JP2019022415A - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
JP2019022415A
JP2019022415A JP2017141893A JP2017141893A JP2019022415A JP 2019022415 A JP2019022415 A JP 2019022415A JP 2017141893 A JP2017141893 A JP 2017141893A JP 2017141893 A JP2017141893 A JP 2017141893A JP 2019022415 A JP2019022415 A JP 2019022415A
Authority
JP
Japan
Prior art keywords
control
index
torque
electrical machine
rotating electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017141893A
Other languages
English (en)
Inventor
将司 宮崎
Masashi Miyazaki
将司 宮崎
健太 木全
Kenta Kizen
健太 木全
健 岩月
Takeshi Iwatsuki
健 岩月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2017141893A priority Critical patent/JP2019022415A/ja
Publication of JP2019022415A publication Critical patent/JP2019022415A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】回転電機のトルクを車輪に伝達させて車両を走行させる際に、内燃機関の駆動力を自動有段変速機を介して車輪に伝達させる車両に近い運転フィーリングを運転者に与えることが可能な制御装置を実現する。【解決手段】制御装置30は、車速に応じた第1指標と要求トルクに応じた第2指標とに応じた仮想変速条件が規定されたマップの情報を取得可能に構成される。制御装置30は、キャリア周波数に基づくパルス幅変調により回転電機10を駆動制御して、要求トルクに応じた基準トルクを回転電機10に出力させている状態において、第1指標及び第2指標が仮想変速条件を満たしたタイミングで仮想変速制御を実行する。仮想変速制御は、回転電機10の出力トルクを一時的に基準トルクとは異ならせる第1制御と、キャリア周波数を一時的に変化させる第2制御との、少なくとも一方を行う制御である。【選択図】図1

Description

本発明は、車輪に駆動連結される回転電機と、回転電機を駆動するインバータと、を備えた車両用駆動装置を制御対象とする制御装置に関する。
車輪に駆動連結される回転電機と回転電機を駆動するインバータとを備えた車両用駆動装置を制御対象とする制御装置の一例が、特開2016−119746号公報(特許文献1)に記載されている。特許文献1の段落0024に記載されているように、特許文献1に記載の構成では、回転電機としてのモータを駆動するために用いられる要求トルクが、アクセルペダルの踏み込み量や車速に基づく運転者の出力要求に基づいて設定される。そして、モータは、その時点でのモータ回転数で要求トルクが得られるように出力が制御される。
ところで、特許文献1に記載のように運転者の出力要求に応じたトルクを回転電機に出力させる制御を行った場合、回転電機の出力トルクは、運転者の出力要求が一定であれば一定に維持され、運転者がアクセルペダルに対する操作を行うことで運転者の出力要求が変化する場合にも、回転電機の出力トルクは当該出力要求の変化に合わせて連続的に(滑らかに)変化する。これに対して、内燃機関の駆動力を自動有段変速機を介して車輪に伝達させる車両(以下、「内燃機関車両」という。)のように、自動変速時の車両加速度の変化や内燃機関の駆動音の変動がある運転フィーリングを好む運転者も存在する。
特開2016−119746号公報(段落0024等)
そこで、回転電機のトルクを車輪に伝達させて車両を走行させる際に、内燃機関の駆動力を自動有段変速機を介して車輪に伝達させる車両に近い運転フィーリングを運転者に与えることが可能な制御装置の実現が望まれる。
上記に鑑みた、車輪に駆動連結される回転電機と、前記回転電機を駆動するインバータと、を備えた車両用駆動装置を制御対象とする制御装置の特徴構成は、車速に応じた指標を第1指標とし、前記車輪に伝達することが要求される要求トルクに応じた指標を第2指標として、前記第1指標と前記第2指標とに応じた仮想変速条件が規定されたマップの情報を取得可能に構成され、キャリア周波数に基づくパルス幅変調により前記インバータを介して前記回転電機を駆動制御して、前記要求トルクに応じた基準トルクを前記回転電機に出力させている状態において、前記第1指標及び前記第2指標が前記仮想変速条件を満たしたタイミングで仮想変速制御を実行し、前記仮想変速制御は、前記回転電機の出力トルクを一時的に前記基準トルクとは異ならせる第1制御と、前記キャリア周波数を一時的に変化させる第2制御との、少なくとも一方を行う制御である点にある。
上記の特徴構成によれば、仮想変速制御において少なくとも第1制御を行うことで、第1指標及び第2指標が仮想変速条件を満たしたタイミングで、回転電機の出力トルクを一時的に基準トルクとは異ならせることができる。よって、仮想変速条件が満たされたタイミングで、内燃機関車両(内燃機関の駆動力を自動有段変速機を介して車輪に伝達させる車両)において自動変速時に生じる車両加速度の変動を模擬した車両加速度の変動を意図的に発生させることができる。この結果、回転電機のトルクを車輪に伝達させて車両を走行させている状態での運転フィーリングを、内燃機関車両での運転フィーリングに近づけることが可能となる。
また、仮想変速制御において少なくとも第2制御を行うことで、第1指標及び第2指標が仮想変速条件を満たしたタイミングで、キャリア周波数を一時的に変化させて、キャリア周波数に起因して発生する音の周波数を一時的に変化させることができる。よって、仮想変速条件が満たされたタイミングで、内燃機関車両において自動変速時に生じる内燃機関の駆動音の変動を模擬した音の変動を意図的に発生させることができる。この結果、回転電機のトルクを車輪に伝達させて車両を走行させている状態での運転フィーリングを、内燃機関車両での運転フィーリングに近づけることが可能となる。
以上のように、上記の構成によれば、回転電機のトルクを車輪に伝達させて車両を走行させる際に、内燃機関の駆動力を自動有段変速機を介して車輪に伝達させる車両に近い運転フィーリングを運転者に与えることが可能な制御装置を実現することができる。
制御装置の更なる特徴と利点は、図面を参照して説明する実施形態についての以下の記載から明確となる。
実施形態に係る車両用駆動装置及び制御装置の概略構成を示す図 実施形態に係る仮想変速制御の処理手順を示す図 仮想変速条件が規定されたマップの一例を示す図 第1制御の制御挙動の一例を示すタイムチャート 第1制御の制御挙動の別例を示すタイムチャート 第2制御の制御挙動の一例を示すタイムチャート 第2制御の制御挙動の別例を示すタイムチャート 第2制御の制御挙動の更に別の例を示すタイムチャート その他の実施形態に係る車両用駆動装置の概略構成を示す図 その他の実施形態に係る車両用駆動装置の概略構成を示す図
制御装置の実施形態について、図面を参照して説明する。なお、本明細書では、「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。また、本明細書では、「駆動連結」とは、2つの回転要素が駆動力を伝達可能に連結された状態を意味する。この概念には、2つの回転要素が一体回転するように連結された状態や、2つの回転要素が1つ以上の伝動部材を介して駆動力を伝達可能に連結された状態が含まれる。このような伝動部材には、回転を同速で又は変速して伝達する各種の部材(軸、歯車機構、ベルト、チェーン等)が含まれ、回転及び駆動力を選択的に伝達する係合装置(摩擦係合装置や噛み合い式係合装置等)が含まれてもよい。
図1に示すように、制御装置30は車両用駆動装置1を制御対象とする制御装置である。制御装置30による制御対象の車両用駆動装置1は、車輪7に駆動連結される回転電機10と、回転電機10を駆動するインバータ13とを備える。車両用駆動装置1は、回転電機10のトルクを車輪7に伝達させて車両を走行させる。本実施形態では、車両用駆動装置1や車両(車両用駆動装置1が搭載される車両、以下同様。)には、回転電機10以外に車輪7の駆動力源は設けられていない。すなわち、本実施形態では、車両用駆動装置1は、電動車両(電気自動車)用の駆動装置である。
