JP2019020369A - 電流センサおよび測定装置 - Google Patents

電流センサおよび測定装置 Download PDF

Info

Publication number
JP2019020369A
JP2019020369A JP2017142117A JP2017142117A JP2019020369A JP 2019020369 A JP2019020369 A JP 2019020369A JP 2017142117 A JP2017142117 A JP 2017142117A JP 2017142117 A JP2017142117 A JP 2017142117A JP 2019020369 A JP2019020369 A JP 2019020369A
Authority
JP
Japan
Prior art keywords
coil
current sensor
current
winding core
end side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017142117A
Other languages
English (en)
Inventor
宏紀 中沢
Koki Nakazawa
宏紀 中沢
健太 池田
Kenta Ikeda
健太 池田
豊 芦田
Yutaka Ashida
豊 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2017142117A priority Critical patent/JP2019020369A/ja
Publication of JP2019020369A publication Critical patent/JP2019020369A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

【課題】ロゴスキーコイルの両端と積分器の接続部分についての構造を簡略化でき、かつ製造工数も低減可能とする。【解決手段】巻芯12、巻芯12の基端A側から自由端B側に亘って巻回されたコイル13、および巻芯12の長さ方向に沿って巻芯12に配設されて自由端B側の一端がコイル13における自由端B側の一端に電気的に接続された戻し導体14を有するロゴスキーコイル11を備えて構成されて、コイル13における基端A側の他端と戻し導体14における基端A側の他端とが積分部33にダンピング抵抗を介することなく接続可能に構成され、コイル13の抵抗値が、コイル13の分布インダクタンスおよび分布キャパシタンスで規定される特性インピーダンスと実質的に等価に規定されている。【選択図】図1

