JP2019071222A - 電池用電極の製造方法 - Google Patents

電池用電極の製造方法 Download PDF

Info

Publication number
JP2019071222A
JP2019071222A JP2017196922A JP2017196922A JP2019071222A JP 2019071222 A JP2019071222 A JP 2019071222A JP 2017196922 A JP2017196922 A JP 2017196922A JP 2017196922 A JP2017196922 A JP 2017196922A JP 2019071222 A JP2019071222 A JP 2019071222A
Authority
JP
Japan
Prior art keywords
active material
electrode active
coating
battery
material slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017196922A
Other languages
English (en)
Other versions
JP6929186B2 (ja
Inventor
剣一 豊島
Kenichi Toyoshima
剣一 豊島
透 小瀬村
Toru Kosemura
透 小瀬村
祐一郎 横山
Yuichiro Yokoyama
祐一郎 横山
悠祐 江守
Yusuke Emori
悠祐 江守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Sanyo Chemical Industries Ltd
Original Assignee
Nissan Motor Co Ltd
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Sanyo Chemical Industries Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2017196922A priority Critical patent/JP6929186B2/ja
Priority to CN201880065877.5A priority patent/CN111201639B/zh
Priority to US16/754,828 priority patent/US11329265B2/en
Priority to PCT/JP2018/037810 priority patent/WO2019074024A1/ja
Priority to EP18866933.7A priority patent/EP3696884B1/en
Publication of JP2019071222A publication Critical patent/JP2019071222A/ja
Application granted granted Critical
Publication of JP6929186B2 publication Critical patent/JP6929186B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】バインダの添加を前提とすることなく、負極活物質スラリーの塗工によって得られる電極活物質層の表面の平坦性を向上させうる手段を提供する。【解決手段】集電体と、集電体の表面に配置された、電極活物質を含む電極活物質層とを有する電池用電極を製造するにあたり、電極活物質が溶媒中に分散してなる電極活物質スラリーを集電体の表面に塗工して電極活物質層を形成する塗工工程において、電極活物質スラリーとして、当該電極活物質スラリーについてのせん断速度(横軸)−せん断応力(縦軸)曲線において、せん断速度の増加に伴ってせん断応力が増加しない領域Aが存在し、かつ、前記領域Aよりもせん断速度が大きい領域に、せん断速度の増加に伴ってせん断応力が増加するとともにその増加率が減少する領域Bが存在するという流動特性を有するものを用い、かつ、塗工工程においては、塗工時のせん断速度が前記電極活物質スラリーの降伏応力以上のせん断応力が加えられる値となるような塗工速度で電極活物質スラリーの塗工を行う。【選択図】図2

