JP2019080377A - 昇圧コンバータ装置 - Google Patents

昇圧コンバータ装置 Download PDF

Info

Publication number
JP2019080377A
JP2019080377A JP2017203463A JP2017203463A JP2019080377A JP 2019080377 A JP2019080377 A JP 2019080377A JP 2017203463 A JP2017203463 A JP 2017203463A JP 2017203463 A JP2017203463 A JP 2017203463A JP 2019080377 A JP2019080377 A JP 2019080377A
Authority
JP
Japan
Prior art keywords
current
output
boost converter
converter
boost
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017203463A
Other languages
English (en)
Other versions
JP6939399B2 (ja
Inventor
大悟 野辺
Daigo Nobe
大悟 野辺
将平 大井
Shohei Oi
将平 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017203463A priority Critical patent/JP6939399B2/ja
Publication of JP2019080377A publication Critical patent/JP2019080377A/ja
Application granted granted Critical
Publication of JP6939399B2 publication Critical patent/JP6939399B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

【課題】第1,第2昇圧コンバータのうちの一方に負荷が集中することを抑制できる昇圧コンバータ装置を提供する。【解決手段】第1昇圧コンバータの出力を制限するための第1制限率αと第2昇圧コンバータの出力を制限するための第2制限率βとのうち小さいほうの値を出力制限率γに設定し、電気負荷の要求電力と目標電圧とに基づく目標電流に目標電流のうち第1昇圧コンバータから出力する電流の比率である第1分配率とを乗じた第1電流と、第1電流に前記出力制限率γを乗じた電流と、のうち小さいほうの電流が第1昇圧コンバータから出力され、目標電流に値1から第1分配率を減じた第2分配率を乗じた第2電流と、第2電流に前記出力制限率γを乗じた電流と、のうち小さいほうの電流が第2昇圧コンバータから出力されるように、第1,第2昇圧コンバータを制御する。【選択図】図3