Description

本発明は、ロゴスキーコイルを用いて構成された電流センサ、および電流センサを備えた測定装置に関するものである。
この種の測定装置の一例として、下記の特許文献1に開示された電流測定装置が知られている。この電流測定装置は、ロゴスキーコイルと積分器とを備えている。ロゴスキーコイルは、プラスティック製の巻型にコイル巻線が巻き付けられて構成されている。巻型は、円形の断面を持つと共に、切れ目があるドーナツ状に形成されて、開閉自在なループを形成可能に構成されている。コイル巻線は、巻型の周面に巻型の一端から巻型の他端に亘って形成され、巻型の他端に位置するコイル巻線の自由端は巻型の中心軸に配設された導線を介して巻型の一端に位置するコイル巻線の固定端に戻される。この構成により、ロゴスキーコイルは、測定電流の流れる導体を取り囲んで、包囲することが可能となっている。また、ロゴスキーコイルの両端(コイル巻線の固定端と、コイル巻線の自由端に接続された導線における巻型の一端に位置する端部)は、適切なダンピング抵抗で終端処理されて、積分器に接続されている。この場合、ダンピング抵抗の抵抗値は、ロゴスキーコイルの特性インピーダンス(√(L/C)。なお、Lはロゴスキーコイルのインダクタンスであり、Cはロゴスキーコイルの分布キャパシタンスを示している)と実質的に同じに規定されている。
特表2017−504022号公報(第8−12頁、第1−6図)
ところが、上記した電流測定装置には、以下のような解決すべき課題が存在している。すなわち、この電流測定装置では、ロゴスキーコイルの両端にダンピング抵抗を別途接続する必要があることから、この電流測定装置には、ダンピング抵抗が存在することに起因して、ロゴスキーコイルの両端と積分器との接続部分(つまり、ロゴスキーコイルおよびダンピング抵抗で構成される電流センサと積分器との接続部分)についての構造が複雑になったり、製造工数が増加したりするという解決すべき課題が存在している。
本発明は、かかる課題を解決するためになされたものであり、ロゴスキーコイルの両端と積分器の接続部分についての構造を簡略化でき、かつ製造工数も低減し得る電流センサ、およびこの電流センサを備えた測定装置を提供することを主目的とする。
上記目的を達成すべく請求項1記載の電流センサは、巻芯、当該巻芯の基端側から自由端側に亘って巻回されたコイル、および前記巻芯の長さ方向に沿って当該巻芯に配設されて前記自由端側の一端が前記コイルにおける前記自由端側の一端に電気的に接続された戻し導体を有するロゴスキーコイルを備えて構成されて、前記コイルにおける前記基端側の他端と前記戻し導体における基端側の他端とが積分部にダンピング抵抗を介することなく接続可能に構成された電流センサであって、前記コイルの抵抗値が、前記コイルの分布インダクタンスおよび分布キャパシタンスで規定される特性インピーダンスと実質的に等価に規定されている。
請求項2記載の電流センサは、請求項1記載の電流センサにおいて、前記コイルは、絶縁材料を用いて線状に形成された絶縁線とで前記巻芯の外周面にバイファイラ巻きされた導線で形成されている。
請求項3記載の測定装置は、請求項1または2記載の電流センサと、前記積分部と、当該積分部から出力される信号に基づいて当該電流センサが取り付けられた測定対象電線に流れる測定電流の電流値を測定する処理部と、前記測定された電流値を出力する出力部とを備えている。
請求項1記載の電流センサおよび請求項3記載の測定装置によれば、ロゴスキーコイルを構成するコイル全体の抵抗値がコイルの特性インピーダンスと実質的に等価に規定されているため、ダンピング抵抗を不要にしつつ、出力される信号でのピークの発生をダンピング抵抗を配設したときと同様に回避して測定電流の電流値を正確に測定することができる。また、この電流センサおよびこの測定装置によれば、ロゴスキーコイルの両端と積分部との接続部分へのダンピング抵抗の接続が不要な分だけ、この接続部分についての構造を簡略化できると共に、製造工数を低減することもできる。
請求項2記載の電流センサおよび請求項3記載の測定装置によれば、絶縁線とで巻芯の外周面にバイファイラ巻きされた導線でロゴスキーコイルを構成するコイルが形成されているため、高抵抗率の導線として一般的な電熱線などの裸線を使用する構成であっても、コイルにおける隣接する部位同士間に絶縁線が介在する構成を容易に実現することができるため、コイルの作製に要する製造工数を抑えつつ、コイルにおけるこの隣接する部位同士の短絡を確実に防止することができる。
測定装置1の構成図である。 電流センサ2を構成するロゴスキーコイル11の要部拡大図である。 電流センサ2、第1比較例の電流センサ51、および第2比較例の電流センサ61のそれぞれのゲインについての周波数特性を示す特性図である。 電流センサ2の等価回路図である。 第1比較例の電流センサ51の等価回路図である。 第2比較例の電流センサ61の等価回路図である。
以下、電流センサおよび測定装置の実施の形態について、添付図面を参照して説明する。
最初に、測定装置としての測定装置1の構成について、図面を参照して説明する。
測定装置1は、図1に示すように、電流センサとしての電流センサ2および装置本体3を備え、電流センサ2が装置本体3に接続され、かつ電流センサ2の後述するロゴスキーコイル11が測定対象4を取り囲んで環状をなすように測定対象4に取り付けられた状態において、測定対象4に流れる測定電流(交流電流)Iの電流値I1を測定可能に構成されている。
電流センサ2は、図1に示すように、ロゴスキーコイル11、およびロゴスキーコイル11を装置本体3に接続するための接続ケーブル21を備えている。ロゴスキーコイル11は、図1,2に示すように、可撓性を有する棒状体(例えば、直径がほぼ一定の円柱体)として構成された巻芯12(図1中では破線で示されている部材)、巻芯12の基端A側から自由端B側に亘って巻回されたコイル(巻線)13、および巻芯12の長さ方向に沿って巻芯12に配設されて自由端B側の一端がコイル13における自由端B側の一端に電気的に接続された戻し導体14を有している。
