射点までの距離が算出される。
他方で、TS100から見た測距光の反射点の方向は、鉛直・水平回転角度検出部107により測角される。そして、距離と方向が判ることでTS100を基準(原点)とした反射点(測距光の反射点)の三次元位置が求まる。以上の処理が三次元位置算出部108で行なわれる。以上のようにして、レーザー測位部200での測位対象点の位置の測定が行われる。
レーザースキャナ109は、レーザースキャンによるスキャン点(レーザースキャンにより得られた点群データ(レーザースキャン点群))の取得を行う。レーザースキャンの範囲は、希望する範囲で設定可能である。
校正処理部110は、レーザー測位部200とレーザースキャナ109との間の外部標定要素(位置と向き)に関する校正を行う。この例では、初期の校正状態からのずれを補正する校正が行なわれる。この例では、平面を利用してレーザー測位部200が測位した位置データとレーザースキャナ109が得た点群データとのずれを評価し、そのずれが最小となるように、レーザースキャナ109の外部標定要素を調整することで校正が行なわれる。
なお、製品出荷の状態において、TS100に係る各種の校正は行われており、その中には、レーザー測位部200とレーザースキャナ109との間の外部標定要素の関係に関する校正も含まれている。しかしながら、校正の状態の経時変化や使用状況の事前校正時との違いといった理由により、改めての校正が必要となる場合がある。この際に校正処理部110での校正処理が利用される。
校正処理部110は、コンピュータとして機能する演算処理部である。校正処理部110は、測位点位置データ取得部111、スキャンデータ取得部112、ノイズ除去部113、面の方程式算出部114、離れ量算出部115、外部標定要素算出部116を備えている。各機能部はASICやFPGA等を利用した専用の集積回路で構成してもよいし、CPUにプログラムを実行させることで実現する形態であってもよい。また、マイコンと専用の演算回路を組み合わせて校正処理部110を構成してもよい。また、外部接続したPC(パーソナルコンピュータ)を用いて校正処理部110を実現することも可能である。
測位点位置データ取得部111は、レーザー測位部200が測位した点の位置データを取得する。本明細書で開示する技術では、平面性が確保された対象面の3点以上の点の測位がレーザー測位部200を用いて行われ、その3点以上の点の位置データが測位点位置データ取得部111で取得される。
スキャンデータ取得部112は、レーザースキャナ109が取得したスキャン点の位置データを取得する。本明細書で開示する技術では、測位点位置データ取得部111が取得の対象とした面と同じ面を対象にレーザースキャンが行なわれ、そのレーザースキャンデータがスキャンデータ取得部112で取得される。
以下、測位点位置データ取得部111が取得の対象とした面を第1の面とする。この際、レーザースキャンの範囲の中心を第1の面の中心と極力精度よく一致させる。ここで、第1の面の中心は、第1の面の取得に利用した複数(3点以上)の測位点の重心位置とする。また、第1の面の特定に利用した測位点の分布範囲の内側にスキャン範囲が設定されるようにする。この様子の一例を図4に示す。図4には、校正用のターゲットとして、立方体構造の校正用対象300を用意し、その一面の平面を上記第一の面である校正用対象面301として利用する場合が示されている。なお、最低限、第1の面の取得に利用した複数の測位点の分布範囲とレーザースキャナ109によるスキャン範囲が重複するようにする。また、校正用対象面301としては、完全な平面に極力近い面を選択する。
上記の条件を満たすようにレーザースキャンの範囲を設定することで、レーザースキャナ109の後述する外部標定要素の算出精度を高めることができる。なぜなら、第1の面の取得に利用した点の分布位置と、レーザースキャンの範囲が異なる場合、その差異が大きい程、異なる観測基準を基に校正が行われることになり、校正の精度が低下するからである。
ノイズ除去部113は、レーザースキャナ109が得た複数のスキャン点の中からノイズとなる点を除去する。ノイズの除去は、以下のようにして行われる。まず、対象となる複数のスキャン点(スキャン点群)を取得する。次に、取得したスキャン点群にフィッティングする面の方程式を算出する。次に、算出した面と各スキャン点との間の距離(絶対値)を算出する。この距離は、当該面に垂直な方向におけるものを算出する。各スキャン点と当該面との距離を求めたら、当該距離が閾値以上のスキャン点をノイズとして除去する。閾値は、レーザースキャナ109の精度を目安に設定する。例えば、レーザースキャナ109の測距精度が5mmである場合、閾値として2.5mmを採用する。
面の方程式算出部114は、測位点位置データ取得部111が取得した複数の点(3点以上の点)位置データに基づき、この複数の点(3点以上の点)にフィッティングする平面の方程式を算出する。