Description

本発明は、昇圧コンバータ装置に関し、詳しくは、第1,第2昇圧コンバータを備える昇圧コンバータ装置に関する。
従来、この種の昇圧コンバータ装置としては、第1,第2昇圧コンバータ(第1,第2コンバータ)を備えるものが提案されている(例えば、特許文献1参照)。第1,第2昇圧コンバータは、蓄電装置(バッテリ)が接続される第1電力ラインと電気負荷(インバータ)が接続される第2電力ラインとの間で電圧の変換を伴って電力のやり取りを行なっており、並列接続されている。この装置では、第2電力ラインの電圧が目標電圧になると共に第2電力ラインに要求電力が出力されるように第1,第2昇圧コンバータを制御している。
特開2010−104139号公報
上述の昇圧コンバータ装置では、一般に、第1,第2昇圧コンバータの一方の温度が上限温度以上であるときには、温度が上限温度以上の昇圧コンバータの出力を制限(小さく)して、温度が上限温度未満の昇圧コンバータの出力を大きくして負荷を集中させることで、電気負荷に供給する電力の低下を抑制しながら温度が上限温度以上の昇圧コンバータの更なる昇温を抑制している。しかしながら、過渡的に電気負荷の出力が大きくなると、温度が上限温度未満の昇圧コンバータの出力が急増して負荷が集中し昇温し、第1,第2昇圧コンバータの両方の温度が上限温度以上となることがある。
本発明の昇圧コンバータ装置は、第1,第2昇圧コンバータのうちの一方への負荷の集中を抑制することを主目的とする。
本発明の昇圧コンバータ装置は、上述の主目的を達成するために以下の手段を採った。
本発明の昇圧コンバータ装置は、
蓄電装置に接続される第1電力ラインと電気負荷に接続される第2電力ラインとの間で電圧の変換を伴って電力のやり取りを行なう第1昇圧コンバータと、
前記第1昇圧コンバータに並列接続され、前記第1電力ラインと前記第2電力ラインとの間で電圧の変換を伴って電力のやり取りを行なう第2昇圧コンバータと、
前記第2電力ラインの電圧が目標電圧となるように前記第1,第2昇圧コンバータを制御する制御装置と、
を備える昇圧コンバータ装置であって、
前記制御装置は、
前記第1昇圧コンバータの出力を制限するための第1制限率と前記第2昇圧コンバータの出力を制限するための第2制限率とのうち小さいほうの値を出力制限率に設定し、
前記電気負荷の要求電力と前記目標電圧とに基づく目標電流に前記目標電流のうち前記第1昇圧コンバータから出力する電流の比率である第1分配率を乗じた第1電流と、前記第1電流に前記出力制限率とを乗じた電流と、のうち小さいほうの電流が前記第1昇圧コンバータから出力され、前記目標電流に値1から前記第1分配率を減じた第2分配率を乗じた第2電流と、前記第2電流に前記出力制限率を乗じた電流と、のうち小さいほうの電流が前記第2昇圧コンバータから出力されるように、前記第1,第2昇圧コンバータを制御する、
ことを要旨とする。
この本発明の昇圧コンバータ装置では、第1昇圧コンバータの出力を制限するための第1制限率と第2昇圧コンバータの出力を制限するための第2制限率とのうち小さいほうの値を出力制限率に設定する。そして、電気負荷の要求電力と目標電圧とに基づく目標電流に目標電流のうちの第1昇圧コンバータから出力する電流の比率である第1分配率を乗じた第1電流と、第1電流に出力制限率を乗じた電流と、のうち小さいほうの電流が第1昇圧コンバータから出力され、目標電流に値1から前記第1分配率を減じた第2分配率を乗じた第2電流と、第2電流に出力制限率を乗じた電流と、のうち小さいほうの電流が第2昇圧コンバータから出力されるように、第1,第2昇圧コンバータを制御する。ここで、「第1制限率」,「第2制限率」,「出力制限率」は、値0以上値1以下に設定される。これにより、第1,第2昇圧コンバータの一方に負荷が集中することを抑制できる。
こうした本発明の昇圧コンバータ装置において、前記制御装置は、前記第1,第2昇圧コンバータの双方の出力を制限しないときには、前記第2電力ラインの電圧が前記目標電圧となり、且つ、前記第1電流が前記第1昇圧コンバータから出力され、前記第2電流が前記第2昇圧コンバータから出力されるように、前記第1,第2昇圧コンバータを制御し、前記第1,第2昇圧コンバータのうちの少なくとも一つの出力を制限するときには、前記第1電流と、前記第1電流に前記出力制限率を乗じた電流と、のうちの小さいほうの電流が前記第1昇圧コンバータから出力され、前記第2電流と、前記第2電流に前記出力制限率を乗じた電流と、のうちの小さいほうの電流が前記第2昇圧コンバータから出力されるように、前記第1,第2昇圧コンバータを制御してもよい。こうすれば、第1,第2昇圧コンバータのうちの少なくとも一つの出力が制限するときに、いずれかの昇圧コンバータに負荷が集中することを抑制できる。
本発明のモータ装置は、