具体的には、巻芯12は、例えば、樹脂材料などの絶縁性材料を用いて可撓性を有する長尺な棒状体として構成されている。コイル13は、導線(ワイヤー)を巻芯12の外周面に巻回することによって形成されている。また、コイル13に用いられる導線としては、一般的なロゴスキーコイルにおいて使用される抵抗率(体積抵抗率)の低い銅製の導線ではなく、抵抗率の高い金属(ニッケルクロム、鉄クロムおよびステンレスなど)製の導線が使用される。このような高抵抗率の導線は、一般的に、電熱線や電気抵抗線として市販されている。この場合、電気抵抗線には表面が絶縁性被覆で覆われた構成のものが存在しているが、発熱させて使用される電熱線は、表面が絶縁性被覆で覆われる構成となっておらず、裸線である。このため、この電熱線を導線として使用してコイル13を形成したロゴスキーコイル11を曲げ伸ばししたときに、コイル13における隣接する部位同士が短絡しないように、コイル13は、図2に示すように、絶縁材料を用いて線状(ワイヤー状)に形成された絶縁線15とで巻芯12の外周面にバイファイラ巻きされた導線16(電熱線など)で形成される構成が好ましい。なお、本例の「バイファイラ巻き」とは、2本の線(本例では、絶縁線15と導線16)を捩ることなく並行な状態で巻く巻き方をいうものとする。この構成を採用することにより、上記のような短絡のおそれを確実に回避し得るコイル13を簡単に製作することが可能となる。
また、このようにして高抵抗率の導線16で形成されたコイル13全体は、図4に示す電流センサ2の等価回路図で示されるように、分布電圧源V、分布インダクタンスL、分布抵抗Rおよび分布キャパシタンスCで構成される分布定数回路NE1が多段に縦続接続されたものと実質的に等価であり、コイル13全体の抵抗値(各分布定数回路NE1の抵抗Rの抵抗値R1の総和(R1+R1+・・・+R1))は、上記の分布インダクタンスLのインダクタンス値をL1とし、分布キャパシタンスCの容量値をC1としたときのコイル13の特性インピーダンス(√(L1/C1))と実質的に等価(同一)になるように規定されている。なお、図4中において符号Cpで示されるキャパシタンスは、接続ケーブル21の後述する2つの芯線22,23間に存在する寄生容量を示している。
戻し導体14は、一例として、銅製の導線で構成されて、図2に示すように巻芯12の内部に、巻芯12の基端A側から自由端B側に亘って貫通する状態で配設されている。また、戻し導体14は、図1に示すように、自由端B側の一端がコイル13における自由端B側の一端に電気的に接続されている。このロゴスキーコイル11では、コイル13における基端A側の他端(端部11a)および戻し導体14における基端A側の他端(端部11b)がロゴスキーコイル11での出力端(以下、出力端11a,11bともいう)として機能して、ロゴスキーコイル11が取り付けられた測定対象4に流れる測定電流Iの電流値I1についての時間変化(dI1/dt)の大きさに比例して電圧値が変化する誘導電圧V1をこの出力端11a,11b間から出力可能となっている。また、このロゴスキーコイル11では、巻芯12およびこの巻芯12の外周面に形成されたコイル13全体が絶縁被覆17で覆われている。
接続ケーブル21は、例えば2芯のシールドケーブルなどで構成されて、一方の端部側から延出する2つの芯線22,23のうちの一方の芯線22がロゴスキーコイル11の一方の出力端11aに接続され、他方の芯線23がロゴスキーコイル11の他方の出力端11bに接続されている。また、接続ケーブル21は、他方の端部側にコネクタ24が取り付けられて、この他方の端部側から延出する各芯線22,23はコネクタ24に配設された複数の接続ピンのうちの対応する1つの接続ピンにそれぞれ接続されている。また、接続ケーブル21を構成するシールド25も同様にして、コネクタ24に配設された複数の接続ピンのうちの対応する1つの接続ピンに接続されている。この構成により、電流センサ2では、ロゴスキーコイル11から出力された誘導電圧V1が接続ケーブル21を経由してコネクタ24から電圧信号V2として出力される。
装置本体3は、一例として、ケース31、コネクタ32、積分部33,処理部34、出力部35および不図示の電源部を備えて構成されている。電源部は、例えば直流電源装置(電池でもよい)で構成されて、ケース31内に配設された積分部33,処理部34および出力部35などの電子回路のための作動用直流電圧(基準電位Gを基準とする電圧)を生成して出力する。
ケース31は、例えば箱体に形成されて、その一つの壁面にコネクタ32が配設されている。コネクタ32は、電流センサ2の接続ケーブル21に取り付けられたコネクタ24が着脱自在な構成となっている。また、図1に示すように、コネクタ32にコネクタ24が装着された状態では、接続ケーブル21の芯線22は、コネクタ24(具体的には、この芯線22に対応するコネクタ24の接続ピン)、コネクタ32(具体的には、コネクタ24のこの接続ピンに対応してコネクタ32に配設された接続ピン)、およびコネクタ32に接続された装置本体3の内部配線を介して積分部33の不図示の2つの入力端子のうちの一方の入力端子に接続される。また、接続ケーブル21の芯線23は、コネクタ24(具体的には、この芯線23に対応するコネクタ24の接続ピン)、コネクタ32(具体的には、コネクタ24のこの接続ピンに対応してコネクタ32に配設された接続ピン)、およびコネクタ32に接続された装置本体3の内部配線を介して積分部33の他方の入力端子に接続される。
