JP2018535304A - 自己修復材料の3d印刷における応用 - Google Patents

自己修復材料の3d印刷における応用 Download PDF

Info

Publication number
JP2018535304A
JP2018535304A JP2018543416A JP2018543416A JP2018535304A JP 2018535304 A JP2018535304 A JP 2018535304A JP 2018543416 A JP2018543416 A JP 2018543416A JP 2018543416 A JP2018543416 A JP 2018543416A JP 2018535304 A JP2018535304 A JP 2018535304A
Authority
JP
Japan
Prior art keywords
self
healing
present
polysiloxane
bond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018543416A
Other languages
English (en)
Other versions
JP6669886B2 (ja
Inventor
李承▲輝▼
▲頼▼建▲誠▼
游效▲曾▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Publication of JP2018535304A publication Critical patent/JP2018535304A/ja
Application granted granted Critical
Publication of JP6669886B2 publication Critical patent/JP6669886B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C73/00Repairing of articles made from plastics or substances in a plastic state, e.g. of articles shaped or produced by using techniques covered by this subclass or subclass B29D
    • B29C73/16Auto-repairing or self-sealing arrangements or agents
    • B29C73/18Auto-repairing or self-sealing arrangements or agents the article material itself being self-sealing, e.g. by compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C73/00Repairing of articles made from plastics or substances in a plastic state, e.g. of articles shaped or produced by using techniques covered by this subclass or subclass B29D
    • B29C73/16Auto-repairing or self-sealing arrangements or agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2083/00Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

自己修復材料の3D印刷における応用であって、自己修復材料を3D印刷材料とし、自己修復材料の自己修復機能を利用して、インテリジェント検出を行い、且つ材料に対する修復を自発的に遂行することにより、材料に微細なひび割れが生じることにより存在する潜在的損壊を予防することができ、また製品の成形条件と較べて、自己修復に必要な条件は軽度で、緩いため、修復が完了するまでの修復過程全体において、製品の全体的な性能に影響せず、製品のメンテナンス費用が軽減され、その耐用年数が延び、資源の利用率が向上している。【選択図】なし

Description

本発明は、3D印刷技術分野、特に自己修復材料の3D印刷における応用に関する。
3D印刷技術(3D Printing)は、今世紀の製造業分野で急速に発展した新興技術のひとつであり、「工業革命の意味を有する製造技術」と称されている。該技術は高速成形技術の一種であり、付加製造とも呼ばれている。3D印刷技術の基本原理はインクジェット印刷技術やレーザー印刷技術と類似しており、デジタルパターンファイルを基礎とし、デザインやスキャンなどの手段により作成した3Dパターンを、ある座標軸に基づいて無数の断面に切断した後、対応する材料をプリンタノズルから一層ずつプリントし、降温または光硬化により成形し、またはレーザー焼結や熔融を選択的に行い、かつ元の位置に積み上げて一つの三次元実体を形成することである。3D印刷技術は、製品の製造プロセスを簡略化し、製品の研究開発サイクルを短縮し、効率を高め、コストを低減しており、すでに製品原型、パターン製造、芸術創作、ジュエリー制作、バイオテクノロジー、医薬、建築、アパレルなどの分野に幅広く応用されている。
3D印刷技術はめざましい発展を遂げたが、まだいくつかの課題を抱えている。通常、3D印刷で得られる製品は、一般に普通の機械製造における多くの部品の結合体であり、その長所は、製品の全体的な性能を増加させ、部品の組立過程で生じる資源及びエネルギーの消費を減少させることができることであり、また、既存のプロセスや技術で実現できない製品を生産、製造し、生産の精巧さを向上させることもできる。この長所を具現化すると同時に、その欠点も明らかになる。3D印刷材料で製造した製品は、一回で全体成形されるので、それ自体に微小なひび割れが生じたり、外部から破壊されたりすると、製品全体の機能性に影響が生じ、交換という選択肢しかなくなる。そうなると、製品のメンテナンスコストが増加し、とても大きな浪費につながる。既存の3D印刷材料を利用して印刷した実体または部材は、それ自体に微小なひび割れが生じたり、外部から破壊されたりした後、正常な状態に回復することができないので、製品の耐用年数に直接影響が生じ、また安全上のリスクという問題も生じてしまう。