例えば、平面の方程式の一般形は、ax+by+cz+d=0である。この一般形の式に3点以上の座標値を代入し、連立方程式を解くことで、この3点以上の点を含む平面の方程式を得ることができる。この面の方程式は、TS座標系上で記述される。
なお、4点以上の測位点を用いた場合において、平面に含まれない点が存在する場合、各点からの離れ量の積算値が最小となる平面の方程式を算出する。また、平面に載らない点を無視し、平面に載る測位点を用いて平面の方程式を算出する方法も可能である。
離れ量算出部115は、スキャン点取得部が取得したスキャン点と面の方程式算出部114が算出した面との間の離れ量(距離の絶対値)を算出する。対象となるスキャン点は、スキャンデータから得られる全ての点でも良いし、その一部の点でもよい。ただし、なるべく多くの点を利用した方が最終的に得られる精度は高くなる。離れ量は、対象となるスキャン点の当該面への垂線の長さ(面に垂直な方向における点と面との間の距離)として計測される。
図5には、スキャン点n(n=1,2,3,4・・・で示される自然数)と面の方程式算出部114が算出した面との間の距離をdnとした場合が示されている。この場合、dnが各スキャン点と面の方程式算出部114が算出した面との間の離れ量となる。この離れ量が大きい程、面の方程式算出部114が算出した面(レーザー測位部200の測位データに基づき特定した校正用対象面)とスキャン点との差が大きく、両者の一致の程度がより低いものとなる。
外部標定要素算出部116は、離れ量算出部115が算出した離れ量dnが最小となるようにレーザースキャナ109の外部標定要素(位置と姿勢)のパラメータを調整する。以下、外部標定要素算出部116で行われる処理の一例を説明する。
まず、レーザースキャナ109の外部標定要素の初期値をPos_scan(Pos_x, Pos_y, Pos_z), Att_scan(roll,pitch,yaw)とする。ここで、Pos_scanはレーザースキャナ109の位置(光学原点の位置)であり、Att_scanはレーザースキャナ109の姿勢(向き)である。Pos_scanとAtt_scanは、レーザー測位部200の光学原点を原点とするTS座標系で記述される。Pos_scanとAtt_scanは、その時点における値、すなわち以前に校正処理が行なわれた時に得られた値が利用される。
そして、未知パラメータとして、上記の初期値からの補正量を(δPos_x, δPos_y, δPos_z, δroll, δpitch, δyaw)とする。ここで、スキャン点の一つに着目し、このスキャン点とレーザー測位部200の測位の結果に基づいて特定された面との間の離れ量をΔPとすると、下記の数1が成立する。
Figure 2019100915
ここで、[]^Tは転置を表し、Jはヤコビ行列である。
ここで、
b = ΔP(Px, Py, Pz)、
A = J、
x = [δPos_x, δPos_y, δPos_z, δroll, δpitch, δyaw]^Tとすると、数2で示される観測方程式が得られる。
Figure 2019100915
ここで、数2の観測方程式に各点での観測値(各スキャン点が得られた際のPos_scanとAtt_scanの値)を格納する。そしてAの転置行列A^Tを数2の左からかけて数3の正規方程式を得る。
Figure 2019100915
更に、A^TAの逆行列(A^TA)^-1を数3の左からかけると、数4が得られる。
Figure 2019100915
ここで数4にΔP(離れ量)を与えることで、xの最小二乗解が得られる。ここで得られたδPos_x, δPos_y, δPos_z, δroll, δpitch, δyawを初期値であるPos_scan, Att_scanに加味し、その値を用いて再びレーザースキャンデータ(点群データ)の再計算を行う。
そして再計算で得られたレーザースキャンデータを用いて、面の方程式算出部114が算出した面と各スキャン点との間の離れ量ΔPを再度計算する。そして再計算で得られた離れ量ΔPを用いて、再度上記数1〜数4の計算を行い、未知パラメータ(δPos_x, δPos_y, δPos_z, δroll, δpitch, δyaw)を再度算出する。
上記のサイクルを繰り返し、何かしらの収束条件(未知パラメータが収束する、ΔPが十分小さくなる等)を満たしたところで計算を終了し、未知パラメータ(δPos_x, δPos_y, δPos_z, δroll, δpitch, δyaw)の最適な推定値を得る。
未知パラメータ(δPos_x, δPos_y, δPos_z, δroll, δpitch, δyaw)の最適値を得たら、それを用いて既知のPos_scan, Att_scanを修正し、レーザースキャナ109の修正された(最適化された)外部標定要素を得る。