Description

本発明は、電池用電極の製造方法に関する。
近年、環境・エネルギー問題の解決へ向けて、種々の電気自動車の普及が期待されている。これら電気自動車の普及の鍵を握るモータ駆動用電源などの車載電源として、二次電池の開発が鋭意行われている。電気自動車においては、1回の充電での航続距離を伸ばすべく、より高いエネルギー密度を有する二次電池が望まれている。
リチウムイオン二次電池等の非水電解質二次電池のエネルギー密度を向上させるための技術として、より高容量の電極活物質の探索が鋭意行われている。例えば、ケイ素含有負極活物質は、充放電において下記の反応式(A)のように1molあたり3.75molのリチウムイオンを吸蔵放出し、Li15Si(=Li3.75Si)においては3600mAh/gと極めて高い理論容量を示す。
一方、リチウムイオンの吸蔵放出に伴って、ケイ素含有負極活物質は大きく膨張収縮する。このため、ケイ素含有負極活物質を含む負極活物質層においては、充放電サイクルが進行するにつれて、負極活物質の膨張収縮に起因する構造破壊が生じる虞がある。そして、このようなケイ素含有負極活物質を含む負極活物質層における構造破壊を抑制することを目的として、架橋型ポリアクリル酸またはその中和物をバインダとして含ませる技術が従来提案されている(特許文献1を参照)。
ただし、特許文献1に記載の技術では、バインダとして用いられる架橋型ポリアクリル酸またはその中和物の架橋度が大きくなると、負極活物質層を形成するための負極活物質スラリーの流動性が低下し、当該スラリーの流動特性はチクソトロピックとなる。このような高粘度の負極活物質スラリーを集電体の表面に塗工することにより形成された負極活物質層表面の平坦性は著しく低い。活物質層表面の平坦性が低いと、電極間距離(各活物質層の表面間の距離)が面内で不均一となり、電極の面内において電位に差が生じる。その結果、充放電反応が十分に進行しない部位ではリチウムイオンの析出や堆積といった故障が発生し、電池容量が低下するという問題がある。
国際公開第2014/065407号パンフレット
そこで本発明は、チクソトロピックな流動特性を有する電極活物質スラリーの塗工によって得られる電極活物質層の表面の平坦性を向上させうる手段を提供することを目的とする。
本発明者らは、上記課題を解決すべく鋭意検討を行った。その結果、せん断速度(横軸)−せん断応力(縦軸)曲線の特定のプロファイルによって特徴付けられる電極活物質スラリーを塗工すること、および塗工時のせん断速度を所定の下限値以上に大きくすることで、バインダの添加量を増加させることなく平坦な塗膜が得られることを見出した。
すなわち、本発明の一形態は、集電体と、前記集電体の表面に配置された、電極活物質を含む電極活物質層とを有する電池用電極の製造方法に関する。そして、この電池用電極の製造方法は、電極活物質が溶媒中に分散してなる電極活物質スラリーを集電体の表面に塗工して塗膜を形成する塗工工程を含む。ここで、前記電極活物質スラリーは、前記電極活物質スラリーについてのせん断速度(横軸)−せん断応力(縦軸)曲線において、せん断速度の増加に伴ってせん断応力が増加しない領域Aが存在し、かつ、前記領域Aよりもせん断速度が大きい領域に、せん断速度の増加に伴ってせん断応力が増加するとともにその増加率が減少する領域Bが存在するという流動特性を有するものである。そして、前記塗工工程においては、塗工時のせん断速度が前記電極活物質スラリーの降伏応力以上のせん断応力が加えられる値となるような塗工速度で前記電極活物質スラリーの塗工を行う点に特徴がある。
本発明の一形態に係る電池用電極の製造方法によれば、バインダの添加量を増加させることなく、表面の平坦性が向上した電極活物質層を形成することが可能となる。このため、本発明は、電池の高エネルギー密度化およびサイクル耐久性等の電池特性の向上の双方に有効である。
本発明の一実施形態である双極型二次電池を模式的に表した断面図である。 後述する実施例の欄において調製した負極活物質層用スラリーについて、TAインスツルメント社製AR−200レオメーターを用い、せん断速度0.01〜1000[1/s]の範囲でせん断応力を測定することにより得られたせん断速度(横軸)−せん断応力(縦軸)曲線を表すグラフである。 二次電池の代表的な実施形態である扁平なリチウムイオン二次電池の外観を表した斜視図である。 後述する比較例1および実施例1〜5において作製した負極活物質層の観察写真である。 後述する実施例の欄において調製した正極活物質層用スラリーについて、TAインスツルメント社製AR−200レオメーターを用い、せん断速度0.01〜1000[1/s]の範囲でせん断応力を測定することにより得られたせん断速度(横軸)−せん断応力(縦軸)曲線を表すグラフである。
本発明の一形態は、集電体と、前記集電体の表面に配置された、電極活物質を含む電極活物質層とを有する電池用電極の製造方法であって、前記電極活物質が溶媒中に分散してなる電極活物質スラリーを前記集電体の表面に塗工して電極活物質層を形成する塗工工程を含み、前記電極活物質スラリーは、前記電極活物質スラリーについてのせん断速度(横軸)−せん断応力(縦軸)曲線において、せん断速度の増加に伴ってせん断応力が増加しない領域Aが存在し、かつ、前記領域Aよりもせん断速度が大きい領域に、せん断速度の増加に伴ってせん断応力が増加するとともにその増加率が減少する領域Bが存在するという流動特性を有するものであり、前記塗工工程において、塗工時のせん断速度が前記電極活物質スラリーの降伏応力以上のせん断応力が加えられる値となるような塗工速度で前記電極活物質スラリーの塗工を行う、電池用電極の製造方法である。
以下、図面を参照しながら、本発明の実施形態を説明するが、本発明の技術的範囲は特許請求の範囲の記載に基づいて定められるべきであり、以下の形態のみに制限されない。なお、以下では、便宜上本発明に係る電池用電極の説明をした後、本発明に係る電極の製造方法について詳説する。本発明の好ましい実施形態として、まず電池の一例として非水電解質二次電池の1種である双極型リチウムイオン二次電池について説明するが、以下の実施形態のみには制限されない。なお、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。本明細書において、範囲を示す「X〜Y」は「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20〜25℃)/相対湿度40〜50%の条件で行う。
本明細書では、双極型リチウムイオン二次電池を単に「双極型二次電池」とも称し、双極型リチウムイオン二次電池用電極を単に「双極型電極」と称することがある。
<双極型二次電池>
図1は、本発明の一実施形態である双極型二次電池を模式的に表した断面図である。図1に示す双極型二次電池10は、実際に充放電反応が進行する略矩形の発電要素21が、電池外装体であるラミネートフィルム29の内部に封止された構造を有する。
図1に示すように、本形態の双極型二次電池10の発電要素21は、集電体11の一方の面に電気的に結合した正極活物質層13が形成され、集電体11の反対側の面に電気的に結合した負極活物質層15が形成された複数の双極型電極23を有する。各双極型電極23は、電解質層17を介して積層されて発電要素21を形成する。なお、電解質層17は、基材としてのセパレータの面方向中央部に電解質が保持されてなる構成を有する。この際、一の双極型電極23の正極活物質層13と前記一の双極型電極23に隣接する他の双極型電極23の負極活物質層15とが電解質層17を介して向き合うように、各双極型電極23および電解質層17が交互に積層されている。すなわち、一の双極型電極23の正極活物質層13と前記一の双極型電極23に隣接する他の双極型電極23の負極活物質層15との間に電解質層17が挟まれて配置されている。
なお、図示はしないが、図1の双極型二次電池10では、正極活物質層13は、導電助剤としてのアセチレンブラックおよび被覆用樹脂としての(メタ)アクリレート系共重合体を含む被覆剤で覆われた正極活物質(被覆正極活物質)および導電部材としての炭素繊維を含んでいる。炭素繊維は、正極活物質層13の電解質層17側に接触する第1主面から集電体11側に接触する第2主面までを電気的に接続する導電通路を形成しており、さらに当該導電通路と正極活物質とは電気的に接続している。同様に、負極活物質層15は、導電助剤としてのアセチレンブラックおよび被覆用樹脂としての(メタ)アクリレート系共重合体を含む被覆剤で覆われた負極活物質(被覆負極活物質)および導電部材としての炭素繊維を含んでいる。炭素繊維は、負極活物質層15の電解質層17側に接触する第1主面から集電体11側に接触する第2主面までを電気的に接続する導電通路を形成しており、さらに当該導電通路と負極活物質とは電気的に接続している。
隣接する正極活物質層13、電解質層17、および負極活物質層15は、一つの単電池層19を構成する。したがって、双極型二次電池10は、単電池層19が積層されてなる構成を有するともいえる。また、単電池層19の外周部にはシール部(絶縁層)31が配置されている。これにより、電解質層17からの電解液の漏れによる液絡を防止し、電池内で隣り合う集電体11どうしが接触したり、発電要素21における単電池層19の端部の僅かな不揃いなどに起因する短絡が起こったりするのを防止している。なお、発電要素21の最外層に位置する正極側の最外層集電体11aには、片面のみに正極活物質層13が形成されている。また、発電要素21の最外層に位置する負極側の最外層集電体11bには、片面のみに負極活物質層15が形成されている。
さらに、図1に示す双極型二次電池10では、正極側の最外層集電体11aに隣接するように正極集電板(正極タブ)25が配置され、これが延長されて電池外装体であるラミネートフィルム29から導出している。一方、負極側の最外層集電体11bに隣接するように負極集電板(負極タブ)27が配置され、同様にこれが延長されてラミネートフィルム29から導出している。
なお、単電池層19の積層回数は、所望する電圧に応じて調節する。また、双極型二次電池10では、電池の厚みを極力薄くしても十分な出力が確保できれば、単電池層19の積層回数を少なくしてもよい。双極型二次電池10でも、使用する際の外部からの衝撃、環境劣化を防止するために、発電要素21を電池外装体であるラミネートフィルム29に減圧封入し、正極集電板25および負極集電板27をラミネートフィルム29の外部に取り出した構造とするのがよい。なお、ここでは、双極型二次電池を例に挙げて本発明の実施形態を説明したが、本発明が適用可能な非水電解質二次電池の種類は特に制限されない。例えば、本発明は、発電要素において単電池層が並列接続されてなる形式のいわゆる並列積層型電池などの従来公知の任意の非水電解質二次電池にも適用可能である。
以下、本形態の双極型二次電池の主な構成要素について説明する。
[集電体]
集電体は、正極活物質層と接する一方の面から、負極活物質層と接する他方の面へと電子の移動を媒介する機能を有する。集電体を構成する材料に特に制限はないが、例えば、金属や、導電性を有する樹脂が採用されうる。
具体的には、金属としては、アルミニウム、ニッケル、鉄、ステンレス、チタン、銅などが挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、またはこれらの金属の組み合わせのめっき材などが好ましく用いられうる。また、金属表面にアルミニウムが被覆されてなる箔であってもよい。なかでも、電子伝導性や電池作動電位、集電体へのスパッタリングによる負極活物質の密着性等の観点からは、アルミニウム、ステンレス、銅、ニッケルが好ましい。
また、後者の導電性を有する樹脂としては、導電性高分子材料または非導電性高分子材料に必要に応じて導電性フィラーが添加された樹脂が挙げられる。導電性高分子材料としては、例えば、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリパラフェニレン、ポリフェニレンビニレン、ポリアクリロニトリル、およびポリオキサジアゾールなどが挙げられる。かような導電性高分子材料は、導電性フィラーを添加しなくても十分な導電性を有するため、製造工程の容易化または集電体の軽量化の点において有利である。
非導電性高分子材料としては、例えば、ポリエチレン(PE;高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)など)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、ポリテトラフルオロエチレン(PTFE)、スチレン−ブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVdF)、またはポリスチレン(PS)などが挙げられる。かような非導電性高分子材料は、優れた耐電位性または耐溶媒性を有しうる。
上記の導電性高分子材料または非導電性高分子材料には、必要に応じて導電性フィラーが添加されうる。特に、集電体の基材となる樹脂が非導電性高分子のみからなる場合は、樹脂に導電性を付与するために必然的に導電性フィラーが必須となる。
導電性フィラーは、導電性を有する物質であれば特に制限なく用いることができる。例えば、導電性、耐電位性、またはリチウムイオン遮断性に優れた材料として、金属および導電性カーボンなどが挙げられる。金属としては、特に制限はないが、Ni、Ti、Al、Cu、Pt、Fe、Cr、Sn、Zn、In、Sb、およびKからなる群から選択される少なくとも1種の金属もしくはこれらの金属を含む合金または金属酸化物を含むことが好ましい。また、導電性カーボンとしては、特に制限はない。好ましくは、アセチレンブラック、バルカン(登録商標)、ブラックパール(登録商標)、カーボンナノファイバー、ケッチェンブラック(登録商標)、カーボンナノチューブ、カーボンナノホーン、カーボンナノバルーン、およびフラーレンからなる群より選択される少なくとも1種を含むものである。
導電性フィラーの添加量は、集電体に十分な導電性を付与できる量であれば特に制限はなく、一般的には、5〜35質量%程度である。
なお、本形態の集電体は、単独の材料からなる単層構造であってもよいし、あるいは、これらの材料からなる層を適宜組み合わせた積層構造であっても構わない。集電体の軽量化の観点からは、少なくとも導電性を有する樹脂からなる導電性樹脂層を含むことが好ましい。また、単電池層間のリチウムイオンの移動を遮断する観点からは、集電体の一部に金属層を設けてもよい。
[電極活物質層(正極活物質層、負極活物質層)]
電極活物質層(正極活物質層、負極活物質層)は、電極活物質(正極活物質または負極活物質)を含む。また、電極活物質層(正極活物質層、負極活物質層)は、当該電極活物質の表面を被覆する、被覆用樹脂および必要に応じて導電助剤を含む被覆剤を含んでもよい。さらに、電極活物質層は、必要に応じて導電部材、イオン伝導性ポリマー、リチウム塩等を含みうる。
なお、本明細書では、被覆剤により被覆された状態の電極活物質を「被覆電極活物質」とも称する。被覆電極活物質は、電極活物質からなるコア部の表面に被覆用樹脂および必要に応じて導電助剤を含む被覆剤からなるシェル部が形成された、コア−シェル構造を有している。
(正極活物質)
正極活物質としては、例えば、LiMn、LiCoO、LiNiO、Li(Ni−Mn−Co)Oおよびこれらの遷移金属の一部が他の元素により置換されたもの等のリチウム−遷移金属複合酸化物、リチウム−遷移金属リン酸化合物、リチウム−遷移金属硫酸化合物などが挙げられる。場合によっては、2種以上の正極活物質が併用されてもよい。好ましくは、容量、出力特性の観点から、リチウム−遷移金属複合酸化物が、正極活物質として用いられる。より好ましくはリチウムとニッケルとを含有する複合酸化物が用いられる。さらに好ましくはLi(Ni−Mn−Co)Oおよびこれらの遷移金属の一部が他の元素により置換されたもの(以下、単に「NMC複合酸化物」とも称する)、またはリチウム−ニッケル−コバルト−アルミニウム複合酸化物(以下単に、「NCA複合酸化物」とも称する)などが用いられる。NMC複合酸化物は、リチウム原子層と遷移金属(Mn、NiおよびCoが秩序正しく配置)原子層とが酸素原子層を介して交互に積み重なった層状結晶構造を有する。そして、遷移金属1原子あたり1個のLi原子が含まれ、取り出せるLi量が、スピネル系リチウムマンガン酸化物の2倍、つまり供給能力が2倍になり、高い容量を持つことができる。
NMC複合酸化物は、上述したように、遷移金属元素の一部が他の金属元素により置換されている複合酸化物も含む。その場合の他の元素としては、Ti、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Cr、Fe、B、Ga、In、Si、Mo、Y、Sn、V、Cu、Ag、Znなどが挙げられ、好ましくは、Ti、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Crであり、より好ましくは、Ti、Zr、P、Al、Mg、Crであり、サイクル特性向上の観点から、さらに好ましくは、Ti、Zr、Al、Mg、Crである。
NMC複合酸化物は、理論放電容量が高いことから、好ましくは、一般式(1):LiNiMnCo(但し、式中、a、b、c、d、xは、0.9≦a≦1.2、0<b<1、0<c≦0.5、0<d≦0.5、0≦x≦0.3、b+c+d=1を満たす。MはTi、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Crから選ばれる元素で少なくとも1種類である)で表される組成を有する。ここで、aは、Liの原子比を表し、bは、Niの原子比を表し、cは、Mnの原子比を表し、dは、Coの原子比を表し、xは、Mの原子比を表す。サイクル特性の観点からは、一般式(1)において、0.4≦b≦0.6であることが好ましい。なお、各元素の組成は、例えば、誘導結合プラズマ(ICP)発光分析法により測定できる。
一般に、ニッケル(Ni)、コバルト(Co)およびマンガン(Mn)は、材料の純度向上および電子伝導性向上という観点から、容量および出力特性に寄与することが知られている。Ti等は、結晶格子中の遷移金属を一部置換するものである。サイクル特性の観点からは、遷移元素の一部が他の金属元素により置換されていることが好ましく、特に一般式(1)において0<x≦0.3であることが好ましい。Ti、Zr、Nb、W、P、Al、Mg、V、Ca、SrおよびCrからなる群から選ばれる少なくとも1種が固溶することにより結晶構造が安定化されるため、その結果、充放電を繰り返しても電池の容量低下が防止でき、優れたサイクル特性が実現し得ると考えられる。
より好ましい実施形態としては、一般式(1)において、b、cおよびdが、0.44≦b≦0.51、0.27≦c≦0.31、0.19≦d≦0.26であることが、容量と寿命特性とのバランスを向上させるという観点からは好ましい。例えば、LiNi0.5Mn0.3Co0.2は、一般的な民生電池で実績のあるLiCoO、LiMn、LiNi1/3Mn1/3Co1/3などと比較して、単位重量あたりの容量が大きい。これにより、エネルギー密度の向上が可能となり、コンパクトかつ高容量の電池を作製できるという利点を有しているため、航続距離の観点からも好ましい。なお、より容量が大きいという点ではLiNi0.8Co0.1Al0.1がより有利であるが、寿命特性に難がある。これに対し、LiNi0.5Mn0.3Co0.2はLiNi1/3Mn1/3Co1/3並みに優れた寿命特性を有しているのである。
なお、上記以外の正極活物質が用いられてもよいことは勿論である。正極活物質の平均粒子径は特に制限されないが、高出力化の観点からは、好ましくは1〜100μm、より好ましくは1〜20μmである。
(負極活物質)
負極活物質としては、例えば、グラファイト(黒鉛)、ソフトカーボン、ハードカーボン等の炭素材料、リチウム−遷移金属複合酸化物(例えば、LiTi12)、金属材料(スズ、シリコン)、リチウム合金系負極材料(例えばリチウム−スズ合金、リチウム−シリコン合金、リチウム−アルミニウム合金、リチウム−アルミニウム−マンガン合金等)などが挙げられる。場合によっては、2種以上の負極活物質が併用されてもよい。好ましくは、容量、出力特性の観点から、炭素材料、リチウム−遷移金属複合酸化物、リチウム合金系負極材料が、負極活物質として好ましく用いられる。なお、上記以外の負極活物質が用いられてもよいことは勿論である。また、上述の被覆用樹脂は特に炭素材料に対して付着しやすいという性質を有している。したがって、構造的に安定した電極材料を提供するという観点からは、負極活物質として炭素材料を用いることが好ましい。
負極活物質の平均粒子径は特に制限されないが、高出力化の観点からは、好ましくは1〜100μm、より好ましくは1〜20μmである。
(被覆剤)
被覆剤は、被覆用樹脂および必要に応じて導電助剤を含む。被覆剤が電極活物質の表面に存在することで、電極活物質層において、電極活物質表面から電解質層へのイオン伝導パスを確保することができる。また、被覆剤が導電助剤をさらに含むことで、電極活物質表面から集電体への電子伝導パスをより確実に確保することができる。
(被覆用樹脂)
被覆用樹脂は、電極活物質の表面に存在し、電解液を吸液して保持する機能を有する。これにより、電極活物質層において、電極活物質表面から電解質層へのイオン伝導パスを形成することができる。
本形態の双極型二次電池においては、被覆用樹脂の材料は特に制限されないが、柔軟性や吸液性の観点から、(A)ポリウレタン樹脂、(B)ポリビニル系樹脂からなる群から選択される少なくとも1種を含むことが好ましい。
(A)ポリウレタン樹脂
ポリウレタン樹脂は、柔軟性が高く(後述の引張破断伸び率が大きく)、また、ウレタン結合どうしは強い水素結合を形成しうることから、これを被覆用樹脂として用いることで、柔軟性に優れつつも、構造的に安定した被覆剤を構成することが可能となる。
