JP2019050248A - Wafer processing method - Google Patents

Wafer processing method Download PDF

Info

Publication number
JP2019050248A
JP2019050248A JP2017172835A JP2017172835A JP2019050248A JP 2019050248 A JP2019050248 A JP 2019050248A JP 2017172835 A JP2017172835 A JP 2017172835A JP 2017172835 A JP2017172835 A JP 2017172835A JP 2019050248 A JP2019050248 A JP 2019050248A
Authority
JP
Japan
Prior art keywords
wafer
sealing material
alignment
surface side
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017172835A
Other languages
Japanese (ja)
Other versions
JP6976650B2 (en
Inventor
鈴木 克彦
Katsuhiko Suzuki
克彦 鈴木
祐人 伴
Yuri Ban
祐人 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2017172835A priority Critical patent/JP6976650B2/en
Priority to KR1020180103485A priority patent/KR102627958B1/en
Priority to CN201811036196.4A priority patent/CN109494189B/en
Priority to SG10201807733PA priority patent/SG10201807733PA/en
Priority to DE102018215245.4A priority patent/DE102018215245A1/en
Priority to TW107131420A priority patent/TWI788410B/en
Publication of JP2019050248A publication Critical patent/JP2019050248A/en
Application granted granted Critical
Publication of JP6976650B2 publication Critical patent/JP6976650B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0823Devices involving rotation of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • B24B7/228Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding thin, brittle parts, e.g. semiconductors, wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dicing (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Laser Beam Processing (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

To provide a wafer processing method capable of preforming an alignment process through a sealing material including a carbon black coated on a surface of a wafer.SOLUTION: A wafer processing method includes the steps of: forming a cut groove having a depth equivalent to a finishing thickness of a device chip by a cutting blade from a surface 11a side of a wafer 11; sealing the surface of the wafer with a sealing material 20; exposing the sealing material in the cut groove by grinding the wafer to the finishing thickness of the device chip from a rear surface side of the wafer; detecting an alignment mark by transmitting the sealing material and imaging the surface side of the wafer by infrared ray imaging means 18A from the surface side of the wafer and detecting the division schedule line to be subjected to laser processing on the basis of the alignment mark; and dividing the wafer into individual device chips in which one surface and four side surfaces are surrounded by the sealing material via ablation processing by irradiating the wafer with a laser beam of a wavelength having absorbability to the sealing material from the surface side of the wafer.SELECTED DRAWING: Figure 5

Description

本発明は、ウェーハを加工して5Sモールドパッケージを形成するウェーハの加工方法に関する。   The present invention relates to a wafer processing method for processing a wafer to form a 5S mold package.

LSIやNAND型フラッシュメモリ等の各種デバイスの小型化及び高密度実装化を実現する構造として、例えばデバイスチップをチップサイズでパッケージ化したチップサイズパッケージ(CSP)が実用に供され、携帯電話やスマートフォン等に広く使用されている。更に、近年はこのCSPの中で、チップの表面のみならず全側面を封止材で封止したCSP、所謂5Sモールドパッケージが開発され実用化されている。   As a structure for realizing miniaturization and high density mounting of various devices such as LSI and NAND flash memory, for example, a chip size package (CSP) in which device chips are packaged in a chip size is put to practical use, and mobile phones and smartphones are provided. It is widely used in Furthermore, in recent years, a so-called 5S mold package has been developed and put into practical use in this CSP, in which not only the surface of the chip but also all the side surfaces are sealed with a sealing material.

従来の5Sモールドパッケージは、以下の工程によって製作されている。
(1)半導体ウェーハ(以下、ウェーハと略称することがある)の表面にデバイス(回路)及びバンプと呼ばれる外部接続端子を形成する。
(2)ウェーハの表面側から分割予定ラインに沿ってウェーハを切削し、デバイスチップの仕上がり厚さに相当する深さの切削溝を形成する。
(3)ウェーハの表面をカーボンブラック入りの封止材で封止する。
(4)ウェーハの裏面側をデバイスチップの仕上がり厚さまで研削して切削溝中の封止材を露出させる。
(5)ウェーハの表面はカーボンブラック入りの封止材で封止されているため、ウェーハ表面の外周部分の封止材を除去してターゲットパターン等のアライメントマークを露出させ、このアライメントマークに基づいて切削すべき分割予定ラインを検出するアライメントを実施する。
(6)アライメントに基づいて、ウェーハの表面側から分割予定ラインに沿ってウェーハを切削して、表面及び全側面が封止材で封止された5Sモールドパッケージに分割する。
The conventional 5S mold package is manufactured by the following process.
(1) Form external connection terminals called devices (circuits) and bumps on the surface of a semiconductor wafer (hereinafter sometimes referred to as a wafer).
(2) The wafer is cut along the planned dividing line from the front side of the wafer to form a cutting groove having a depth corresponding to the finished thickness of the device chip.
(3) Seal the surface of the wafer with a carbon black-containing sealant.
(4) The back side of the wafer is ground to the finished thickness of the device chip to expose the sealing material in the cutting groove.
(5) Since the surface of the wafer is sealed with a carbon black-containing sealant, the sealant on the outer peripheral portion of the wafer surface is removed to expose the alignment mark such as the target pattern, and based on this alignment mark An alignment is performed to detect a planned dividing line to be cut.
(6) Based on the alignment, the wafer is cut from the front side of the wafer along a planned dividing line to divide it into a 5S mold package whose front surface and all side surfaces are sealed with a sealing material.