この構成により、電流センサ2のコネクタ24から出力される電圧信号V2は、積分部33の入力端子間に入力される。また、また、接続ケーブル21のシールド25は、コネクタ24(具体的には、このシールド25に対応するコネクタ24の接続ピン)、コネクタ32(具体的には、コネクタ24のこの接続ピンに対応してコネクタ32に配設された接続ピン)、およびコネクタ32に接続された装置本体3の内部配線を介して装置本体3の基準電位G(内部グランド)に接続される。
積分部33は、例えば、演算増幅器で構成された積分回路を備えて構成されて、電流センサ2から一対の入力端子間に入力される電圧信号V2を積分することにより、測定対象4に流れる測定電流Iの電流波形に比例して波形が変化する電圧信号V3を生成して処理部34に出力する。
処理部34は、例えば、A/D変換部、CPUおよびメモリなど(いずれも図示せず)を備えて構成されている。処理部34では、A/D変換部が、入力される電圧信号V3をその瞬時値を示す波形データに変換し、CPUが、この波形データに基づいて測定対象4に流れる測定電流Iの電流値I1を算出(測定)して出力部35に出力する。
出力部35は、一例として、ケース31に設けられたLCDなどのディスプレイ装置で構成されて、処理部34から出力された電流値I1を画面に表示する。なお、出力部35は、ディスプレイ装置に代えて、種々のインターフェース回路で構成してもよく、例えば、メディアインターフェース回路としてリムーバブルメディアに上記の電流値I1を記憶させたり、ネットワークインターフェース回路としてネットワーク経由で外部装置に上記の電流値I1を伝送させたりする構成を採用することもできる。
次に、測定装置1の動作について、電流センサ2の動作と併せて説明する。なお、電流センサ2のコネクタ24が装置本体3のコネクタ32に装着される(電流センサ2が装置本体3に接続される)と共に、電流センサ2のロゴスキーコイル11が測定対象4に取り付けられているものとする。
測定装置1では、まず、電流センサ2が測定対象4に流れる測定電流Iを検出すると共に、この測定電流Iの電流値I1についての時間変化の大きさ(時間微分値)に比例して電圧値が変化する電圧信号V2をコネクタ24から出力する。この場合、電流センサ2では、ロゴスキーコイル11が測定対象4に流れる測定電流Iの電流値I1についての時間変化の大きさ(時間微分値)に比例して電圧値が変化する誘導電圧V1を出力し、この誘導電圧V1が接続ケーブル21を経由してコネクタ24から電圧信号V2として出力される。
このロゴスキーコイル11では、上記したように、コイル13は、高抵抗率の導線16で形成されることにより、コイル13全体の抵抗値(各分布定数回路NE1の抵抗Rの抵抗値R1の総和)がコイル13の特性インピーダンス(√(L1/C1))と実質的に等価となるように規定されている。この構成により、この電流センサ2では、ロゴスキーコイル11の出力端11a,11bと積分部33との間にダンピング抵抗が存在しない構成であっても、高抵抗率の導線16で形成されたコイル13全体が等価的にダンピング抵抗として機能して、誘導電圧V1、ひいては電圧信号V2に生じるおそれのある共振に起因したピークを抑制することが可能となっている。
以下において、本例の電流センサ2にようにして、コイル13全体を高抵抗率の導線16で形成することによる効果(上記したピークの抑制効果)について、図3〜図6を参照して説明する。なお、図4は、上記したように本例の電流センサ2の等価回路図であり、図5は第1比較例としての電流センサ51の等価回路図であり、図6は第2比較例としての電流センサ61の等価回路図である。
この電流センサ51,61の各等価回路について説明する。なお、上記した電流センサ2の等価回路と同一の構成については同一の符号を付して重複する説明を省略する。電流センサ51では、ロゴスキーコイル52を構成するコイル53は、その巻回数、その直径およびその長さがロゴスキーコイル11のコイル13とそれぞれ同一に規定されている。一方、電流センサ51では、コイル53を形成するための導線には低抵抗率の導線(例えば、銅線)が使用されている。
このため、図5に示すこの電流センサ51の等価回路図での各分布定数回路NE2を構成する分布電圧源V、分布インダクタンスL、分布抵抗Rおよび分布キャパシタンスCのうちの分布電圧源V、分布インダクタンスLおよび分布キャパシタンスCについてはロゴスキーコイル11とほぼ同等であるものの、分布抵抗Rの抵抗値R2については、ロゴスキーコイル11の分布抵抗Rの抵抗値R1と比較して極めて小さい値となっている。また、電流センサ51では、電流センサ61との比較のためにダンピング抵抗は設けられていない。
電流センサ61は、ダンピング抵抗62を備えている点でのみ電流センサ51と相違し、他の構成については電流センサ51と同一である。また、ダンピング抵抗62は、一例として、ロゴスキーコイル52の出力端11aと接続ケーブル21との間(具体的には、接続ケーブル21の芯線22との間)に配設されている。電流センサ51の等価回路と同一の構成については同一の符号を付して重複する説明を省略する。
図3は、上記した各電流センサ2,51,61から出力される電圧信号V2のゲインについての周波数特性をシミュレーションして得られた特性図である。
このシミュレーションでは、一例として、電流センサ2の等価回路では、ロゴスキーコイル11は10個の分布定数回路NE1が縦続接続されて構成されており、各分布定数回路NE1の分布インダクタンスLのインダクタンス値L1が0.32μHであり、分布キャパシタンスCの容量値C1が0.3pFであり、このときの特性インピーダンス(√(L1/C1))が約1032Ωとなることから、分布抵抗Rの抵抗値R1は103.2Ω(=1032/10)に規定されているものとする。また、電流センサ51,61の等価回路では、ロゴスキーコイル52が、電流センサ2の分布定数回路NE1と同数(10個)の分布定数回路NE2が縦続接続されて構成されており、各分布定数回路NE2の分布インダクタンスLのインダクタンス値L1が0.32μHであり、分布キャパシタンスCの容量値C1が0.3pFであり、銅線で形成される分布抵抗Rの抵抗値R2は0.01Ωに規定されているものとする。また、電流センサ61の等価回路では、特性インピーダンス(√(L1/C1))が約1032Ωであることから、ダンピング抵抗62の抵抗値はこれと等しい抵抗値(1032Ω)に規定されているものとする。