なお、未知パラメータ(δPos_x, δPos_y, δPos_z, δroll, δpitch, δyaw)の変動が十分小さくなる(収束する)につれて、離れ量ΔPも最小値に収束してゆく。よって、未知パラメータ(δPos_x, δPos_y, δPos_z, δroll, δpitch, δyaw)が収束する条件を探すことでも、離れ量ΔPが最小と見なせる条件における未知パラメータ(δPos_x, δPos_y, δPos_z, δroll, δpitch, δyaw)の値を見出すことができる。なお、理想的には、離れ量ΔPはゼロになる条件が存在するはずであるが、各種の誤差があるので、必ずしもゼロとはならない。
以上のようにして、各スキャンにおける離れ量dn(図5参照)が最小となるレーザースキャナ109の外部標定要素が求められ、レーザー測位部200とレーザースキャナ109のより最適化された外部票標定要素の関係が得られる。つまり、レーザー測位部200とレーザースキャナ109の間における外部票標定要素に関する校正が行なわれる。
外部標定要素の算出に利用する面として、法線の方向が異なる複数の面を用いることは好ましい。レーザー測位部200が特定した面とレーザースキャナ109のスキャンデータとが一致しても、両者の相対的な平行位置の関係については誤差が残る。異なる法線ベクトルを有する面を対象に外部標定要素の最適化処理を行うことで、上記の誤差を低減できる。
ここでは、レーザースキャナ109の外部標定要素を求める(最適化する)場合の例を示した。ところで、本実施形態で重要なのは、光学系201も含めたレーザー測位部200の外部標定要素とレーザースキャナ109の外部標定要素との関係を校正し、既知の関係とする点にある。これは、両者の外部標定要素が既知の関係にないと、両者のデータの比較や互換に誤差が生じるからである。よって、光学系201も含めたレーザー測位部200の外部標定要素を修正する形態も可能である。また、光学系201も含めたレーザー測位部200の外部標定要素とレーザースキャナ109の外部標定要素の両方を修正する形態も可能である。
対象となる面は、建物の壁面等の人工構造物、校正用ターゲットとして用意した板状の部材、図4に示すような立体構造物を利用できる。校正用ターゲットを用意する場合、異なる法線ベクトルを有する複数の面を有する構造のものが好ましい。また、この校正に用いる面として自然に存在しているものを用いることもできる。ただし、面の状態が未知の場合、極力平面性が高い対象を校正用対象面として選択する必要がある。
校正状態の良否判定部117は、レーザー測位部200とレーザースキャナ109に係る校正の状態の良否を判定する。レーザー測位部200とレーザースキャナ109に係る校正の状態が「良」というのは、両者の外部標定要素が許容できるレベルの精度で得られている場合である。
この場合、レーザー測位部200とレーザースキャナ109の一方または両方の外部標定要素に誤差があっても、それは許容範囲内であり、両者のデータの整合や互換に支障は生じない(あるいは、データの整合や互換に際して誤差があっても、それは許容の範囲内となる)。
他方で、レーザー測位部200とレーザースキャナ109に係る校正の状態が「否(不良)」というのは、両者の外部標定要素の少なくとも一方が許容できない誤差を含む場合である。この場合、レーザー測位部200とレーザースキャナ109のデータの整合や互換に支障が生じ、両者のデータを統合したデータに許容できない誤差が含まれることになる。
レーザー測位部200とレーザースキャナ109の外部標定要素およびその関係は、事前の校正処理により予め特定されている。しかしながら、経時変化等の要因により、レーザー測位部200に対するレーザースキャナ109の外部標定要素の値(あるいは両者の外部標定要素の関係)が適正値からずれ誤差を含む場合がある。このずれが無視できない値となると、レーザー測位部200とレーザースキャナ109にかかる校正の状態が不良となる。この良否を判定が校正状態の良否判定部117で行なわれる。
校正状態の良否の判定は、離れ量算出部115が算出した離れ量に基づいて行われる。具体的には、各スキャン点の離れ量dの平均値(Σdn/n)(n:スキャン点の数)が予め定めた閾値未満であれば、「校正の状態が良」と判定し、Σdn/nが予め定めた閾値以上であれば、「校正の状態が不良」と判定する。判定の基準となる閾値は、許容できる誤差によって決定される。
動作制御部121は、TS100の動作の制御を統括する。例えば、図6に係る処理の制御は、動作制御部121で行なわれる。記憶部122は、TS100の動作に必要なデータやプログラム、TS100の動作の結果得られた測量データを記憶する。
(処理の一例)
図6は、校正処理部110で行なわれる処理の手順の一例を示すフローチャートである。図6の処理を実行するプログラムは、記憶部122や適当な記憶媒体に記憶される。この処理の手順は、動作制御部121により制御されて実行される。
ここでは、図4の校正用対象面301を用いた校正処理の例を説明する。処理が開始されると、まずレーザー測位部200を用いた測位点303(図4の場合は6点)の測位が行なわれ、その測位データが測位点位置データ取得部111で取得される(ステップS101)。ここで、測位点303の座標は、TS座標系(TS100を限定する三次元座標系)上で記述される。