ポリウレタン樹脂の具体的な形態について特に制限はなく、ポリウレタン樹脂に関する従来公知の知見が適宜参照されうる。ポリウレタン樹脂は、(a1)ポリイソシアネート成分および(a2)ポリオール成分から構成され、必要に応じて(a3)イオン性基導入成分、(a4)イオン性基中和剤成分、および(a5)鎖延長剤成分をさらに用いて構成されてもよい。
(a1)ポリイソシアネート成分としては、一分子中にイソシアネート基を2つ有するジイソシアネート化合物および一分子中にイソシアネート基を3つ以上有するポリイソシアネート化合物が挙げられる。これらは、1種が単独で用いられてもよいし、2種以上が併用されてもよい。
ジイソシアネート化合物としては、4,4’−ジフェニルメタンジイソシアネート(MDI)、2,4−および/または2,6−トリレンジイソシアネート、p−フェニレンジイソシアネート、キシリレンジイソシアネート、1,5−ナフタレンジイソシアネート、3,3’−ジメチルジフェニル−4,4’−ジイソシアネート、ジアニシジンジイソシアネート、テトラメチルキシリレンジイソシアネート等の芳香族ジイソシアネート;イソホロンジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、トランス−1,4−シクロヘキシルジイソシアネート、ノルボルネンジイソシアネート等の脂環式ジイソシアネート;1,6−ヘキサメチレンジイソシアネート、2,2,4および/または(2,4,4)−トリメチルヘキサメチレンジイソシアネート、リシンジイソシアネート等の脂肪族ジイソシアネートが挙げられる。
これらのジイソシアネート化合物は、カルボジイミド変性、イソシアヌレート変性、ビウレット変性等の変性物の形で用いてもよく、各種のブロッキング剤によってブロックされたブロックイソシアネートの形で用いてもよい。
一分子中にイソシアネート基を3つ以上有するポリイソシアネート化合物としては、例えば、上記例示のジイソシアネートのイソシアヌレート三量化物、ビウレット三量化物、トリメチロールプロパンアダクト化物等;トリフェニルメタントリイソシアネート、1−メチルベンゾール−2,4,6−トリイソシアネート、ジメチルトリフェニルメタンテトライソシアネート等の三官能以上のイソシアネート等が挙げられ、これらのイソシアネート化合物はカルボジイミド変性、イソシアヌレート変性、ビウレット変性等の変性物の形で用いてもよく、各種のブロッキング剤によってブロックされたブロックイソシアネートの形で用いてもよい。
(a2)ポリオール成分としては、一分子中にヒドロキシル基を2つ有するジオール化合物および一分子中にヒドロキシル基を3つ以上有するポリオール化合物が挙げられ、これらは、1種が単独で用いられてもよいし、2種以上が併用されてもよい。
ジオール化合物および一分子中にヒドロキシル基を3個以上有するポリオール化合物としては、低分子ポリオール類、ポリエーテルポリオール類、ポリエステルポリオール類、ポリエステルポリカーボネートポリオール類、結晶性または非結晶性のポリカーボネートポリオール類、ポリブタジエンポリオール、シリコーンポリオールが挙げられる。
低分子ポリオール類としては、例えば、エチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、2−メチル−1,3−プロパンジオール、2−ブチル−2−エチル−1,3−プロパンジオール、1,4−ブタンジオール、ネオペンチルグリコール、3−メチル−2,4−ペンタンジオール、2,4−ペンタンジオール、1,5−ペンタンジオール、3−メチル−1,5−ペンタンジオール、2−メチル−2,4−ペンタンジオール、2,4−ジエチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、3,5−ヘプタンジオール、1,8−オクタンジオール、2−メチル−1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール等の脂肪族ジオール、シクロヘキサンジメタノール、シクロヘキサンジオール等脂環式ジオール、トリメチロールエタン、トリメチロールプロパン、ヘキシトール類、ペンチトール類、グリセリン、ポリグリセリン、ペンタエリスリトール、ジペンタエリスリトール、テトラメチロールプロパン等の三価以上のポリオールが挙げられる。
ポリエーテルポリオール類としては、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール等のエチレンオキサイド付加物;ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、ポリプロピレングリコール等のプロピレンオキサイド付加物;上記の低分子ポリオールのエチレンオキサイドおよび/またはプロピレンオキサイド付加物、ポリテトラメチレングリコール等が挙げられる。
ポリエステルポリオール類としては、上記に例示の低分子ポリオール等のポリオールと、その化学量論量より少ない量の多価カルボン酸もしくはそのエステル、無水物、ハライド等のエステル形成性誘導体、および/または、ラクトン類もしくはその加水分解開環して得られるヒドロキシカルボン酸との直接エステル化反応および/またはエステル交換反応により得られるものが挙げられる。多価カルボン酸またはそのエステル形成性誘導体としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、2−メチルコハク酸、2−メチルアジピン酸、3−メチルアジピン酸、3−メチルペンタン二酸、2−メチルオクタン二酸、3,8−ジメチルデカン二酸、3,7−ジメチルデカン二酸、水添ダイマー酸、ダイマー酸等の脂肪族ジカルボン酸類;フタル酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸類;シクロヘキサンジカルボン酸等の脂環式ジカルボン酸類;トリメリト酸、トリメシン酸、ひまし油脂肪酸の三量体等のトリカルボン酸類;ピロメリット酸等のテトラカルボン酸類などの多価カルボン酸が挙げられ、そのエステル形成性誘導体としては、これらの多価カルボン酸の酸無水物、当該多価カルボン酸クロライド、ブロマイド等のハライド;当該多価カルボン酸のメチルエステル、エチルエステル、プロピルエステル、イソプロピルエステル、ブチルエステル、イソブチルエステル、アミルエステル等の低級脂肪族エステルが挙げられる。また、上記ラクトン類としてはγ−カプロラクトン、δ−カプロラクトン、ε−カプロラクトン、ジメチル−ε−カプロラクトン、δ−バレロラクトン、γ−バレロラクトン、γ−ブチロラクトン等のラクトン類が挙げられる。
必要に応じて用いられる(a3)イオン性基導入成分としては、アニオン性基を導入するものとカチオン性基を導入するものが挙げられる。アニオン性基を導入するものとしては、例えば、ジメチロールプロピオン酸、ジメチロールブタン酸、ジメチロール酪酸、ジメチロール吉草酸等のカルボキシル基を含有するポリオール類、1,4−ブタンジオール−2−スルホン酸等のスルホン酸基を含有するポリオール類が挙げられ、カチオン性基を導入するものとしては、例えば、N,N−ジアルキルアルカノールアミン類、N−メチル−N,N−ジエタノールアミン、N−ブチル−N,N−ジエタノールアミン等のN−アルキル−N,N−ジアルカノールアミン類、トリアルカノールアミン類が挙げられる。
必要に応じて用いられる(a4)イオン性基中和剤成分としては、アニオン性基の中和剤として、トリメチルアミン、トリエチルアミン、トリブチルアミン等のトリアルキルアミン類、N,N−ジメチルエタノールアミン、N,N−ジメチルプロパノールアミン、N,N−ジプロピルエタノールアミン、1−ジメチルアミノ−2−メチル−2−プロパノール等のN,N−ジアルキルアルカノールアミン類、N−アルキル−N,N−ジアルカノールアミン類、トリエタノールアミン等のトリアルカノールアミン類等の三級アミン化合物;アンモニア、トリメチルアンモニウムヒドロキシド、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等塩基性化合物が挙げられ、カチオン性基の中和剤としては、蟻酸、酢酸、乳酸、コハク酸、グルタル酸、クエン酸等の有機カルボン酸、パラトルエンスルホン酸、スルホン酸アルキル等の有機スルホン酸、塩酸、リン酸、硝酸、スルホン酸等の無機酸、エピハロヒドリン等エポキシ化合物の他、ジアルキル硫酸、ハロゲン化アルキル等の四級化剤が挙げられる。
必要に応じて用いられる(a5)鎖延長剤成分としては、周知一般の鎖延長剤の1種または2種以上を使用することができ、多価アミン化合物、多価一級アルコール化合物等が好ましく、多価アミン化合物がより好ましい。多価アミン化合物としては、エチレンジアミン、プロピレンジアミン等の上記例示の低分子ジオールのアルコール性水酸基がアミノ基に置換されたものである低分子ジアミン類;ポリオキシプロピレンジアミン、ポリオキシエチレンジアミン等のポリエーテルジアミン類;メンセンジアミン、イソホロンジアミン、ノルボルネンジアミン、ビス(4−アミノ−3−メチルジシクロヘキシル)メタン、ジアミノジシクロヘキシルメタン、ビス(アミノメチル)シクロヘキサン、3,9−ビス(3−アミノプロピル)2,4,8,10−テトラオキサスピロ(5,5)ウンデカン等の脂環式ジアミン類;m−キシレンジアミン、α−(m/pアミノフェニル)エチルアミン、m−フェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ジアミノジエチルジメチルジフェニルメタン、ジアミノジエチルジフェニルメタン、ジメチルチオトルエンジアミン、ジエチルトルエンジアミン、α,α’−ビス(4−アミノフェニル)−p−ジイソプロピルベンゼン等の芳香族ジアミン類;ヒドラジン;上記のポリエステルポリオールに用いられる多価カルボン酸で例示したジカルボン酸とヒドラジンの化合物であるジカルボン酸ジヒドラジド化合物が挙げられる。
上述した各成分のなかでも、(a1)ポリイソシアネート成分としては、ジイソシアネート化合物を用いることが好ましく、4,4’−ジフェニルメタンジイソシアネート(MDI)、2,4’−ジフェニルメタンジイソシアネート、4,4’−ジシクロヘキシルメタンジイソシアネート、1,4−シクロヘキサンジイソシアネート、2,4−トルエンジイソシアネート、1,6−ヘキサメチレンジイソシアネート等を用いることが特に好ましく、4,4’−ジフェニルメタンジイソシアネート(MDI)を用いることが最も好ましい。また、(a2)ポリオール成分としては、ジオール化合物であるエチレンオキサイド付加物を必須に用いることが好ましく、ポリエチレングリコールを必須に用いることが特に好ましい。ポリエチレングリコールはリチウムイオン伝導性に優れることから、かような構成とすることで、電池の内部抵抗の低減(上昇抑制)効果が顕著に発現しうる。ここで、ポリエチレングリコールの水酸基価から計算される数平均分子量は特に制限されないが、好ましくは2,500〜15,000であり、より好ましくは3,000〜13,000であり、さらに好ましくは3,500〜10,000である。なお、耐熱性に優れるという観点からは、上述した必須成分に加えて、ポリオール成分としてエチレングリコールおよび/またはグリセリンをさらに用いることが好ましい。特に、グリセリンを用いずにエチレングリコールのみを併用すると、被覆用樹脂が膨潤して得られるゲルは物理架橋ゲルとなることから、製造時に溶剤に溶解させることができ、後述するような種々の製造方法の適用が可能となる。一方、エチレングリコールに加えてグリセリンをも併用すると、ポリウレタン樹脂の主鎖どうしが化学架橋することになり、この場合には架橋間分子量を制御して電解液への膨潤度を任意に制御できるという利点がある。
なお、ポリウレタン樹脂の合成方法について特に制限はなく、従来公知の知見が適宜参照されうる。
(B)ポリビニル系樹脂
ポリビニル系樹脂は、柔軟性が高い(後述の引張破断伸び率が大きい)ことから、これを被覆用樹脂として用いることで、充放電反応に伴う活物質の体積変化を緩和し、活物質層の膨張を抑制することができる。
ポリビニル系樹脂の具体的な形態については、特に制限はなく、重合性の不飽和結合を有するモノマー(以下、「ビニルモノマー」とも称する)を含む単量体を重合して得られる重合体であれば、従来公知の知見を適宜参照されうる。
特に、ビニルモノマーとしてカルボキシル基を有するビニルモノマー(b1)および下記一般式(1)で表されるビニルモノマー(b2)を含むことが好ましい。
式(1)中、Rは水素原子またはメチル基であり、Rは、炭素数1〜4の直鎖のアルキル基または炭素数4〜36の分岐アルキル基である。
カルボキシル基を有するビニルモノマー(b1)としては、(メタ)アクリル酸、クロトン酸、桂皮酸等の炭素数3〜15のモノカルボン酸;(無水)マレイン酸、フマル酸、(無水)イタコン酸、シトラコン酸、メサコン酸等の炭素数4〜24のジカルボン酸;アコニット酸等の炭素数6〜24の3価〜4価またはそれ以上の価数のポリカルボン酸等が挙げられる。これらの中でも(メタ)アクリル酸が好ましく、メタクリル酸が特に好ましい。
上記一般式(1)で表されるビニルモノマー(b2)において、Rは水素原子またはメチル基を表す。Rはメチル基であることが好ましい。
は、炭素数1〜4の直鎖のアルキル基または炭素数4〜36の分岐アルキル基であり、Rの具体例としては、メチル基、エチル基、プロピル基、1−アルキルアルキル基(1−メチルプロピル基(sec−ブチル基)、1,1−ジメチルエチル基(tert−ブチル基)、1−メチルブチル基、1−エチルプロピル基、1,1−ジメチルプロピル基、1−メチルペンチル基、1−エチルブチル基、1−メチルヘキシル基、1−エチルペンチル基、1−メチルヘプチル基、1−エチルヘキシル基、1−メチルオクチル基、1−エチルヘプチル基、1−メチルノニル基、1−エチルオクチル基、1−メチルデシル基、1−エチルノニル基、1−ブチルエイコシル基、1−ヘキシルオクタデシル基、1−オクチルヘキサデシル基、1−デシルテトラデシル基、1−ウンデシルトリデシル基等)、2−アルキルアルキル基(2−メチルプロピル基(iso−ブチル基)、2−メチルブチル基、2−エチルプロピル基、2,2−ジメチルプロピル基、2−メチルペンチル基、2−エチルブチル基、2−メチルヘキシル基、2−エチルペンチル基、2−メチルヘプチル基、2−エチルヘキシル基、2−メチルオクチル基、2−エチルヘプチル基、2−メチルノニル基、2−エチルオクチル基、2−メチルデシル基、2−エチルノニル基、2−ヘキシルオクタデシル基、2−オクチルヘキサデシル基、2−デシルテトラデシル基、2−ウンデシルトリデシル基、2−ドデシルヘキサデシル基、2−トリデシルペンタデシル基、2−デシルオクタデシル基、2−テトラデシルオクタデシル基、2−ヘキサデシルオクタデシル基、2−テトラデシルエイコシル基、2−ヘキサデシルエイコシル基等)、3〜34−アルキルアルキル基(3−アルキルアルキル基、4−アルキルアルキル基、5−アルキルアルキル基、32−アルキルアルキル基、33−アルキルアルキル基及び34−アルキルアルキル基等)、ならびに、プロピレンオリゴマー(7〜11量体)、エチレン/プロピレン(モル比16/1〜1/11)オリゴマー、イソブチレンオリゴマー(7〜8量体)及びα−オレフィン(炭素数5〜20)オリゴマー(4〜8量体)等に対応するオキソアルコールのアルキル残基のような1またはそれ以上の分岐アルキル基を含有する混合アルキル基等が挙げられる。
これらのうち、電解液の吸液の観点から好ましいのは、メチル基、エチル基、2−アルキルアルキル基であり、さらに好ましいのは2−エチルヘキシル基および2−デシルテトラデシル基である。
また、重合体を構成する単量体には、カルボキシル基を有するビニルモノマー(b1)、上記一般式(1)で表されるビニルモノマー(b2)の他に、活性水素を含有しない共重合性ビニルモノマー(b3)が含まれていてもよい。
活性水素を含有しない共重合性ビニルモノマー(b3)としては、下記(b31)〜(b35)が挙げられる。
(b31)炭素数1〜20のモノオールと(メタ)アクリル酸から形成されるカルビル(メタ)アクリレート
上記モノオールとしては、(i)脂肪族モノオール[メタノール、エタノール、n−及びi−プロピルアルコール、n−ブチルアルコール、n−ペンチルアルコール、n−オクチルアルコール、ノニルアルコール、デシルアルコール、ラウリルアルコール、トリデシルアルコール、ミリスチルアルコール、セチルアルコール、ステアリルアルコール等]、(ii)脂環式モノオール[シクロヘキシルアルコール等]、(iii)芳香脂肪族モノオール[ベンジルアルコール等]およびこれらの2種以上の混合物が挙げられる。
(b32)ポリ(n=2〜30)オキシアルキレン(炭素数2〜4)アルキル(炭素数1〜18)エーテル(メタ)アクリレート[メタノールのエチレンオキシド(以下EOと略記)10モル付加物(メタ)アクリレート、メタノールのプロピレンオキシド(以下POと略記)10モル付加物(メタ)アクリレート等]
(b33)窒素含有ビニル化合物
(b33−1)アミド基含有ビニル化合物
(i)炭素数3〜30の(メタ)アクリルアミド化合物、例えばN,N−ジアルキル(炭素数1〜6)もしくはジアラルキル(炭素数7〜15)(メタ)アクリルアミド[N,N−ジメチルアクリルアミド、N,N−ジベンジルアクリルアミド等]、ジアセトンアクリルアミド
(ii)上記(メタ)アクリルアミド化合物を除く、炭素数4〜20のアミド基含有ビニル化合物、例えばN−メチル−N−ビニルアセトアミド、環状アミド(ピロリドン化合物(炭素数6〜13、例えば、N−ビニルピロリドン等))
(b33−2)(メタ)アクリレート化合物
(i)ジアルキル(炭素数1〜4)アミノアルキル(炭素数1〜4)(メタ)アクリレート[N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート、t−ブチルアミノエチル(メタ)アクリレート、モルホリノエチル(メタ)アクリレート等]
(ii)4級アンモニウム基含有(メタ)アクリレート〔3級アミノ基含有(メタ)アクリレート[N,N−ジメチルアミノエチル(メタ)アクリレート、N,N−ジエチルアミノエチル(メタ)アクリレート等]の4級化物(前記の4級化剤を用いて4級化したもの)等〕
(b33−3)複素環含有ビニル化合物
ピリジン化合物(炭素数7〜14、例えば2−および4−ビニルピリジン)、イミダゾール化合物(炭素数5〜12、例えばN−ビニルイミダゾール)、ピロール化合物(炭素数6〜13、例えばN−ビニルピロール)、ピロリドン化合物(炭素数6〜13、例えばN−ビニル−2−ピロリドン)
(b33−4)ニトリル基含有ビニル化合物
炭素数3〜15のニトリル基含有ビニル化合物、例えば(メタ)アクリロニトリル、シアノスチレン、シアノアルキル(炭素数1〜4)アクリレート
(b33−5)その他ビニル化合物
ニトロ基含有ビニル化合物(炭素数8〜16、例えばニトロスチレン)等
(b34)ビニル炭化水素
(b34−1)脂肪族ビニル炭化水素
炭素数2〜18またはそれ以上のオレフィン[エチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン、オクタデセンなど]、炭素数4〜10またはそれ以上のジエン[ブタジエン、イソプレン、1,4−ペンタジエン、1,5−ヘキサジエン、1,7−オクタジエンなど]等
(b34−2)脂環式ビニル炭化水素
炭素数4〜18またはそれ以上の環状不飽和化合物、例えばシクロアルケン(例えばシクロヘキセン)、(ジ)シクロアルカジエン[例えば(ジ)シクロペンタジエン]、テルペン(例えばピネン、リモネンおよびインデン)
(b34−3)芳香族ビニル炭化水素
炭素数8〜20またはそれ以上の芳香族不飽和化合物、例えばスチレン、α−メチルスチレン、ビニルトルエン、2,4−ジメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、フェニルスチレン、シクロヘキシルスチレン、ベンジルスチレン
(b35)ビニルエステル、ビニルエーテル、ビニルケトン、不飽和ジカルボン酸ジエステル
(b35−1)ビニルエステル
脂肪族ビニルエステル[炭素数4〜15、例えば脂肪族カルボン酸(モノ−およびジカルボン酸)のアルケニルエステル(例えば酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ジアリルアジペート、イソプロペニルアセテート、ビニルメトキシアセテート)]、芳香族ビニルエステル[炭素数9〜20、例えば芳香族カルボン酸(モノ−およびジカルボン酸)のアルケニルエステル(例えばビニルベンゾエート、ジアリルフタレート、メチル−4−ビニルベンゾエート)、脂肪族カルボン酸の芳香環含有エステル(例えばアセトキシスチレン)]
(b35−2)ビニルエーテル
脂肪族ビニルエーテル〔炭素数3〜15、例えばビニルアルキル(炭素数1〜10)エーテル[ビニルメチルエーテル、ビニルブチルエーテル、ビニル2−エチルヘキシルエーテルなど]、ビニルアルコキシ(炭素数1〜6)アルキル(炭素数1〜4)エーテル[ビニル−2−メトキシエチルエーテル、メトキシブタジエン、3,4−ジヒドロ−1,2−ピラン、2−ブトキシ−2’−ビニロキシジエチルエーテル、ビニル−2−エチルメルカプトエチルエーテル等]、ポリ(2〜4)(メタ)アリロキシアルカン(炭素数2〜6)[ジアリロキシエタン、トリアリロキシエタン、テトラアリロキシブタン、テトラメタアリロキシエタン等]〕
芳香族ビニルエーテル(炭素数8〜20、例えばビニルフェニルエーテル、フェノキシスチレン)
(b35−3)ビニルケトン
脂肪族ビニルケトン(炭素数4〜25、例えばビニルメチルケトン、ビニルエチルケトン)
芳香族ビニルケトン(炭素数9〜21、例えばビニルフェニルケトン)
(b35−4)不飽和ジカルボン酸ジエステル
炭素数4〜34の不飽和ジカルボン酸ジエステル、例えばジアルキルフマレート(2個のアルキル基は、炭素数1〜22の、直鎖、分枝鎖もしくは脂環式の基)、ジアルキルマレエート(2個のアルキル基は、炭素数1〜22の、直鎖、分枝鎖もしくは脂環式の基)