(特になし)
本発明の目的は、自己修復材料の3D印刷における応用を提供することにあり、自体のひび割れに対する検出を実現し、部分または全体の損傷に対する修復を自発的に遂行できる3D印刷材料を提供することを主な目的としている。
本発明では、自己修復材料の3D印刷における応用を提供しており、自己修復材料を3D印刷の材料としている。
好適には、前記自己修復材料は、可逆共有結合を利用して自己修復機能を実現する自己修復材料、非共有相互作用を利用して自己修復機能を実現する自己修復材料、及び、配位結合を利用して自己修復機能を実現する自己修復材料の中の1種である。
好適には、前記可逆共有結合を利用して自己修復機能を実現する自己修復材料中の共有結合は、ジスルフィド結合もしくはイミン結合、またはジエン付加反応により生成される炭素−炭素共有結合である。
好適には、前記非共有相互作用を利用して自己修復機能を実現する自己修復材料中の非共有相互作用は、水素結合、ハロゲン結合、静電作用、疎水作用、π−πスタッキングまたは結晶作用である。
好適には、前記配位結合を利用して自己修復機能を実現する自己修復材料中の配位結合は、窒素、酸素、炭素、ホウ素、硫黄またはリンと金属とが形成する配位結合である。
好適には、前記自己修復材料の自己修復方法は、熱修復、光修復、補助剤修復及び無刺激自動修復の中の1種または複数種である。
好適には、前記自己修復材料は、式1に示す結合を有するポリシロキサンを含む原料により調製され、
Figure 2018535304
そのうち、pは0〜1000、pは1〜1000であり、
〜Rは、C1〜C8アルキル基、フェニル基及び式2〜式10の中から単独で選択される1種であり、
Figure 2018535304
前記式2〜式10において、p〜p11は0〜50から単独で選択され、
Gは、−NH−、−O−、−S−または−CH(O)CH−であり、
〜Rは、水素原子、または1〜30個の炭素原子を有するアルキル基から単独で選択され、
Xは、ハロゲン原子である。
好適には、前記p及びpの比率は1/3〜100である。
好適には、前記pは10〜800、pは10〜800である。
好適には、前記R〜Rは、メチル基、フェニル基及び式2〜式10の中から単独で選択される1種である。
本発明で提供する自己修復材料の3D印刷における応用では、自己修復材料を3D印刷材料とし、インテリジェント検出を行うとともに、材料に対する修復を自発的に遂行することで、材料に微細なひび割れが生じることにより存在する潜在的損壊を予防することができ、また製品の成形条件と較べて、自己修復に必要な条件は軽度で、緩いため、修復が完了するまでの修復過程全体において、製品の全体的な性能に影響せず、製品のメンテナンス費用が軽減され、その耐用年数が延び、資源の利用率を向上させている。試験の結果から、本発明で提供する自己修復材料を3D印刷材料として印刷した製品を6時間自己修復した場合の修復率は98%に達することがわかった。
本発明では、自己修復材料の3D印刷における応用を提供しており、自己修復材料を3D印刷材料としている。本発明では、前記自己修復材料は、好適には可逆共有結合を利用して自己修復機能を実現する自己修復材料、非共有相互作用を利用して自己修復機能を実現する自己修復材料、及び、配位結合を利用して自己修復機能を実現する自己修復材料の中の1種である。
本発明では、前記可逆共有結合を利用して自己修復機能を実現する自己修復材料中の共有結合は、好適にはジスルフィド結合、イミン結合、またはジエン付加反応により生成される炭素−炭素共有結合である。本発明では、前記非共有相互作用を利用して自己修復機能を実現する自己修復材料中の非共有相互作用は、好適には水素結合、ハロゲン結合、静電作用、疎水作用、π−πスタッキングまたは結晶作用であり、より好適には水素結合または静電作用である。本発明では、前記配位結合を利用して自己修復機能を実現する自己修復材料中の配位結合は、窒素、酸素、炭素、ホウ素、硫黄またはリンと金属とが形成する配位結合である。本発明では、前記自己修復材料の自己修復方法は、好適には熱修復、光修復、補助剤修復及び無刺激自動修復の中の1種または数種であり、より好適には熱修復または光修復である。
本発明では、前記自己修復材料は、好適には式1に示す結合を有するポリシロキサンを含む原料により調製される。
Figure 2018535304
そのうち、pは好適には0〜1000、より好適には10〜800であり、100〜200が最適であり、
は好適には1〜1000、より好適には10〜800であり、100〜200が最適であり、
とpの比率は好適には1/3〜100、より好適には1〜50であり、5〜15が最適である。
〜Rは、C1〜C8アルキル基、フェニル基及び式2〜式10の中から単独で選択される1種であり、より好適にはメチル基、フェニル基及び式2〜式10の中から単独で選択される1種である。
Figure 2018535304
前記式2〜式10において、p〜p11は好適には0〜50から単独で選択され、より好適には3〜20から単独で選択され、5〜10から単独で選択されることが最適であり、
Gは好適には、−NH−、−O−、−S−または−CH(O)CH−であり、
〜Rは、水素原子、または1〜30個の炭素原子を有するアルキル基から単独で選択され、
Xは、ハロゲン原子である。
本発明では、前記自己修復材料は、好適にはジエン付加反応により生成される炭素−炭素共有結合を利用して自己修復機能を実現する自己修復材料、即ちD−A反応に基づく自己修復材料である。本発明では、前記D−A反応に基づく自己修復材料の原料は、好適には異なる構造を有するポリシロキサンA及びポリシロキサンBを含む。
本発明では、前記ポリシロキサンAは、好適には式1に示す構造を有するポリシロキサンであり、前記式1中で、R〜Rは好適には少なくとも1つが式2であり、前記式2中では、pは好適には0〜10、より好適には1〜3である。