測位点303の測位の作業は、操作者がTS100を操作することで行われる。この際、操作者は、接眼部17を覗いて測位点の視準を行い、校正用対象面301上の6カ所を測位点303として選択し、その測位を行う。
6点の測位点303の測位を行ったら、この6点の測位点にフィッティングする面の特定を行う(ステップS102)。この処理は、面の方程式算出部114で行なわれる。この処理では、6点の測位点303にフィッティングするTS座標系上における面の方程式の算出が行なわれる。
次に、レーザースキャナ109を用いて校正用対象面301に対するレーザースキャンを行い、校正用対象面301のスキャンデータを得る。そして、このスキャンデータをスキャンデータ取得部112で取得する(ステップS103)。
次に、図5の原理により、ステップS102で算出した面とステップS103で取得したスキャンデータに含まれるスキャン点との離れ量を算出する(ステップS104)。この処理は、離れ量算出部115で行なわれる。
次に、離れ量が最小となるレーザースキャナ109の外部標定要素の算出を行う(ステップS105)。この処理は、外部標定要素算出部116で行なわれる。図6の処理では、離れ量が最小となるように、レーザースキャナ109の外部標定要素の算出(最適化)を行う。これは、レーザー測位部200を基準にレーザースキャナ109の外部標定要素を修正する処理である。これとは逆に、離れ量が最小となるように、レーザー測位部200の外部標定要素の算出を行ってもよい。また、離れ量が最小となるように、レーザー測位部200とレーザースキャナ109両方の外部標定要素の算出を行ってもよい。
(変形例1)
レーザー測位部200の機能を用いて特定した面(第1の面)とレーザースキャナ109が得たスキャン点との離れ量を算出する方法として、レーザースキャンデータに含まれるスキャン点にフィッティングする面を第2の面として求め、第1の面と第2の面の離れ量を算出してもよい。
離れ量を算出する位置は、第1の面または第2の面に設定した格子状の点において行う。この際、格子間隔を狭くすれば精度は上がるが、演算量は増える。格子間隔としては、例えば、1cm〜30cmが挙げられる。なお、法線のベクトルの異なる2つ以上の面を用いることが好ましいことは、この例でも同じである。
(変形例2)
図6の処理において、ステップS105の処理の代わりに、ステップS104で得た「離れ量」に基づく校正の状態の良否の判定を行ってもよい。この場合、レーザー測位部200とレーザースキャナ109の校正の状態の良否の判定が、校正状態の良否判定部117で行われる。判定の結果は、ディスプレイ18,19に表示される。また、判定の結果をTS100の外部に送信する形態も可能である。
(変形例3)
図4に例示する校正用対象面として、曲面を用いることもできる。この場合、予め曲率等の曲面の数学的な状態が既知の曲面を校正用対象面として用意する。この際、該校正用対象面の数学的な構造(例えば、曲面の方程式や詳細な数値情報)は予め既知な情報として取得しておく。
校正処理では、レーザー測位部200による複数点(その面を特定するのに必要な数の点、通常は3点以上)の測位を行い、得られた測位点にフィッティングする上記既知の校正用対象面を特定する。この際、既知の面の方程式の未定数が確定する。
次に、レーザースキャナ109による上記校正用対象面に対するレーザースキャンを行い、当該校正用対象面における複数(多数)のスキャン点を取得する。そして、数学的に確定した上記校正用対象面とレーザースキャンで得た複数のスキャン点との離れ量を算出する。そして、当該離れ量が最小となるようにレーザースキャナ109の外部標定要素の算出を行う。曲面としては、球面、楕円面、双曲面、円柱面、円錐面等が利用可能である。
(変形例4)
数1〜数4を用いてレーザー測位部200の外部標定要素を修正(最適化)することもできる。この場合、レーザー測位部200の未知パラメータ(δPos_x, δPos_y, δPos_z, δroll, δpitch, δyaw)を求めたら、それを用いて測位点303の再計算および面の方程式の再計算を行う。そして、再度数1〜数4の計算を行う。このサイクルを繰り返して収束条件(未知パラメータが収束する、ΔPが十分小さくなる等)を満たしたところで計算を終了し、レーザー測位部200に係る未知パラメータ(δPos_x, δPos_y, δPos_z, δroll, δpitch, δyaw)の最適値を得る。
レーザー測位部200とレーザースキャナ109の両方の外部標定要素を修正する場合は、双方の未知パラメータ(δPos_x, δPos_y, δPos_z, δroll, δpitch, δyaw)を交互に修正する。
(その他)