本実施形態では、回転電機10は、車輪7と常に連動して回転するように、車輪7に駆動連結されている。すなわち、回転電機10と車輪7との間の動力伝達経路には、回転及び駆動力を選択的に伝達する係合装置は設けられていない。そして、本実施形態では、回転電機10と車輪7との間の動力伝達経路には、変速比を変更可能な変速機が設けられないため、回転電機10と車輪7との間の回転速度の比は、常に、すなわち、車両の走行状態によらずに、一定となる。ここで、「変速比を変更可能な変速機」とは、当該変速機の入力軸と当該変速機の出力軸との間の回転速度の比を、段階的又は連続的に変更可能な変速機を意味する。すなわち、本実施形態では、回転電機10は、変速比を変更可能な変速機を介さずに、具体的には、回転電機10の回転を複数の変速比で車輪7に伝達可能な変速機を介さずに、車輪7に駆動連結されている。図1に示す例とは異なり、回転電機10と車輪7との間の動力伝達経路に、回転及び駆動力を選択的に伝達する係合装置を設けてもよい。この場合、当該係合装置が係合した状態(当該係合装置が摩擦係合装置である場合には、直結係合した状態)での回転電機10と車輪7との間の回転速度の比が、常に一定となる。
車両用駆動装置1は、車輪7に駆動連結される出力軸5を備え、回転電機10のロータ11が、出力軸5と一体回転するように連結されている。図1に示すように、本実施形態では、車両用駆動装置1は、出力軸5と車輪7との間の動力伝達経路に出力用差動歯車装置4を備えており、出力用差動歯車装置4は、出力軸5の側から入力される回転及びトルクを、左右2つの車軸6(左右2つの車輪7)に分配して伝達する。ここで、車軸6は、出力用差動歯車装置4と車輪7とを連結する軸である。車両の旋回時には左右2つの車輪7の間に回転速度差が生じるため、上述した「回転電機10と車輪7との間の回転速度の比が常に一定」という場合の、回転電機10と車輪7との間の回転速度の比は、車両の直進時における比を意味する。図1に示す例とは異なり、回転電機10と車輪7との間の動力伝達経路(例えば、出力軸5と出力用差動歯車装置4との間の動力伝達経路)に、変速比が固定の変速機構(例えば、回転電機10の側から入力される回転を減速する減速機構)を設けてもよい。
回転電機10は、ケース等の非回転部材に固定されるステータ12と、ステータ12に対して回転自在に支持されるロータ11と、を備えている。回転電機10は、交流(例えば、三相交流)で駆動される交流回転電機である。図1に示すように、回転電機10は、直流電力と交流電力との間の電力変換を行うインバータ13を介して、バッテリやキャパシタ等の蓄電装置14に電気的に接続されており、回転電機10は、蓄電装置14から電力の供給を受けて力行し、或いは、車両の慣性力等により発電した電力を蓄電装置14に供給して蓄電させる。車両の前進走行時において回転電機10が力行する場合の出力トルクである正トルクは、車両を前進させる方向(前進加速方向)のトルクであり、車両の前進走行時において回転電機10が発電する場合の出力トルクである負トルクは、正トルクとは反対方向のトルクである。
インバータ13は、複数のスイッチング素子を用いて構成されたインバータ回路(複数相のそれぞれに対応する数のアームを有するブリッジ回路)を備えている。そして、制御装置30が生成するスイッチング制御信号に従って複数のスイッチング素子が個別にスイッチング制御されることで、インバータ13から回転電機10に交流電力が供給されて回転電機10が駆動される。本実施形態では、回転電機10は回転界磁型の回転電機であり、インバータ13から出力される交流電力によりステータ12に巻装されたコイルが回転磁界を形成することで、ロータ11が回転される。
制御装置30は、CPU(Central Processing Unit)等の演算処理装置を中核部材として備えると共に、RAM(Random Access Memory)やROM(Read Only Memory)等の当該演算処理装置が参照可能な記憶装置を備えている。そして、ROM等の記憶装置に記憶されたソフトウェア(プログラム)又は別途設けられた演算回路等のハードウェア、或いはそれらの両方により、制御装置30の各機能が実現される。制御装置30が備える演算処理装置は、各プログラムを実行するコンピュータとして動作する。制御装置30が、互いに通信可能な複数のハードウェア(複数の分離したハードウェア)の集合によって構成されても良い。
車両には各種センサが備えられており、制御装置30は、当該各種センサの検出情報を取得可能に構成されている。本実施形態では、図1に示すように、制御装置30は、第1指標センサ41、第2指標センサ42、蓄電センサ43、走行モードセンサ44、及び、電流センサ45のそれぞれの検出情報を取得可能に構成されている。
第1指標センサ41は、車速Vに応じた指標である第1指標A1の情報を取得するためのセンサであり、制御装置30は、第1指標センサ41の検出情報に基づき第1指標A1の情報を取得する。本実施形態では、第1指標A1は、車速Vである。よって、第1指標センサ41は、車速Vに関する物理量(車速Vそのもの、又は、車速Vを導出することが可能な物理量)を検出するように設けられる。本実施形態では、図1に示すように、第1指標センサ41は、車輪7と常に連動して回転する回転部材(具体的には、出力軸5)の回転速度を検出するように設けられ、制御装置30は、第1指標センサ41の検出情報に基づき、第1指標A1としての車速Vの情報を取得する。なお、第1指標センサ41を、車輪7と常に連動して回転する回転部材であって出力軸5以外の回転部材の回転速度を検出するように設けたり、車輪7の回転速度を検出するように設けてもよい。
第2指標センサ42は、車輪7に伝達することが要求される要求トルク(車輪要求トルク)に応じた指標である第2指標A2の情報を取得するためのセンサであり、制御装置30は、第2指標センサ42の検出情報に基づき第2指標A2の情報を取得する。本実施形態では、第2指標A2は、アクセルペダル20の踏み込み量に応じたアクセル開度Accである。よって、第2指標センサ42は、アクセル開度Accに関する物理量(アクセル開度Accそのもの、又は、アクセル開度Accを導出することが可能な物理量)を検出するように設けられる。なお、車輪要求トルクは、少なくともアクセル開度Accに基づき設定される(基本的に、アクセル開度Accが大きくなるに従って大きく設定される)ため、アクセル開度Accは車輪要求トルクに応じた指標である。本実施形態では、図1に示すように、第2指標センサ42は、アクセルペダル20の操作量を検出するように設けられ、制御装置30は、第2指標センサ42の検出情報に基づき、第2指標A2としてのアクセル開度Accの情報を取得する。
蓄電センサ43は、蓄電装置14の蓄電量又は充電状態を取得するためのセンサであり、制御装置30は、蓄電センサ43の検出情報に基づき蓄電装置14の蓄電量又は充電状態の情報を取得する。詳細は省略するが、蓄電センサ43は、例えば、蓄電装置14の電圧を検出する電圧センサ、蓄電装置14の入出力電流を検出する電流センサ、蓄電装置14の温度を検出する温度センサ等を備える。
走行モードセンサ44は、走行モード選択装置21を用いて運転者により選択された走行モードを検出するセンサである。走行モード選択装置21は、走行モードを選択するためのスイッチ(機械式スイッチ又はソフトウェアスイッチ等)を備え、走行モードセンサ44は、当該スイッチに対する運転者の選択操作を検出する。本実施形態では、走行モード選択装置21を用いて変速模擬モード(後述する仮想変速制御が実行される走行モード)の選択操作が可能に構成されており、制御装置30は、走行モードセンサ44の検出情報に基づき変速模擬モードの選択の有無の情報を取得する。
電流センサ45は、回転電機10のコイル(本実施形態では、ステータ12に巻装されたコイル)に流れる電流を検出するセンサである。制御装置30は、電流センサ45の検出情報に基づき電流フィードバック制御を行って、インバータ13を介して回転電機10を駆動制御する。本実施形態では、制御装置30は、ベクトル制御法を用いた電流フィードバック制御を行う。すなわち、制御装置30は、回転電機10の回転に同期して回転する2次元直交座標系(電流ベクトル座標系)において、それぞれの座標軸(d軸、q軸)に対応する界磁電流及び駆動電流を制御して、回転電機10を駆動制御する。回転電機10の駆動制御の際に必要となるロータ11の磁極位置やロータ11の回転速度は、第1指標センサ41或いは別途設けられた回転センサ(レゾルバ等)の検出情報に基づき取得され、或いは、センサレスで検出されて取得される。
制御装置30は、センサ検出情報に基づき車輪要求トルク(車両要求トルク)を決定する。以下では、車輪要求トルクの大きさを、回転電機10のロータ軸(本実施形態では、出力軸5)でのトルクに換算した大きさとする。本実施形態では、制御装置30は、少なくとも第1指標A1及び第2指標A2に基づき、車輪要求トルクを決定する。具体的には、制御装置30は、第1指標A1に基づき定まる回転電機10の出力可能なトルク範囲内で、第2指標A2に応じた大きさとなるように車輪要求トルクを決定する。
補足説明すると、回転電機10が出力可能なトルク範囲(負の最大トルクから正の最大トルクまでの範囲)は、回転電機10の回転速度に応じて変化する。一般に、回転電機10が出力可能な最大トルクの大きさ(絶対値)は、回転電機10の回転速度の絶対値が所定値以下の領域では一定或いは実質的に一定となり、回転電機10の回転速度の絶対値が所定値を超える領域では、当該絶対値が大きくなるに従って低下する傾向がある。回転電機10の回転速度は第1指標A1(本実施形態では、車速V)に比例するため、回転電機10の出力可能なトルク範囲は、第1指標A1に基づき定まる。