上述したように、ウェーハの表面はカーボンブラックを含む封止材で封止されているため、ウェーハ表面に形成されているデバイス等は肉眼では全く見ることはできない。この問題を解決してアライメントを可能とするため、上記(5)で記載したように、ウェーハ表面の封止材の外周部分を除去してターゲットパターン等のアライメントマークを露出させ、このアライメントマークに基づいて切削すべき分割予定ラインを検出してアライメントを実行する技術を本出願人は開発した(特開2013−074021号公報及び特開2016−015438号公報参照)。   As described above, since the surface of the wafer is sealed with a sealant containing carbon black, devices and the like formed on the surface of the wafer can not be seen by the naked eye at all. In order to solve this problem and enable alignment, as described in (5) above, the outer peripheral portion of the sealing material on the wafer surface is removed to expose an alignment mark such as a target pattern, and this alignment mark is used. The applicant has developed a technique for detecting a planned dividing line to be cut based on the above and performing alignment (see Japanese Patent Application Laid-Open No. 2013-074021 and Japanese Patent Application Laid-Open No. 2016-015438).

特開2013−074021号公報JP, 2013-074021, A 特開2016−015438号公報JP, 2016-015438, A

しかし、上記公開公報に記載されたアライメント方法では、ダイシング用の切削ブレードに替えてエッジトリミング用の幅の広い切削ブレードをスピンドルに装着してウェーハの外周部分の封止材を除去する工程が必要であり、切削ブレードの交換及びエッジトリミングにより外周部分の封止材を除去する手間が掛かり、生産性が悪いという問題がある。   However, in the alignment method described in the above-mentioned publication, it is necessary to replace the cutting blade for dicing with a step of mounting a wide cutting blade for edge trimming on the spindle to remove the sealing material on the outer peripheral portion of the wafer. There is a problem that it takes time and effort to remove the sealing material on the outer peripheral portion by replacing the cutting blade and performing edge trimming, and the productivity is poor.

本発明はこのような点に鑑みてなされたものであり、その目的とするところは、ウェーハ表面に被覆されたカーボンブラックを含む封止材を通してアライメント工程を実施可能なウェーハの加工方法を提供することである。   The present invention has been made in view of these points, and an object of the present invention is to provide a method of processing a wafer capable of performing an alignment process through a sealant containing carbon black coated on the wafer surface. It is.

本発明によると、交差して形成された複数の分割予定ラインによって区画された表面の各領域にそれぞれ複数のバンプを有するデバイスが形成されたウェーハの加工方法であって、該ウェーハの表面側から該分割予定ラインに沿って切削ブレードによってデバイスチップの仕上がり厚さに相当する深さの切削溝を形成する切削溝形成工程と、該切削溝形成工程を実施した後、該切削溝を含む該ウェーハの表面を封止材で封止する封止工程と、該封止工程を実施した後、該ウェーハの裏面側から該デバイスチップの仕上がり厚さまで該ウェーハを研削して該切削溝中の該封止材を露出させる研削工程と、該研削工程を実施した後、該ウェーハの表面側から赤外線撮像手段によって該封止材を透過してウェーハの表面側を撮像してアライメントマークを検出し、該アライメントマークに基づいてレーザー加工すべき該分割予定ラインを検出するアライメント工程と、該アライメント工程を実施した後、該ウェーハの表面側から該分割予定ラインに沿って該封止材に対して吸収性を有する波長のレーザービームを照射して、アブレーション加工により該封止材によって表面及び4側面が囲繞された個々のデバイスチップに分割する分割工程と、を備え、該封止工程では、該赤外線撮像手段が受光する赤外線が透過するような透過性を有する封止材によって該ウェーハの表面が封止されることを特徴とするウェーハの加工方法が提供される。   According to the present invention, there is provided a method of processing a wafer in which a device having a plurality of bumps is formed in each area of the surface partitioned by a plurality of planned dividing lines formed crossing each other, from the surface side of the wafer A cutting groove forming step of forming a cutting groove having a depth corresponding to a finished thickness of a device chip by a cutting blade along the dividing line, and the wafer including the cutting groove after performing the cutting groove forming step And a sealing step of sealing the surface of the wafer with a sealing material and grinding the wafer from the back surface side of the wafer to a finished thickness of the device chip to perform the sealing in the cutting groove. After carrying out the grinding process for exposing the stopper and the grinding process, the sealing material is transmitted from the front surface side of the wafer by the infrared imaging means to image the front surface side of the wafer for alignment Alignment step of detecting the dividing line to be laser-processed based on the alignment mark, and performing the alignment step, and then sealing along the dividing line from the surface side of the wafer. And a division step of irradiating the material with a laser beam of an absorbing wavelength and dividing the material into individual device chips whose surface and four sides are surrounded by the sealing material by ablation processing; In the process, there is provided a processing method of a wafer characterized in that the surface of the wafer is sealed by a sealing material having transparency so as to transmit infrared light received by the infrared imaging means.