本発明は、TSとレーザースキャナを複合化した測量装置において、両者の光学原点を一致させた構成に適用することもできる。仮に、TSとレーザースキャナの光学原点を設計上で一致させ、また部品精度や組み立て精度に留意して製品として仕上げても、レーザースキャナにおける方位検出のタイミングと測位データの取得タイミングのズレや誤差の問題は依然として残る。このため、この装置においてもTSの測位機能とレーザースキャナとの間におけるデータの互換性を担保するための校正処理が必要となる。この際に本発明を利用することができる。
本発明は、TSとレーザースキャナを統合した機能を有する測量装置に利用できる。
100…レーザースキャナ付TS(トータルステーション)、109…レーザースキャナ、150…TS本体、11…本体部、12…台座、13…可動部、14a…水平回転角制御ダイヤル、14b…鉛直角制御ダイヤル、15a…照準器、15b…光学式の照準器、16…望遠鏡、17…接眼部、18,19…ディスプレイ、301…第1の塔部、302…第2の塔部、303…結合部、304…保護ケース、305…回転部、306…斜めミラー。

Claims (10)

  1. 測位対象の視準に利用される光学系と、
    前記光学系を介してレーザー光を前記測位対象に照射し、前記測位対象の測位を行うレーザー測位部と、
    前記レーザー測位部の測位結果に基づき特定の面の位置を特定する面特定部と、
    前記特定の面のレーザースキャンを行うレーザースキャナと、
    前記面特定部が位置を特定した前記特定の面と前記レーザースキャナが得た複数のスキャン点それぞれとの離れ量を算出する離れ量算出部と、
    前記離れ量に基づき前記レーザー測位部および前記レーザースキャナの少なくとも一方の外部標定要素を算出する外部標定要素算出部と
    を備える測量装置。
  2. 測位対象の視準に利用される光学系と、
    前記光学系を介してレーザー光を前記測位対象に照射し、前記測位対象の測位を行うレーザー測位部と、
    前記レーザー測位部の測位結果に基づき特定の面の位置を特定する面特定部と、
    前記特定の面のレーザースキャンを行うレーザースキャナと、
    前記面特定部が位置を特定した前記特定の面と前記レーザースキャナが得た複数のスキャン点それぞれとの離れ量を算出する離れ量算出部と、
    前記離れ量に基づき、前記レーザー測位部と前記レーザースキャナの外部標定要素に係る校正の状態の良否を判定する良否判定部を備える測量装置。
  3. 前記特定の面として、法線ベクトルの異なる複数の面が選択される請求項1または2に記載の測量装置。
  4. 前記レーザー測位部による前記特定の面の3点以上の点の測位により、前記特定の面の位置が特定される請求項1〜3のいずれか一項に記載の測量装置。
  5. 前記3点以上の点の分布範囲と前記レーザースキャナのレーザースキャン範囲とは重複する請求項4に記載の測量装置。
  6. 前記3点以上の点の分布範囲内に前記レーザースキャナのレーザースキャン範囲が設定される請求項4または5に記載の測量装置。
  7. 前記複数のスキャン点がフィッティングするフィッティング面を求め、前記フィッティング面からの離れ量が規定の値以上であるスキャン点をノイズ点として除去するノイズ除去部を備える請求項1〜6のいずれか一項に記載の測量装置。
  8. 前記離れ量として、前記面特定部が位置を特定した前記特定の面と前記レーザースキャナが得た複数のスキャン点にフィッティングするフィッティング面との間の距離が採用される請求項1〜7のいずれか一項に記載の測量装置。
  9. レーザー測位部を用いた特定の面の3点以上の測位により前記特定の面の位置を特定する面特定ステップと、
    レーザースキャナにより前記特定の面のレーザースキャンを行うレーザースキャンステップと、
    前記位置が特定された前記特定の面と前記レーザースキャンによって得た複数のスキャン点それぞれとの離れ量を算出する離れ量算出ステップと、
    前記離れ量に基づき前記レーザー測位部および前記レーザースキャナの少なくとも一方の外部標定要素を算出する外部標定要素算出ステップと
    を有する測量装置の校正方法。
  10. コンピュータに読み取らせて実行するプログラムであって、
    コンピュータに
    レーザー測位部を用いた特定の面の3点以上の測位により前記特定の面の位置を特定する面特定ステップと、
    レーザースキャナにより前記特定の面のレーザースキャンを行うレーザースキャンステップと、
    前記位置が特定された前記特定の面と前記レーザースキャンによって得た複数のスキャン点それぞれとの離れ量を算出する離れ量算出ステップと、
    前記離れ量に基づき前記レーザー測位部および前記レーザースキャナの少なくとも一方の外部標定要素を算出する外部標定要素算出ステップと
    を実行させる測量装置の校正用プログラム。