本発明では、前記ポリシロキサンBは、好適には式1に示す構造を有するポリシロキサンであり、前記式1中で、R〜Rは好適には少なくとも1つが式3であり、前記式3中では、pは好適には0〜10、より好適には1〜3である。
本発明では、前記D−A反応に基づく自己修復材料の3D印刷における応用は、好適には以下のステップを含む。
(1)ポリシロキサンA及びポリシロキサンBを溶媒と混合し、プレ印刷材料を得る。
(2)前記ステップ(1)で得られたプレ印刷材料を加熱し、架橋反応により3D印刷材料を得る。
(3)前記ステップ(2)で得られた3D印刷材料を印刷し、製品を得る。
本発明では、好適にはポリシロキサンA及びポリシロキサンBを溶媒と混合し、プレ印刷材料を得る。本発明では、前記溶媒について特に限定していないので、当業者が周知している有機溶媒を採用すればよい。本発明では、前記溶媒は、好適には芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒、脂環式炭化水素系溶媒、ハロゲン化炭化水素系溶媒、アルコール系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、ジオール誘導体及び窒素含有溶媒の中の1種または数種であり、より好適には、ベンゼン、トルエン、キシレン、スチレン、ペンタン、ヘキサン、オクタン、シクロヘキサン、シクロヘキサノン、トルエンシクロヘキサノン、クロロベンゼン、ジクロロベンゼン、ジクロロメタン、クロロホルム、テトラクロロエチレン、トリクロロエチレン、メタノール、エタノール、イソプロピルアルコール、エチルエーテル、プロピレンオキシド、エチレングリコールエーテル、酢酸メチルエステル、酢酸エチルエステル、酢酸プロピルエステル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、アセトニトリル、ピリジン、フェノール、ジエタノールアミン、テトラヒドロフラン、アセトニトリルの中の1種または数種であり、メタノール、ジクロロメタンまたはテトラヒドロフランが最適である。
本発明では、前記混合の操作について特に限定していないので、当業者が周知している混合する技術手法を採用すればよい。本発明では、好適にはポリシロキサンA溶液とポリシロキサンB溶液を混合して、プレ印刷材料を得る。本発明において、前記ポリシロキサンA溶液中のポリシロキサンAの質量濃度は好適には40〜60%、より好適には45〜55%であり、48〜52%が最適である。本発明において、前記ポリシロキサンB溶液中のポリシロキサンBの質量濃度は好適には40〜60%、より好適には45〜55%であり、48〜52%が最適である。本発明において、前記ポリシロキサンAとポリシロキサンBの質量比は、好適には1:0.8〜1.2、より好適には1:0.9〜1.1である。
本発明では、前記混合の温度は好適には20〜30℃、より好適には23〜26℃である。本発明では、前記混合は、好適には撹拌条件下で行われる。本発明では、前記撹拌は好適には機械撹拌であり、前記撹拌の速度は好適には800〜1200rmp/分、より好適には900〜1100rmp/分であり、950〜1050rmp/分が最適である。前記撹拌の時間は好適には1.5〜2.5時間、より好適には1.8〜2.2時間である。
プレ印刷材料を得た後、本発明では、好適には前記プレ印刷材料を加熱し、架橋反応により3D印刷材料を得る。本発明では、前記加熱の方式について特に限定していないので、当業者が周知している加熱の技術手法を採用すればよい。本発明では、前記加熱は好適には油浴加熱であり、前記加熱の速度は好適には8〜12℃/分、より好適には9〜11℃/分である。
本発明では、前記架橋反応の温度は好適には70〜80℃、より好適には74〜76℃であり、前記架橋反応の温度下で保温する時間は、好適には10〜14時間、より好適には11〜13時間であり、11.5〜12.5時間が最適である。本発明では、前記架橋反応は好適には撹拌条件下で行われ、前記撹拌の速度は好適には800〜1200rmp/分、より好適には900〜1100rmp/分であり、950〜1050rmp/分が最適である。
重合物の可塑性を増加させるために、本発明では、好適には加熱前に前記プレ印刷材料を可塑剤と混合する。本発明では、前記可塑剤の質量は、好適にはポリシロキサンの総質量の1〜10%、より好適には3〜6%である。本発明では、前記可塑剤の種類について特に限定していないので、当業者が周知している可塑剤を採用すればよい。本発明では、前記可塑剤は好適にはフタル酸エステル類(Phthalate Esters,PAEs)であり、より好適には、フタル酸ジノルマルオクチル(DNOPまたはDnOP)、フタル酸ブチルベンジル(BBP)、フタル酸ジカプリル(DCP)、フタル酸ジシクロヘキシル(DCHP)、フタル酸ジブチル(DBP)、フタル酸ジイソブチル(DIBP)、フタル酸ジメチル(DMP)、フタル酸ジエチル(DEP)、フタル酸ジイソノニル(DINP)、及びフタル酸ジイソデシル(DIDP)の中の1種または数種である。
製品の色を増やすために、本発明では、好適には加熱前に前記プレ印刷材料を着色添加物と混合する。本発明では、前記着色添加物の質量は、好適にはポリシロキサンの総質量の1〜5%、より好適には2〜3%である。本発明では、着色添加物の種類について特に限定していないので、当業者が周知している着色添加物を採用すればよい。本発明では、前記着色添加物は、好適には天然無機着色添加物、人工無機着色添加物、天然有機着色添加物、人工有機着色添加物の中の1種または数種である。本発明では、前記天然無機着色添加物は、カーボンブラック、チョーク、辰砂、ラテライト、雄黄、天然酸化鉄、珪灰石、硫酸バリウム、タルク粉、マイカ粉、カオリンの中の1種または数種であり、前記人工無機着色添加物は、チタン白、リトポン、鉛クロムイエロー、紺青の中の1種または数種であり、前記天然有機着色添加物は、藤黄、アリザリンレッド、インディゴ青の1種または数種であり、前記人工有機着色添加物は、ファストレッド、ピグメントイエロー、フタロシアニンブルー、キナクリドンの中の1種または数種である。