上述したいずれかの態様の本発明の昇圧コンバータ装置、すなわち、基本的には、蓄電装置に接続される第1電力ラインと電気負荷に接続される第2電力ラインとの間で電圧の変換を伴って電力のやり取りを行なう第1昇圧コンバータと、前記第1昇圧コンバータに並列接続され、前記第1電力ラインと前記第2電力ラインとの間で電圧の変換を伴って電力のやり取りを行なう第2昇圧コンバータと、前記第2電力ラインの電圧が目標電圧となるように前記第1,第2昇圧コンバータを制御する制御装置と、を備える昇圧コンバータ装置であって、前記制御装置は、前記第1昇圧コンバータの出力を制限するための第1制限率と前記第2昇圧コンバータの出力を制限するための第2制限率とのうち小さいほうの値を出力制限率に設定し、前記電気負荷の要求電力と前記目標電圧とに基づく目標電流に前記目標電流のうち前記第1昇圧コンバータから出力する電流の比率である第1分配率を乗じた第1電流と、前記第1電流に前記出力制限率を乗じた電流と、のうち小さいほうの電流が前記第1昇圧コンバータから出力され、前記目標電流に値1から前記第1分配率を減じた第2分配率を乗じた第2電流と、前記第2電流に前記出力制限率を乗じた電流と、のうち小さいほうの電流が前記第2昇圧コンバータから出力されるように、前記第1,第2昇圧コンバータを制御する、昇圧コンバータ装置と、
前記電気負荷としてのモータと、
前記モータを制御するモータ制御装置と、
を備えるモータ装置であって、
前記モータ制御装置は、前記モータに要求される要求トルクと、前記要求トルクに前記出力制限率を乗じたトルクとのうち小さいほうの電力が出力されるように、前記モータを制御する、
ことを要旨とする。
この本発明のモータ装置では、上述したいずれかの態様の本発明の昇圧コンバータ装置を備えているから、本発明の昇圧コンバータ装置が奏する効果、すなわち、第1,第2昇圧コンバータの一方に負荷が集中することを抑制できる効果と同一の効果を奏することができる。
本発明の一実施例としての昇圧コンバータ装置を搭載した電気自動車20の構成の概略を示す構成図である。 モータ32を含む電機駆動系の構成の概略を示す構成図である。 ECU70により実行される制限率設定処理ルーチンを一例を示すフローチャートである。 第1,第2昇圧コンバータ40,41の温度tc1、tc2および出力制限率α,β,モータ32の負荷率Rm,モータ32,第1,第2昇圧コンバータ40,41の出力(電力)の時間変化の一例を示す説明図である。
次に、本発明を実施するための形態を実施例を用いて説明する。
図1は、本発明の一実施例としての昇圧コンバータ装置を搭載した電気自動車20の構成の概略を示す構成図である。図2は、モータ32を含む電機駆動系の構成の概略を示す構成図である。実施例の電気自動車20は、図1に示すように、モータ32と、インバータ34と、蓄電装置としてのバッテリ36と、第1,第2昇圧コンバータ40,41と、電子制御ユニット70と、を備える。ここで、実施例の昇圧コンバータ装置としては、主として、第1,第2昇圧コンバータ40,41と、電子制御ユニット(以下、「ECU」という)70と、が相当する。
モータ32は、例えば同期発電電動機として構成されており、回転子が駆動輪22a,22bにデファレンシャルギヤ24を介して連結された駆動軸26に接続されている。インバータ34は、モータ32に接続されると共に高電圧側電力ライン42に接続されている。モータ32は、ECU70によって、インバータ34の図示しない複数のスイッチング素子がスイッチング制御されることにより、回転駆動される。高電圧側電力ライン42の正極側ラインと負極側ラインとには、平滑用のコンデンサ46が取り付けられている。
バッテリ36は、例えばリチウムイオン二次電池やニッケル水素二次電池として構成されており、低電圧側電力ライン44に接続されている。低電圧側電力ライン44の正極側ラインと負極側ラインとには、平滑用のコンデンサ48が取り付けられている。
第1,第2昇圧コンバータ40,41は、高電圧側電力ライン42と低電圧側電力ライン44とに互いに並列に接続されている。第1昇圧コンバータ40は、図2に示すように、2つのトランジスタT11,T12と、2つのトランジスタT11,T12のそれぞれに並列に接続された2つのダイオードD11,D12と、リアクトルL1と、を有する。トランジスタT11は、高電圧側電力ライン42の正極側ラインに接続されている。トランジスタT12は、トランジスタT11と、高電圧側電力ライン42および低電圧側電力ライン44の負極側ラインと、に接続されている。リアクトルL1は、トランジスタT11,T12同士の接続点と、低電圧側電力ライン44の正極側ラインと、に接続されている。第1昇圧コンバータ40は、ECU70によって、トランジスタT11,T12のオン時間の割合が調節されることにより、低電圧側電力ライン44の電力を昇圧して高電圧側電力ライン42に供給したり、高電圧側電力ライン42の電力を降圧して低電圧側電力ライン44に供給したりする。第2昇圧コンバータ41は、第1昇圧コンバータ40と同様に、2つのトランジスタT21,T22と、2つのダイオードD21,D22と、リアクトルL2と、を有する。この第2昇圧コンバータ41は、ECU70によって、トランジスタT21,T22のオン時間の割合が調節されることにより、低電圧側電力ライン44の電力を昇圧して高電圧側電力ライン42に供給したり、高電圧側電力ライン42の電力を降圧して低電圧側電力ライン44に供給したりする。