制御装置30は、このように定まる回転電機10の出力可能なトルク範囲内で、第2指標A2が大きくなるに従って大きくなるように車輪要求トルクを決定する。ここでの車輪要求トルクの大きさは、絶対値ではなく、符号(正負)を考慮した大きさである。よって、車輪要求トルクが、車両を前進させる方向(言い換えれば、前進加速方向)の正トルクである場合には、車輪要求トルクが大きくなるに従って車輪要求トルクの絶対値も大きくなり、車輪要求トルクが、正トルクとは反対方向の負トルクである場合には、車輪要求トルクが大きくなるに従って車輪要求トルクの絶対値が小さくなる。本実施形態では、第1指標A1に基づき定まる回転電機10の出力可能なトルク範囲内で第2指標A2に応じた大きさとなる車輪要求トルクが、予め第1指標A1及び第2指標A2との関係でマップ化されており、制御装置30は、当該マップ(すなわち、車輪要求トルクと、第1指標A1及び第2指標A2との関係を規定したマップ)を参照して、第1指標A1及び第2指標A2に応じた車輪要求トルクを取得するように構成されている。
制御装置30は、決定した車輪要求トルクに基づき回転電機10の目標トルク(トルク指令値To)を決定する。回転電機10の目標トルクは、後述する第1制御の実行時を除いて、基本的に車輪要求トルクに応じた基準トルクTreqに設定される(図2のステップ#07,#08参照)。基準トルクTreqは、基本的に、車輪要求トルクと等しい(符号及び絶対値が等しい)トルクに設定されるが、蓄電装置14の蓄電量又は充電状態、回転電機10の温度、インバータ13の温度等に応じて、基準トルクTreqに許容上限値や許容下限値を設けることもできる。この場合、車輪要求トルク(正トルク)が許容上限値を超える場合には基準トルクTreqを当該許容上限値に設定し、車輪要求トルク(負トルク)が許容下限値を下回る場合には基準トルクTreqを当該許容下限値に設定することができる。なお、車輪要求トルクを決定する際に、蓄電装置14の蓄電量又は充電状態、回転電機10の温度、インバータ13の温度等を考慮してもよい。すなわち、制御装置30が、第1指標A1及び第2指標A2に加えて他の要素(例えば、蓄電装置14の蓄電量又は充電状態)にも基づき、車輪要求トルクを決定する構成としてもよい。
制御装置30は、決定した目標トルクを出力するように回転電機10を制御する。制御装置30は、キャリア周波数ωに基づくパルス幅変調によりインバータ13を介して回転電機10を駆動制御する。詳細は省略するが、パルス幅変調では、正弦波状の電圧指令とキャリアとの比較により、電圧指令がパルス信号(変調パルス)に変換される。よって、キャリアの周波数であるキャリア周波数ωが高くなると、電圧指令の1周期においてより多くのパルス信号が生成されることになり、回転電機10での損失やトルク脈動の要因となる電流リプルを小さく抑えることができる。一方で、キャリア周波数ωが高くなると、単位時間当たりのスイッチング回数が多くなることでスイッチング損失が増大する。このように回転電機10での損失とインバータ13での損失とはトレードオフの関係にある。インバータ13及び回転電機10の総合損失の低減の観点(言い換えれば、総合電気効率の向上の観点)から最適或いは好ましいキャリア周波数ωを効率最適周波数ωcとすると、キャリア周波数ωは、変速模擬モードが選択されていない場合に、効率最適周波数ωcに設定される(図2のステップ#10参照)。第1指標A1(車速V)の変化範囲内の少なくとも一部の領域において、効率最適周波数ωcを、第1指標A1によらずに一定の値に設定することができる。
本開示に係る制御装置30は、キャリア周波数ωに基づくパルス幅変調によりインバータ13を介して回転電機10を駆動制御して、車輪要求トルクに応じた基準トルクTreqを回転電機10に出力させている状態において、第1指標A1及び第2指標A2が仮想変速条件を満たしたタイミングで仮想変速制御を実行する点に特徴を有している。以下、本実施形態に係る仮想変速制御について説明する。
詳細は後述するが、仮想変速制御は、回転電機10の出力トルクを一時的に基準トルクTreqとは異ならせる第1制御と、キャリア周波数ωを一時的に変化させる第2制御との、少なくとも一方を行う制御である。制御装置30は、第1指標A1と第2指標A2とに応じた仮想変速条件が規定されたマップ50の情報を取得可能に構成されており、第1指標A1及び第2指標A2が仮想変速条件を満たしたタイミングで仮想変速制御を実行する。マップ50は、制御装置30の記憶装置に記憶され、或いは、制御装置30が通信可能な他の装置に記憶される。
図3にマップ50の一例を示すように、マップ50には、第1指標A1の値と第2指標A2の値との相関により規定された閾値51(閾値関数)が規定されている。なお、図3では、マップ50の理解を容易にするために、第1指標A1を横軸とし第2指標A2を縦軸とする2次元平面上に閾値51を線分(閾値ライン)で示している。マップ50は、自動有段変速機における変速段の切替制御に用いられる変速マップを模擬したものであり、閾値51は、変速マップに規定される変速線(変速点)を模擬して規定される。図示は省略するが、変速マップには、変速線としてアップシフト線及びダウンシフト線が規定され、車速V(第1指標A1)及びアクセル開度Acc(第2指標A2)が変化して変速マップ上でアップシフト線を跨ぐと、目標変速段が1段アップシフトされ、車速V(第1指標A1)及びアクセル開度Acc(第2指標A2)が変化して変速マップ上でダウンシフト線を跨ぐと、目標変速段が1段ダウンシフトされる。ここで、アップシフトとは、変速機の出力軸の回転速度に対する変速機の入力軸の回転速度の比である変速比を相対的に小さくする側(高速段側)への変速段の変更であり、ダウンシフトとは、変速比を相対的に大きくする側(低速段側)への変速段の変更である。図3において実線で示す閾値51は、変速マップに規定されるアップシフト線を模擬して規定され、図3において破線で示す閾値51は、変速マップに規定されるダウンシフト線を模擬して規定されている。
図3では、変速比の異なる8段の前進用変速段を形成可能な自動有段変速機用の変速マップを模擬したマップ50を例として示しており、マップ50には、7本のアップシフト線を模擬した7本の閾値51と、7本のダウンシフト線を模擬した7本の閾値51とが規定されている。例えば、図3において“1→2”で示す実線の閾値51は、第1段(最も変速比の大きい変速段)から1段高速段側の第2段へのアップシフト線を模擬したものであり、図3において“7←−8”で示す破線の閾値51は、第8段(最も変速比の小さい変速段)から1段低速段側の第7段へのダウンシフト線を模擬したものである。なお、ここでは、模擬対象の変速マップにおいて、アップシフト線とダウンシフト線との間にヒステリシスが設けられる場合(アップシフト線とダウンシフト線とが各別に規定される場合)を想定しているが、アップシフト線とダウンシフト線とが共通の変速線によって規定される変速マップを模擬したマップ50を用いてもよい。
このように、図3に示す例では、模擬対象の変速マップにおいて、複数の変速段に対応して複数の変速線が規定される場合を想定している。そのため、マップ50には、複数の仮想変速段に対応して複数の閾値51が規定されている。具体的には、模擬対象の変速マップには、8段の変速段に対応して7本のアップシフト線及び7本のダウンシフト線が規定されており、マップ50には、8段の仮想変速段に対応して、7本のアップシフト線に対応する7本の閾値51、及び、7本のダウンシフト線に対応する7本の閾値51が規定されている。なお、2段の前進用変速段を形成可能な自動有段変速機用の変速マップを模擬対象とし、マップ50に、単数の閾値51が規定される構成とすることもできる。なお、ここでの「単数の閾値51」とは、アップシフト線を模擬した閾値51が単数であると共に、ダウンシフト線を模擬した閾値51が単数であることを意味する。
自動有段変速機用の変速マップでは、一般に、アクセル開度Accが小さい領域では、アップシフト線同士の間隔やダウンシフト線同士の間隔が狭く、アクセル開度Accが大きい領域では、アップシフト線同士の間隔やダウンシフト線同士の間隔が広く設定される。これは、アクセル開度Accが小さい場合には、変速比の小さい変速段を使用してエネルギ効率(燃費等)の向上を図り、アクセル開度Accが大きい場合には、変速比の大きい変速段を使用して、運転者の加速要求に応じたトルクを車輪に伝達するためである。上記のようにアップシフト線同士の間隔やダウンシフト線同士の間隔が設定されるため、自動有段変速機用の変速マップでは、アクセル開度Accの変化範囲内の少なくとも一部の領域において、アップシフト線同士の間隔やダウンシフト線同士の間隔が、アクセル開度Accが大きくなるに従って大きくなるように設定される。この結果、自動有段変速機用の変速マップを模擬したマップ50において、第2指標A2の変化範囲内の少なくとも一部の領域(図3に示す例では、第2指標A2が小さい領域を除く一部の領域)において、隣接する2つの閾値51のそれぞれに規定された第1指標A1の値の差(同じ大きさの第2指標A2に対する第1指標A1の値の差)が、第2指標A2が大きくなるに従って大きくなるように設定される。なお、ここでの「隣接する2つの閾値51」は、隣接する2つのアップシフト線を模擬した2つの閾値51、又は、隣接する2つのダウンシフト線を模擬した2つの閾値51である。上記の差が第2指標A2が大きくなるに従って大きくなる領域では、閾値51のそれぞれは、第1指標A1の値が大きくなるに従って第2指標A2の値が大きくなるように設定されている。