上記(b3)として例示したもののうち電解液の吸液及び耐電圧の観点から好ましいのは、(b31)、(b32)および(b33)であり、さらに好ましいのは、(b31)のうちのメチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレートである。
重合体において、カルボキシル基を有するビニルモノマー(b1)、上記一般式(1)で表されるビニルモノマー(b2)および活性水素を含有しない共重合性ビニルモノマー(b3)の含有量は、重合体の質量を基準として、(b1)が0.1〜80質量%、(b2)が0.1〜99.9質量%、(b3)が0〜99.8質量%であることが好ましい。
モノマーの含有量が上記範囲内であると、電解液への吸液性が良好となる。
より好ましい含有量は、(b1)が30〜60質量%、(b2)が5〜60質量%、(b3)が5〜80質量%であり、さらに好ましい含有量は、(b1)が35〜50質量%、(b2)が15〜45質量%、(b3)が20〜60質量%である。
重合体の数平均分子量の好ましい下限は10,000、さらに好ましくは15,000、特に好ましくは20,000、最も好ましくは30,000であり、好ましい上限は2,000,000、さらに好ましくは1,500,000、特に好ましくは1,000,000、最も好ましくは800,000である。
重合体の数平均分子量は、以下の条件でGPC(ゲルパーミエーションクロマトグラフィー)測定により求めることができる。
装置:Alliance GPC V2000(Waters社製)
溶媒:オルトジクロロベンゼン
標準物質:ポリスチレン
サンプル濃度:3mg/ml
カラム固定相:PLgel 10μm、MIXED−B 2本直列(ポリマーラボラトリーズ社製)
カラム温度:135℃。
重合体の溶解度パラメータ(SP値)は9.0〜20.0(cal/cm1/2であることが好ましい。重合体のSP値は9.5〜18.0(cal/cm1/2であることがより好ましく、10.0〜14.0(cal/cm1/2であることがさらに好ましい。重合体のSP値が9.0〜20.0(cal/cm1/2であると、電解液の吸液の点で好ましい。
また、重合体のガラス転移点[以下Tgと略記、測定法:DSC(走査型示差熱分析)法]は、電池の耐熱性の観点から好ましくは80〜200℃、さらに好ましくは90〜190℃、特に好ましくは100〜180℃である。
重合体は、公知の重合方法(塊状重合、溶液重合、乳化重合、懸濁重合など)により製造することができる。
被覆用樹脂は、電解液に浸された状態において適度な柔軟性を有することが好ましい。具体的には、被覆用樹脂の飽和吸液状態での引張破断伸び率は、好ましくは10%以上であり、より好ましくは20%以上であり、さらに好ましくは30%以上であり、特に好ましくは40%以上であり、最も好ましくは50%以上である。引張破断伸び率が10%以上である樹脂を用いて電極活物質を被覆することにより、充放電反応による電極活物質の体積変化を緩和し、電極の膨張を抑制することができる。なお、本明細書において、「引張破断伸び率」とは、樹脂の柔軟性を示す指標であり、後述する実施例の欄に記載の測定方法により得られる値である。被覆用樹脂の引張破断伸び率の値は大きいほど好ましく、上限値は特に制限されないが、通常は400%以下であり、好ましくは300%以下である。すなわち、上記引張破断伸び率の好ましい数値範囲は、10〜400%、20〜400%、30〜400%、40〜400%、50〜400%、10〜300%、20〜300%、30〜300%、40〜300%、50〜300%である。
被覆用樹脂に柔軟性を付与し、引張破断伸び率を所望の値に制御するための手法として、柔軟性を有する部分構造(例えば、長鎖アルキル基、ポリエーテル残基、アルキルポリカーボネート残基、アルキルポリエステル残基など)を被覆用樹脂の主鎖に導入する方法が挙げられる。また、被覆用樹脂の分子量を制御したり、架橋間分子量を制御したりする手法によっても、被覆用樹脂に柔軟性を付与して引張破断伸び率を調節することが可能である。
(導電助剤)
導電助剤は、被覆剤中で電子伝導パスを形成し、電極活物質層の電子移動抵抗を低減することで、電池の高レートでの出力特性向上に寄与しうる。
導電助剤としては、例えば、アルミニウム、ステンレス(SUS)、銀、金、銅、チタン等の金属、これらの金属を含む合金または金属酸化物;グラファイト、炭素繊維(具体的には、気相成長炭素繊維(VGCF)等)、カーボンナノチューブ(CNT)、カーボンブラック(具体的には、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラック、チャンネルブラック、サーマルランプブラック等)等のカーボンが挙げられるが、これらに限定されない。また、粒子状のセラミック材料や樹脂材料の周りに上記金属材料をめっき等でコーティングしたものも導電助剤として使用できる。これらの導電助剤のなかでも、電気的安定性の観点から、アルミニウム、ステンレス、銀、金、銅、チタン、およびカーボンからなる群より選択される少なくとも1種を含むことが好ましく、アルミニウム、ステンレス、銀、金、およびカーボンからなる群より選択される少なくとも1種を含むことがより好ましく、カーボンを少なくとも1種を含むことがさらに好ましい。これらの導電助剤は、1種のみを単独で使用してもよいし、2種以上を併用しても構わない。
導電助剤の形状は、粒子状または繊維状であることが好ましい。導電助剤が粒子状である場合、粒子の形状は特に限定されず、粉末状、球状、棒状、針状、板状、柱状、不定形状、燐片状、紡錘状等、いずれの形状であっても構わない。
導電助剤が粒子状である場合の平均粒子径(一次粒子径)は、特に限定されるものではないが、電池の電気特性の観点から、0.01〜10μm程度であることが好ましい。なお、本明細書中において、「粒子径」とは、導電助剤の輪郭線上の任意の2点間の距離のうち、最大の距離Lを意味する。「平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などの観察手段を用い、数〜数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。
被覆剤中の被覆用樹脂および導電助剤の含有量は特に制限されないが、被覆用樹脂(樹脂固形分):導電助剤=1:0.2〜3.0(質量比)であることが好ましい。このような範囲であれば、被覆剤中で導電助剤が電子伝導パスを良好に形成することができる。
(被覆電極活物質の製造方法)
被覆電極活物質の製造方法は、特に制限されないが、例えば以下の方法が挙げられる。まず電極活物質を万能混合機に入れて10〜500rpmで撹拌した状態で、被覆用樹脂および溶媒を含む溶液(被覆用樹脂溶液)を1〜90分間かけて滴下混合する。この際の溶媒としては、メタノール、エタノール、イソプロパノールなどのアルコール類が好適に使用できる。その後、さらに導電助剤を添加し、混合する。そして、撹拌したまま50〜200℃に昇温し、0.007〜0.04MPaまで減圧した後に、10〜150分間保持することにより、被覆電極活物質を得ることができる。
(導電部材)
本形態において、導電部材は、電極活物質層中で電子伝導パスを形成する機能を有する。特に、導電部材の少なくとも一部が、電極活物質層の2つの主面同士を電気的に接続する導電通路を形成している(本実施形態では、電極活物質層の電解質層側に接触する第1主面から集電体側に接触する第2主面までを電気的に接続する導電通路を形成している)ことが好ましい。このような形態を有することで、電極活物質層中の厚さ方向の電子移動抵抗がさらに低減されるため、電池の高レートでの出力特性をより一層向上しうる。なお、導電部材の少なくとも一部が、電極活物質層の2つの主面同士を電気的に接続する導電通路を形成している(本実施形態では、電極活物質層の電解質層側に接触する第1主面から集電体側に接触する第2主面までを電気的に接続する導電通路を形成している)か否かは、SEMや光学顕微鏡を用いて電極活物質層の断面を観察することにより確認することができる。
導電部材は、繊維状の形態を有する導電性繊維であることが好ましい。具体的には、PAN系炭素繊維、ピッチ系炭素繊維等の炭素繊維、合成繊維の中に導電性のよい金属や黒鉛を均一に分散させてなる導電性繊維、ステンレス鋼のような金属を繊維化した金属繊維、有機物繊維の表面を金属で被覆した導電性繊維、有機物繊維の表面を、導電性物質を含む樹脂で被覆した導電性繊維等が挙げられる。なかでも、導電性に優れ、軽量であることから炭素繊維が好ましい。
負電活物質層中における導電部材の含有量は、負電活物質層の全固形分量(全ての部材の固形分量の合計)100質量%に対して、1〜20質量%であることが好ましく、2〜15質量%であることがより好ましい。導電部材の含有量が上記範囲であると、電極活物質層中で電子伝導パスを良好に形成できると共に、電池のエネルギー密度が低下するのを抑えることができる。
(イオン伝導性ポリマー)
イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系およびポリプロピレンオキシド(PPO)系のポリマーが挙げられる。
(リチウム塩)
リチウム塩(支持塩)としては、LiPF、LiBF、LiSbF、LiAsFLiClO、Li[(FSON](LiFSI)等の無機酸のリチウム塩、LiN(CFSO、LiN(CSOおよびLiC(CFSO等の有機酸のリチウム塩(イオン液体)等が挙げられる。なかでも、電池出力および充放電サイクル特性の観点から、LiPFやLi[(FSON](LiFSI)が好ましい。
なお、本形態の双極型二次電池においては、電極活物質層の構成部材として、上記の電極活物質、被覆剤(被覆用樹脂、導電助剤)や、必要に応じて用いられる導電部材、イオン伝導性ポリマー、リチウム塩以外の部材を適宜使用しても構わない。しかしながら、電池のエネルギー密度を向上させる観点から、充放電反応の進行にあまり寄与しない部材は、含有させないほうが好ましい。例えば、被覆電極活物質とその他の部材とを結着させ、電極活物質層の構造を維持するために添加されるバインダは、極力使用しないことが好ましい。具体的には、バインダの含有量は、電極活物質層に含まれる全固形分量100質量%に対して、好ましくは10質量%以下であり、より好ましくは5質量%以下であり、さらに好ましくは2質量%以下であり、特に好ましくは1質量%以下であり、最も好ましくは0質量%である。なお、バインダが電極活物質層に含まれる場合、そのバインダは、電極活物質層の構造を維持する観点から、柔軟性が小さい材料からなることが好ましい。具体的には、バインダの飽和吸液状態での引張破断伸び率は10%未満であることが好ましく、7%以下であることがより好ましく、5%以下であることがさらに好ましく、3%以下であることが特に好ましく、1%以下であることが最も好ましい。
本形態の双極型二次電池において、電極活物質層の厚さは、正極活物質層については、好ましくは150〜1500μmであり、より好ましくは180〜950μmであり、さらに好ましくは200〜800μmである。また、負極活物質層の厚さは、好ましくは150〜1500μmであり、より好ましくは180〜1200μmであり、さらに好ましくは200〜1000μmである。電極活物質層の厚さが上述した下限値以上の値であれば、電池のエネルギー密度を十分に高めることができる。一方、電極活物質層の厚さが上述した上限値以下の値であれば、電極活物質層の構造を十分に維持することができる。
電極活物質層の空隙率は、正極活物質層については、好ましくは35.0〜50.0%であり、より好ましくは40.0〜49.5%であり、さらに好ましくは42.0〜49.0%である。また、負極活物質層の空隙率は、好ましくは39.0〜60.0%であり、より好ましくは39.5〜55.0%であり、さらに好ましくは40.0〜50.0%である。電極活物質層の空隙率が上述した下限値以上の値であれば、電極活物質層の形成時に電極活物質層用スラリーを塗布した後、塗膜をプレスする際のプレス圧を大きくする必要がない。その結果、所望の厚さおよび面積を有する電極活物質層を好適に形成することができる。一方、電極活物質層の空隙率が上述した上限値以下の値であれば、電極活物質層中の電子伝導性材料(導電助剤、電極活物質、導電部材等)同士の接触を十分に維持することができ、電子移動抵抗の増大が防止できる。その結果、電極活物質層の全体において(特に厚さ方向において)、充放電反応を均一に進行させることができ、電池の出力特性(特に高レートでの出力特性)の低下が防止できる。なお、本明細書において、電極活物質層の空隙率は、以下の方法により測定されうる。同じ値が得られるのであれば、他の方法によって測定された値を用いてもよい。
(電極活物質層の空隙率の測定方法)
電極活物質層の空隙率は、下記式(1)に従って算出する。なお、前記空隙内の一部には電解液が存在していてもよい。
式(1):空隙率(%)=100−電極活物質層の固形分占有体積率(%)
ここで、電極活物質層の「固形分占有体積率(%)」は、下記式(2)より算出される。
式(2):固形分占有体積率(%)=(固形材料体積(cm)/電極活物質層体積(cm))×100
なお、電極活物質層体積は電極の厚みと塗布面積から算出する。また、固形材料体積は以下手順により求める。
(a)電極活物質層用スラリーに含まれる各材料の添加量を秤量する。
(b)集電体表面に電極活物質層用スラリーを塗布した後、集電体および塗膜の重さを秤量する。
(c)塗布後のスラリーをプレスし、プレス後の集電体および塗膜の重さを秤量する。
(d)プレス時に吸出した電解液量を「(c)で得られた値−(b)で得られた値」より算出する。
(e)(a)、(c)、(d)の値より、プレス後の電極活物質層中の各材料の質量を算出する。(f)(e)で算出した各材料の質量および各材料の密度から、電極活物質層中の各材料の体積を算出する。
(g)(f)で算出した各材料の体積のうち、固体材料の体積のみを足し合わせることにより固形材料体積を算出する。
また、電極活物質層の密度は、正極活物質層については、好ましくは2.10〜3.00g/cmであり、より好ましくは2.15〜2.70g/cmであり、さらに好ましくは2.17〜2.60g/cmである。また、負極活物質層の密度は、好ましくは0.60〜1.20g/cmであり、より好ましくは0.70〜1.00g/cmであり、さらに好ましくは0.80〜0.91g/cmである。電極活物質層の密度が上述した下限値以上の値であれば、十分なエネルギー密度を有する電池を得ることができる。一方、電極活物質層の密度が上述した上限値以下の値であれば、上述の負極活物質層の空隙率の低下を防止することができる。空隙率の低下を抑えれば空隙を満たす電解液が十分に確保され、負極活物質層におけるイオン移動抵抗の増大が防止できる。その結果、電池の出力特性(特に高レートでの出力特性)の低下も抑制されうる。なお、本明細書において、負極活物質層の密度は、以下の方法により測定されうる。同じ値が得られるのであれば、他の方法によって測定された値を用いてもよい。
(活物質層の密度の測定方法)
活物質層の密度は、下記式(3)に従って算出する。
式(3):電極密度(g/cm)=固体材料質量(g)÷電極体積(cm
なお、固体材料質量は、上記(e)で得られたプレス後の電極中の各材料の質量のうち、固体材料の質量のみを足し合わせることにより算出する。電極体積は電極の厚みと塗布面積から算出する。
<電極の製造方法>
本発明の一形態は、電池用電極の製造方法に関するものである。この形態に係る電池用電極の製造方法によれば、集電体と、前記集電体の表面に配置された、電極活物質を含む電極活物質層とを有する電池用電極が製造される。このようにして製造された電池用電極は、例えば上述した実施形態に係る双極型電池等の非水電解質二次電池の電極として用いられうる。
本形態に係る電極の製造方法は、電極活物質が溶媒中に分散してなる電極活物質スラリーを集電体の表面に塗工して電極活物質層を形成する工程(塗工工程)を必須に含む。
ここで、本形態に係る電極の製造方法は、塗布液が有する流動特性と、塗工工程における塗工速度との組み合わせに特徴を有するものである。本発明の一形態に係る電池用電極の製造方法によれば、バインダの添加量を増加させることなく、表面の平坦性が向上した電極活物質層を形成することが可能となる。このため、本発明は、電池の高エネルギー密度化およびサイクル耐久性等の電池特性の向上の双方に有効である。
以下、上述した特徴も含め、本形態に係る電池用電極の製造方法について、詳細に説明する。
(電極活物質スラリー)
電極活物質スラリーは、電極活物質および溶媒を必須に含む混合物であり、通常は電極活物質を含む固形分が溶媒中に分散してなる分散液である。ここで、電極活物質スラリーに含まれる固形分((被覆)電極活物質、導電部材、イオン伝導性ポリマー、リチウム塩など)の具体的な構成(種類や含有量など)については、上述した双極型二次電池の実施形態の欄において説明したのと同様の構成が採用されうるため、ここでは詳細な説明を省略する。また、必要に応じて少量のバインダを塗布液に添加しても構わない。ただし、バインダの含有量は、上述したように、電極活物質層に含まれる全固形分量100質量%に対して、好ましくは10質量%以下であり、より好ましくは5質量%以下であり、さらに好ましくは2質量%以下であり、特に好ましくは1質量%以下であり、最も好ましくは0質量%である。
電極活物質スラリーを構成する溶媒について特に制限はなく、例えば、従来の非水電解質二次電池における液体電解質(電解液)を構成する有機溶媒が好ましく用いられうる。塗布液を構成する溶媒に用いられうる有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート等のカーボネート類が例示される。また、電池を構成する液体電解質(電解液)をそのまま本工程における電極活物質スラリーの溶媒として用いてもよい。このような構成によれば、製造工程が非常に簡便なものとなり、この際、有機溶媒に加えて、いくつかの固形分(例えば、リチウム塩や電解液に添加される各種添加剤)が塗布液に含まれることとなる。なお、液体電解質(電解液)としては、電池の電解質層に含まれる液体電解質(電解液)と同じ組成を有するものを用いてもよいし、異なる組成を有するものを用いてもよい。乾燥工程を省くことによる製造工程の簡略化の観点から、同じ組成を有するものであることが好ましい。
リチウム塩としては、上述したものが同様に用いられうる。また、添加剤としては、例えば、ビニレンカーボネート、メチルビニレンカーボネート、ジメチルビニレンカーボネート、フェニルビニレンカーボネート、ジフェニルビニレンカーボネート、エチルビニレンカーボネート、ジエチルビニレンカーボネート、ビニルエチレンカーボネート、1,2−ジビニルエチレンカーボネート、1−メチル−1−ビニルエチレンカーボネート、1−メチル−2−ビニルエチレンカーボネート、1−エチル−1−ビニルエチレンカーボネート、1−エチル−2−ビニルエチレンカーボネート、ビニルビニレンカーボネート、アリルエチレンカーボネート、ビニルオキシメチルエチレンカーボネート、アリルオキシメチルエチレンカーボネート、アクリルオキシメチルエチレンカーボネート、メタクリルオキシメチルエチレンカーボネート、エチニルエチレンカーボネート、プロパルギルエチレンカーボネート、エチニルオキシメチルエチレンカーボネート、プロパルギルオキシエチレンカーボネート、メチレンエチレンカーボネート、1,1−ジメチル−2−メチレンエチレンカーボネートなどが挙げられる。なかでも、ビニレンカーボネート、メチルビニレンカーボネート、ビニルエチレンカーボネートが好ましく、ビニレンカーボネート、ビニルエチレンカーボネートがより好ましい。これらの環式炭酸エステルは、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。
上述したように、本工程において用いられる電極活物質スラリーは、その流動特性に特徴を有する。具体的に、本工程において用いられる電極活物質スラリーは、当該電極活物質スラリーについてのせん断速度(横軸)−せん断応力(縦軸)曲線において、以下のような流動特性を有するものである。
「せん断速度の増加に伴ってせん断応力が増加しない領域Aが存在し、かつ、前記領域Aよりもせん断速度が大きい領域に、せん断速度の増加に伴ってせん断応力が増加するとともにその増加率が減少する領域Bが存在する。」
なお、せん断速度−せん断応力曲線上のある点における接線の傾きは、そのせん断速度における電極活物質スラリーの粘度に相当する。このため、せん断応力の変化が少ないことは、接線の傾き(すなわち、粘度の変化)も少ないことを意味する。言い換えれば、上記電極活物質スラリーは、せん断速度の増加に伴ってしばらくは粘度がほとんど変化せず、ある点を境に粘度が増加し、その後にまた粘度が低下するという流動特性を有するということもできる。
図2は、上記のような流動特性を示す電極活物質スラリーについてのせん断速度(横軸)−せん断応力(縦軸)曲線である(縦軸および横軸ともに対数スケールである;後述する実施例も参照)。ここで、電極活物質スラリーがこのような流動特性を有するものであるか否かについては、TAインスツルメント社製AR−200レオメーターを用い、せん断速度0.01〜1000[1/s]の範囲でせん断応力を測定することにより得られるせん断速度(横軸)−せん断応力(縦軸)曲線に基づいて判定するものとする。なお、詳細な測定条件(測定治具および測定プロトコル)については、後述する実施例の欄に記載の形態を採用するものとする。