架橋反応が完了した後、本発明では、好適には反応生成物中の余分な溶媒を除去し、3D印刷材料を得る。本発明では、溶媒を除去する操作について特に限定していないので、当業者が周知している溶媒除去操作を採用すればよい。本発明では、好適には架橋反応により得られた生成物を減圧蒸留し、3D印刷材料を得る。本発明では、前記減圧蒸留の温度は好適には45〜55℃、より好適には48〜52℃であり、前記減圧蒸留の圧力は好適には0.009〜0.011kPaであり、前記減圧蒸留の時間は好適には1.5〜2.5時間、より好適には1.8〜2.2時間である。
3D印刷材料を得た後、本発明では、好適には前記3D印刷材料を印刷し、製品を得る。本発明では、前記印刷の温度は好適には140〜160℃、より好適には145〜155℃である。
本発明では、前記D−A反応に基づく自己修復材料の3D印刷製品の自己修復メカニズムは、好適には反応式(1)に示す通りであり、
Figure 2018535304
そのうち、R〜Rは二重結合上の置換基である。
常態下では、D−A反応に基づく自己修復材料の3D印刷製品において、ジエン間は共有結合方式で連結されており、材料中に微細なひび割れが生じたり、外部から破壊されたりすると、ジエン間の共有結合が破壊され、それぞれが置換基を有する1,3−ブタジエン及び置換基を有するエチレンの形で存在するが、微細なひび割れが生じたり、外部から破壊されたりした領域が熱処理されることで、D−A反応を再び環化の方向に進め、材料の修復を実現することができる。
前記自己修復材料は、好適にはイミン結合を利用して自己修復機能を実現する自己修復材料、即ちイミン結合に基づく自己修復材料である。本発明では、前記イミン結合に基づく自己修復材料の原料は、好適には異なる構造を有するポリシロキサンC及びポリシロキサンDを含む。
本発明では、前記ポリシロキサンCは、好適には式1に示す構造を有するポリシロキサンであり、前記式1中のR〜Rは、好適には少なくとも1つが式4であり、前記式4中のpは好適には0〜10、より好適には1〜3であり、前記式4中のGは好適には−NH−である。
本発明では、前記ポリシロキサンDは、好適には式1に示す構造を有するポリシロキサンであり、前記式1中のR〜Rは、好適には少なくとも1つが式5であり、前記式5中のpは好適には0〜10、より好適には1〜3である。
本発明では、前記イミン結合に基づく自己修復材料の3D印刷における応用は、好適には以下のステップを含む。
(1)ポリシロキサンCとポリシロキサンDを溶媒と混合し、プレ印刷材料を得る。
(2)前記ステップ(1)で得られたプレ印刷材料を加熱し、架橋反応により3D印刷材料を得る。
(3)前記ステップ(2)で得られた3D印刷材料を印刷し、製品を得る。
本発明では、好適にはポリシロキサンCとポリシロキサンDを溶媒と混合し、プレ印刷材料を得る。本発明では、前記ポリシロキサンC及びポリシロキサンDの質量比は、好適には1:0.8〜1.2、より好適には1:0.9〜1.1である。本発明では、前記プレ印刷材料を調製する操作は、好適には上記の技術手法と同じなので、ここでは繰り返し述べない。
本発明では、プレ印刷材料が得られた後、好適には前記プレ印刷材料を加熱し、架橋反応により3D印刷材料を得る。本発明では、前記加熱の操作は好適には上記の技術手法と同じなので、ここでは繰り返し述べない。本発明では、前記架橋反応の温度は好適には90〜110℃、より好適には95〜115℃であり、前記架橋反応の温度下で保温する時間は、好適には5〜7時間、より好適には5.5〜6.5時間である。本発明では、前記架橋反応は好適には撹拌条件下で行われ、前記撹拌の速度は好適には800〜1200rmp/分、より好適には900〜1100rmp/分であり、950〜1050rmp/分が最適である。
重合物の可塑性を増加させるために、本発明では、好適には加熱前に前記プレ印刷材料を可塑剤と混合する。製品の色を増やすために、本発明では、好適には加熱前に前記プレ印刷材料を着色添加物と混合する。本発明では、前記可塑剤及び着色添加物の種類及び用量については、好適には上記の技術手法の前記可塑剤及び着色添加物と同じなので、ここでは繰り返し述べない。
架橋反応が完了した後、本発明では、好適には反応生成物中の余分な溶媒を除去し、3D印刷材料を得る。本発明では、好適には上記の技術手法の前記方法を採用して生成物中の余分な溶媒を除去する。
3D印刷材料を得た後、本発明では、好適には前記3D印刷材料を印刷し、製品を得る。本発明では、前記印刷の温度は好適には120〜140℃、より好適には125〜135℃である。
本発明では、前記アミン結合に基づく自己修復材料の3D印刷製品の自己修復メカニズムは、好適には反応式(2)に示す通りである。
Figure 2018535304
そのうち、RはN原子上の置換基、R’は二重結合C上の置換基である。
常態下では、イミン結合に基づく自己修復材料の3D印刷製品において、アルデヒド基とアミノ基が縮合反応を起こしてイミン結合を形成しており、材料中に微細なひび割れが生じたり、外部から破壊されたりすると、境界面のイミン結合が動的平衡状態となるが、微細なひび割れや外部からの破壊を受けた領域に対して熱処理を行うと、イミン結合が近くのアミド基またはアルデヒド基と動的交換を起こし、新たなイミン結合と、新たなアミノ基及びアルデヒド基を形成して、材料の修復を実現する。
前記自己修復材料は、好適にはジスルフィド結合を利用して自己修復機能を実現する自己修復材料、即ちジスルフィド結合に基づく自己修復材料である。本発明では、前記ジスルフィド結合に基づく自己修復材料の原料は、好適にはポリシロキサンEを含む。
本発明では、前記ポリシロキサンEは、好適には式1に示す構造を有するポリシロキサンであり、前記式1中のR〜Rは、好適には少なくとも1つが式6であり、前記式中のpは好適には0〜10、より好適には1〜3である。
本発明において、前記ジスルフィド結合に基づく自己修復材料の3D印刷における応用は、好適には以下のステップを含む。
(1)ポリシロキサンEを溶媒と混合し、プレ印刷材料を得る。
(2)前記ステップ(1)で得られたプレ印刷材料をHと混合して加熱し、架橋反応により3D印刷材料を得る。