制御装置30は、第1指標A1及び第2指標A2が閾値51に到達した場合に仮想変速条件が成立した(第1指標A1及び第2指標A2が仮想変速条件を満たした)として、そのタイミングで仮想変速制御を実行する。すなわち、仮想変速条件は、第1指標A1及び第2指標A2が閾値51に到達したことである。なお、アップシフト線を模擬した閾値51については、仮想変速条件は、閾値51に対して第1指標A1の値の小さい側から第1指標A1及び第2指標A2が閾値51に到達したことであり、ダウンシフト線を模擬した閾値51については、仮想変速条件は、閾値51に対して第1指標A1の値の大きい側から第1指標A1及び第2指標A2が閾値51に到達したことである。
制御装置30は、仮想変速制御において、回転電機10の出力トルクを一時的に基準トルクTreqとは異ならせる第1制御と、キャリア周波数ωを一時的に変化させる第2制御との、少なくとも一方を実行する。図2に、仮想変速制御において第1制御及び第2制御の双方を実行する場合の処理手順の一例を示す。
図2に示すように、制御装置30は、第1指標A1(車速V)を取得すると共に(ステップ#01)、第2指標A2(アクセル開度Acc)を取得し(ステップ#02)、取得した第1指標A1及び第2指標A2に基づき、車輪要求トルクに応じた基準トルクTreqを導出(決定)する(ステップ#03)。そして、制御装置30は、変速模擬モードが選択されていない場合には(ステップ#04:No)、回転電機10の目標トルクを表すトルク指令値Toを基準トルクTreqに設定すると共に(ステップ#08)、キャリア周波数ωを効率最適周波数ωcに設定して(ステップ#10)、回転電機10を駆動制御する。
一方、変速模擬モードが選択されている場合には(ステップ#04:Yes)、制御装置30は、仮想変速条件が成立していることを条件に(ステップ#05:Yes)、トルク指令値Toを基準トルクTreqに対して補正トルクΔT(正又は負のトルク)を加算した値に設定し(ステップ#06)、仮想変速条件が成立していない場合には(ステップ#05:No)、トルク指令値Toを基準トルクTreqに設定する(ステップ#07)。ステップ#06の処理を行う制御が、回転電機10の出力トルクを一時的に基準トルクTreqとは異ならせる第1制御である。
変速模擬モードが選択されている場合には(ステップ#04:Yes)、制御装置30は、キャリア周波数ωを、効率最適周波数ωcではなく、模擬音発生周波数ωeに設定して(ステップ#09)、回転電機10を駆動制御する。後に参照する図6〜図8に示すように、模擬音発生周波数ωeは、仮想変速条件が成立したタイミング(図6における時刻T21,T22、図7における時刻T31,T32、図8における時刻T41,T42)で、キャリア周波数ωを一時的に変化させるように設定される。このように、ステップ#09の処理には、仮想変速条件が成立したタイミングでキャリア周波数ωを一時的に変化させる制御が含まれ、この制御が、キャリア周波数ωを一時的に変化させる第2制御である。なお、キャリア周波数ωを「一時的に変化させる」とは、詳しくは後述するように、第1指標A1の値の変化に応じたキャリア周波数ωの変化の傾向を異ならせることを意味する。
次に、本実施形態に係る第1制御の具体的内容について、図4及び図5に示す例を参照して説明する。なお、図4は、制御装置30が、第1制御及び第2制御のうちの少なくとも第1制御を実行する場合に、第1制御において、回転電機10の出力トルクを基準トルクTreqよりも小さくする場合の例である。図5は、制御装置30が、第1制御及び第2制御のうちの少なくとも第1制御を実行する場合に、第1制御において、回転電機10の出力トルクを基準トルクTreqよりも大きくする場合の例である。
図4では、車速Vがゼロの状態からアクセル開度Accに応じた加速度で車両が加速する状況を示している。ここでは、車両の発進後にアクセル開度Accが一定に維持される状況を想定しており、図4に示す基準トルクTreqは、アクセル開度Accが一定に維持されている期間での車輪要求トルクに応じた基準トルクTreqを表している。また、図4では、時刻T01において、第1指標A1及び第2指標A2がマップ50上で閾値51(図3に示す例での“1→2”で示す閾値51)に到達することで仮想変速条件が成立して第1制御が実行されると共に、時刻T02において、第1指標A1及び第2指標A2がマップ50上で別の閾値51(図3に示す例での“2→3”で示す閾値51)に到達することで仮想変速条件が成立して第1制御が実行される状況を想定している。なお、第1制御は、仮想変速条件が成立したタイミングから所定の期間の間行われる。
図4に示す例では、第1制御において基準トルクTreqに加算する補正トルクΔTを、負のトルクとしている。よって、第1制御が行われていない期間ではトルク指令値Toが基準トルクTreqに設定されるのに対して、第1制御の実行中におけるトルク指令値Toは、補正トルクΔTの大きさの分だけ基準トルクTreqよりも小さく設定される。補正トルクΔTの大きさや時間的変化に応じて運転者に与える変速感を調整することができるため、トルク指令値Toの時間的変化が、実際の自動有段変速機における変速時(ここでは、アップシフト時)の出力トルク(変速機からの出力トルク)の時間的変化に近づくように、補正トルクΔTの大きさや時間的変化を設定すると好適である。
図5では、図4と同様に、車速Vがゼロの状態からアクセル開度Accに応じた加速度で車両が加速する状況を示している。そして、図5では、時刻T11において、第1指標A1及び第2指標A2がマップ50上で閾値51(図3に示す例での“1→2”で示す閾値51)に到達することで仮想変速条件が成立して第1制御が実行されると共に、時刻T12において、第1指標A1及び第2指標A2がマップ50上で別の閾値51(図3に示す例での“2→3”で示す閾値51)に到達することで仮想変速条件が成立して第1制御が実行される状況を想定している。
図5に示す例では、図4に示す例とは異なり、第1制御において基準トルクTreqに加算する補正トルクΔTを、正のトルクとしている。よって、第1制御が行われていない期間ではトルク指令値Toが基準トルクTreqに設定されるのに対して、第1制御の実行中におけるトルク指令値Toは、補正トルクΔTの大きさの分だけ基準トルクTreqよりも大きく設定される。自動有段変速機における変速時(ここでは、アップシフト時)に、イナーシャトルクを利用して変速機からの出力トルクを一時的に高める場合があり、トルク指令値Toの時間的変化が、このような場合の変速機の出力トルクの時間的変化に近づくように、補正トルクΔTの大きさや時間的変化を設定すると好適である。
なお、図4や図5に示す例に限られず、補正トルクΔTの大きさや時間的変化のパターンは適宜変更可能である。例えば、第1制御の実行中に補正トルクΔTの正負が切り換わるように、補正トルクΔTを設定することができる。また、第1指標A1及び第2指標A2が到達する閾値51に応じて、補正トルクΔTの大きさや時間的変化のパターンを異ならせてもよい。更には、図4や図5では、第1制御の実行前後でトルク指令値Toが一定に維持される場合を例示しているが、第1制御の実行後(終了後)のトルク指令値Toを基準トルクTreqとは異ならせる(例えば、基準トルクTreqよりも小さくする)ことで、運転者に与える変速感を調整してもよい。
次に、本実施形態に係る第2制御の具体的内容について、図6〜図8に示す例を参照して説明する。なお、図6は、制御装置30が、第1制御及び第2制御のうちの少なくとも第2制御を実行する場合に、第2制御が行われていない期間に第1指標A1の値の増加に応じてキャリア周波数ωを高くすると共に、第2制御においてキャリア周波数ωを低下させる場合の例である。図7は、制御装置30が、第1制御及び第2制御のうちの少なくとも第2制御を実行する場合に、第2制御が行われていない期間に第1指標A1の値の低下に応じてキャリア周波数ωを低くすると共に、第2制御においてキャリア周波数ωを上昇させる場合の例である。図8は、制御装置30が、第1制御及び第2制御のうちの少なくとも第2制御を実行する場合に、第2制御の実行後のキャリア周波数ωが、第1指標A1の値の増加に応じて第2制御の実行前のキャリア周波数ωよりも高くなるように、段階的にキャリア周波数ωを変化させる場合の例である。
図6では、図4と同様に、車速Vがゼロの状態からアクセル開度Accに応じた加速度で車両が加速する状況を示している。そして、図6では、時刻T21において、第1指標A1及び第2指標A2がマップ50上で閾値51(図3に示す例での“1→2”で示す閾値51)に到達することで仮想変速条件が成立して第2制御が実行されると共に、時刻T22において、第1指標A1及び第2指標A2がマップ50上で別の閾値51(図3に示す例での“2→3”で示す閾値51)に到達することで仮想変速条件が成立して第2制御が実行される状況を想定している。なお、第2制御は、仮想変速条件が成立したタイミングから所定の期間の間行われる。