上記所定の流動特性を示す電極活物質スラリーの調製方法について特に制限はない。一例を挙げると、電極活物質および溶媒を含む電極活物質スラリーにおける固形分濃度を調節することで、上記所定の流動特性を示す電極活物質スラリーの調製が可能である。具体的に、本形態に係る電極活物質スラリーの固形分濃度は、当該電極活物質スラリーが正極活物質層の形成に用いられる場合(すなわち、正極活物質スラリーである場合)には、好ましくは60質量%以上であり、より好ましくは62質量%以上であり、さらに好ましくは64質量%以上であり、特に好ましくは66質量%以上であり、最も好ましくは68質量%以上である。また、当該塗布液が負極活物質層の形成に用いられる場合(すなわち、負極活物質スラリーである場合)には、好ましくは40質量%以上であり、より好ましくは42質量%以上であり、さらに好ましくは44質量%以上であり、特に好ましくは46質量%以上であり、最も好ましくは48質量%以上である。一方、本形態に係る電極活物質スラリーの固形分濃度の上限値についても特に制限されないが、本形態に係る電極活物質スラリーの固形分濃度は、当該電極活物質スラリーが正極活物質層の形成に用いられる場合(すなわち、正極活物質スラリーである場合)には、好ましくは80質量%以下である。また、当該電極活物質スラリーが負極活物質層の形成に用いられる場合(すなわち、負極活物質スラリーである場合)には、好ましくは55質量%以下である。濃度が上記範囲内であると、後述する塗布工程において十分な厚さを有する電極活物質層を容易に形成することができる。また、必要に応じて実施されるプレス処理により空隙率や密度を調整することが容易となる。さらには、同じ固形分濃度でも、溶媒中に含まれる粒子のサイズが小さくなるにつれて含まれる粒子数は増加する。その結果、溶媒中に存在する任意の粒子の周囲に存在する粒子も増加し、粒子間の距離も縮まることから、粒子間相互作用が大きくなり、流動性は低下する傾向にある。そのため、粒子サイズが小さい場合には上述した固形分濃度を下げることで、サイズが異なる粒子を用いた場合と同様の流動特性に調整することができる。
なお、本形態に係る電池用電極の製造方法は、電極活物質スラリーが有する流動特性と、塗工工程における塗工速度との組み合わせに特徴を有するということについて上述した。ただし、本発明の他の形態によれば、「電極活物質スラリーが有する流動特性」に代えて「電極活物質スラリーの組成」を規定した発明もまた、提供されうる。具体的に、本発明の他の形態に係る「電極活物質スラリー」は、電極活物質粒子および溶媒を必須に含み、かつ、上述した固形分濃度の下限値およびバインダの含有量の上限値が規定されたものである。また、この「電極活物質スラリー」に含まれる電極活物質は、好ましくは被覆電極活物質である。さらに、この「電極活物質スラリー」は、導電部材、イオン伝導性ポリマーおよびリチウム塩の少なくとも1種をさらに含むことが好ましく、これらをすべて含むことがより好ましい。
ここで、電極活物質スラリーに含まれる各成分を混合して電極活物質スラリーを調製する方法については特に制限はなく、部材の添加順、混合方法等、従来公知の知見が適宜参照されうる。ただし、上記電極活物質スラリーの固形分濃度は比較的高いことから、各材料を混合する混合機として、高せん断を付与できる混合機を用いることが好ましい。具体的には、プラネタリーミキサー、ニーダー、ホモホジナイザー、超音波ホモジナイザー、ディスパージャー等のブレード型撹拌機が好ましく、特に固練りをするという観点からはプラネタリーミキサーが特に好ましい。また、混合の具体的な方法についても特に制限はないが、最終固形分濃度よりも高い固形分濃度で固練りを実施した後に溶媒成分を追加してさらに混合を行うことで電極活物質スラリーを調製することが好ましい。なお、混合時間は特に制限されず、均一な混合が達成されればよい。一例として、固練りおよびその後の混合はそれぞれ10〜60分程度行えばよく、各工程は一度に行ってもよいし数回に分けて行ってもよい。
(塗工工程)
塗工工程では、上述した電極活物質スラリーを集電体の表面に塗工して塗膜を形成する。ここで、上述したように、本形態に係る電極活物質スラリーは、図2に示すように、当該電極活物質スラリーについてのせん断速度(横軸)−せん断応力(縦軸)曲線において、以下のような流動特性を有するものである。
「せん断速度の増加に伴ってせん断応力が増加しない領域Aが存在し、かつ、前記領域Aよりもせん断速度が大きい領域に、せん断速度の増加に伴ってせん断応力が増加するとともにその増加率が減少する領域Bが存在する。」
あるいは、本発明の他の形態に係る電極活物質スラリーは、上述した固形分濃度等により規定される組成を有するものである。
塗工工程においては、塗工時のせん断速度が上記電極活物質スラリーの降伏応力以上のせん断応力が加えられる値となるような塗工速度で前記電極活物質スラリーの塗工を行う点に特徴がある。ここで、「降伏応力」は、図2に示すようなせん断速度0.01〜1000[1/s]の範囲でせん断応力を測定することにより得られるせん断速度(横軸)−せん断応力(縦軸)曲線において、せん断速度が小さい側の値を縦軸(せん断速度=0.0001[1/s]の直線)に向かって外挿した際の切片の値として得られるせん断応力をいう。本形態に係る電池用電極の製造方法の塗工工程においては、この降伏応力以上のせん断応力が加えられるような塗工速度で塗工を行うのである。ここで、上記電極活物質スラリーの流動特性に鑑みれば、このようにして得られる降伏応力の値に対応するせん断速度の値が、領域Aよりもせん断速度が大きい領域に存在する(図2に示すせん断速度=14[1/s])。そして、このせん断速度の値(電極活物質スラリーの降伏応力に対応するせん断応力が加えられる値)以上のせん断速度が得られるように(すなわち、せん断速度が14[1/s]以上となるように)塗工速度を設定することで、降伏応力以上のせん断応力が加えられるように塗工が実施される。なお、塗工時のせん断速度の値は、塗工速度[mm/s]の値を塗工により得られる塗膜の厚さ[mm]の値で除することにより算出するものとする。このことから、図2に示す場合において、塗膜の厚さが500[μm](=0.5[mm])であれば、塗工速度を(14×0.5=)7[mm/s]以上とすることにより、せん断速度を14[1/s]以上とすることができる。塗工時のせん断速度の上限値について特に制限はなく、せん断速度の値が大きいほど(すなわち、塗工速度が大きいほど)工業的な量産には好ましい。このような観点から、せん断速度の下限値は、好ましくは10[1/s]以上であり、より好ましくは30[1/s]以上であり、さらに好ましくは100[1/s]以上であり、いっそう好ましくは300[1/s]以上であり、特に好ましくは500[1/s]以上であり、最も好ましくは800[1/s]以上である。一方、せん断速度の上限値の一例としては、例えば1000[1/s]以下である。
塗工工程における電極活物質スラリーの塗工によって得られる塗膜の厚さについて特に制限はなく、上述した電極活物質層の厚さが達成されるように適宜設定すればよい。
塗工工程における塗工を実施するための塗工手段についても特に制限はなく、塗工時のせん断速度が上記の降伏応力以上のせん断応力が加えられる値となるような塗工速度で前記電極活物質スラリーの塗工を行うことができる塗工手段が適宜用いられうる。なかでも、スリットから電極活物質スラリーを塗出して塗工するスリットダイコーターによる塗工方式は薄膜の塗工および塗工厚みの均一性に優れていることから、好適な塗工手段の一例である。
本形態に係る電池用電極の製造方法では、電極活物質スラリーを塗工して塗膜を得た後に、得られた塗膜に対して加熱による乾燥処理を施さないことが好ましい。このように電極活物質スラリーの塗工後に加熱乾燥しない場合には、電極活物質スラリーの塗工後に所望の面積に電極を切り出すことが難しい。よって、本形態に係る電池用電極の製造方法においては、所望の面積となるように電極活物質スラリーを集電体の表面に塗工することが必要となる。そのためには、予め塗工部分以外の集電体の表面にマスキング処理等を施してもよい。
本形態に係る電池用電極の製造方法では、電極活物質スラリーの塗工によって得られた塗膜に対してプレス処理を施してもよい。このプレス処理を施す際には、塗膜の表面に多孔質シートを配置した状態でプレスを行うことが好ましい。このようなプレス処理を施すことで、より表面の均一性の高い電極活物質層が得られる。なお、多孔質シートは、塗膜をプレスする際に、プレス装置にスラリーが付着するのを防ぐ目的、プレスの際に滲出する余分な電解液を吸収する目的などで使用される。そのため、多孔質シートの材料や形態は、上記目的を達成できるものであれば特に制限されない。
一例を挙げると、多孔質シートとして、本技術分野でセパレータとして使用される、微多孔膜、不織布などと同様のものを使用することができる。具体的には、微多孔膜としては、ポリイミド、アラミド、ポリフッ化ビニリデン−ヘキサフルオロプロピレン(PVdF−HFP)等の炭化水素系樹脂、ガラス繊維などからなる微多孔膜が挙げられる。また、不織布としては、綿、レーヨン、アセテート、ナイロン、ポリエステル;PP、PEなどのポリオレフィン;ポリイミド、アラミドなどを、単独または混合して用いた不織布が挙げられる。
なお、上記多孔質シートは、プレス後に取り除いてもよいし、そのまま電池のセパレータとして用いても構わない。プレス後に多孔質シートをそのままセパレータとして用いる場合は、当該多孔質シートのみをセパレータとして電解質層を形成してもよいし、当該多孔質シートと別のセパレータとを組み合わせて(すなわち、セパレータを2枚以上として)電解質層を形成してもよい。
プレス処理を施すためのプレス装置は、塗膜の全面に均一に圧力を加えられる装置であることが好ましく、具体的には、ハイプレッシャージャッキ J−1(アズワン株式会社製)が使用できる。プレスの際の圧力は、特に制限されないが、好ましくは5〜40MPaであり、より好ましくは10〜35MPaであり、さらに好ましくは12〜30MPaである。圧力が上記範囲であると、上述した好ましい実施形態に係る電極活物質層の空隙率や密度を容易に実現することができる。
<電極以外の構成要素>
以上、本発明の好ましい実施形態に係る双極型二次電池の構成要素のうち、電極およびその製造方法について詳細に説明したが、その他の構成要素については、従来公知の知見が適宜参照されうる。
(電解質層)
本形態の電解質層に使用される電解質は、特に制限はなく、液体電解質、ゲルポリマー電解質、またはイオン液体電解質が制限なく用いられる。これらの電解質を用いることで、高いリチウムイオン伝導性が確保されうる。
液体電解質は、リチウムイオンのキャリヤーとしての機能を有する。電解質層を構成する液体電解質は、溶媒にリチウム塩が溶解した形態を有する。用いられる溶媒およびリチウム塩としては、例えば、上記形態に係る電池用電極の製造方法において電極活物質スラリーを構成するのに用いられる溶媒およびリチウム塩として例示したものが同様に用いられうる。さらに上述した添加剤が液体電解質に含まれてもよい。なお、液体電解質におけるリチウム塩の濃度は、0.1〜3.0Mであることが好ましく、0.8〜2.2Mであることがより好ましい。また、添加剤を使用する場合の使用量は、添加剤を添加する前の液体電解質100質量%に対して、好ましくは0.5〜10質量%、より好ましくは0.5〜5質量%である。
ゲルポリマー電解質は、イオン伝導性ポリマーからなるマトリックスポリマー(ホストポリマー)に、上記の液体電解質が注入されてなる構成を有する。電解質としてゲルポリマー電解質を用いることで電解質の流動性がなくなり、各層間のイオン伝導性を遮断することで容易になる点で優れている。マトリックスポリマー(ホストポリマー)として用いられるイオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、ポリエチレングリコール(PEG)、ポリアクリロニトリル(PAN)、ポリフッ化ビニリデン−ヘキサフルオロプロピレン(PVdF−HEP)、ポリメチルメタクリレート(PMMA)およびこれらの共重合体等が挙げられる。
ゲルポリマー電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現しうる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。
イオン液体電解質は、イオン液体にリチウム塩が溶解したものである。なお、イオン液体とは、カチオンおよびアニオンのみから構成される塩であり、常温で液体である一連の化合物をいう。
イオン液体を構成するカチオン成分は、置換されているかまたは非置換のイミダゾリウムイオン、置換されているかまたは非置換のピリジニウムイオン、置換されているかまたは非置換のピロリウムイオン、置換されているかまたは非置換のピラゾリウムイオン、置換されているかまたは非置換のピロリニウムイオン、置換されているかまたは非置換のピロリジニウムイオン、置換されているかまたは非置換のピペリジニウムイオン、置換されているかまたは非置換のトリアジニウムイオン、および置換されているかまたは非置換のアンモニウムイオンからなる群より選択される少なくとも1種であることが好ましい。
イオン液体を構成するアニオン成分の具体例としては、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオンなどのハロゲン化物イオン、硝酸イオン(NO )、テトラフルオロホウ酸イオン(BF )、ヘキサフルオロリン酸イオン(PF )、(FSO、AlCl 、乳酸イオン、酢酸イオン(CHCOO)、トリフルオロ酢酸イオン(CFCOO)、メタンスルホン酸イオン(CHSO )、トリフルオロメタンスルホン酸イオン(CFSO )、ビス(トリフルオロメタンスルホニル)イミドイオン((CFSO)、ビス(ペンタフルオロエチルスルホニル)イミドイオン((CSO)、BF 、トリス(トリフルオロメタンスルホニル)炭素酸イオン((CFSO)、過塩素酸イオン(ClO )、ジシアンアミドイオン((CN))、有機硫酸イオン、有機スルホン酸イオン、RCOO、HOOCRCOOOOCRCOO、NHCHRCOO(この際、Rは置換基であり、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、エーテル基、エステル基、またはアシル基であり、前記の置換基はフッ素原子を含んでいてもよい。)などが挙げられる。
好ましいイオン液体の例としては、1−メチル−3−メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、N−メチル−N−プロピルピロリジウムビス(トリフルオロメタンスルホニル)イミドが挙げられる。これらのイオン液体は、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。
イオン液体電解質に用いられるリチウム塩および添加剤は、上述の液体電解質に使用されるリチウム塩および添加剤と同様である。
本形態の双極型二次電池では、電解質層にセパレータを用いてもよい。セパレータは、電解質を保持して正極と負極との間のリチウムイオン伝導性を確保する機能、および正極と負極との間の隔壁としての機能を有する。特に電解質として液体電解質、イオン液体電解質を使用する場合には、セパレータを用いることが好ましい。
セパレータの形態としては、例えば、上記電解質を吸収保持するポリマーや繊維からなる多孔性シートのセパレータや不織布セパレータ等を挙げることができる。
ポリマーないし繊維からなる多孔性シートのセパレータとしては、例えば、微多孔質(微多孔膜)を用いることができる。該ポリマーないし繊維からなる多孔性シートの具体的な形態としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン;これらを複数積層した積層体(例えば、PP/PE/PPの3層構造をした積層体など)、ポリイミド、アラミド、ポリフッ化ビニリデン−ヘキサフルオロプロピレン(PVdF−HFP)等の炭化水素系樹脂、ガラス繊維などからなる微多孔質(微多孔膜)セパレータが挙げられる。
微多孔質(微多孔膜)セパレータの厚みは、使用用途により異なることから一義的に規定することはできない。一例を示せば、電気自動車(EV)やハイブリッド電気自動車(HEV)、燃料電池自動車(FCV)などのモータ駆動用二次電池などの用途におけるセパレータの厚みは、単層あるいは多層で4〜60μmであることが望ましい。前記微多孔質(微多孔膜)セパレータの微細孔径は、最大で1μm以下(通常、数十nm程度の孔径である)であることが望ましい。
不織布セパレータとしては、綿、レーヨン、アセテート、ナイロン、ポリエステル;PP、PEなどのポリオレフィン;ポリイミド、アラミドなど従来公知のものを、単独または混合して用いた不織布が挙げられる。また、不織布のかさ密度は、含浸させた高分子ゲル電解質により十分な電池特性が得られるものであればよく、特に制限されるべきものではない。さらに、不織布セパレータの厚さは、電解質層と同じであればよく、好ましくは5〜200μmであり、特に好ましくは10〜100μmである。
また、前述した微多孔質(微多孔膜)セパレータまたは不織布セパレータを樹脂多孔質基体層として、これに耐熱絶縁層が積層されたものをセパレータとして用いることも好ましい(耐熱絶縁層付セパレータ)。耐熱絶縁層は、無機粒子およびバインダを含むセラミック層である。耐熱絶縁層付セパレータは融点または熱軟化点が150℃以上、好ましくは200℃以上である耐熱性の高いものを用いる。耐熱絶縁層を有することによって、温度上昇の際に増大するセパレータの内部応力が緩和されるため熱収縮抑制効果が得られうる。その結果、電池の電極間ショートの誘発を防ぐことができるため、温度上昇による性能低下が起こりにくい電池構成になる。また、耐熱絶縁層を有することによって、耐熱絶縁層付セパレータの機械的強度が向上し、セパレータの破膜が起こりにくい。さらに、熱収縮抑制効果および機械的強度の高さから、電池の製造工程でセパレータがカールしにくくなる。
耐熱絶縁層における無機粒子は、耐熱絶縁層の機械的強度や熱収縮抑制効果に寄与する。無機粒子として使用される材料は特に制限されない。例えば、ケイ素、アルミニウム、ジルコニウム、チタンの酸化物(SiO、Al、ZrO、TiO)、水酸化物、および窒化物、ならびにこれらの複合体が挙げられる。これらの無機粒子は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来のものであってもよいし、人工的に製造されたものであってもよい。また、これらの無機粒子は1種のみが単独で使用されてもよいし、2種以上が併用されてもよい。これらのうち、コストの観点から、シリカ(SiO)またはアルミナ(Al)を用いることが好ましく、アルミナ(Al)を用いることがより好ましい。
無機粒子の目付け量は、特に限定されるものではないが、5〜15g/mであることが好ましい。この範囲であれば、十分なイオン伝導性が得られ、また、耐熱強度を維持する点で好ましい。
耐熱絶縁層におけるバインダは、無機粒子どうしや、無機粒子と樹脂多孔質基体層とを接着させる役割を有する。当該バインダによって、耐熱絶縁層が安定に形成され、また樹脂多孔質基体層および耐熱絶縁層の間の剥離を防止される。
耐熱絶縁層に使用されるバインダは、特に制限はなく、例えば、カルボキシメチルセルロース(CMC)、ポリアクリロニトリル、セルロース、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、スチレン−ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)、アクリル酸メチルなどの化合物がバインダとして用いられうる。このうち、カルボキシメチルセルロース(CMC)、アクリル酸メチル、またはポリフッ化ビニリデン(PVDF)を用いることが好ましい。これらの化合物は、1種のみが単独で使用されてもよいし、2種以上が併用されてもよい。
耐熱絶縁層におけるバインダの含有量は、耐熱絶縁層100質量%に対して、2〜20質量%であることが好ましい。バインダの含有量が2質量%以上であると、耐熱絶縁層と多孔質基体層との間の剥離強度を高めることができ、セパレータの耐振動性を向上させることができる。一方、バインダの含有量が20質量%以下であると、無機粒子の隙間が適度に保たれるため、十分なリチウムイオン伝導性を確保することができる。
耐熱絶縁層付セパレータの熱収縮率は、150℃、2gf/cm条件下、1時間保持後にMD、TDともに10%以下であることが好ましい。このような耐熱性の高い材質を用いることで、発熱量が高くなり電池内部温度が150℃に達してもセパレータの収縮を有効に防止することができる。その結果、電池の電極間ショートの誘発を防ぐことができるため、温度上昇による性能低下が起こりにくい電池構成になる。
[正極集電板および負極集電板]
集電板(25、27)を構成する材料は、特に制限されず、リチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料が用いられうる。集電板の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましい。軽量、耐食性、高導電性の観点から、より好ましくはアルミニウム、銅であり、特に好ましくはアルミニウムである。なお、正極集電板25と負極集電板27とでは、同一の材料が用いられてもよいし、異なる材料が用いられてもよい。
[正極リードおよび負極リード]
また、図示は省略するが、集電体11と集電板(25、27)との間を正極リードや負極リードを介して電気的に接続してもよい。正極および負極リードの構成材料としては、公知のリチウムイオン二次電池において用いられる材料が同様に採用されうる。なお、外装から取り出された部分は、周辺機器や配線などに接触して漏電したりして製品(例えば、自動車部品、特に電子機器等)に影響を与えないように、耐熱絶縁性の熱収縮チューブなどにより被覆することが好ましい。
[シール部(絶縁層)]
シール部(絶縁層)は、集電体同士の接触や単電池層の端部における短絡を防止する機能を有する。シール部を構成する材料としては、絶縁性、固体電解質の脱落に対するシール性や外部からの水分の透湿に対するシール性(密封性)、電池動作温度下での耐熱性等を有するものであればよい。例えば、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリイミド樹脂、ゴム(エチレン−プロピレン−ジエンゴム:EPDM)、等が用いられうる。また、イソシアネート系接着剤や、アクリル樹脂系接着剤、シアノアクリレート系接着剤などを用いてもよく、ホットメルト接着剤(ウレタン樹脂、ポリアミド樹脂、ポリオレフィン樹脂)などを用いてもよい。なかでも、耐蝕性、耐薬品性、作り易さ(製膜性)、経済性等の観点から、ポリエチレン樹脂やポリプロピレン樹脂が、絶縁層の構成材料として好ましく用いられ、非結晶性ポリプロピレン樹脂を主成分とするエチレン、プロピレン、ブテンを共重合した樹脂を用いることが好ましい。