ECU70は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,不揮発性のフラッシュメモリ,入出力ポートを備える。図1に示すように、ECU70には、各種センサからの信号が入力ポートを介して入力されている。ECU70に入力される信号としては、例えば、モータ32の回転子の回転位置を検出する回転位置検出センサ32aからの回転位置θmや、モータ32の各相に流れる電流を検出する電流センサからの相電流Iu,Ivを挙げることができる。また、バッテリ36の端子間に取り付けられた電圧センサからの電圧Vbや、バッテリ36の出力端子に取り付けられた電流センサからの電流Ibも挙げることができる。さらに、コンデンサ46の端子間に取り付けられた電圧センサ46aからの高電圧側電力ライン42(コンデンサ46)の電圧VHや、コンデンサ48の端子間に取り付けられた電圧センサ48aからの低電圧側電力ライン44(コンデンサ48)の電圧VLを挙げることもできる。第1,第2昇圧コンバータ40,41のリアクトルL1,L2に流れる電流を検出する電流センサ40a,41aからのリアクトル電流IL1,IL2(バッテリ36側からトランジスタT11,T21へ向かう電流の方向が正の値)や、第1,第2昇圧コンバータ40,41に取り付けられた温度センサ40b,41bからの第1,第2昇圧コンバータ40,41の温度tc1,tc2も挙げることができる。イグニッションスイッチ80からのイグニッション信号や、シフトレバー81の操作位置を検出するシフトポジションセンサ82からのシフトポジションSPを挙げることができる。また、アクセルペダル83の踏み込み量を検出するアクセルペダルポジションセンサ84からのアクセル開度Accや、ブレーキペダル85の踏み込み量を検出するブレーキペダルポジションセンサ86からのブレーキペダルポジションBPを挙げることができる。さらに、車速センサ88からの車速Vも挙げることができる。
ECU70からは、各種制御信号が出力ポートを介して出力されている。ECU70から出力される信号としては、例えば、インバータ34の複数のスイッチング素子へのスイッチング制御信号や、第1昇圧コンバータ40のトランジスタT11,T12へのスイッチング制御信号,第2昇圧コンバータ41のトランジスタT21,T22へのスイッチング制御信号を挙げることができる。ECU70は、回転位置検出センサ32aからのモータ32の回転子の回転位置θmに基づいてモータ32の電気角θeや回転数Nmを演算している。また、ECU70は、電流センサからのバッテリ36の電流Ibの累積値に基づいてバッテリ36の蓄電割合SOCを演算したり、演算した蓄電割合SOCとバッテリ36に取り付けられた図示しない温度センサにより検出された電池温度Tbとに基づいてバッテリ36を充放電してもよい最大許容電力である入出力制限率Win,Woutを演算したりしている。ここで、蓄電割合SOCは、バッテリ36の全容量に対するバッテリ36から放電可能な電力の容量の割合である。
こうして構成された実施例の電気自動車20では、ECU70は、まず、アクセル開度Accと車速Vとに基づいて走行に要求される(駆動軸26に要求される)要求トルクTd*を設定し、設定した要求トルクTd*と要求トルクTd*に負荷率Rmを乗じたもの(=Td*×Rm)とのうち小さいほうの値をモータ32のトルク指令Tm*に設定し、モータ32がトルク指令Tm*で駆動されるようにインバータ34の複数のスイッチング素子のスイッチング制御を行なう。負荷率Rmは、要求トルクTd*のうちモータ32から出力が許容されるトルクの割合であり、値0以上値1以下に設定されている。負荷率Rmは、例えば、モータ32の保護の観点から、モータ32の温度が所定温度Tmref以上であるときには、モータ32の温度が高いときには低いときに比して小さい値に、すなわち、モータ32の温度が高いほど小さい値に設定される。所定温度Tmrefは、モータ32が高温になっているか否かを判断するための閾値であり、例えば、80℃,90℃,100℃などに設定される。
ECU70は、モータ32のトルク指令Tm*および回転数Nmからなる目標動作点でモータ32を駆動するために必要な高電圧側電力ライン42の目標電圧VH*を設定する。そして、モータ32のトルク指令Tm*に回転数Nmを乗じてモータ32の要求出力Pm*を設定し、高電圧側電力ライン42の電圧VHおよび目標電圧VH*とモータ32の要求出力Pm*とに基づいて第1,第2昇圧コンバータ40,41のトータルの目標電流IL*を設定する。そして、目標電流IL*に分配率Dr1,Dr2(Dr1+Dr2=1)を乗じた値と、目標電流IL*に分配率Dr1,Dr2と出力制限率α,βとを乗じた値と、のうち、小さいほうの値をリアクトルL1,L2の目標電流IL1*,IL2*に設定する。ここで、分配率Dr1,Dr2は、それぞれトータル目標電流IL*のうち第1,第2昇圧コンバータ40,41(リアクトルL1,L2)を介して低電圧側電力ライン44と高電圧側電力ライン42との間で流れる電流の割合である。分配率Dr1は、予め定められた値Dref(例えば、0.4,0.5,0.6など)とすることができる。出力制限率α,βは、トータル目標電流IL*に分配率Dr1,Dr2(Dr1+Dr2=1)を乗じた電流のうち、第1,第2昇圧コンバータ40,41から出力が許容される電流の割合であり、値0以上値1以下に設定されている。