図6に示す例では、模擬音発生周波数ωeが、第2制御が行われていない期間には第1指標A1の値の増加に応じて増加するように設定され、第2制御において低下するように設定されている。すなわち、図6に示す例では、第1指標A1の値の増加に応じてキャリア周波数ωが増加している状態において、第2制御においてキャリア周波数ωを低下させることで、第1指標A1の値の変化に応じたキャリア周波数ωの変化の傾向を第2制御において異ならせている(すなわち、キャリア周波数ωを一時的に変化させている)。
図6に示す例では、第2制御が行われていない期間では、模擬音発生周波数ωeに設定されるキャリア周波数ωが車速Vの増加に応じて増加し、仮想変速条件が成立するタイミングで一時的にキャリア周波数ωが減少する。すなわち、図6に示す例でのキャリア周波数ωの大きさの変化の傾向は、内燃機関の駆動力を自動有段変速機を介して車輪に伝達する車両における、車速の増加に伴いアップシフトが順次行われる状況での変速機の入力軸の回転速度の変化の傾向と一致している。よって、模擬音発生周波数ωeの大きさ(変化範囲)を、キャリア周波数ωに起因して発生する音が人間の可聴域内の周波数の音となるように設定することで、自動有段変速機において車速の増加に伴いアップシフトが順次行われる状況で車内で発生する音に類似した音を、図6に示すように車両が加速している状況において車内で発生させて、運転者に良好な加速感やリズム感を感じさせることが可能となっている。なお、模擬音発生周波数ωeの変化幅(図6に示す例では“ω2−ω1”)は、実際の自動有段変速機における変速時(ここでは、アップシフト時)の変速入力軸の回転速度の変化幅に応じて設定すると好適である。
なお、キャリア周波数ωに起因して発生する音は、キャリア周波数ωに起因して生じる電磁加振力の周波数と、機械的要素の固有振動の周波数とが合致した場合に、これらが共振して発生し得る。そして、キャリア周波数ωに起因して発生する音は、キャリア周波数ωに応じた中心周波数、或いは当該中心周波数のサイドバンドの周波数で大きく発生し得るため、キャリア周波数ωを大きくすることで、キャリア周波数ωに起因して発生する音の周波数も大きくすることができる。このように、第2制御を実行することで、専用の音発生装置を設けることなく、回転電機10を駆動するためのインバータ13によって、音(可聴音)の変動を発生させることができる。
図7では、車速Vやアクセル開度Accの図示は省略しているが、車両が減速する状況を想定している。そして、図7では、時刻T31において、第1指標A1及び第2指標A2がマップ50上で閾値51(例えば、図3に示す例での“2←−3”で示す閾値51)に到達することで仮想変速条件が成立して第2制御が実行されると共に、時刻T32において第1指標A1及び第2指標A2がマップ50上で別の閾値51(例えば、図3に示す例での“1←−2”で示す閾値51)に到達することで仮想変速条件が成立して第2制御が実行される状況を想定している。
そして、図7に示す例では、模擬音発生周波数ωeが、第2制御が行われていない期間には第1指標A1の値の低下に応じて減少するように設定され、第2制御において上昇するように設定されている。すなわち、図7に示す例では、第1指標A1の値の低下に応じてキャリア周波数ωが減少している状態において、第2制御においてキャリア周波数ωを増加させることで、第1指標A1の値の変化に応じたキャリア周波数ωの変化の傾向を第2制御において異ならせている(すなわち、キャリア周波数ωを一時的に変化させている)。
図7に示す例では、第2制御が行われていない期間では、模擬音発生周波数ωeに設定されるキャリア周波数ωが車速Vの減少に応じて減少し、仮想変速条件が成立するタイミングで一時的にキャリア周波数ωが増加する。すなわち、図7に示す例でのキャリア周波数ωの大きさの変化の傾向は、内燃機関の駆動力を自動有段変速機を介して車輪に伝達する車両における、車速の減少に伴いダウンシフトが順次行われる状況での変速機の入力軸の回転速度の変化の傾向と一致している。よって、模擬音発生周波数ωeの大きさ(変化範囲)を、キャリア周波数ωに起因して発生する音が人間の可聴域内の周波数の音となるように設定することで、自動有段変速機において車速の減少に伴いダウンシフトが順次行われる状況で車内で発生する音に類似した音を、車両が減速している状況において車内で発生させて、運転者に良好な減速感やリズム感を感じさせることが可能となっている。なお、模擬音発生周波数ωeの変化幅(図7に示す例では“ω2−ω1”)は、実際の自動有段変速機における変速時(ここでは、ダウンシフト時)の変速入力軸の回転速度の変化幅に応じて設定すると好適である。
図6や図7に示す例では、互いに異なるタイミングで行われる第2制御の間で、模擬音発生周波数ωeを変化させる前のキャリア周波数ωの値(図6に示す例ではω2、図7に示す例ではω1)と、模擬音発生周波数ωeを変化させた後のキャリア周波数ωの値(図6に示す例ではω1、図7に示す例ではω2)とが、互いに同一の値となる場合を例示している。しかし、このような構成に限定されることなく、互いに異なるタイミングで行われる第2制御の間で、模擬音発生周波数ωeを変化させる前のキャリア周波数ωの値と、模擬音発生周波数ωeを変化させた後のキャリア周波数ωの値との少なくとも一方が、互いに異なる構成としてもよい。
図8では、車速Vやアクセル開度Accの図示は省略しているが、図6と同様に車両が加速する状況を想定している。そして、図8では、時刻T41において、第1指標A1及び第2指標A2がマップ50上で閾値51(例えば、図3に示す例での“1→2”で示す閾値51)に到達することで仮想変速条件が成立して第2制御が実行されると共に、時刻T42において、第1指標A1及び第2指標A2がマップ50上で別の閾値51(例えば、図3に示す例での“2→3”で示す閾値51)に到達することで仮想変速条件が成立して第2制御が実行される状況を想定している。
図8に示す例では、模擬音発生周波数ωeが、第1指標A1の値の増加に応じて、第2制御の実行タイミング毎に段階的に高くなるように設定されている。この結果、図8に示す例では、模擬音発生周波数ωeに設定されるキャリア周波数ωは、第2制御の実行後のキャリア周波数ωが、第1指標A1の値の増加に応じて第2制御の実行前のキャリア周波数ωよりも高くなるように、段階的に変化される。
なお、図6〜図8に示す例に限られず、模擬音発生周波数ωeの時間的変化のパターンは適宜変更可能である。例えば、第2制御が行われていない期間では模擬音発生周波数ωeが一定値に維持され、第2制御において模擬音発生周波数ωeが一時的に当該一定値とは異なる値(当該一定値よりも高い値又は低い値)に設定される構成とすることができる。
上述したように、図4に示す例では、第1制御において、回転電機10の出力トルクが基準トルクTreqよりも小さく設定され、図5に示す例では、第1制御において、回転電機10の出力トルクが基準トルクTreqよりも大きく設定される。例えば、制御装置30が、車輪7に伝達するトルクに対する応答性の要求であるトルク応答性要求が第1応答性要求状態である場合には、第1制御において回転電機10の出力トルクを基準トルクTreqよりも小さく(ここでは、絶対値で小さく)し、トルク応答性要求が第1応答性要求状態よりも応答性の要求が高い第2応答性要求状態である場合には、第1制御において回転電機10の出力トルクを基準トルクTreqよりも大きく(ここでは、絶対値で大きく)する構成とすることができる。
トルク応答性要求での応答性は、運転者による車輪要求トルクを変更させる操作(例えば、アクセルペダル20の操作等)が行われてから、車輪要求トルクの当該変更が車輪7に伝達されるトルクに反映されるまでの時間についての応答性であり、当該時間が短くなるに従って応答性が高くなる。トルク応答性要求は、例えば、アクセル開度Acc、アクセル開度Accの変化率、車両モード、及び車速Vのうちの、少なくともいずれか1つに基づいて定められる。アクセル開度Acc、アクセル開度Accの変化率、及び車速Vについては、例えば、これらが大きくなるに従って高くなるようにトルク応答性要求が決定される。また、車両モードについては、運転者によって選択されている走行モード(例えば、ノーマルモード、スポーツモード等)に対応するトルク応答性の程度に応じて、トルク応答性要求が決定される。そして、トルク応答性要求を、要求の度合いが高くなるに従って大きくなる数値(指標)で表した場合に、当該数値が閾値以上である状態を第2応答要求状態とし、当該数値が閾値未満である状態を第1応答要求状態とすることができる。
また、制御装置30が、第1制御において基準トルクTreqに対して異ならせる回転電機10の出力トルクの大きさを、基準トルクTreqよりも小さいトルクから基準トルクTreqよりも大きいトルクまでのトルク範囲において、第2指標A2の単位時間当たりの変化量が大きくなるに従って大きく(ここでは、絶対値で大きく)する構成とすることもできる。この場合、第2指標A2の単位時間当たりの変化量が比較的小さい場合には、第1制御において、回転電機10の出力トルクが基準トルクTreqよりも絶対値で小さく設定され、第2指標A2の単位時間当たりの変化量が比較的大きい場合には、第1制御において、回転電機10の出力トルクが基準トルクTreqよりも絶対値で大きく設定される。