[電池外装体]
電池外装体としては、公知の金属缶ケースを用いることができるほか、図1に示すように発電要素を覆うことができる、アルミニウムを含むラミネートフィルム29を用いた袋状のケースが用いられうる。該ラミネートフィルムには、例えば、PP、アルミニウム、ナイロンをこの順に積層してなる3層構造のラミネートフィルム等を用いることができるが、これらに何ら制限されるものではない。高出力化や冷却性能に優れ、EV、HEV用の大型機器用電池に好適に利用することができるという観点から、ラミネートフィルムが望ましい。また、外部から掛かる発電要素への群圧を容易に調整することができ、所望の電解液層厚みへと調整容易であることから、外装体はアルミネートラミネートがより好ましい。
本形態の双極型二次電池は、上述の非水電解質二次電池用負極を有することにより、高レートでの出力特性を向上させることができる。したがって、本形態の双極型二次電池は、EV、HEVの駆動用電源として好適に使用される。
[セルサイズ]
図3は、二次電池の代表的な実施形態である扁平なリチウムイオン二次電池の外観を表した斜視図である。
図3に示すように、扁平な双極型二次電池50では、長方形状の扁平な形状を有しており、その両側部からは電力を取り出すための正極タブ58、負極タブ59が引き出されている。発電要素57は、双極型二次電池50の電池外装体(ラミネートフィルム52)によって包まれ、その周囲は熱融着されており、発電要素57は、正極タブ58および負極タブ59を外部に引き出した状態で密封されている。ここで、発電要素57は、先に説明した図1に示す双極型二次電池10の発電要素21に相当するものである。発電要素57は、双極型電極23が、電解質層17を介して複数積層されたものである。
なお、上記リチウムイオン二次電池は、積層型の扁平な形状のものに制限されるものではない。巻回型のリチウムイオン二次電池では、円筒型形状のものであってもよいし、こうした円筒型形状のものを変形させて、長方形状の扁平な形状にしたようなものであってもよいなど、特に制限されるものではない。上記円筒型の形状のものでは、その外装体に、ラミネートフィルムを用いてもよいし、従来の円筒缶(金属缶)を用いてもよいなど、特に制限されるものではない。好ましくは、発電要素がアルミニウムラミネートフィルムで外装される。当該形態により、軽量化が達成されうる。
また、図3に示すタブ(58、59)の取り出しに関しても、特に制限されるものではない。正極タブ58と負極タブ59とを同じ辺から引き出すようにしてもよいし、正極タブ58と負極タブ59をそれぞれ複数に分けて、各辺から取り出しようにしてもよいなど、図3に示すものに制限されるものではない。また、巻回型のリチウムイオン電池では、タブに変えて、例えば、円筒缶(金属缶)を利用して端子を形成すればよい。
一般的な電気自動車では、電池格納スペースが170L程度である。このスペースにセルおよび充放電制御機器等の補機を格納するため、通常セルの格納スペース効率は50%程度となる。この空間へのセルの積載効率が電気自動車の航続距離を支配する因子となる。単セルのサイズが小さくなると上記積載効率が損なわれるため、航続距離を確保できなくなる。
したがって、本発明において、発電要素を外装体で覆った電池構造体は大型であることが好ましい。具体的には、ラミネートセル電池の短辺の長さが100mm以上であることが好ましい。かような大型の電池は、車両用途に用いることができる。ここで、ラミネートセル電池の短辺の長さとは、最も長さが短い辺を指す。短辺の長さの上限は特に限定されるものではないが、通常400mm以下である。
[体積エネルギー密度および定格放電容量]
一般的な電気自動車では、一回の充電による走行距離(航続距離)は100kmが市場要求である。かような航続距離を考慮すると、電池の体積エネルギー密度は157Wh/L以上であることが好ましく、かつ定格容量は20Wh以上であることが好ましい。
また、電極の物理的な大きさの観点とは異なる、大型化電池の観点として、電池面積や電池容量の関係から電池の大型化を規定することもできる。例えば、扁平積層型ラミネート電池の場合には、定格容量に対する電池面積(電池外装体まで含めた電池の投影面積)の比の値が5cm/Ah以上であり、かつ、定格容量が3Ah以上である電池においては、単位容量当たりの電池面積が大きいため、本発明の課題がより一層顕在化しやすい。すなわち、負極活物質層の厚膜化に伴うイオン移動抵抗および電子移動抵抗によって、負極活物質層の厚さ方向のみならず、面方向でも充放電反応が均一に進行しにくくなり、電池の出力特性(特に高レートでの出力特性)がより一層低下しやすくなる。したがって、本形態に係る非水電解質二次電池は、上述したような大型化された電池であることが、本願発明の作用効果の発現によるメリットがより大きいという点で、好ましい。さらに、矩形状の電極のアスペクト比は1〜3であることが好ましく、1〜2であることがより好ましい。なお、電極のアスペクト比は矩形状の正極活物質層の縦横比として定義される。アスペクト比をかような範囲とすることで、車両要求性能と搭載スペースを両立できるという利点がある。
[組電池]
組電池は、電池を複数個接続して構成した物である。詳しくは少なくとも2つ以上用いて、直列化あるいは並列化あるいはその両方で構成されるものである。直列、並列化することで容量および電圧を自由に調節することが可能になる。
電池が複数、直列にまたは並列に接続して装脱着可能な小型の組電池を形成することもできる。そして、この装脱着可能な小型の組電池をさらに複数、直列に又は並列に接続して、高体積エネルギー密度、高体積出力密度が求められる車両駆動用電源や補助電源に適した大容量、大出力を持つ組電池を形成することもできる。何個の電池を接続して組電池を作製するか、また、何段の小型組電池を積層して大容量の組電池を作製するかは、搭載される車両(電気自動車)の電池容量や出力に応じて決めればよい。
[車両]
本形態の非水電解質二次電池は、長期使用しても放電容量が維持され、サイクル特性が良好である。さらに、体積エネルギー密度が高い。電気自動車やハイブリッド電気自動車や燃料電池車やハイブリッド燃料電池自動車などの車両用途においては、電気・携帯電子機器用途と比較して、高容量、大型化が求められるとともに、長寿命化が必要となる。したがって、上記非水電解質二次電池は、車両用の電源として、例えば、車両駆動用電源や補助電源に好適に利用することができる。
具体的には、電池またはこれらを複数個組み合わせてなる組電池を車両に搭載することができる。本発明では、長期信頼性および出力特性に優れた高寿命の電池を構成できることから、こうした電池を搭載するとEV走行距離の長いプラグインハイブリッド電気自動車や、一充電走行距離の長い電気自動車を構成できる。電池またはこれらを複数個組み合わせてなる組電池を、例えば、自動車ならばハイブリット車、燃料電池車、電気自動車(いずれも四輪車(乗用車、トラック、バスなどの商用車、軽自動車など)のほか、二輪車(バイク)や三輪車を含む)に用いることにより高寿命で信頼性の高い自動車となるからである。ただし、用途が自動車に限定されるわけではなく、例えば、他の車両、例えば、電車などの移動体の各種電源であっても適用は可能であるし、無停電電源装置などの載置用電源として利用することも可能である。
以下、実施例により本発明をさらに詳細に説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、「部」は特に断りのない限り、「質量部」を意味する。また、被覆用樹脂溶液の作製から負極活物質スラリーの塗工までの作製工程は、ドライルーム内にて実施した。
<被覆用樹脂の飽和吸液状態での引張破断伸び率>
本実施例に記載の方法で得られた被覆用樹脂溶液を、PETフィルム上にキャストして乾燥することにより、厚さ500μmのシート状に成形し、次いでダンベル状に打ち抜いた。そして、電解液(1M LiPF、エチレンカーボネート(EC)/ジエチルカーボネート(DEC)=3/7(体積比))に50℃にて3日間浸した後、ASTM D683(試験片形状TypeII)に準拠して、飽和吸液状態での引張破断伸び率の値を測定した。
<負極活物質被覆用樹脂溶液の作製>
撹拌機、温度計、還流冷却管、滴下ロートおよび窒素ガス導入管を付した4つ口フラスコに、酢酸エチル83部とメタノール17部とを仕込み68℃に昇温した。
次いで、メタクリル酸242.8部、メチルメタクリレート97.1部、2−エチルヘキシルメタクリレート242.8部、酢酸エチル52.1部およびメタノール10.7部を配合したモノマー配合液と、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.263部を酢酸エチル34.2部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで4時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.583部を酢酸エチル26部に溶解した開始剤溶液を、滴下ロートを用いて2時間かけて連続的に追加した。さらに、沸点で重合を4時間継続した。溶媒を除去し、樹脂582部を得た後、イソプロパノールを1,360部加えて、樹脂固形分濃度30質量%のビニル樹脂からなる負極活物質被覆用樹脂溶液を得た。
なお、得られた負極活物質被覆用樹脂溶液を用いて、上記の方法で負極活物質被覆用樹脂の飽和吸液状態での引張破断伸び率を測定したところ、50%であった。
<被覆負極活物質の作製>
難黒鉛化性炭素(ハードカーボン)((株)クレハ・バッテリー・マテリアルズ・ジャパン製 カーボトロン(登録商標)PS(F))88.4部を万能混合機に入れ、室温、150rpmで撹拌した状態で、上記で得られた負極活物質被覆用樹脂溶液(樹脂固形分濃度30質量%)を樹脂固形分として10部になるように60分かけて滴下混合し、さらに30分撹拌した。
次いで、撹拌した状態でアセチレンブラック[デンカ(株)製 デンカブラック(登録商標)]1.6部を3回に分けて混合し、30分撹拌したままで70℃に昇温し、0.01MPaまで減圧し30分保持し、被覆負極活物質を得た。なお、被覆負極活物質がコア−シェル構造を有していると考えると、コアとしての難黒鉛化性炭素粉末の平均粒子径は9μmであった。また、被覆負極活物質100質量%に対する、被覆剤の固形分量は1.6質量%であった。
<電解液の調製>
エチレンカーボネート(EC)とプロピレンカーボネート(PC)の混合溶媒(体積比率1:1)に、Li[(FSON](LiFSI)を2mol/Lの割合で溶解させて、電解液を得た。
<負極活物質スラリーの調製>
上記で得た被覆負極活物質から、平均粒子径(D50)20μmのものを616部取り分け、平均粒子径(D50)5μmのものを264部取り分け、これに導電部材としての炭素繊維(大阪ガスケミカル(株)製 ドナカーボ・ミルド S−243:平均繊維長500μm、平均繊維径13μm:電気伝導度200mS/cm)76.5部を添加し、120℃、100mmHgの減圧下で16時間乾燥させ、含有水分の除去を行った。
次に、ドライルーム中で、上記の乾燥済みの材料に、上記で得た電解液637.7部を添加した。この混合物を、混合撹拌機(DALTON社製、5DM−r型(プラネタリーミキサー))を用いて、自転:63rpm、公転:107rpmの回転数で30分撹拌することにより、固練りを実施した。
その後、上記で得た電解液638.9gをさらに添加し、上記と同様の混合撹拌機を用いて、自転:63rpm、公転:107rpmの回転数で10分×3回撹拌することにより、固練りを実施した。このようにして、負極活物質スラリーを得た。なお、このようにして得られた負極活物質スラリーの固形分濃度は41質量%であった。
<負極活物質スラリーのせん断速度(横軸)−せん断応力(縦軸)曲線の取得>
上記で調製した負極活物質スラリーについて、TAインスツルメント社製AR−200レオメーターを用い、せん断速度0.01〜1000[1/s]の範囲でせん断応力を測定し、せん断速度(横軸)−せん断応力(縦軸)曲線を取得した。より詳細には、下記の表1に示す測定治具および測定プロトコルを採用して、上記レオメーターを用い、サイズΦ40mmのパラレルプレートを用い、測定時のステージとプレートとの測定ギャップを300μmとして、せん断速度の走査範囲0.01〜1000[1/s]のLogスイープにより26点の測定を測定時間7.5分で行った。
このようにして得られたせん断速度(横軸)−せん断応力(縦軸)曲線を図2に示す。なお、図2において、実測値の曲線を縦軸(せん断速度0.001[1/s]の直線)に向かって外挿することにより、縦軸における切片として当該負極活物質スラリーの降伏応力の値(100[Pa])を得た。
図2からわかるように、上記で調製した負極活物質スラリーのせん断速度(横軸)−せん断応力(縦軸)曲線から、せん断速度14[1/s]を境として、せん断応力が降伏応力よりも小さい領域(せん断速度0.0001〜14[1/s])と、せん断応力が降伏応力よりも大きい領域(せん断速度14[1/s]以上)とに分けられる。また、図2に示すように、せん断速度の増加に伴ってせん断応力が増加しない領域A、および、当該領域Aよりもせん断速度が大きい領域に、せん断速度の増加に伴ってせん断応力が増加するとともにその増加率が減少する領域Bが存在する。
<集電体表面への塗布液(負極活物質スラリー)の塗工>
(比較例1)
まず、リチウムイオン用の集電体として機能する銅箔(株式会社サンクメタル製、厚さ10μm)を基材として準備した。次いで、上記で調製した負極活物質スラリーを、スリットダイコーターを用いたダイスリット方式により、上記銅箔の一方の表面に塗工して、厚さ500μmの塗膜(負極活物質層)を形成した。この際、本比較例では、塗工速度を2[mm/s]に設定した。このため、せん断速度は2[mm/s]/0.5[mm]=4[1/s]であり、これに対応するせん断応力は、用いた負極活物質スラリーの降伏応力よりも小さい値であった。
(実施例1)
塗工速度を9[mm/s]に設定したこと以外は、上述した比較例1と同様の手法により、集電体の表面に塗膜(負極活物質層)を形成した。なお、本実施例における塗工速度は9[mm/s]であったことから、せん断速度は9[mm/s]/0.5[mm]=18[1/s]であり、これに対応するせん断応力は、用いた負極活物質スラリーの降伏応力よりも大きい値であった。
(実施例2)
塗工速度を18[mm/s]に設定したこと以外は、上述した比較例1と同様の手法により、集電体の表面に塗膜(負極活物質層)を形成した。なお、本実施例における塗工速度は18[mm/s]であったことから、せん断速度は18[mm/s]/0.5[mm]=36[1/s]であり、これに対応するせん断応力は、用いた負極活物質スラリーの降伏応力よりも大きい値であった。
(実施例3)
塗工速度を70[mm/s]に設定したこと以外は、上述した比較例1と同様の手法により、集電体の表面に塗膜(負極活物質層)を形成した。なお、本実施例における塗工速度は70[mm/s]であったことから、せん断速度は70[mm/s]/0.5[mm]=140[1/s]であり、これに対応するせん断応力は、用いた負極活物質スラリーの降伏応力よりも大きい値であった。
(実施例4)
塗工速度を150[mm/s]に設定したこと以外は、上述した比較例1と同様の手法により、集電体の表面に塗膜(負極活物質層)を形成した。なお、本実施例における塗工速度は150[mm/s]であったことから、せん断速度は150[mm/s]/0.5[mm]=300[1/s]であり、これに対応するせん断応力は、用いた負極活物質スラリーの降伏応力よりも大きい値であった。
(実施例5)
塗工速度を200[mm/s]に設定したこと以外は、上述した比較例1と同様の手法により、集電体の表面に塗膜(負極活物質層)を形成した。なお、本実施例における塗工速度は200[mm/s]であったことから、せん断速度は200[mm/s]/0.5[mm]=400[1/s]であり、これに対応するせん断応力は、用いた負極活物質スラリーの降伏応力よりも大きい値であった。
[塗膜表面の平坦性の評価]
上述した比較例1および実施例1〜5において作製した塗膜(負極活物質層)について、表面の平坦性を目視により評価した。また、これらの塗膜(負極活物質)の観察写真を、図4のA〜Fにそれぞれ示す。図4のA〜Fからわかるように、比較例1(図4のA)では得られた塗膜(負極活物質層)の表面に多数の凹凸が確認され、平坦な塗膜(負極活物質層)を得ることはできなかった。一方、実施例1〜5(図4のB〜F)では、得られた塗膜(負極活物質層)の表面にほとんど凹凸は確認されず、平坦な塗膜(負極活物質層)を得ることができた。
<正極活物質被覆用樹脂溶液の作製>
撹拌機、温度計、還流冷却管、滴下ロートおよび窒素ガス導入管を付した4つ口フラスコに、ジメチルホルムアミド59.2部を仕込み79℃に昇温した。
次いで、メタクリル酸30.1部、メチルメタクリレート13.9部、2−エチルヘキシルメタクリレート30.5部を配合したモノマー配合液と、2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.125部、2,2’−アゾビス(2−メチルブチロニトリル)0.300部をジメチルホルムアミド15.0部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで3時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、ジメチルホルムアミド0.75部を滴下し、2時間重合を継続した。さらに、90℃に昇温し、重合を1時間継続した。4つ口フラスコを冷却後、ジメチルホルムアミドを99.8部加えて、樹脂固形分濃度30質量%のビニル樹脂からなる正極活物質被覆用樹脂溶液250.0部を得た。
なお、得られた正極活物質被覆用樹脂溶液を用いて、上記の方法で正極活物質被覆用樹脂の飽和吸液状態での引張破断伸び率を測定したところ、50%であった。
<被覆正極活物質の作製>
ニッケル・アルミ・コバルト酸リチウム(NCA)(BASF戸田バッテリーマテリアルズ合同会社製)140.0部を万能混合機に入れ、室温、15m/sで撹拌した状態で、上記で得られた正極活物質被覆用樹脂溶液(樹脂固形分濃度30質量%)0.48部にジメチルホルムアミド14.6部を追加混合した溶液を3分かけて滴下混合し、さらに5分撹拌した。
次いで、撹拌した状態でアセチレンブラック[デンカ(株)製 デンカブラック(登録商標)]8.6部を混合し、60分撹拌したままで140℃に昇温し、0.01MPaまで減圧し5時間保持し、被覆正極活物質を得た。なお、被覆正極活物質がコア−シェル構造を有していると考えると、コアとしてのニッケル・アルミ・コバルト酸リチウム粉末の平均粒子径は6μmであった。また、被覆正極活物質100質量%に対する、被覆剤の固形分量は0.1質量%であった。
<電解液の調製>
エチレンカーボネート(EC)とプロピレンカーボネート(PC)の混合溶媒(体積比率1:1)に、Li[(FSON](LiFSI)を2mol/Lの割合で溶解させて、電解液を得た。
<正極活物質スラリーの調製>
上記で得た被覆正極活物質1543.5部に導電部材としての炭素繊維(大阪ガスケミカル(株)製 ドナカーボ・ミルド S−243:平均繊維長500μm、平均繊維径13μm:電気伝導度200mS/cm)31.5部を添加し、120℃、100mmHgの減圧下で16時間乾燥させ、含有水分の除去を行った。
次に、ドライルーム中で、上記の乾燥済みの材料に、上記で得た電解液393.8部を添加した。この混合物を、混合撹拌機(DALTON社製、5DM−r型(プラネタリーミキサー))を用いて、自転:63rpm、公転:107rpmの回転数で30分撹拌することにより、固練りを実施した。
その後、上記で得た混合物に電解液417.6部をさらに添加し、上記と同様の混合撹拌機を用いて、自転:63rpm、公転:107rpmの回転数で10分×3回撹拌することにより、攪拌希釈を実施した。このようにして、正極活物質スラリーを得た。なお、このようにして得られた正極活物質スラリーの固形分濃度は66質量%であった。
<正極活物質スラリーのせん断速度(横軸)−せん断応力(縦軸)曲線の取得>
上記で調製した正極活物質スラリーについて、上記と同様の手法によりせん断速度(横軸)−せん断応力(縦軸)曲線を取得した。
このようにして得られたせん断速度(横軸)−せん断応力(縦軸)曲線を図5に示す。なお、図5において、実測値の曲線を縦軸(せん断速度0.001[1/s]の直線)に向かって外挿することにより、縦軸における切片として当該負極活物質スラリーの降伏応力の値(100[Pa])を得た。
図5からわかるように、上記で調製した正極活物質スラリーのせん断速度(横軸)−せん断応力(縦軸)曲線から、せん断速度24[1/s]を境として、せん断応力が降伏応力よりも小さい領域(せん断速度0.0001〜24[1/s])と、せん断応力が降伏応力よりも大きい領域(せん断速度24[1/s]以上)とに分けられる。また、図5に示すように、せん断速度の増加に伴ってせん断応力が増加しない領域A、および、当該領域Aよりもせん断速度が大きい領域に、せん断速度の増加に伴ってせん断応力が増加するとともにその増加率が減少する領域Bが存在する。
10、50 双極型二次電池、
11 集電体、
11a 正極側の最外層集電体、
11b 負極側の最外層集電体、
13 正極活物質層、
15 負極活物質層、
17 電解質層、
19 単電池層、
21、57 発電要素、
23 双極型電極、
25 正極集電板(正極タブ)、
27 負極集電板(負極タブ)、
29、52 ラミネートフィルム、
31 シール部(絶縁層)、
58 正極タブ、
59 負極タブ。