好ましくは、アライメント工程で用いる赤外線撮像手段はInGaAs撮像素子を含む。   Preferably, the infrared imaging means used in the alignment step includes an InGaAs imaging device.

本発明のウェーハの加工方法によると、赤外線撮像手段が受光する赤外線が透過するような封止材でウェーハの表面を封止し、赤外線撮像手段によって封止材を透過してウェーハに形成されたアライメントマークを検出し、アライメントマークに基づいてアライメントを実施できるようにしたので、従来のようにウェーハの表面の外周部分の封止材を除去することなく、簡単にアライメント工程を実施できる。よって、ウェーハの表面側から封止材に対して吸収性を有する波長のレーザービームを分割予定ラインに沿って照射して、アブレーション加工によりウェーハを個々のデバイスチップに分割することができる。   According to the wafer processing method of the present invention, the surface of the wafer is sealed with a sealing material through which the infrared light received by the infrared imaging means is transmitted, and the sealing material is transmitted by the infrared imaging means to form the wafer Since the alignment mark is detected and alignment can be performed based on the alignment mark, the alignment process can be easily performed without removing the sealing material on the outer peripheral portion of the surface of the wafer as in the prior art. Therefore, the wafer can be divided into individual device chips by ablation processing by irradiating a laser beam of a wavelength having absorption to the sealing material from the surface side of the wafer along the dividing lines.

半導体ウェーハの斜視図である。It is a perspective view of a semiconductor wafer. 第1切削溝形成工程を示す斜視図である。It is a perspective view which shows a 1st cutting groove formation process. 封止工程を示す斜視図である。It is a perspective view which shows a sealing process. 研削工程を示す一部断面側面図である。It is a partial cross section side view which shows a grinding process. アライメント工程を示す断面図である。It is sectional drawing which shows an alignment process. 図6(A)は分割工程を示す断面図、図6(B)は分割工程を示す拡大断面図である。FIG. 6A is a cross-sectional view showing the dividing step, and FIG. 6B is an enlarged cross-sectional view showing the dividing step.

以下、本発明の実施形態を図面を参照して詳細に説明する。図1を参照すると、本発明の加工方法で加工するのに適した半導体ウェーハ(以下、単にウェーハと略称することがある)11の表面側斜視図が示されている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Referring to FIG. 1, there is shown a surface side perspective view of a semiconductor wafer (hereinafter sometimes simply referred to as a wafer) 11 suitable for processing by the processing method of the present invention.

半導体ウェーハ11の表面11aにおいては、複数の分割予定ライン(ストリート)13が格子状に形成されており、直交する分割予定ライン13によって区画された各領域にはIC、LSI等のデバイス15が形成されている。   On the surface 11 a of the semiconductor wafer 11, a plurality of planned dividing lines (streets) 13 are formed in a lattice, and devices 15 such as IC and LSI are formed in each area partitioned by the planned dividing lines 13 orthogonal to each other. It is done.

各デバイス15の表面には複数の電極バンプ(以下、単にバンプと略称することがある)17を有しており、ウェーハ11はそれぞれ複数のバンプ17を備えた複数のデバイス15が形成されたデバイス領域19と、デバイス領域19を囲繞する外周余剰領域21とをその表面に備えている。   Each of the devices 15 has a plurality of electrode bumps (hereinafter may be simply referred to as bumps) 17 on the surface, and the wafer 11 is a device in which a plurality of devices 15 each having a plurality of bumps 17 are formed. An area 19 and an outer peripheral surplus area 21 surrounding the device area 19 are provided on the surface.