(3)前記ステップ(2)で得られた3D印刷材料を印刷し、製品を得る。
本発明では、好適にはポリシロキサンEを溶媒と混合し、プレ印刷材料を得る。本発明では、前記プレ印刷材料を調製する操作は好適には上記の技術手法と同じなので、ここでは繰り返し述べない。
本発明では、プレ印刷材料を得た後、好適には前記プレ印刷材料をHと混合して加熱し、架橋反応により3D印刷材料を得る。本発明では、前記の質量は好適にはポリシロキサンの質量の0.8〜1.2倍、より好適には0.9〜1.1倍であり、0.95〜1.05倍が最適である。本発明では、前記加熱の操作は好適には上記の技術手法と同じなので、ここでは繰り返し述べない。本発明では、前記架橋反応の温度は好適には40〜60℃、より好適には45〜55℃であり、前記架橋反応温度下で保温する時間は好適には5〜7時間、より好適には5.5〜6.5時間である。本発明では、前記架橋反応は好適には撹拌条件下で行われ、前記撹拌の速度は好適には800〜1200rmp/分、より好適には900〜1100rmp/分であり、950〜1050rmp/分が最適である。
重合物の可塑性を増加させるために、本発明では、好適には加熱前に前記プレ印刷材料を可塑剤と混合する。製品の色を増やすために、本発明では、好適には加熱前に前記プレ印刷材料を着色添加物と混合する。本発明では、前記可塑剤及び着色添加物の種類及び用量については、好適には上記の技術手法の前記可塑剤及び着色添加物と同じなので、ここでは繰り返し述べない。
架橋反応が完了した後、本発明では、好適には反応生成物中の余分な溶媒を除去し、3D印刷材料を得る。本発明では、好適には上記の技術手法の前記方法を採用して生成物中の余分な溶媒を除去する。
3D印刷材料を得た後、本発明では、好適には前記3D印刷材料を印刷し、製品を得る。本発明では、前記印刷の温度は好適には90〜110℃、より好適には95〜105℃である。
本発明では、前記ジスルフィド結合に基づく自己修復材料の3D印刷製品の自己修復メカニズムは、好適には反応式(3)に示す通りである。
Figure 2018535304
そのうち、R及びR’はS原子上の置換基である。
常態下では、ジスルフィド結合に基づく自己修復材料の3D印刷製品において、硫黄原子と硫黄原子の間は共有結合方式により連結され、即ちジスルフィド結合を形成しており、材料中に微細なひび割れが生じたり、外部から破壊されたりすると、ジスルフィド結合が破壊され、還元状態の−S−H結合を形成し、光の照射や温度を制御することにより、反応をジスルフィド結合生成の方向に進め、それにより材料の修復を実現することができる。
前記自己修復材料は、好適には水素結合を利用して自己修復機能を実現する自己修復材料、即ち水素結合に基づく自己修復材料である。本発明では、前記水素結合に基づく自己修復材料の原料は、好適にはポリシロキサンFを含む。
本発明では、前記ポリシロキサンFは、好適には式1に示す構造を有するポリシロキサンであり、前記式1中のR〜Rは、好適には少なくとも1つが式7及び式8のいずれかまたは両方であり、前記式7中のp及びpは、好適には0〜10、より好適には1〜5から単独で選択される。
本発明では、前記水素結合に基づく自己修復材料の3D印刷における応用は、好適には以下のステップを含む。
(1)ポリシロキサンFを溶媒と混合し、プレ印刷材料を得る。
(2)前記ステップ(1)で得られたプレ印刷材料を加熱し、架橋反応により3D印刷材料を得る。
(3)前記ステップ(2)で得られた3D印刷材料を印刷し、製品を得る。
本発明では、好適にはポリシロキサンFを溶媒と混合し、プレ印刷材料を得る。本発明では、前記プレ印刷材料を調製する操作は好適には上記の技術手法と同じなので、ここでは繰り返し述べない。
本発明では、プレ印刷材料が得られた後、好適には前記プレ印刷材料を加熱し、架橋反応により3D印刷材料を得る。本発明では、前記加熱の操作は好適には上記の技術手法と同じなので、ここでは繰り返し述べない。本発明では、前記架橋反応の温度は好適には40〜60℃、より好適には45〜55℃であり、前記架橋反応の温度下で保温する時間は、好適には5〜7時間、より好適には5.5〜6.5時間である。本発明では、前記架橋反応は好適には撹拌条件下で行われ、前記撹拌の速度は好適には800〜1200rmp/分、より好適には900〜1100rmp/分であり、950〜1050rmp/分が最適である。
重合物の可塑性を増加させるために、本発明では、好適には加熱前に前記プレ印刷材料を可塑剤と混合する。製品の色を増やすために、本発明では、好適には加熱前に前記プレ印刷材料を着色添加物と混合する。本発明では、前記可塑剤及び着色添加物の種類及び用量については、好適には上記の技術手法の前記可塑剤及び着色添加物と同じなので、ここでは繰り返し述べない。
本発明では、前記架橋反応のpH値は好適には3〜11、より好適には5〜9である。pH値を調節するために、本発明では、好適には加熱前に前記プレ印刷材料をpH調整剤と混合する。本発明において、前記pH調整剤の用量は、好適にはポリシロキサンの総質量の1〜30%、より好適には5〜10%である。本発明では、前記pH調整剤の種類について特に限定していないので、当業者が周知しているpH値を調整する試薬を採用すればよい。本発明において、前記pH調整剤は、有機酸、有機アルカリ、無機酸及び無機アルカリの中の1種または数種であり、前記有機酸は好適にはカルボキシル基(−COOH)、スルホン酸(−SO3H)、スルフィン酸(RSOOH)、チオール酸(RCOSH)の有機酸を含み、より好適にはトルエンスルホン酸及び/またはトリフルオロ酢酸であり、前記有機アルカリは好適にはアミノ基及び/またはアミン基を含む有機アルカリ、より好適にはトリエチルアミン及び/またはエチレンジアミンであり、前記無機酸は好適には塩酸、硫酸、亜硫酸、硝酸、亜硝酸、リン酸、亜リン酸、次亜リン酸、過塩素酸、次亜塩素酸、過マンガン酸及び炭酸の中の1種または数種であり、前記無機アルカリは好適にはアルカリ金属の水酸化物、アルカリ土類金属の水酸化物、アルカリ金属の弱酸塩及びアルカリ土類金属の弱酸塩の中の1種または数種であり、好適には炭酸水素カリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸ナトリウム、水酸化ナトリウム及び水酸化カリウムの中の1種または数種である。