JP2017233469A 2017-12-05 2017-12-05 測量装置、測量装置の校正方法および測量装置の校正用プログラム Active JP7007167B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017233469A JP7007167B2 (ja) 2017-12-05 2017-12-05 測量装置、測量装置の校正方法および測量装置の校正用プログラム
EP18206442.8A EP3495769B1 (en) 2017-12-05 2018-11-15 Surveying device, and calibration method and calibration program for surveying device
US16/205,420 US11460561B2 (en) 2017-12-05 2018-11-30 Surveying device, and calibration method and calibration program for surveying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017233469A JP7007167B2 (ja) 2017-12-05 2017-12-05 測量装置、測量装置の校正方法および測量装置の校正用プログラム

Publications (2)

Publication Number Publication Date
JP2019100915A true JP2019100915A (ja) 2019-06-24
JP7007167B2 JP7007167B2 (ja) 2022-01-24

Family

ID=64331740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017233469A Active JP7007167B2 (ja) 2017-12-05 2017-12-05 測量装置、測量装置の校正方法および測量装置の校正用プログラム

Country Status (3)

Country Link
US (1) US11460561B2 (ja)
EP (1) EP3495769B1 (ja)
JP (1) JP7007167B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112485774A (zh) * 2020-11-26 2021-03-12 中国第一汽车股份有限公司 一种车载激光雷达标定方法、装置、设备及存储介质
EP4008997A1 (en) 2020-07-27 2022-06-08 Topcon Corporation Surveying system, surveying method, and surveying program
JP7449506B2 (ja) 2020-08-06 2024-03-14 株式会社イクシス 計測システム
JP7452797B2 (ja) 2020-08-06 2024-03-19 株式会社イクシス 計測システム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200410373A1 (en) * 2019-06-27 2020-12-31 Mohamad Zaim BIN AWANG PON Predictive analytic method for pattern and trend recognition in datasets
JP7300915B2 (ja) * 2019-07-16 2023-06-30 株式会社トプコン 測量装置
CN110837080B (zh) * 2019-10-28 2023-09-05 武汉海云空间信息技术有限公司 激光雷达移动测量系统的快速标定方法
EP3825720B1 (en) * 2019-11-19 2024-03-27 Leica Geosystems AG Laser scanner with calibration functionality
CN113466834A (zh) * 2020-03-12 2021-10-01 华为技术有限公司 一种激光雷达参数标定方法及装置
US20210325520A1 (en) * 2020-04-17 2021-10-21 Velodyne Lidar, Inc. Systems and Methods for Calibrating a LIDAR Device
CN113722331A (zh) * 2021-09-09 2021-11-30 中国铁建国际集团有限公司 一种基于全站仪的扫描方法、装置及系统
EP4155664A1 (en) * 2021-09-27 2023-03-29 Leica Geosystems AG Measuring device comprising a targeting unit and a scanning module