本発明実施形態のウェーハの加工方法では、まず、第1の工程として、ウェーハ11の表面側から分割予定ライン13に沿って切削ブレードによってデバイスチップの仕上がり厚さに相当する深さの切削溝を形成する切削溝形成工程を実施する。この切削溝形成工程を図2を参照して説明する。   In the method for processing a wafer according to the embodiment of the present invention, first, as a first step, a cutting groove having a depth corresponding to the finished thickness of the device chip is formed by the cutting blade along the planned dividing line 13 from the surface side of the wafer 11 Implement a cutting groove forming step to be formed. The cutting groove forming process will be described with reference to FIG.

切削ユニット10は、スピンドル12の先端部に着脱可能に装着された切削ブレード14と、撮像手段(撮像ユニット)18を有するアライメントユニット16とを備えている。撮像ユニット18は、可視光で撮像する顕微鏡及びカメラを有するほか、赤外線画像を撮像する赤外線撮像素子を備えている。本実施形態では、赤外線撮像素子としてInGaAs撮像素子を採用した。   The cutting unit 10 includes a cutting blade 14 detachably mounted on the tip of the spindle 12 and an alignment unit 16 having an imaging unit (imaging unit) 18. The imaging unit 18 has a microscope and a camera for imaging with visible light, and further includes an infrared imaging element for imaging an infrared image. In the present embodiment, an InGaAs imaging device is adopted as the infrared imaging device.

切削溝形成工程を実施する前に、まず撮像ユニット18でウェーハ11の表面を可視光で撮像し、各デバイス15に形成されているターゲットパターン等のアライメントマークを検出し、このアライメントマークに基づいて切削すべき分割予定ライン13を検出するアライメントを実施する。   Before carrying out the cutting groove forming process, first, the surface of the wafer 11 is imaged with visible light by the imaging unit 18, alignment marks such as target patterns formed on each device 15 are detected, and based on the alignment marks An alignment is performed to detect the planned dividing line 13 to be cut.

アライメント実施後、矢印R1方向に高速回転する切削ブレード14をウェーハ11の表面11a側から分割予定ライン13に沿ってデバイスチップの仕上がり厚さに相当する深さに切り込ませ、ウェーハ11を吸引保持した図示しないチャックテーブルを矢印X1方向に加工送りすることにより、分割予定ライン13に沿って切削溝23を形成する切削溝形成工程を実施する。   After the alignment is performed, the cutting blade 14 rotating at high speed in the direction of arrow R1 is cut from the surface 11a side of the wafer 11 along the planned dividing line 13 to a depth corresponding to the finished thickness of the device chip, and the wafer 11 is suctioned and held. The cutting groove forming step of forming the cutting groove 23 along the planned dividing line 13 is carried out by processing and feeding the chuck table (not shown) in the direction of the arrow X1.

この切削溝形成工程を、切削ユニット10を分割予定ライン13のピッチずつ加工送り方向X1と直交する方向に割り出し送りしながら、第1の方向に伸長する分割予定ライン13に沿って次々と実施する。   This cutting groove forming step is carried out one after another along the planned dividing line 13 extending in the first direction while indexing and feeding the cutting unit 10 in the direction orthogonal to the processing feed direction X1 by the pitch of the planned dividing line 13 .

次いで、図示しないチャックテーブルを90°回転した後、第1の方向に直交する第2の方向に伸長する分割予定ライン13に沿って同様な切削溝形成工程を次々と実施する。   Next, after rotating a chuck table (not shown) by 90 °, similar cutting groove forming processes are successively performed along the planned dividing line 13 extending in a second direction orthogonal to the first direction.

切削溝形成工程を実施した後、図3に示すように、ウェーハ11の表面11aに封止材20を塗布して、切削溝23を含むウェーハ11の表面11aを封止材で封止する封止工程を実施する。封止材20は流動性があるため、封止工程を実施すると、切削溝23中に封止材20が充填される。   After performing the cutting groove forming process, as shown in FIG. 3, the sealing material 20 is applied to the surface 11 a of the wafer 11 to seal the surface 11 a of the wafer 11 including the cutting grooves 23 with the sealing material Carry out the stopping process. Since the sealing material 20 is fluid, the sealing material 20 is filled in the cutting groove 23 when the sealing process is performed.

封止材20としては、質量%でエポキシ樹脂又はエポキシ樹脂+フェノール樹脂10.3%、シリカフィラー85.3%、カーボンブラック0.1〜0.2%、その他の成分4.2〜4.3%を含む組成とした。その他の成分としては、例えば、金属水酸化物、三酸化アンチモン、二酸化ケイ素等を含む。   As the sealing material 20, epoxy resin or epoxy resin + phenol resin 10.3%, silica filler 85.3%, carbon black 0.1 to 0.2%, and other components 4.2 to 4 in mass%. The composition contained 3%. Other components include, for example, metal hydroxides, antimony trioxide, silicon dioxide and the like.