更には、制御装置30が、第2指標A2の大きさが第1閾値Th1未満である場合(例えば、図4に示す状況)には、第1制御において回転電機10の出力トルクを基準トルクTreqよりも小さくし、第2指標A2の大きさが第1閾値Th1以上である場合(例えば、図5に示す状況)には、第1制御において回転電機10の出力トルクを基準トルクTreqよりも大きくする構成とすることもできる。この場合、第1閾値Th1の大きさを、例えば、車輪要求トルクが車両の走行抵抗と釣り合う状態となる(すなわち、車速Vが一定に維持される)第2指標A2の大きさに設定することができる。
また、第2制御については、制御装置30が、第2指標A2の大きさが第2閾値Th2以上である場合(例えば、図6に示す状況)には、第2制御が行われていない期間に第1指標A1の値の増加に応じてキャリア周波数ωを高くすると共に、第2制御においてキャリア周波数ωを低下させ、第2指標A2の大きさが第2閾値Th2未満である場合には、第2制御が行われていない期間に第1指標A1の値の低下に応じてキャリア周波数ωを低くすると共に、第2制御においてキャリア周波数ωを上昇させる構成とすることができる。この場合、第2閾値Th2の大きさを、例えば、車輪要求トルクが車両の走行抵抗と釣り合う状態となる第2指標A2の大きさに設定することができる。
また、制御装置30が、仮想変速制御において第1制御及び第2制御の双方を実行する場合に、制御装置30が、第1制御において回転電機10の出力トルクが基準トルクTreqよりも小さく制御される場合には、第2制御においてキャリア周波数ωを低下させ、第1制御において回転電機10の出力トルクが基準トルクTreqよりも大きく制御される場合には、第2制御においてキャリア周波数ωを上昇させる構成とすることもできる。例えば、図4に示す例のトルク指令値Toの制御と図6に示す例の模擬音発生周波数ωeに応じたキャリア周波数ωの制御とを組み合わせることや、図5に示す例のトルク指令値Toの制御と図7に示す例の模擬音発生周波数ωeに応じたキャリア周波数ωの制御とを組み合わせることができる。なお、図5に示す例のトルク指令値Toの制御と図6に示す例の模擬音発生周波数ωeに応じたキャリア周波数ωの制御とを組み合わせることもできる。
〔その他の実施形態〕
次に、制御装置のその他の実施形態について説明する。
(1)上記の実施形態では、仮想変速条件が、第1指標A1及び第2指標A2が閾値51に到達したことである構成を例として説明した。しかし、そのような構成に限定さることなく、制御装置30が、第1指標A1及び第2指標A2が閾値51に到達することが予測できた時点を、第1指標A1及び第2指標A2が仮想変速条件を満たしたタイミングとして、仮想変速制御を開始する構成とすることもできる。
(2)上記の実施形態では、第1指標A1が車速Vであり、第2指標A2がアクセル開度Accである場合を例として説明した。しかし、そのような構成に限定されることなく、第1指標A1を車速V以外の車速Vに応じた指標(例えば、車輪7、車軸6、出力軸5等の、車速Vに応じた回転速度で回転する回転部材の回転速度)とすることや、第2指標A2をアクセル開度Acc以外の車輪要求トルクに応じた指標(例えば、車輪要求トルクそのもの)とすることもできる。
(3)図2では、制御装置30が、仮想変速制御において、第1制御及び第2制御の双方を実行する場合を例として説明した。しかし、そのような構成に限定されることなく、制御装置30が(第1制御及び第2制御のうちの)第1制御のみを実行する構成や、制御装置30が(第1制御及び第2制御のうちの)第2制御のみを実行する構成とすることもできる。例えば、制御装置30が第1制御のみを実行する場合には、音の意図的な変動は発生しないが、図4や図5に例示したような回転電機10の出力トルクの変動(車両加速度の変動)を発生させることができる。また、制御装置30が第2制御のみを実行する場合には、回転電機10の出力トルクの意図的な変動(車両加速度の変動)は発生しないが、図6〜図8に例示したような音の意図的な変動を発生させることができる。
(4)上記の実施形態では、車両用駆動装置1が、電動車両用の駆動装置である構成を例として説明した。しかし、そのような構成に限定されることなく、車両用駆動装置1や車両に、回転電機10とは別に車輪7の駆動力源が設けられる構成とすることもできる。このような構成の例を図9に示す。図9に示す例では、回転電機10とは別の車輪7の駆動力源として、内燃機関3(ガソリンエンジンやディーゼルエンジン等)が車両に設けられている。そして、内燃機関3と車輪7との間の動力伝達経路に、内燃機関3の側から順に、変速比を変更可能な変速機2(自動有段変速機や自動無段変速機等)、回転電機10、及び出力用差動歯車装置4が設けられている。この例では、車両用駆動装置1が変速比を変更可能な変速機2を備えるが、回転電機10は、この変速機2を介さずに車輪7に駆動連結されている。このように、車両用駆動装置1が、車輪7の駆動力源として回転電機10及び内燃機関3の双方を備えるハイブリッド車両用の駆動装置である場合には、回転電機10及び内燃機関3のうちの回転電機10のトルクのみを車輪7に伝達させて車両を走行させる電動走行モードにおいて、制御装置30が上述した仮想変速制御を実行する構成とすることができる。
(5)上記の実施形態では、回転電機10が、出力用差動歯車装置4を介して左右2つの車輪7に駆動連結される構成を例として説明した。しかし、そのような構成に限定されることなく、例えば図10に示す例のように、回転電機10が、車輪7に取り付けられて当該車輪7を駆動する構成とすることができる。この場合、回転電機10として、当該回転電機10のケースの一部が車輪7の内側の空間に配置されるインホイールタイプの回転電機を用いることができる。なお、図10に示す例では、上述した図9に示す例と同様に、車両用駆動装置1は、車輪7の駆動力源として回転電機10及び内燃機関3の双方を備えるハイブリッド車両用の駆動装置であるが、変速機2を介して内燃機関3に駆動連結される車輪が、回転電機10が駆動連結される車輪とは異なる(具体的には、変速機2を介して内燃機関3に駆動連結される車輪と、回転電機10が駆動連結される車輪との、一方が前輪で他方が後輪である)点で、図9に示す例とは異なっている。
(6)なお、上述した各実施形態で開示された構成は、矛盾が生じない限り、他の実施形態で開示された構成と組み合わせて適用すること(その他の実施形態として説明した実施形態同士の組み合わせを含む)も可能である。その他の構成に関しても、本明細書において開示された実施形態は全ての点で単なる例示に過ぎない。従って、本開示の趣旨を逸脱しない範囲内で、適宜、種々の改変を行うことが可能である。
〔上記実施形態の概要〕
以下、上記において説明した制御装置の概要について説明する。
車輪(7)に駆動連結される回転電機(10)と、前記回転電機(10)を駆動するインバータ(13)と、を備えた車両用駆動装置(1)を制御対象とする制御装置(30)であって、車速(V)に応じた指標を第1指標(A1)とし、前記車輪(7)に伝達することが要求される要求トルクに応じた指標を第2指標(A2)として、前記第1指標(A1)と前記第2指標(A2)とに応じた仮想変速条件が規定されたマップ(50)の情報を取得可能に構成され、キャリア周波数(ω)に基づくパルス幅変調により前記インバータ(13)を介して前記回転電機(10)を駆動制御して、前記要求トルクに応じた基準トルク(Treq)を前記回転電機(10)に出力させている状態において、前記第1指標(A1)及び前記第2指標(A2)が前記仮想変速条件を満たしたタイミングで仮想変速制御を実行し、前記仮想変速制御は、前記回転電機(10)の出力トルクを一時的に前記基準トルク(Treq)とは異ならせる第1制御と、前記キャリア周波数(ω)を一時的に変化させる第2制御との、少なくとも一方を行う制御である。
上記の構成によれば、仮想変速制御において少なくとも第1制御を行うことで、第1指標(A1)及び第2指標(A2)が仮想変速条件を満たしたタイミングで、回転電機(10)の出力トルクを一時的に基準トルク(Treq)とは異ならせることができる。よって、仮想変速条件が満たされたタイミングで、内燃機関車両(内燃機関の駆動力を自動有段変速機を介して車輪に伝達させる車両)において自動変速時に生じる車両加速度の変動を模擬した車両加速度の変動を意図的に発生させることができる。この結果、回転電機(10)のトルクを車輪(7)に伝達させて車両を走行させている状態での運転フィーリングを、内燃機関車両での運転フィーリングに近づけることが可能となる。
また、仮想変速制御において少なくとも第2制御を行うことで、第1指標(A1)及び第2指標(A2)が仮想変速条件を満たしたタイミングで、キャリア周波数(ω)を一時的に変化させて、キャリア周波数(ω)に起因して発生する音の周波数を一時的に変化させることができる。よって、仮想変速条件が満たされたタイミングで、内燃機関車両において自動変速時に生じる内燃機関の駆動音の変動を模擬した音の変動を意図的に発生させることができる。この結果、回転電機(10)のトルクを車輪(7)に伝達させて車両を走行させている状態での運転フィーリングを、内燃機関車両での運転フィーリングに近づけることが可能となる。
以上のように、上記の構成によれば、回転電機(10)のトルクを車輪(7)に伝達させて車両を走行させる際に、内燃機関の駆動力を自動有段変速機を介して車輪に伝達させる車両に近い運転フィーリングを運転者に与えることが可能な制御装置(30)を実現することができる。