架橋反応が完了した後、本発明では、好適には反応生成物中の余分な溶媒を除去し、3D印刷材料を得る。本発明では、好適には上記の技術手法の前記方法を採用して、反応生成物中の余分な溶媒を除去する。
3D印刷材料が得られた後、本発明では、好適には前記3D印刷材料を印刷し、製品を得る。本発明では、前記印刷の温度は好適には50〜70℃、より好適には55〜65℃である。
本発明では、前記水素結合の相互作用に基づく自己修復材料の3D印刷製品の自己修復メカニズムは、好適には反応式(4)に示す通りである。
Figure 2018535304
そのうち、Xは水素結合中の電子供与体であり、Rは水素結合電子供与体上に結合された置換基であり、Hは水素原子であり、R’は水素原子上に結合された置換基であり、実線は共有結合であり、点線は水素結合である。
常態下では、水素結合の相互作用に基づく自己修復材料の3D印刷製品において、水素原子と電子供与体の間には水素結合の相互作用が存在しており、材料中に微細なひび割れが生じたり、外部から破壊されたりすると、水素結合の相互作用が消失し、水素原子と電子供与体がいずれも遊離状態となるが、微細なひび割れが生じたり、または外部から破壊されたりした領域を熱処理することにより、水素結合の相互作用を再び形成して、材料の修復を実現することができる。
前記自己修復材料は、好適には静電作用を利用して自己修復能力を自己修復材料、即ち静電作用に基づく自己修復材料である。本発明では、前記静電作用に基づく自己修復材料の原料は、好適には異なる構造を有するポリシロキサンG及びポリシロキサンHを含む。
本発明では、前記ポリシロキサンGは好適には式1に示す構造を有するポリシロキサンであり、前記式1中のR〜Rは、好適には少なくとも1つが式9であり、前記式9中のp10は、好適には0〜10、より好適には1〜3である。
本発明では、前記ポリシロキサンHは好適には式1に示す構造を有するポリシロキサンであり、前記式1中のR〜Rは、好適には少なくとも1つが式7であり、前記式7中のp及びpは、好適には0〜10、より好適には1〜5から単独で選択される。
本発明では、前記静電作用に基づく自己修復材料の3D印刷における応用は、好適には以下のステップを含む。
(1)ポリシロキサンH及びポリシロキサンGを溶媒と混合し、プレ印刷材料を得る。
(2)前記ステップ(1)で得られたプレ印刷材料を加熱し、架橋反応により3D印刷材料を得る。
(3)前記ステップ(2)で得られた3D印刷材料を印刷し、製品を得る。
本発明では、好適にはポリシロキサンH及びポリシロキサンGを溶媒と混合し、プレ印刷材料を得る。本発明では、前記プレ印刷材料を調製する操作は好適には上記の技術手法と同じなので、ここでは繰り返し述べない。本発明では、前記ポリシロキサンHとポリシロキサンGの質量比は、好適には1:0.8〜1.2、より好適には1:0.9〜1.1である。
本発明では、プレ印刷材料が得られた後、好適には前記プレ印刷材料を加熱し、架橋反応により3D印刷材料を得る。本発明では、前記加熱の操作は好適には上記の技術手法と同じなので、ここでは繰り返し述べない。本発明では、前記架橋反応の温度は好適には40〜60℃、より好適には45〜55℃であり、前記架橋反応の温度下で保温する時間は好適には5〜7時間、より好適には5.5〜6.5時間である。本発明では、前記架橋反応は好適には撹拌条件下で行われ、前記撹拌の速度は好適には800〜1200rmp/分、より好適には900〜1100rmp/分であり、950〜1050rmp/分が最適である。
重合物の可塑性を増加させるために、本発明では、好適には加熱前に前記プレ印刷材料を可塑剤と混合する。製品の色を増やすために、本発明では、好適には加熱前に前記プレ印刷材料を着色添加物と混合する。本発明では、前記架橋反応のpH値は好適には3〜11、より好適には5〜9である。pH値を調節するために、本発明では、好適には加熱前に前記プレ印刷材料をpH調整剤と混合する。本発明では、前記可塑剤、着色添加物及びpH調整剤の種類及び用量については、好適には上記の技術手法の前記可塑剤、着色添加物及びpH調整剤と同じなので、ここでは繰り返し述べない。
架橋反応が完了した後、本発明では、好適には反応生成物中の余分な溶媒を除去し、3D印刷材料を得る。本発明では、好適には上記の技術手法の前記方法を採用して、反応生成物中の余分な溶媒を除去する。
3D印刷材料が得られた後、本発明では、好適には前記3D印刷材料を印刷し、製品を得る。本発明では、前記印刷の温度は好適には50〜70℃、より好適には55〜65℃である。
本発明では、前記静電作用に基づく自己修復材料の3D印刷製品の自己修復メカニズムは、好適には反応式(5)に示す通りである。
Figure 2018535304
そのうち、Xは陰イオンであり、Yは陽イオンであり、Rは陰イオン上の置換基であり、R’は陽イオン上の置換基であり、実線は共有結合であり、点線はイオン結合である。
常態下では、イオン結合に基づく自己修復材料の3D印刷材料においては、陰陽イオン間はイオン結合方式で連結されており、材料中に微細なひび割れが生じたり、外部から破壊されたりすると、イオン結合が破壊され、相応する陰、陽イオンが形成されるが、光照射や温度を制御することにより、陰、陽イオンを再び結合させて相応するイオン結合を形成し、材料の修復を実現することができる。
前記自己修復材料は、好適には金属配位作用を利用して自己修復機能を実現する自己修復材料、即ち金属配位作用に基づく自己修復材料である。本発明では、前記金属配位作用に基づく自己修復材料の原料は、好適にはポリシロキサンJを含む。
本発明では、前記ポリシロキサンJは、好適には式1に示す構造を有するポリシロキサンであり、前記式1中のR〜Rは、好適には少なくとも1つが式10であり、前記式10中のp11は、好適には0〜10、より好適には1〜3である。
本発明では、前記金属配位作用に基づく自己修復材料の3D印刷における応用は、好適には以下のステップを含む。
(1)ポリシロキサンJ及び金属塩を溶媒と混合し、プレ印刷材料を得る。