このような組成の封止材20でウェーハ11の表面11aを被覆してウェーハ11の表面11aを封止すると、封止材20中にごく少量含まれているカーボンブラックにより封止材20が黒色となるため、封止材20を通してウェーハ11の表面11aを見ることは通常困難である。   When the surface 11a of the wafer 11 is covered with the sealing material 20 having such a composition to seal the surface 11a of the wafer 11, the sealing material 20 is black due to the carbon black contained in a very small amount in the sealing material 20. Therefore, it is usually difficult to view the surface 11 a of the wafer 11 through the encapsulant 20.

ここで、封止材20中にカーボンブラックを混入させるのは、主にデバイス15の静電破壊を防止するためであり、現在のところカーボンブラックを含有しない封止材は市販されていない。   Here, the purpose of mixing the carbon black into the sealing material 20 is mainly to prevent electrostatic breakdown of the device 15. At present, no sealing material containing no carbon black is commercially available.

封止材20の塗布方法は特に限定されないが、バンプ17の高さまで封止材20を塗布するのが望ましく、次いでエッチングにより封止材20をエッチングして、バンプ17の頭出しをする。   Although the method of applying the sealing material 20 is not particularly limited, it is desirable to apply the sealing material 20 to the height of the bumps 17, and then the sealing material 20 is etched by etching to find the bumps 17.

封止工程を実施した後、ウェーハ11の裏面11b側からデバイスチップの仕上がり厚さまでウェーハ11を研削して、第1の切削溝23中の封止材20を露出させる研削工程を実施する。   After the sealing process is performed, the wafer 11 is ground from the back surface 11 b side of the wafer 11 to the finished thickness of the device chip, and the grinding process is performed to expose the sealing material 20 in the first cutting groove 23.

この研削工程を図4を参照して説明する。ウェーハ11の表面11aに表面保護テープ22を貼着し、研削装置のチャックテーブル24で表面保護テープ22を介してウェーハ11を吸引保持する。   This grinding process will be described with reference to FIG. The surface protection tape 22 is attached to the surface 11 a of the wafer 11, and the wafer 11 is sucked and held by the chuck table 24 of the grinding apparatus via the surface protection tape 22.

研削ユニット26は、スピンドルハウジング28中に回転可能に収容され図示しないモーターにより回転駆動されるスピンドル30と、スピンドル30の先端に固定されたホイールマウント32と、ホイールマウント32に着脱可能に装着された研削ホイール34とを含んでいる。研削ホイール34は、環状のホイール基台36と、ホイール基台36の下端外周に固着された複数の研削砥石38とから構成される。   The grinding unit 26 is detachably mounted on a spindle 30 rotatably accommodated in a spindle housing 28 and rotationally driven by a motor (not shown), a wheel mount 32 fixed to the tip of the spindle 30, and a wheel mount 32. And a grinding wheel 34. The grinding wheel 34 includes an annular wheel base 36 and a plurality of grinding wheels 38 fixed to the outer periphery of the lower end of the wheel base 36.

研削工程では、チャックテーブル24を矢印aで示す方向に例えば300rpmで回転しつつ、研削ホイール34を矢印bで示す方向に例えば6000rpmで回転させると共に、図示しない研削ユニット送り機構を駆動して研削ホイール34の研削砥石38をウェーハ11の裏面11bに接触させる。   In the grinding process, while rotating the chuck table 24 at, for example, 300 rpm in the direction indicated by the arrow a, the grinding wheel 34 is rotated at, for example, 6,000 rpm, in the direction indicated by the arrow b. The grinding wheel 38 is brought into contact with the back surface 11 b of the wafer 11.

そして、研削ホイール34を所定の研削送り速度で下方に所定量研削送りしながらウェー11の裏面11bを研削する。接触式又は非接触式の厚み測定ゲージでウェーハ11の厚さを測定しながら、ウェーハ11を所定の厚さ、例えば100μmに研削して、切削溝23中に埋設された封止材20を露出させる。   Then, the back surface 11 b of the way 11 is ground while the grinding wheel 34 is ground and fed downward by a predetermined grinding feed speed. While measuring the thickness of the wafer 11 with a contact-type or non-contact-type thickness measuring gauge, the wafer 11 is ground to a predetermined thickness, for example 100 μm, to expose the sealing material 20 embedded in the cutting groove 23 Let

研削工程を実施した後、ウェーハ11の表面11a側から赤外線撮像手段によって封止材20を通してウェーハ11の表面11aを撮像し、ウェーハ11の表面に形成されている少なくとも2つのターゲットパターン等のアライメントマークを検出し、これらのアライメントマークに基づいてレーザー加工すべき分割予定ライン13を検出するアライメント工程を実施する。   After the grinding process is performed, the surface 11a of the wafer 11 is imaged from the surface 11a side of the wafer 11 through the sealing material 20 by the infrared imaging means, and alignment marks such as at least two target patterns formed on the surface of the wafer 11 Are detected, and an alignment step is performed to detect the planned dividing line 13 to be laser-processed based on these alignment marks.