この図3に示す電流センサ51についての特性図(太い破線で示される特性図)から明らかなように、ダンピング抵抗に相当するものが存在しない電流センサ51の構成においては、共振に起因すると考えられるピーク(8M〜9MHz付近のピーク)が生じている。それに対して、この図3に示す電流センサ61についての特性図(細い実線で示される特性図)から明らかなように、電流センサ61の構成(電流センサ51の構成にダンピング抵抗62だけを追加した構成)では、低周波領域からゲインが低下し始める周波数40M〜50MHzまでの間の周波数帯域における周波数特性が、このピークの発生が適切に抑制された好ましい周波数特性となっている。
一方、この図3に示す電流センサ2についての特性図(太い実線で示される特性図)から明らかなように、電流センサ2では、個別の抵抗器をダンピング抵抗として設ける構成を採用することなく、電流センサ61と同等の好ましい周波数特性となっている。
測定装置1では、装置本体3が、電流センサ2から入力した電圧信号V2に基づいて測定電流Iの電流値I1を測定する。この場合、装置本体3では、積分部33が、例えば、演算増幅器で構成された積分回路を備えて構成されて、電流センサ2からコネクタ32を介して入力される電圧信号V2を積分することにより、測定電流Iの電流波形に比例して波形が変化する電圧信号V3を生成して処理部34に出力する。電流センサ2から入力される電圧信号V2には上記したピークが存在しないため、積分部33は、電圧信号V2を積分することにより、測定電流Iの電流波形に比例して波形が変化する電圧信号V3を正確に生成することが可能となっている。
処理部34は、この正確な電圧信号V3に基づいて測定電流Iの電流値I1を正確に算出(測定)して出力部35に出力する。出力部35は、処理部34から出力された電流値I1を画面に表示する。これにより、測定電流Iの電流値I1についての測定が完了する。
このように、この電流センサ2およびこの電流センサ2を備えた測定装置1では、ロゴスキーコイル11を構成するコイル13全体の抵抗値(各分布定数回路NE1における分布抵抗Rの抵抗値R1の総和(R1+・・・+R1))がコイル13の特性インピーダンスと実質的に等価(同一)に規定されている。したがって、この電流センサ2およびこの測定装置1によれば、ダンピング抵抗を不要にしつつ、ダンピング抵抗を配設したときと同様に電圧信号V2でのピークの発生を回避して測定電流Iの電流値I1を正確に測定することができる。また、この電流センサ2およびこの測定装置1によれば、ロゴスキーコイル11の両端(出力端11a,11b)と積分部33との接続部分(つまり、出力端11a,11bから、接続ケーブル21、コネクタ24およびコネクタ32を経由して積分部33に至るまでの経路部分)へのダンピング抵抗の接続が不要な分だけ、この接続部分についての構造を簡略化できると共に、製造工数を低減することもできる。
また、この電流センサ2およびこの電流センサ2を備えた測定装置1では、ロゴスキーコイル11を構成するコイル13が、図2に示すように、絶縁線15とで巻芯12の外周面にバイファイラ巻きされた導線16で形成されている。したがって、この電流センサ2およびこの測定装置1によれば、高抵抗率の導線として一般的な電熱線などの裸線を使用する構成であっても、コイル13における隣接する部位同士間に絶縁線15が介在する構成を容易に実現することができるため、コイル13の作製に要する製造工数を抑えつつ、コイル13におけるこの隣接する部位同士の短絡を確実に防止することができる。
なお、電流センサ2を備えた測定装置1として、測定電流Iの電流値I1を測定する電流測定装置を例に挙げて説明したが、電流センサ2を備えた測定装置1としては、電流測定装置以外に電力測定装置など種々の測定装置とすることもできる。
また、上記の電流センサ2では、コイル13を形成するための導線16にのみ高抵抗率の導線を使用し、戻し導体14には低抵抗率の導線(銅製の導線)を使用する構成を採用しているが、戻し導体14にも高抵抗率の導線を使用してもよいのは勿論である。また、上記の電流センサ2では、巻芯12を貫通する導線で戻し導体14を構成しているが、この構成に限定されるものではなく、図示はしないが、例えば、コイル13を覆うシールドが巻芯12の基端A側から自由端B側に亘って配設されている構成においては、このシールドを戻し導体14として使用することもできる。
また、上記の電流センサ2では、積分部33(積分器)を含まない構成を採用しているが、積分器を含んで電流センサを構成することもできる。この構成の電流センサは、図示はしないが、例えば、上記のロゴスキーコイル11と、このロゴスキーコイル11に直接接続されて、ロゴスキーコイル11から出力される誘導電圧V1を積分することで上記の電圧信号V3に相当する電圧信号を生成して接続ケーブル21を経由してコネクタ24から外部に出力する積分器とを備えて構成される。この電流センサによれば、オシロスコープなどの波形測定装置に直接接続して測定電流Iを測定することが可能となる。なお、電流センサ2と同一の構成については同一の符号を付して重複する説明を省略した。
1 測定装置
2 電流センサ
11 ロゴスキーコイル
12 巻芯
13 コイル
14 戻し導体
A 基端
B 自由端