Claims (7)

  1. 集電体と、
    前記集電体の表面に配置された、電極活物質を含む電極活物質層と、
    を有する電池用電極の製造方法であって、
    前記電極活物質が溶媒中に分散してなる電極活物質スラリーを前記集電体の表面に塗工して電極活物質層を形成する塗工工程を含み、
    前記電極活物質スラリーは、前記電極活物質スラリーについてのせん断速度(横軸)−せん断応力(縦軸)曲線において、せん断速度の増加に伴ってせん断応力が増加しない領域Aが存在し、かつ、前記領域Aよりもせん断速度が大きい領域に、せん断速度の増加に伴ってせん断応力が増加するとともにその増加率が減少する領域Bが存在するという流動特性を有するものであり、
    前記塗工工程において、塗工時のせん断速度が前記電極活物質スラリーの降伏応力以上のせん断応力が加えられる値となるような塗工速度で前記電極活物質スラリーの塗工を行う、電池用電極の製造方法。
  2. 前記電極活物質スラリーが、電池を構成する液体電解質を前記溶媒として含む、請求項1に記載の電池用電極の製造方法。
  3. 前記電極活物質層におけるバインダの含有量が、全固形分量100質量%に対して、1質量%以下である、請求項1または2に記載の電池用電極の製造方法。
  4. 前記電極活物質スラリーが正極活物質スラリーである場合、前記電極活物質スラリーの固形分濃度は60質量%以上であり、
    前記電極活物質スラリーが負極活物質スラリーである場合、前記電極活物質スラリーの固形分濃度は40質量%以上である、請求項1〜3のいずれか1項に記載の電池用電極の製造方法。
  5. 前記電極活物質層は、前記電極活物質の表面の少なくとも一部が、被覆用樹脂および導電助剤を含む被覆剤により被覆されてなる被覆電極活物質を含む、請求項1〜4のいずれか1項に記載の電池用電極の製造方法。
  6. 前記被覆用樹脂の飽和吸液状態での引張破断伸び率が10%以上である、請求項5に記載の電池用電極の製造方法。
  7. 前記電極活物質層が導電部材をさらに含み、
    前記導電部材の少なくとも一部が、前記電極活物質層の2つの主面同士を電気的に接続する導電通路を形成しており、かつ、前記導電通路と前記電極活物質とが電気的に接続している、請求項1〜6のいずれか1項に記載の電池用電極の製造方法。
JP2017196922A 2017-10-10 2017-10-10 電池用電極の製造方法 Active JP6929186B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017196922A JP6929186B2 (ja) 2017-10-10 2017-10-10 電池用電極の製造方法
CN201880065877.5A CN111201639B (zh) 2017-10-10 2018-10-10 电池用电极的制造方法
US16/754,828 US11329265B2 (en) 2017-10-10 2018-10-10 Method for producing battery electrode
PCT/JP2018/037810 WO2019074024A1 (ja) 2017-10-10 2018-10-10 電池用電極の製造方法
EP18866933.7A EP3696884B1 (en) 2017-10-10 2018-10-10 Battery electrode manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017196922A JP6929186B2 (ja) 2017-10-10 2017-10-10 電池用電極の製造方法