このアライメント工程について、図5を参照して詳細に説明する。アライメント工程を実施する前に、ウェーハ11の裏面11b側を外周部が環状フレームFに装着されたダイシングテープTに貼着する。   This alignment step will be described in detail with reference to FIG. Before carrying out the alignment step, the back surface 11 b side of the wafer 11 is attached to the dicing tape T whose outer peripheral portion is mounted on the annular frame F.

アライメント工程では、図5に示すように、ダイシングテープTを介して切削装置のチャックテーブル40でウェーハ11を吸引保持し、ウェーハ11の表面11aを封止している封止材20を上方に露出させる。そして、クランプ42で環状フレームFをクランプして固定する。   In the alignment step, as shown in FIG. 5, the wafer 11 is sucked and held by the chuck table 40 of the cutting apparatus via the dicing tape T, and the sealing material 20 sealing the surface 11 a of the wafer 11 is exposed upward. Let Then, the annular frame F is clamped and fixed by the clamp 42.

アライメント工程では、図2に示した切削装置の撮像ユニット18と同様なレーザー加工装置の撮像ユニット18Aの赤外線撮像素子でウェーハ11の表面11aを撮像する。封止材20は、撮像ユニット18の赤外線撮像素子が受光する赤外線が透過する封止材から構成されているため、赤外線撮像素子によってウェーハ11の表面11aに形成された少なくとも2つのターゲットパターン等のアライメントマークを検出することができる。   In the alignment step, the surface 11a of the wafer 11 is imaged by an infrared imaging element of an imaging unit 18A of a laser processing apparatus similar to the imaging unit 18 of the cutting apparatus shown in FIG. Since the sealing material 20 is made of a sealing material through which the infrared light received by the infrared imaging device of the imaging unit 18 is transmitted, the sealing material 20 includes at least two target patterns and the like formed on the surface 11 a of the wafer 11 by the infrared imaging device. Alignment marks can be detected.

好ましくは、赤外線撮像素子として感度の高いInGaAs撮像素子を採用する。好ましくは、撮像ユニット18,18Aは、露光時間等を調整できるエクスポージャーを備えている。   Preferably, an InGaAs imaging device with high sensitivity is employed as the infrared imaging device. Preferably, the imaging units 18, 18A have an exposure that can adjust the exposure time and the like.

次いで、これらのアライメントマークを結んだ直線が加工送り方向と平行となるようにチャックテーブル40をθ回転し、更にアライメントマークと分割予定ライン13の中心との距離だけチャックテーブル40を加工送り方向X1(図6(A)参照)と直交する方向に移動することにより、レーザー加工すべき分割予定ライン13を検出する。   Then, the chuck table 40 is rotated by θ so that the straight line connecting these alignment marks becomes parallel to the processing feed direction, and the chuck table 40 is processed in the processing feed direction X1 by the distance between the alignment mark and the planned dividing line 13. By moving in a direction orthogonal to (see FIG. 6A), the planned dividing line 13 to be laser-processed is detected.

アライメント工程を実施した後、図6(A)に示すように、ウェーハ11の表面11a側から分割予定ライン13に沿ってレーザー加工装置のレーザーヘッド(集光器)46から封止材20に対して吸収性を有する波長(例えば、355nm)のレーザービームLBを照射して、アブレーション加工により図6(B)に示すようなレーザー加工溝25を形成し、ウェーハ11を表面11a及び4つの側面が封止材20によって囲繞された個々のデバイスチップ27に分割する分割工程を実施する。   After the alignment process is performed, as shown in FIG. 6A, the laser head (condenser) 46 of the laser processing apparatus moves the sealing material 20 along the planned dividing line 13 from the surface 11a side of the wafer 11 Laser beam LB having a wavelength (for example, 355 nm) having an absorption property to form a laser-processed groove 25 as shown in FIG. 6B by ablation processing, and the wafer 11 has a surface 11a and four side surfaces A division process is performed to divide into individual device chips 27 surrounded by the sealing material 20.

この分割工程を、第1の方向に伸長する分割予定ライン13に沿って次々と実施した後、チャックテーブル40を90°回転し、第1の方向に直交する第2の方向に伸長する分割予定ライン13に沿って次々と実施することにより、図6(B)に示すように、ウェーハ11を表面11a及び4つの側面が封止材20によって封止された個々のデバイスチップ27に分割することができる。   After performing this division process one after another along the planned dividing line 13 extending in the first direction, the chuck table 40 is rotated by 90 ° and the dividing schedule is expanded in the second direction orthogonal to the first direction By sequentially implementing along the line 13, as shown in FIG. 6B, the wafer 11 is divided into the surface 11a and the individual device chips 27 whose four side surfaces are sealed by the sealing material 20. Can.