出力制限率αは、第1昇圧コンバータ40の温度tc1が所定温度tmref未満であるときには、値1に設定され、第1昇圧コンバータ40の温度tc1が所定温度tmref以上であるときには、温度tc1が高いときには低いときに比して小さくなるように、すなわち、温度tc1が高くなるほど小さくなるように設定されている。出力制限率βは、第2昇圧コンバータ41の温度tc2が所定温度tmref未満であるときには、値1に設定され、第2昇圧コンバータ41の温度tc2が所定温度tmref以上であるときには、温度tc2が高いときには低いときに比して小さくなるように、すなわち、温度tc2が高くなるほど小さくなるように設定されている。こうして第1,第2昇圧コンバータ40,41のリアクトルL1,L2の目標電流IL1*,IL2*を設定すると、第1,第2昇圧コンバータ40,41のリアクトルL1,L2の電流IL1,IL2が目標電流IL1*,IL2*となるように第1,第2昇圧コンバータ40,41のトランジスタT11,T12,T21,T22のスイッチング制御を行なう。これにより、バッテリ36からの電力を電圧の変換を伴ってインバータ34を介してモータ32に供給する。
次に、こうして構成された電気自動車20の動作、特に第1,第2昇圧コンバータ40,41の少なくとも一方の出力を制限(小さく)する際の動作について説明する。図3は、ECU70により実行される制限率設定処理ルーチンを一例を示すフローチャートである。本ルーチンは、第1,第2昇圧コンバータ40,41の温度tc1,tc2が所定温度tmref以上であるときに、所定時間毎(例えば、数msec毎)に繰り返し実行される。
本ルーチンが実行されると、ECU70のCPUは、上述したように、第1昇圧コンバータ40の温度tc1を用いて出力制限率αを設定する(ステップS100)と共に第2昇圧コンバータ41の温度tc2を用いて出力制限率βを設定する(ステップS110)。
続いて、設定した出力制限率α,βのうち小さいほうの値をコンバータ制限率γに設定する(ステップS120)。こうしてコンバータ制限率γを設定すると、ECU70は、上述した第1,第2昇圧コンバータ40,41の制御において、目標電流IL*に分配率Dr1,Dr2を乗じた値と、目標電流IL*に分配率Dr1,Dr2とコンバータ制限率γとを乗じた値と、のうち、小さいほうの値をリアクトルL1,L2の目標電流IL1*,IL2*に設定し、第1,第2昇圧コンバータ40,41のリアクトルL1,L2の電流IL1,IL2が目標電流IL1*,IL2*となるように第1,第2昇圧コンバータ40,41のトランジスタT11,T12,T21,T22のスイッチング制御を行なう。第1,第2昇圧コンバータ40,41の出力を出力制限率α,βを用いて制限すると、出力制限率α,βのうち大きいほうの昇圧コンバータの出力が大きくなる(負荷が集中する)。そのため、スリップなどで過渡的にモータ32の回転数Nmが高くなりモータ32の負荷が大きくなると、出力制限率α,βのうち大きいほうの昇圧コンバータの出力がさらに大きくなり(負荷が集中し)、高温になる場合がある。実施例では、第1,第2昇圧コンバータ40,41の出力の両方を出力制限率α,βのうち小さいほうの値であるコンバータ制限率γを用いて制限するから、第1,第2昇圧コンバータ40,41の出力の両方を制限(小さく)することができる。これにより、第1,第2昇圧コンバータ40,41の一方に負荷が集中することを抑制することができる。
続いて、コンバータ制限率γをモータ32の負荷率Rmに設定して(ステップS130)、本ルーチンを終了する。こうして負荷率Rmを設定すると、ECU70は、上述したように設定した負荷率Rm(=γ)を用いてトルク指令Tm*を設定し、設定したトルク指令Tm*でモータ32が駆動するようにインバータ34の複数のスイッチング素子を制御する。ステップS120で出力制限率α,βのうち小さいほうの値をコンバータ制限率γに設定すると、第1,第2昇圧コンバータ40,41の出力の両方をコンバータ制限率γを用いて制限するから、モータ32から出力可能なトルクが低下する。コンバータ制限率γをモータ32の負荷率Rmに設定し、負荷率Rm(=γ)を用いてトルク指令Tm2*を設定することにより、第1,第2昇圧コンバータ40,41の出力の低下に応じてモータ32の出力を低下させることができる。したがって、より適正にモータ32を制御することができる。
図4は、第1,第2昇圧コンバータ40,41の温度tc1、tc2および出力制限率α,β,モータ32の負荷率Rm,モータ32,第1,第2昇圧コンバータ40,41の出力(電力)の時間変化の一例を示す説明図である。温度tc1が所定温度tmref以上になったときには(時刻t1)、図示するように、出力制限率αが値1から低下する。出力制限率αが値1から低下すると、コンバータ制限率γが出力制限率αに設定されて値1から低下する。モータ32の負荷率Rmも、値1から低下する。コンバータ制限率γ,負荷率Rmの低下に従って、モータ32の出力,第1,第2昇圧コンバータ40、41の出力が低下する。このように、温度tc1が所定温度tmref以上になり出力制限率αが値1から低下する、すなわち、第1昇圧コンバータ40の出力が制限されると、第1,第2昇圧コンバータ40,41の両方の出力が制限される。これにより、第1,第2昇圧コンバータ40,41の一方に負荷(出力)が集中することを抑制でき、第1,第2昇圧コンバータ40,41がともに高温になることを抑制できる。