(2)前記ステップ(1)で得られたプレ印刷材料を加熱し、架橋反応により3D印刷材料を得る。
(3)前記ステップ(2)で得られた3D印刷材料を印刷し、製品を得る。
本発明では、好適にはポリシロキサンJ及び金属塩を溶媒と混合し、プレ印刷材料を得る。本発明では、前記金属塩の質量は、好適にはポリシロキサンの質量の2〜50%、より好適には5〜30%であり、10〜20%が最適である。本発明では、前記金属塩は、好適にはアルカリ金属、アルカリ土類金属、遷移金属及び希土類金属の塩化物、硝酸塩、硫酸塩、酢酸塩、リン酸塩、過塩素酸塩、過マンガン酸塩の中の1種または数種、より好適には遷移金属の塩化物、硝酸塩、硫酸塩、酢酸塩、リン酸塩、過塩素酸塩、過マンガン酸塩の中の1種または数種であり、塩化鉄、塩化亜鉛、塩化コバルト、塩化ニッケル、塩化ユウロピウム、硝酸鉄、硝酸コバルト、硝酸ニッケル、硝酸亜鉛及び硝酸ユウロピウムの中の1種または数種が最適である。本発明では、プレ印刷材料を調製する前記操作は好適には上記の技術手法と同じなので、ここでは繰り返し述べない。
本発明では、プレ印刷材料が得られた後、好適には前記プレ印刷材料を加熱し、架橋反応により3D印刷材料を得る。本発明では、前記加熱の操作は好適には上記の技術手法と同じなので、ここでは繰り返し述べない。本発明では、前記架橋反応の温度は好適には40〜60℃、より好適には45〜55℃であり、前記架橋反応の温度下で保温する時間は好適には5〜7時間、より好適には5.5〜6.5時間である。本発明では、前記架橋反応は好適には撹拌条件下で行われ、前記撹拌の速度は好適には800〜1200rmp/分、より好適には900〜1100rmp/分であり、950〜1050rmp/分が最適である。
重合物の可塑性を増加させるために、本発明では、好適には加熱前に前記プレ印刷材料を可塑剤と混合する。製品の色を増やすために、本発明では、好適には加熱前に前記プレ印刷材料を着色添加物と混合する。本発明では、前記可塑剤及び着色添加物の種類及び用量については、好適には上記の技術手法の前記可塑剤及び着色添加物と同じなので、ここでは繰り返し述べない。
架橋反応が完了した後、本発明では、好適には反応生成物中の余分な溶媒を除去し、3D印刷材料を得る。本発明では、好適には上記の技術手法の前記方法を採用して反応生成物中の余分な溶媒を除去する。
3D印刷材料を得た後、本発明では、好適には前記3D印刷材料を印刷し、製品を得る。本発明では、前記印刷の温度は好適には110〜130℃、より好適には115〜125℃である。
本発明では、前記金属配位作用に基づく自己修復材料の3D印刷製品の修復メカニズムは、好適には反応式(6)に示す通りである。
Figure 2018535304
そのうち、Lは配位点を有する配位子であり、Rは配位子上に連結された置換基であり、Mn+は金属イオンであり、n+は金属原子に現れる正原子価であり、実線は共有結合であり、点線は配位結合である。
常態下では、金属配位作用に基づく自己修復材料の3D印刷製品において、配位子と金属イオンとの間には配位結合が形成され、配位状態にある。材料中に微細なひび割れが発生したり、外部から破壊されたりすると、配位結合が断裂し、配位子及び金属イオンは遊離状態となるが、微細なひび割れが生じたり、外部から破壊されたりした領域を熱処理することにより、配位結合を再び形成して、材料の修復を実現することができる。
本発明をさらに説明するために、以下では実施例と結び付けて、本発明で提供する自己修復材料の3D印刷における応用について詳細に記述するが、それらを本発明の保護範囲に対する限定と理解することはできない。
[実施例1]
(1) 質量分率計算に基づき、50部のポリシロキサンAを50部のジクロロメタンに溶かし、50部のポリシロキサンBを50部のジクロロメタンに溶かし、25℃でポリシロキサンAとポリシロキサンBの溶液を混合し、25℃において、1000rmp/分の機械撹拌により2時間撹拌して、プレ印刷材料を得る。
ポリシロキサンの構造式は、式1に示す通りである。
そのうち、R〜Rはメチル基である。
ポリシロキサンAでは、Rは式2であり、そのうち、pとpは等しく、80〜100の間の値であり、pの値は1である。
ポリシロキサンBでは、Rは式3であり、そのうち、pとpは等しく、80〜100の間の値であり、pの値は1である。
(2) (1)で得られたプレ印刷材料を、油浴中で10℃/分の速度で加熱し、温度を75℃まで上昇させ、1000rmp/分で機械撹拌しながら12時間反応させる。反応が終了した後、50℃で0.01kPaの圧力値により減圧蒸留を2時間行うと、D−A反応で架橋されたポリシロキサン材料が得られ、その生成率は98.5%、純度は97%である。この材料が、D−A反応に基づく自己修復3D印刷材料である。
(3) 140℃で印刷し、製品を得る。
この印刷材料により印刷された製品は、80℃で加熱すると自己修復を行うことができ、6時間の修復による修復効率は98%に達する。
[実施例2]
(1) 質量分率計算に基づき、50部のポリシロキサンAを50部のジクロロメタンに溶かし、50部のポリシロキサンBを50部のジクロロメタンに溶かし、25℃でポリシロキサンAとポリシロキサンBの溶液を混合し、25℃において、1000rmp/分の機械撹拌により2時間撹拌して、プレ印刷材料を得る。
ポリシロキサンの構造式は、式1に示す通りである。
そのうち、R〜Rはメチル基である。
ポリシロキサンAでは、Rは式4であり、そのうち、pとpは等しく、80〜100の間の値であり、pの値は3、Gは−NH−である。
ポリシロキサンBでは、Rは式5であり、そのうち、pとpは等しく、80〜100の間の値であり、pの値は1である。
(2) (1)で得られたプレ印刷材料を、油浴中で10℃/分の速度で加熱し、温度を75℃まで上昇させ、1000rmp/分で機械撹拌しながら6時間反応させ、さらに10℃/分の速度で加熱して温度を100℃まで上昇させ、1000rmp/分で機械撹拌しながら6時間反応させる。反応が終了した後、50℃で0.01kPaの圧力値により減圧蒸留を2時間行うと、イミン結合に基づくポリシロキサン材料が得られ、その生成率は98.5%、純度は97%である。この材料が、イミン結合に基づく自己修復3D印刷材料である。