この分割工程で使用するレーザービームLBのビーム径は切削溝形成工程で使用する切削ブレード14の幅より小さいので、図6(B)に示すレーザー加工溝25を形成すると、デバイスチップ27の側面は封止材20で封止されることになる。   Since the beam diameter of the laser beam LB used in this dividing step is smaller than the width of the cutting blade 14 used in the cutting groove forming step, the side surface of the device chip 27 is the same as the laser processing groove 25 shown in FIG. It is sealed by the sealing material 20.

このようにして製造したデバイスチップ27は、デバイスチップ27の表裏を反転してバンプ17をマザーボードの導電パッドに接続するフリップチップボンディングにより、マザーボードに実装することができる。   The device chip 27 manufactured in this manner can be mounted on the motherboard by flip chip bonding in which the front and back of the device chip 27 are inverted to connect the bumps 17 to the conductive pads of the motherboard.

10 切削ユニット
11 半導体ウェーハ
13 分割予定ライン
14 切削ブレード
15 デバイス
16 アライメントユニット
17 電極バンプ
18,18A 撮像ユニット
20 封止材
23 切削溝
25 レーザー加工溝
26 研削ユニット
27 デバイスチップ
34 研削ホイール
38 研削砥石
46 レーザーヘッド(集光器)
DESCRIPTION OF SYMBOLS 10 cutting unit 11 semiconductor wafer 13 division scheduled line 14 cutting blade 15 device 16 alignment unit 17 electrode bump 18, 18A imaging unit 20 sealing material 23 cutting groove 25 laser processing groove 26 grinding unit 27 device chip 34 grinding wheel 38 grinding wheel 46 Laser head (Condenser)

Claims (2)

交差して形成された複数の分割予定ラインによって区画された表面の各領域にそれぞれ複数のバンプを有するデバイスが形成されたウェーハの加工方法であって、
該ウェーハの表面側から該分割予定ラインに沿って切削ブレードによってデバイスチップの仕上がり厚さに相当する深さの切削溝を形成する切削溝形成工程と、
該切削溝形成工程を実施した後、該切削溝を含む該ウェーハの表面を封止材で封止する封止工程と、
該封止工程を実施した後、該ウェーハの裏面側から該デバイスチップの仕上がり厚さまで該ウェーハを研削して該切削溝中の該封止材を露出させる研削工程と、
該研削工程を実施した後、該ウェーハの表面側から赤外線撮像手段によって該封止材を透過してウェーハの表面側を撮像してアライメントマークを検出し、該アライメントマークに基づいてレーザー加工すべき該分割予定ラインを検出するアライメント工程と、
該アライメント工程を実施した後、該ウェーハの表面側から該分割予定ラインに沿って該封止材に対して吸収性を有する波長のレーザービームを照射して、アブレーション加工により該封止材によって表面及び4側面が囲繞された個々のデバイスチップに分割する分割工程と、を備え、
該封止工程では、該赤外線撮像手段が受光する赤外線が透過するような透過性を有する封止材によって該ウェーハの表面が封止されることを特徴とするウェーハの加工方法。
A method of processing a wafer in which a device having a plurality of bumps is formed in each area of a surface partitioned by a plurality of planned dividing lines formed crossing each other,
A cutting groove forming step of forming a cutting groove having a depth corresponding to a finished thickness of a device chip by a cutting blade along the planned dividing line from the surface side of the wafer;
A sealing step of sealing the surface of the wafer including the cutting groove with a sealing material after performing the cutting groove forming step;
Grinding the wafer from the back surface side of the wafer to the finished thickness of the device chip after the sealing step is performed to expose the sealing material in the cutting groove;
After the grinding process is performed, the sealing material is transmitted from the surface side of the wafer by infrared imaging means to image the surface side of the wafer to detect an alignment mark, and laser processing should be performed based on the alignment mark An alignment step of detecting the dividing planned line;
After the alignment step is carried out, a laser beam of a wavelength having absorption to the sealing material is irradiated from the surface side of the wafer along the planned dividing line, and the surface is formed by the sealing material by ablation processing. And a dividing step of dividing into individual device chips surrounded by four sides,
In the sealing step, the surface of the wafer is sealed by a sealing material having transparency so as to transmit infrared light received by the infrared imaging means.
前記アライメント工程で用いる前記赤外線撮像手段はInGaAs撮像素子を含む請求項1記載のウェーハの加工方法。   The method for processing a wafer according to claim 1, wherein the infrared imaging unit used in the alignment step includes an InGaAs imaging device.
JP2017172835A 2017-09-08 2017-09-08 Wafer processing method Active JP6976650B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017172835A JP6976650B2 (en) 2017-09-08 2017-09-08 Wafer processing method
KR1020180103485A KR102627958B1 (en) 2017-09-08 2018-08-31 Processing method of wafer
CN201811036196.4A CN109494189B (en) 2017-09-08 2018-09-06 Wafer processing method
SG10201807733PA SG10201807733PA (en) 2017-09-08 2018-09-07 Wafer processing method
DE102018215245.4A DE102018215245A1 (en) 2017-09-08 2018-09-07 Processing method for a wafer
TW107131420A TWI788410B (en) 2017-09-08 2018-09-07 Wafer processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017172835A JP6976650B2 (en) 2017-09-08 2017-09-08 Wafer processing method