以上説明した実施例の電気自動車20が搭載する昇圧コンバータ装置によれば、制限率α,βのうち小さいほうの値をコンバータ出力制限率γに設定し、目標電流IL*に分配率Dr1とを乗じた電流と、目標電流IL*に分配率Dr1とコンバータ出力制限率γとを乗じた電流と、のうち小さいほうの電流が第1昇圧コンバータ40から出力され、目標電流IL*に分配率Dr2を乗じた電流と、目標電流IL*に分配率Dr2とコンバータ出力制限率γとを乗じた電流と、のうち小さいほうの電流が第2昇圧コンバータ41から出力されるように、第1,第2昇圧コンバータ40,41を制御することにより、第1,第2昇圧コンバータ40,41の一方に負荷(出力)が集中することを抑制できる。
実施例の電気自動車20が搭載する昇圧コンバータ装置では、第1昇圧コンバータ40,41の温度tc1,tc2と所定温度tmrefとを比較して出力制限率α,βを設定している。しかしながら、第1昇圧コンバータ40,41の温度tc1,tc2をそれぞれ異なる温度と比較してもよく、例えば、第1昇圧コンバータ40の温度tc1を所定温度tmrefと比較して、第2昇圧コンバータ41の温度tc2を所定温度tmrefと異なる温度と比較してもよい。
実施例の電気自動車20が搭載する昇圧コンバータ装置では、第1,第2昇圧コンバータ40,41の温度tc1,tc2のうちの少なくとも一つが所定温度tmref以上であるときに、図3に例示した制限率設定処理ルーチンを実行している。しかしながら、制限率設定処理ルーチンの実行条件を、第1,第2昇圧コンバータ40,41の温度tc1,tc2のうちの少なくとも一つが所定温度tmref以上であるときに限定したものではなく、第1,第2昇圧コンバータ40,41の少なくとも一つの出力を制限すべきと判定可能な他の条件としてもよい。
実施例の電気自動車20が搭載する昇圧コンバータ装置では、第1,第2昇圧コンバータ40,41の温度tc1,tc2のうちの少なくとも一つが所定温度tmref以上であるときに、図3に例示した制限率設定処理ルーチンを実行している。しかしながら、第1,第2昇圧コンバータ40,41の少なくとも一つの出力を制限すべきか否かにかかわらず、第1,第2昇圧コンバータ40,41を駆動する際に図3に例示した制限率設定処理ルーチンを常時実行してもよい。この場合、第1,第2昇圧コンバータ40,41の制御において、目標電流IL*に分配率Dr1,Dr2を乗じた値と、目標電流IL*に分配率Dr1,Dr2とコンバータ制限率γとを乗じた値と、のうち、小さいほうの値をリアクトルL1,L2の目標電流IL1*,IL2*に設定し、第1,第2昇圧コンバータ40,41のリアクトルL1,L2の電流IL1,IL2が目標電流IL1*,IL2*となるように第1,第2昇圧コンバータ40,41のトランジスタT11,T12,T21,T22のスイッチング制御を行えばよい。
実施例の電気自動車20が搭載する昇圧コンバータ装置では、蓄電装置としてバッテリ36を備えているが、バッテリ36に代えてキャパシタを用いてもよい。
実施例では、電気負荷としてインバータ34,モータ32を搭載する電気自動車20に搭載される昇圧コンバータ装置の形態とした。しかしながら、電気自動車20に搭載される昇圧コンバータ装置の形態に限定しているわけではなく、電気負荷と蓄電装置との間で電圧の変換を伴って電力のやり取りを行なう並列接続された2つの昇圧コンバータを備える昇圧コンバータ装置であれば如何なる形態としてもよい。
実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、インバータ34,モータ32が「電気負荷」に相当し、バッテリ36が「蓄電装置」に相当し、第1昇圧コンバータ40が「第1昇圧コンバータ」に相当し,第2昇圧コンバータ41が「第2昇圧コンバータ」に相当し、電子制御ユニット70が「制御装置」に相当する。
なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。
以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
本発明は、昇圧コンバータ装置の製造産業などに利用可能である。
20 電気自動車、22a,22b 駆動輪、24 デファレンシャルギヤ、26 駆動軸、32 モータ、32a 回転位置検出センサ、34 インバータ、36 バッテリ、40 第1昇圧コンバータ、40a,41a 電流センサ、40b,41b 温度センサ、41 第2昇圧コンバータ、42 高電圧側電力ライン、44 低電圧側電力ライン、46,48 コンデンサ、46a,48a 電圧センサ、70 電子制御ユニット(ECU)、80 イグニッションスイッチ、81 シフトレバー、82 シフトポジションセンサ、83 アクセルペダル、84 アクセルペダルポジションセンサ、85 ブレーキペダル、86 ブレーキペダルポジションセンサ、88 車速センサ、D11,D12,D21,D22 ダイオード、L1,L2 リアクトル、T11,T12,T21,T22 トランジスタ。