ここで、前記仮想変速条件は、前記第1指標(A1)及び前記第2指標(A2)が、前記第1指標(A1)の値と前記第2指標(A2)の値との相関により規定された閾値(51)に到達したことであると好適である。
この構成によれば、自動有段変速機用の変速マップにおける変速線を模擬して閾値(51)を設定することで、回転電機(10)のトルクを車輪(7)に伝達させて車両を走行させている状態での運転フィーリングを内燃機関車両での運転フィーリングに近づけることが、容易となる。
上記のように、前記第1指標(A1)及び前記第2指標(A2)が前記閾値(51)に到達したことが前記仮想変速条件である構成において、前記マップ(50)には、複数の仮想変速段に対応して複数の前記閾値(51)が規定され、前記第2指標(A2)の変化範囲内の少なくとも一部の領域において、隣接する2つの前記閾値(51)のそれぞれに規定された前記第1指標(A1)の値の差が、前記第2指標(A2)が大きくなるに従って大きくなるように設定されていると好適である。
この構成によれば、自動有段変速機用の変速マップにおける、変速線同士(アップシフト線同士、又はダウンシフト線同士)の間隔が、第2指標(A2)が小さい領域では狭く、第2指標(A2)が大きい領域では広く設定される傾向を模擬して、仮想変速条件が規定されるマップ(50)を構築することができる。よって、仮想変速制御が行われるタイミングを、内燃機関車両において自動変速が行われるタイミングに近づけることができ、回転電機(10)のトルクを車輪(7)に伝達させて車両を走行させている状態での運転フィーリングを内燃機関車両での運転フィーリングに近づけることが、より一層容易となる。
上記の各構成の制御装置(30)において、前記仮想変速制御では、前記第1制御及び前記第2制御のうちの少なくとも前記第1制御を実行し、前記車輪(7)に伝達するトルクに対する応答性の要求であるトルク応答性要求が、第1応答性要求状態である場合には、前記第1制御において前記回転電機(10)の出力トルクを前記基準トルク(Treq)よりも小さくし、前記トルク応答性要求が、前記第1応答性要求状態よりも前記応答性の要求が高い第2応答性要求状態である場合には、前記第1制御において前記回転電機(10)の出力トルクを前記基準トルク(Treq)よりも大きくすると好適である。
この構成によれば、仮想変速制御によって発生させる車両加速度の変動を、トルク応答性要求が相対的に小さい第1応答性要求状態である場合には、車両加速度が一時的に小さくなる変動とし、トルク応答性要求が相対的に大きい第2応答性要求状態である場合には、車両加速度が一時的に大きくなる変動とすることができる。トルク応答性要求が第2応答性要求状態である場合には、トルク応答性要求が第1応答性要求状態である場合に比べて、運転者がより強い加速感を求めていることが予想されるため、上記の構成によれば、仮想変速条件が満たされたタイミングで発生する車両加速度の変動を、その時点で運転者が求めている車両加速度の変動に近づけることが可能となる。
また、前記仮想変速制御では、前記第1制御及び前記第2制御のうちの少なくとも前記第1制御を実行し、前記第1制御において前記基準トルク(Treq)に対して異ならせる前記回転電機(10)の出力トルクの大きさを、前記基準トルク(Treq)よりも小さいトルクから前記基準トルク(Treq)よりも大きいトルクまでのトルク範囲において、前記第2指標(A2)の単位時間当たりの変化量が大きくなるに従って大きくすると好適である。
運転者が求める加速感が強い場合には、一般に、第2指標(A2)の単位時間当たりの変化量も大きくなるため、この構成によっても、仮想変速条件が満たされたタイミングで発生する車両加速度の変動を、その時点で運転者が求めている車両加速度の変動に近づけることが可能となる。
また、前記仮想変速制御では、前記第1制御及び前記第2制御のうちの少なくとも前記第1制御を実行し、前記第2指標(A2)の大きさが第1閾値(Th1)未満である場合には、前記第1制御において前記回転電機(10)の出力トルクを前記基準トルク(Treq)よりも小さくし、前記第2指標(A2)の大きさが前記第1閾値(Th1)以上である場合には、前記第1制御において前記回転電機(10)の出力トルクを前記基準トルク(Treq)よりも大きくすると好適である。
運転者が求める加速感が強い場合には、一般に、第2指標(A2)の大きさも大きくなるため、この構成によっても、仮想変速条件が満たされたタイミングで発生する車両加速度の変動を、その時点で運転者が求めている車両加速度の変動に近づけることが可能となる。
また、前記仮想変速制御では、前記第1制御及び前記第2制御のうちの少なくとも前記第2制御を実行し、前記第2指標(A2)の大きさが第2閾値(Th2)以上である場合には、前記第2制御が行われていない期間に前記第1指標(A1)の値の増加に応じて前記キャリア周波数(ω)を高くすると共に、前記第2制御において前記キャリア周波数(ω)を低下させ、前記第2指標(A2)の大きさが前記第2閾値(Th2)未満である場合には、前記第2制御が行われていない期間に前記第1指標(A1)の値の低下に応じて前記キャリア周波数(ω)を低くすると共に、前記第2制御において前記キャリア周波数(ω)を上昇させると好適である。
この構成によれば、第2指標(A2)の大きさが第2閾値(Th2)以上である場合には、キャリア周波数(ω)の大きさの変化を、内燃機関車両において車速(V)の増加に伴いアップシフトが順次行われる状況での内燃機関或いは変速機入力軸の回転速度の変化の傾向に合わせることができる。この結果、キャリア周波数(ω)に起因して発生する音の変動を、このようにアップシフトが順次行われる状況での内燃機関の駆動音の変動に近づけることができ、運転者に良好な加速感やリズム感を与えることが可能となる。
また、上記の構成によれば、第2指標(A2)の大きさが第2閾値(Th2)未満である場合には、キャリア周波数(ω)の大きさの変化を、内燃機関車両において車速(V)の減少に伴いダウンシフトが順次行われる状況での内燃機関或いは変速機入力軸の回転速度の変化の傾向に合わせることができる。この結果、キャリア周波数(ω)に起因して発生する音の変動を、このようにダウンシフトが順次行われる状況での内燃機関の駆動音の変動に近づけることができ、運転者に良好な減速感やリズム感を与えることが可能となる。
また、前記仮想変速制御では、前記第1制御及び前記第2制御のうちの少なくとも前記第2制御を実行し、前記第2制御では、前記第2制御の実行後の前記キャリア周波数(ω)が、前記第1指標(A1)の値の増加に応じて前記第2制御の実行前の前記キャリア周波数(ω)よりも高くなるように、段階的に前記キャリア周波数(ω)を変化させると好適である。
この構成によれば、キャリア周波数(ω)に起因して発生する音の周波数を、車速(V)の増加に応じて段階的に大きくすることができるため、運転者に良好な加速感やリズム感を与えることが可能となる。
また、前記仮想変速制御では、前記第1制御及び前記第2制御の双方を実行し、前記第1制御において前記回転電機(10)の出力トルクが前記基準トルク(Treq)よりも小さく制御される場合には、前記第2制御において前記キャリア周波数(ω)を低下させ、前記第1制御において前記回転電機(10)の出力トルクが前記基準トルク(Treq)よりも大きく制御される場合には、前記第2制御において前記キャリア周波数(ω)を上昇させると好適である。
この構成によれば、仮想変速条件が満たされたタイミングで発生される車両加速度の変動が、回転電機(10)の出力トルクが基準トルク(Treq)よりも小さく制御されることで車両加速度が一時的に小さくなる変動となる場合には、キャリア周波数(ω)に起因して発生する音の周波数もそのタイミングで低下させる。一方、仮想変速条件が満たされたタイミングで発生される車両加速度の変動が、回転電機(10)の出力トルクが基準トルク(Treq)よりも大きく制御されることで車両加速度が一時的に大きくなる変動となる場合には、キャリア周波数(ω)に起因して発生する音の周波数もそのタイミングで上昇させる。これにより、仮想変速条件が満たされたタイミングで発生する車両加速度の変動の高低と、当該タイミングで発生する音の変動(周波数の変動)の高低とを一致させることができ、運転者に良好なフィーリングを与えることが可能となる。
本開示に係る制御装置は、上述した各効果のうち、少なくとも1つを奏することができれば良い。
1:車両用駆動装置
7:車輪
10:回転電機
13:インバータ
30:制御装置
50:マップ
51:閾値
A1:第1指標
A2:第2指標
Acc:アクセル開度
Th1:第1閾値
Th2:第2閾値
Treq:基準トルク
V:車速
ω:キャリア周波数

Claims (9)

  1. 車輪に駆動連結される回転電機と、前記回転電機を駆動するインバータと、を備えた車両用駆動装置を制御対象とする制御装置であって、
    車速に応じた指標を第1指標とし、前記車輪に伝達することが要求される要求トルクに応じた指標を第2指標として、前記第1指標と前記第2指標とに応じた仮想変速条件が規定されたマップの情報を取得可能に構成され、
    キャリア周波数に基づくパルス幅変調により前記インバータを介して前記回転電機を駆動制御して、前記要求トルクに応じた基準トルクを前記回転電機に出力させている状態において、前記第1指標及び前記第2指標が前記仮想変速条件を満たしたタイミングで仮想変速制御を実行し、