Publications (2)

Publication Number Publication Date
JP2019050248A true JP2019050248A (en) 2019-03-28
JP6976650B2 JP6976650B2 (en) 2021-12-08

Family

ID=65441494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017172835A Active JP6976650B2 (en) 2017-09-08 2017-09-08 Wafer processing method

Country Status (6)

Country Link
JP (1) JP6976650B2 (en)
KR (1) KR102627958B1 (en)
CN (1) CN109494189B (en)
DE (1) DE102018215245A1 (en)
SG (1) SG10201807733PA (en)
TW (1) TWI788410B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023209909A1 (en) * 2022-04-27 2023-11-02 ヤマハ発動機株式会社 Dicing device, semiconductor chip manufacturing method, and semiconductor chip

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006721A (en) * 2002-03-28 2004-01-08 Toshiba Corp Semiconductor device
JP2004297099A (en) * 2004-07-21 2004-10-21 Oki Electric Ind Co Ltd Manufacturing method of semiconductor device
JP2005538572A (en) * 2002-09-11 2005-12-15 フリースケール セミコンダクター インコーポレイテッド Cutting method for wafer coating and die separation
JP2015023078A (en) * 2013-07-17 2015-02-02 株式会社ディスコ Method of processing wafer
JP2017108089A (en) * 2015-12-04 2017-06-15 株式会社東京精密 Laser processing apparatus and laser processing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003165893A (en) * 2001-11-30 2003-06-10 Shin Etsu Chem Co Ltd Epoxy resin composition for sealing semiconductor and semiconductor device
JP2003321594A (en) * 2002-04-26 2003-11-14 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device
JP5948034B2 (en) 2011-09-27 2016-07-06 株式会社ディスコ Alignment method
JP2016015438A (en) 2014-07-03 2016-01-28 株式会社ディスコ Alignment method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006721A (en) * 2002-03-28 2004-01-08 Toshiba Corp Semiconductor device
JP2005538572A (en) * 2002-09-11 2005-12-15 フリースケール セミコンダクター インコーポレイテッド Cutting method for wafer coating and die separation
JP2004297099A (en) * 2004-07-21 2004-10-21 Oki Electric Ind Co Ltd Manufacturing method of semiconductor device
JP2015023078A (en) * 2013-07-17 2015-02-02 株式会社ディスコ Method of processing wafer
JP2017108089A (en) * 2015-12-04 2017-06-15 株式会社東京精密 Laser processing apparatus and laser processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023209909A1 (en) * 2022-04-27 2023-11-02 ヤマハ発動機株式会社 Dicing device, semiconductor chip manufacturing method, and semiconductor chip

Also Published As

Publication number Publication date
CN109494189B (en) 2023-10-13
TW201913870A (en) 2019-04-01
KR20190028301A (en) 2019-03-18
DE102018215245A1 (en) 2019-03-14
JP6976650B2 (en) 2021-12-08
TWI788410B (en) 2023-01-01
CN109494189A (en) 2019-03-19
KR102627958B1 (en) 2024-01-19
SG10201807733PA (en) 2019-04-29

Similar Documents

Publication Publication Date Title
KR102631710B1 (en) Method for processing wafer
KR102631711B1 (en) Method for processing wafer
KR102581132B1 (en) Method for processing wafer
JP2019050252A (en) Wafer processing method
JP7009027B2 (en) Wafer processing method
KR102627958B1 (en) Processing method of wafer
KR102619266B1 (en) Method for processing wafer
KR102581127B1 (en) Method for processing wafer
KR102627412B1 (en) Processing method of wafer
KR102581131B1 (en) Method for processing wafer
JP6918419B2 (en) Wafer processing method
JP6973922B2 (en) Wafer processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211109

R150 Certificate of patent or registration of utility model

Ref document number: 6976650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150