Claims (1)

  1. 蓄電装置に接続される第1電力ラインと電気負荷に接続される第2電力ラインとの間で電圧の変換を伴って電力のやり取りを行なう第1昇圧コンバータと、
    前記第1昇圧コンバータに並列接続され、前記第1電力ラインと前記第2電力ラインとの間で電圧の変換を伴って電力のやり取りを行なう第2昇圧コンバータと、
    前記第2電力ラインの電圧が目標電圧となるように前記第1,第2昇圧コンバータを制御する制御装置と、
    を備える昇圧コンバータ装置であって、
    前記制御装置は、
    前記第1昇圧コンバータの出力を制限するための第1制限率と前記第2昇圧コンバータの出力を制限するための第2制限率とのうち小さいほうの値を出力制限率に設定し、
    前記電気負荷の要求電力と前記目標電圧とに基づく目標電流に前記目標電流のうち前記第1昇圧コンバータから出力する電流の比率である第1分配率を乗じた第1電流と、前記第1電流に前記出力制限率を乗じた電流と、のうち小さいほうの電流が前記第1昇圧コンバータから出力され、前記目標電流に値1から前記第1分配率を減じた第2分配率を乗じた第2電流と、前記第2電流に前記出力制限率を乗じた電流と、のうち小さいほうの電流が前記第2昇圧コンバータから出力されるように、前記第1,第2昇圧コンバータを制御する、
    昇圧コンバータ装置。
JP2017203463A 2017-10-20 2017-10-20 昇圧コンバータ装置 Active JP6939399B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017203463A JP6939399B2 (ja) 2017-10-20 2017-10-20 昇圧コンバータ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017203463A JP6939399B2 (ja) 2017-10-20 2017-10-20 昇圧コンバータ装置