    前記仮想変速制御は、前記回転電機の出力トルクを一時的に前記基準トルクとは異ならせる第1制御と、前記キャリア周波数を一時的に変化させる第2制御との、少なくとも一方を行う制御である制御装置。
  2. 前記仮想変速条件は、前記第1指標及び前記第2指標が、前記第1指標の値と前記第2指標の値との相関により規定された閾値に到達したことである請求項1に記載の制御装置。
  3. 前記マップには、複数の仮想変速段に対応して複数の前記閾値が規定され、
    前記第2指標の変化範囲内の少なくとも一部の領域において、隣接する2つの前記閾値のそれぞれに規定された前記第1指標の値の差が、前記第2指標が大きくなるに従って大きくなるように設定されている請求項2に記載の制御装置。
  4. 前記仮想変速制御では、前記第1制御及び前記第2制御のうちの少なくとも前記第1制御を実行し、
    前記車輪に伝達するトルクに対する応答性の要求であるトルク応答性要求が、第1応答性要求状態である場合には、前記第1制御において前記回転電機の出力トルクを前記基準トルクよりも小さくし、前記トルク応答性要求が、前記第1応答性要求状態よりも前記応答性の要求が高い第2応答性要求状態である場合には、前記第1制御において前記回転電機の出力トルクを前記基準トルクよりも大きくする請求項1から3のいずれか一項に記載の制御装置。
  5. 前記仮想変速制御では、前記第1制御及び前記第2制御のうちの少なくとも前記第1制御を実行し、
    前記第1制御において前記基準トルクに対して異ならせる前記回転電機の出力トルクの大きさを、前記基準トルクよりも小さいトルクから前記基準トルクよりも大きいトルクまでのトルク範囲において、前記第2指標の単位時間当たりの変化量が大きくなるに従って大きくする請求項1から3のいずれか一項に記載の制御装置。
  6. 前記仮想変速制御では、前記第1制御及び前記第2制御のうちの少なくとも前記第1制御を実行し、
    前記第2指標の大きさが第1閾値未満である場合には、前記第1制御において前記回転電機の出力トルクを前記基準トルクよりも小さくし、前記第2指標の大きさが前記第1閾値以上である場合には、前記第1制御において前記回転電機の出力トルクを前記基準トルクよりも大きくする請求項1から3のいずれか一項に記載の制御装置。
  7. 前記仮想変速制御では、前記第1制御及び前記第2制御のうちの少なくとも前記第2制御を実行し、
    前記第2指標の大きさが第2閾値以上である場合には、前記第2制御が行われていない期間に前記第1指標の値の増加に応じて前記キャリア周波数を高くすると共に、前記第2制御において前記キャリア周波数を低下させ、前記第2指標の大きさが前記第2閾値未満である場合には、前記第2制御が行われていない期間に前記第1指標の値の低下に応じて前記キャリア周波数を低くすると共に、前記第2制御において前記キャリア周波数を上昇させる請求項1から6のいずれか一項に記載の制御装置。
  8. 前記仮想変速制御では、前記第1制御及び前記第2制御のうちの少なくとも前記第2制御を実行し、
    前記第2制御では、前記第2制御の実行後の前記キャリア周波数が、前記第1指標の値の増加に応じて前記第2制御の実行前の前記キャリア周波数よりも高くなるように、段階的に前記キャリア周波数を変化させる請求項1から6のいずれか一項に記載の制御装置。
  9. 前記仮想変速制御では、前記第1制御及び前記第2制御の双方を実行し、
    前記第1制御において前記回転電機の出力トルクが前記基準トルクよりも小さく制御される場合には、前記第2制御において前記キャリア周波数を低下させ、前記第1制御において前記回転電機の出力トルクが前記基準トルクよりも大きく制御される場合には、前記第2制御において前記キャリア周波数を上昇させる請求項1から6のいずれか一項に記載の制御装置。
JP2017141893A 2017-07-21 2017-07-21 制御装置 Pending JP2019022415A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017141893A JP2019022415A (ja) 2017-07-21 2017-07-21 制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017141893A JP2019022415A (ja) 2017-07-21 2017-07-21 制御装置

Publications (1)

Publication Number Publication Date
JP2019022415A true JP2019022415A (ja) 2019-02-07

Family

ID=65355902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017141893A Pending JP2019022415A (ja) 2017-07-21 2017-07-21 制御装置

Country Status (1)

Country Link
JP (1) JP2019022415A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021010279A (ja) * 2019-07-03 2021-01-28 株式会社Subaru 車両制御装置
JP2021030792A (ja) * 2019-08-21 2021-03-01 ヤマハ株式会社 音データ出力装置および車両
JP2021118569A (ja) * 2020-01-23 2021-08-10 トヨタ自動車株式会社 電気自動車

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021010279A (ja) * 2019-07-03 2021-01-28 株式会社Subaru 車両制御装置
US11332021B2 (en) * 2019-07-03 2022-05-17 Subaru Corporation Electric vehicle
JP7412909B2 (ja) 2019-07-03 2024-01-15 株式会社Subaru 車両制御装置
JP2021030792A (ja) * 2019-08-21 2021-03-01 ヤマハ株式会社 音データ出力装置および車両
JP2021118569A (ja) * 2020-01-23 2021-08-10 トヨタ自動車株式会社 電気自動車

Similar Documents

Publication Publication Date Title
EP3854626B1 (en) Electric vehicle
CN103814201B (zh) 车辆的驱动力控制装置
JP5840698B2 (ja) 電動車両のモータ制御装置
CN104870284B (zh) 混合动力车辆的控制装置
CN102082537B (zh) 一种电动汽车的电机控制方法及其控制系统
JP2010173389A (ja) シリーズ型ハイブリッド車両の制御装置
WO2018011968A1 (ja) トルク制御方法及びトルク制御装置
JP2019022415A (ja) 制御装置
CN114056115A (zh) 电动汽车
CN107208789A (zh) 车辆的控制装置
JP2016000537A (ja) 運転支援装置
CN105936270B (zh) 通过扭矩限制协调推进扭矩致动器的方法
EP3967542A1 (en) Method of generating virtual vibration effect of internal combustion engine in electric vehicle
US11529876B2 (en) Control method for generating virtual sensation of gear shifting of electric vehicle
JP2015113932A (ja) 自動変速機の制御装置
CN103895506B (zh) 车辆和用于车辆的控制方法
JP2017001593A (ja) ハイブリッド車両の制御装置
KR102322388B1 (ko) 하이브리드 차량의 엔진 클러치 토크 추정 장치 및 방법
JP5630211B2 (ja) ハイブリッド車両の制御装置
US11845460B2 (en) Apparatus and method of virtualizing characteristics of internal-combustion-engine vehicle in electric vehicle
US20210387531A1 (en) Control method for generating virtual sensation of gear shifting of electric vehicle
JP3409249B2 (ja) ハイブリッド車両
CN107284212A (zh) 一种电动汽车动力总成及其控制方法
JP6676676B2 (ja) 電動車両および電動車両用制御装置
JP7428283B1 (ja) 電気自動車