Claims (3)

  1. 巻芯、当該巻芯の基端側から自由端側に亘って巻回されたコイル、および前記巻芯の長さ方向に沿って当該巻芯に配設されて前記自由端側の一端が前記コイルにおける前記自由端側の一端に電気的に接続された戻し導体を有するロゴスキーコイルを備えて構成されて、前記コイルにおける前記基端側の他端と前記戻し導体における基端側の他端とが積分部にダンピング抵抗を介することなく接続可能に構成された電流センサであって、
    前記コイルの抵抗値が、前記コイルの分布インダクタンスおよび分布キャパシタンスで規定される特性インピーダンスと実質的に等価に規定されている電流センサ。
  2. 前記コイルは、絶縁材料を用いて線状に形成された絶縁線とで前記巻芯の外周面にバイファイラ巻きされた導線で形成されている請求項1記載の電流センサ。
  3. 請求項1または2記載の電流センサと、前記積分部と、当該積分部から出力される信号に基づいて当該電流センサが取り付けられた測定対象電線に流れる測定電流の電流値を測定する処理部と、前記測定された電流値を出力する出力部とを備えている測定装置。
JP2017142117A 2017-07-21 2017-07-21 電流センサおよび測定装置 Pending JP2019020369A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017142117A JP2019020369A (ja) 2017-07-21 2017-07-21 電流センサおよび測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017142117A JP2019020369A (ja) 2017-07-21 2017-07-21 電流センサおよび測定装置