Publications (2)

Publication Number Publication Date
JP2019080377A true JP2019080377A (ja) 2019-05-23
JP6939399B2 JP6939399B2 (ja) 2021-09-22

Family

ID=66628120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017203463A Active JP6939399B2 (ja) 2017-10-20 2017-10-20 昇圧コンバータ装置

Country Status (1)

Country Link
JP (1) JP6939399B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110649844A (zh) * 2019-09-16 2020-01-03 北京理工大学 一种基于αβ电流控制器的无刷直流电机矢量控制系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012157091A (ja) * 2011-01-24 2012-08-16 Panasonic Corp 電源装置
WO2013011560A1 (ja) * 2011-07-19 2013-01-24 トヨタ自動車株式会社 電源システム
JP2017103876A (ja) * 2015-11-30 2017-06-08 トヨタ自動車株式会社 電源装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012157091A (ja) * 2011-01-24 2012-08-16 Panasonic Corp 電源装置
WO2013011560A1 (ja) * 2011-07-19 2013-01-24 トヨタ自動車株式会社 電源システム
JP2017103876A (ja) * 2015-11-30 2017-06-08 トヨタ自動車株式会社 電源装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110649844A (zh) * 2019-09-16 2020-01-03 北京理工大学 一种基于αβ电流控制器的无刷直流电机矢量控制系统及方法

Also Published As

Publication number Publication date
JP6939399B2 (ja) 2021-09-22

Similar Documents

Publication Publication Date Title
JP6693446B2 (ja) 駆動装置
JP6911689B2 (ja) 電源装置
US10040356B2 (en) Power supply device
JP6717239B2 (ja) 昇圧コンバータ装置
US9755561B2 (en) Power supply device
US10348238B2 (en) Drive system
US9799936B2 (en) Fuel cell system and fuel cell automobile
US10046657B2 (en) Driving device
US20160052396A1 (en) Electric vehicle
JP7069075B2 (ja) 電源システム
JP2018186684A (ja) 自動車
JP2019075886A (ja) 昇圧コンバータ装置
JP6939399B2 (ja) 昇圧コンバータ装置
JP6862960B2 (ja) 駆動装置
JP6740956B2 (ja) 車両用電源装置
CN111464059B (zh) 电力变换装置
JP7200747B2 (ja) 電源装置
JP6930363B2 (ja) 駆動装置
JP6816695B2 (ja) 昇圧コンバータ装置
JP6897487B2 (ja) 電源装置
JP6683052B2 (ja) コンバータ装置
JP2016144366A (ja) 電動車両
JP2015202018A (ja) 電圧変換装置
JP2015202020A (ja) 電力装置
JP2022093977A (ja) 電源システム

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210816

R151 Written notification of patent or utility model registration

Ref document number: 6939399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151