EP4242584A1 (en) 2022-03-11 2023-09-13 Leica Geosystems AG A reference free calibration method for a point cloud measuring module combined with a geodetic single point measurement unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012088114A (ja) * 2010-10-18 2012-05-10 Topcon Corp 光学情報処理装置、光学情報処理方法、光学情報処理システム、光学情報処理プログラム
JP2013190272A (ja) * 2012-03-13 2013-09-26 Kyushu Univ 3次元レーザ測量装置及び3次元レーザ測量方法
US20150042977A1 (en) * 2012-01-30 2015-02-12 Hexagon Technology Center Gmbh Measurement system with a measuring device and a scanning module
JP2015087319A (ja) * 2013-10-31 2015-05-07 三菱重工業株式会社 3次元形状計測装置および方法ならびにプログラム
JP2016223840A (ja) * 2015-05-28 2016-12-28 株式会社トプコン 測量装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5124319B2 (ja) 1972-11-11 1976-07-23
US8767190B2 (en) 2006-07-13 2014-07-01 Velodyne Acoustics, Inc. High definition LiDAR system
JP5263804B2 (ja) 2007-04-20 2013-08-14 株式会社トプコン 多点測定方法及び測量装置
JP5124319B2 (ja) 2008-03-21 2013-01-23 株式会社トプコン 測量機、測量システム、測定対象の検出方法、および測定対象の検出プログラム
JP5688876B2 (ja) 2008-12-25 2015-03-25 株式会社トプコン レーザスキャナ測定システムの較正方法
JP5725922B2 (ja) 2011-03-25 2015-05-27 株式会社トプコン 測量システム及びこの測量システムに用いる測量用ポール及びこの測量システムに用いる携帯型無線送受信装置
US10132928B2 (en) 2013-05-09 2018-11-20 Quanergy Systems, Inc. Solid state optical phased array lidar and method of using same
JP6368669B2 (ja) 2015-03-17 2018-08-01 ソニーセミコンダクタソリューションズ株式会社 表示装置および補正方法
JP6906916B2 (ja) 2016-09-06 2021-07-21 株式会社トプコン 画像処理装置、画像処理方法、画像処理用プログラム
CN117607841A (zh) * 2017-08-11 2024-02-27 祖克斯有限公司 车辆传感器的校准和定位
JP2019090653A (ja) * 2017-11-13 2019-06-13 株式会社トプコン 測量装置、測量装置の校正確認方法および測量装置の校正確認用プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012088114A (ja) * 2010-10-18 2012-05-10 Topcon Corp 光学情報処理装置、光学情報処理方法、光学情報処理システム、光学情報処理プログラム
US20150042977A1 (en) * 2012-01-30 2015-02-12 Hexagon Technology Center Gmbh Measurement system with a measuring device and a scanning module
JP2013190272A (ja) * 2012-03-13 2013-09-26 Kyushu Univ 3次元レーザ測量装置及び3次元レーザ測量方法
JP2015087319A (ja) * 2013-10-31 2015-05-07 三菱重工業株式会社 3次元形状計測装置および方法ならびにプログラム
JP2016223840A (ja) * 2015-05-28 2016-12-28 株式会社トプコン 測量装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4008997A1 (en) 2020-07-27 2022-06-08 Topcon Corporation Surveying system, surveying method, and surveying program