Publications (2)

Publication Number Publication Date
JP2019071222A true JP2019071222A (ja) 2019-05-09
JP6929186B2 JP6929186B2 (ja) 2021-09-01

Family

ID=66101434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017196922A Active JP6929186B2 (ja) 2017-10-10 2017-10-10 電池用電極の製造方法

Country Status (5)

Country Link
US (1) US11329265B2 (ja)
EP (1) EP3696884B1 (ja)
JP (1) JP6929186B2 (ja)
CN (1) CN111201639B (ja)
WO (1) WO2019074024A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7495986B2 (ja) 2019-12-19 2024-06-05 エフエムピー テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング フルーイド メジャーメンツ アンド プロジェクツ 幅広スロットダイおよび幅広スロットダイの作動方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3961754A4 (en) * 2019-04-22 2023-05-24 DKS Co. Ltd. BINDING AGENT COMPOSITION FOR AN ELECTRODE, COATING COMPOSITION FOR AN ELECTRODE, ELECTRODE FOR AN ENERGY STORAGE DEVICE AND ENERGY STORAGE DEVICE
CN112467087B (zh) * 2020-03-30 2022-03-18 万向一二三股份公司 一种磷酸铁锂正极浆料制备工艺的改进方法及制备工艺
CN113471401B (zh) * 2021-05-28 2023-07-18 上海空间电源研究所 一种高安全高载量锂离子电极极片及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1055799A (ja) * 1996-08-08 1998-02-24 Toshiba Battery Co Ltd シート状極板の製造方法および非水電解質電池
JP2001257001A (ja) * 2000-03-09 2001-09-21 Sony Corp 非水系二次電池及びその製造方法
JP2009146788A (ja) * 2007-12-14 2009-07-02 Panasonic Corp リチウム二次電池用正極形成用塗工液、リチウム二次電池用正極およびリチウム二次電池
JP2013120710A (ja) * 2011-12-08 2013-06-17 Sumitomo Chemical Co Ltd 二次電池用電極の製造方法、二次電池用塗料の製造方法、二次電池用電極、二次電池
JP2017117528A (ja) * 2015-12-21 2017-06-29 Necエナジーデバイス株式会社 電極シートの製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10188962A (ja) 1996-12-27 1998-07-21 Fuji Film Selltec Kk シート状極板の製造方法と非水電解質電池
JP3594233B2 (ja) 2000-03-23 2004-11-24 松下電池工業株式会社 非水電解質二次電池用電極の製造法および非水電解質二次電池
JP4146160B2 (ja) * 2002-05-14 2008-09-03 九州電力株式会社 非水電解質二次電池用正極の製造方法および非水電解質二次電池用正極ならびに非水電解質二次電池
CN101479867B (zh) * 2006-06-27 2012-09-05 花王株式会社 锂离子电池用复合正极材料以及使用了该材料的电池
KR20110052233A (ko) 2009-11-12 2011-05-18 삼성전자주식회사 잉크젯 인쇄용 전극 조성물, 이를 사용하여 제조된 전극 및 이차 전지
JP5953827B2 (ja) * 2012-03-02 2016-07-20 三菱レイヨン株式会社 二次電池用電極合剤、その製造方法、二次電池用電極の製造方法、および二次電池の製造方法
DE102012213091A1 (de) 2012-07-25 2014-01-30 Robert Bosch Gmbh Batteriesystem für eine Lithium-Schwefel-Zelle
TWI671940B (zh) 2012-10-26 2019-09-11 日商富士軟片和光純藥股份有限公司 鋰電池用結合劑
KR102219706B1 (ko) * 2013-02-04 2021-02-23 제온 코포레이션 리튬 이온 2 차 전지 정극용 슬러리
JP6205810B2 (ja) 2013-04-12 2017-10-04 株式会社豊田自動織機 リチウムイオン二次電池用正極スラリー
JP6115786B2 (ja) * 2014-01-27 2017-04-19 トヨタ自動車株式会社 二次電池用負極の製造方法
JP2015141822A (ja) * 2014-01-29 2015-08-03 トヨタ自動車株式会社 電極ペースト、電極板の製造方法、及び、電池の製造方法
DE102014112977A1 (de) * 2014-09-09 2016-03-10 Karlsruher Institut für Technologie Verfahren und Vorrichtung zum intermittierenden Beschichten
JP2016067974A (ja) * 2014-09-26 2016-05-09 株式会社Screenホールディングス 塗布装置および塗布方法
JP6233653B2 (ja) * 2014-11-07 2017-11-22 トヨタ自動車株式会社 非水電解質二次電池の製造方法
JP6662178B2 (ja) 2016-04-25 2020-03-11 株式会社オートネットワーク技術研究所 車載電源用のスイッチ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1055799A (ja) * 1996-08-08 1998-02-24 Toshiba Battery Co Ltd シート状極板の製造方法および非水電解質電池
JP2001257001A (ja) * 2000-03-09 2001-09-21 Sony Corp 非水系二次電池及びその製造方法
JP2009146788A (ja) * 2007-12-14 2009-07-02 Panasonic Corp リチウム二次電池用正極形成用塗工液、リチウム二次電池用正極およびリチウム二次電池
JP2013120710A (ja) * 2011-12-08 2013-06-17 Sumitomo Chemical Co Ltd 二次電池用電極の製造方法、二次電池用塗料の製造方法、二次電池用電極、二次電池
JP2017117528A (ja) * 2015-12-21 2017-06-29 Necエナジーデバイス株式会社 電極シートの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7495986B2 (ja) 2019-12-19 2024-06-05 エフエムピー テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング フルーイド メジャーメンツ アンド プロジェクツ 幅広スロットダイおよび幅広スロットダイの作動方法

Also Published As

Publication number Publication date
JP6929186B2 (ja) 2021-09-01
US11329265B2 (en) 2022-05-10
EP3696884A4 (en) 2020-11-18
EP3696884A1 (en) 2020-08-19
EP3696884B1 (en) 2023-08-02
CN111201639A (zh) 2020-05-26
WO2019074024A1 (ja) 2019-04-18
CN111201639B (zh) 2023-09-19
US20200313156A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
US11302915B2 (en) Negative electrode for non-aqueous electrolyte secondary battery
JP6944772B2 (ja) 非水電解質二次電池用正極
US20230387392A1 (en) Electrode for non-aqueous electrolyte secondary battery
EP3696891B1 (en) Method for producing electrode for nonaqueous electrolyte secondary battery
CN111201639B (zh) 电池用电极的制造方法
WO2019230536A1 (ja) 電池装置
JP7153463B2 (ja) リチウムイオン二次電池
EP3696887B1 (en) Electrode for non-aqueous electrolyte secondary battery
EP3696888A1 (en) Non-aqueous electrolyte secondary battery electrode
JP7285060B2 (ja) 非水電解質二次電池用正極活物質スラリーの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210810

R150 Certificate of patent or registration of utility model

Ref document number: 6929186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150