Publications (1)

Publication Number Publication Date
JP2019020369A true JP2019020369A (ja) 2019-02-07

Family

ID=65353498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017142117A Pending JP2019020369A (ja) 2017-07-21 2017-07-21 電流センサおよび測定装置

Country Status (1)

Country Link
JP (1) JP2019020369A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022186082A1 (ja) * 2021-03-05 2022-09-09 富士電機機器制御株式会社 電流センサ及び電流センサの製造方法
CN115436680A (zh) * 2022-09-30 2022-12-06 西北核技术研究所 一种用于自积分罗氏线圈的小阻值信号电阻

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343401A (ja) * 2000-05-31 2001-12-14 Mitsubishi Electric Corp 電流検出装置
JP2005003601A (ja) * 2003-06-13 2005-01-06 Fuji Electric Holdings Co Ltd ハイブリッドセンサ
JP2010256093A (ja) * 2009-04-22 2010-11-11 Nippon Soken Inc 電流センサ装置
JP2011003733A (ja) * 2009-06-18 2011-01-06 Tdk Corp インダクタ部品
JP2012088224A (ja) * 2010-10-21 2012-05-10 Hioki Ee Corp ロゴスキーコイルおよび電流検出装置
US20150015244A1 (en) * 2012-02-03 2015-01-15 Power Electronic Measurements Limited Temperature compensated current measurement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343401A (ja) * 2000-05-31 2001-12-14 Mitsubishi Electric Corp 電流検出装置
JP2005003601A (ja) * 2003-06-13 2005-01-06 Fuji Electric Holdings Co Ltd ハイブリッドセンサ
JP2010256093A (ja) * 2009-04-22 2010-11-11 Nippon Soken Inc 電流センサ装置
JP2011003733A (ja) * 2009-06-18 2011-01-06 Tdk Corp インダクタ部品
JP2012088224A (ja) * 2010-10-21 2012-05-10 Hioki Ee Corp ロゴスキーコイルおよび電流検出装置
US20150015244A1 (en) * 2012-02-03 2015-01-15 Power Electronic Measurements Limited Temperature compensated current measurement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022186082A1 (ja) * 2021-03-05 2022-09-09 富士電機機器制御株式会社 電流センサ及び電流センサの製造方法
CN115436680A (zh) * 2022-09-30 2022-12-06 西北核技术研究所 一种用于自积分罗氏线圈的小阻值信号电阻

Similar Documents

Publication Publication Date Title
JP6438963B2 (ja) スクリーンされたコイルを備える広帯域ロゴスキートランスデューサ
CN102066954B (zh) 组合电测量装置
CN108761168B (zh) 非接触式电压传感器
CN101027563B (zh) 电流测量设备中的改进和与其有关的改进
JP4972098B2 (ja) 可撓性精密電流検出器
US7449637B2 (en) Pulse current sensor
JP2009517659A5 (ja)
Abdi-Jalebi et al. High-performance low-cost Rogowski transducers and accompanying circuitry
JP2023024575A (ja) 電流検出装置および電流測定装置
JP2019020369A (ja) 電流センサおよび測定装置
JP2020502754A (ja) ブッシング等の導電性要素とコネクタケーブルとの組み合わせ
JP2015206596A (ja) 電流センサおよび測定装置
US20140292353A1 (en) Line impedance stabilization network
JP2019027970A (ja) 電流センサおよび測定装置
JPWO2005029099A1 (ja) 電流測定装置及び試験装置と、これに用いる同軸ケーブル及び集合ケーブル
CN108226602B (zh) 用于测量交流电的时间导数的方法和传感器
JP6153416B2 (ja) 電流センサおよび測定装置
CN111856345A (zh) 一种用于测量冲击电流的宽频磁场传感器装置及方法
CN104502664B (zh) 低阻值无感自积分罗氏线圈积分电阻及其制造方法
JP2014003607A (ja) 回線インピーダンス安定化ネットワーク
CN106154013B (zh) 一种复合型罗氏线圈积分电阻及其制造方法
US10937571B2 (en) Bushing with integrated electronics
CN108572334B (zh) 一种变压器异常漏磁监测系统
JP2016507070A (ja) ワイヤの抵抗を増加させることによる、コイルの均一な温度の測定
JP2002131341A (ja) 非接触電圧センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211019