EP4246088A1 (en) 2020-07-27 2023-09-20 Topcon Corporation Surveying system, surveying method, and surveying program
JP7449506B2 (ja) 2020-08-06 2024-03-14 株式会社イクシス 計測システム
JP7452797B2 (ja) 2020-08-06 2024-03-19 株式会社イクシス 計測システム
CN112485774A (zh) * 2020-11-26 2021-03-12 中国第一汽车股份有限公司 一种车载激光雷达标定方法、装置、设备及存储介质
CN112485774B (zh) * 2020-11-26 2024-03-15 中国第一汽车股份有限公司 一种车载激光雷达标定方法、装置、设备及存储介质

Also Published As

Publication number Publication date
EP3495769A1 (en) 2019-06-12
EP3495769B1 (en) 2021-01-13
JP7007167B2 (ja) 2022-01-24
US20190170865A1 (en) 2019-06-06
US11460561B2 (en) 2022-10-04

Similar Documents

Publication Publication Date Title
JP7007167B2 (ja) 測量装置、測量装置の校正方法および測量装置の校正用プログラム
US11307031B2 (en) Surveying device, and calibration checking method and calibration checking program for surveying device
US9658335B2 (en) Measurement system with a measuring device and a scanning module
US9594167B2 (en) Geodetic referencing of point clouds
EP1903304B1 (en) Position measuring system, position measuring method and position measuring program
US8830452B2 (en) Geodetic target and position determination system
US9377298B2 (en) Surface determination for objects by means of geodetically precise single point determination and scanning
JP2017223540A (ja) 測量システム
JP7357124B2 (ja) ターゲット、測量方法およびプログラム
JP2013190272A (ja) 3次元レーザ測量装置及び3次元レーザ測量方法
JP6823482B2 (ja) 三次元位置計測システム,三次元位置計測方法,および計測モジュール
US9891320B2 (en) Measurement system with a measuring device and a scanning module
EP3274648B1 (en) Device system and method for determining the relative orientation between two different locations
JP2010169633A (ja) 形状測定装置
JP2018054541A (ja) 測定システムおよび測定方法
US20210285766A1 (en) Optical surveying instrument with movable mirror
US11193765B2 (en) Surveying instrument and photogrammetric method
JP2021067615A (ja) スキャナシステムおよびスキャン方法
JP2020041934A (ja) 測量装置
JP6996961B2 (ja) 測量装置
JP2023100945A (ja) 測量装置、測量方法および測量用プログラム
JP2023048409A (ja) 測量システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220106

R150 Certificate of patent or registration of utility model

Ref document number: 7007167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150