(3) 120℃で印刷し、製品を得る。
この印刷材料により印刷された製品は、70℃で加熱すると自己修復を行うことができ、6時間の修復による修復効率は98%に達する。
[実施例3]
(1) 質量分率計算に基づき、50部のポリシロキサンAを50部のテトラヒドロフランに溶かし、50部のポリシロキサンBを50部のテトラヒドロフランに溶かし、25℃でポリシロキサンAとポリシロキサンBの溶液を混合し、25℃において、1000rmp/分の機械撹拌により2時間撹拌して、プレ印刷材料を得る。
ポリシロキサンの構造式は、式1に示す通りである。
ポリシロキサンAでは、R〜Rはメチル基、Rは式6、pは3であり、pとpは等しく、80〜100の間の値である。
ポリシロキサンBでは、R〜Rはメチル基、Rは式6、pは3であり、pとpは等しく、80〜100の間の値である。
(2) (1)で得られたプレ印刷材料中に、100部のHを加え、25℃において、1000rmp/分で機械撹拌しながら6時間反応させ、さらに10℃/分の速度で加熱して温度を50℃まで上昇させ、1000rmp/分で機械撹拌しながら6時間反応させる。反応が終了した後、50℃で0.01kPaの圧力値により減圧蒸留を2時間行うと、ジスルフィド結合に基づくポリシロキサン材料が得られ、その生成率は98.5%、純度は97%である。この材料が、ジスルフィド結合に基づく自己修復3D印刷材料である。
(3) 100℃で印刷し、製品を得る。
この印刷材料により印刷された製品は、50℃で加熱すると自己修復を行うことができ、6時間の修復による修復効率は98%に達する。
この印刷材料により印刷された製品は、25℃において、10Wの蛍光灯を20cmの距離から照射すると自己修復を行うことができ、6時間の修復による修復効率は98%に達する。
[実施例4]
(1) 質量分率計算に基づき、50部のポリシロキサンAを50部のテトラヒドロフランに溶かし、50部のポリシロキサンBを50部のテトラヒドロフランに溶かし、25℃でポリシロキサンAとポリシロキサンBの溶液を混合し、25℃において、1000rmp/分の機械撹拌により2時間撹拌して、プレ印刷材料を得る。
ポリシロキサンの構造式は、式1に示す通りである。
ポリシロキサンAでは、R〜Rがメチル基、Rが式7、Rがメチル基、pが1、pが5の時、pとpは等しく、80〜100の間の値である。
ポリシロキサンBでは、R〜Rがメチル基、Rが式8の時、pとpは等しく、80〜100の間の値である。
(2) (1)で得られたプレ印刷材料中を、10℃/分の速度で加熱して温度を50℃まで上昇させ、1000rmp/分で機械撹拌しながら6時間反応させる。反応が終了した後、50℃で0.01kPaの圧力値により減圧蒸留を2時間行うと、水素結合に基づくポリシロキサン材料が得られ、その生成率は98.5%、純度は97%である。この材料が、水素結合に基づく自己修復3D印刷材料である。
(3) 60℃で印刷し、製品を得る。
この印刷材料により印刷された製品は、50℃で加熱すると自己修復を行うことができ、6時間の修復による修復効率は98%に達する。
[実施例5]
(1) 質量分率計算に基づき、50部のポリシロキサンAを50部のメタノールに溶かし、50部のポリシロキサンBを50部のテトラヒドロフランに溶かし、25℃でポリシロキサンAとポリシロキサンBの溶液を混合し、25℃において、1000rmp/分の機械撹拌により2時間撹拌して、プレ印刷材料を得る。
ポリシロキサンの構造式は、式1に示す通りである。
ポリシロキサンAでは、R〜Rがメチル基、Rが式9、p10が3、XがClの時、pとpは等しく、80〜100の間の値である。
ポリシロキサンBでは、R〜Rがメチル基、Rが式7、Rがメチル基、pが1、pが5の時、pとpは等しく、80〜100の間の値である。
(2) (1)で得られたプレ印刷材料中を、10℃/分の速度で加熱して温度を50℃まで上昇させ、1000rmp/分で機械撹拌しながら6時間反応させる。反応が終了した後、50℃で0.01kPaの圧力値により減圧蒸留を2時間行うと、静電相互作用に基づくポリシロキサン材料が得られ、その生成率は98.5%、純度は97%である。この材料が、静電相互作用に基づく自己修復3D印刷材料である。
(3) 60℃で印刷し、製品を得る。
この印刷材料により印刷された製品は、25℃で加熱すると自己修復を行うことができ、6時間の修復による修復効率は98%に達する。
[実施例6]
(1) 質量分率計算に基づき、90部のポリシロキサンAを100部のメタノールに溶かし、10部のFeClを20部のメタノールに溶かし、25℃でポリシロキサンAとFeClの溶液を混合し、25℃において、1000rmp/分の機械撹拌により2時間撹拌して、プレ印刷材料を得る。
ポリシロキサンの構造式は、式1に示す通りである。
ポリシロキサンAでは、R〜Rがメチル基、Rが式10、Rがメチル基、p11が1の時、pとpは等しく、80〜100の間の値である。
(2) (1)で得られたプレ印刷材料中を、10℃/分の速度で加熱して温度を50℃まで上昇させ、1000rmp/分で機械撹拌しながら6時間反応させる。反応が終了した後、50℃で0.01kPaの圧力値により減圧蒸留を2時間行うと、配位結合に基づくポリシロキサン材料が得られ、その生成率は98.5%、純度は97%である。この材料が、配位結合に基づく自己修復3D印刷材料である。
(3) 120℃で印刷し、製品を得る。
この印刷材料により印刷された製品は、75℃で加熱すると自己修復を行うことができ、6時間の修復による修復効率は98%に達する。
以上の各実施例から、本発明で提供する自己修復材料の3D印刷製品は、良好な自己修復性能を有し、6時間の修復による修復効率が98%に達していることがわかる。
以上の実施例の説明は、本発明の方法及びその中心的思考の理解を助けるためのものにすぎず、当業者であれば、本発明の原理を逸脱しないことを前提に、本発明に対して若干の改良や修飾を行うことはできるが、それらの改良及び修復も、本発明の請求の範囲の保護範囲に入ることを指摘しておかなければならない。これらの実施例に対する様々な修正は、当業者にとっては自明のことであり、本文中で定義される一般原理は、本発明の主旨または範囲を逸脱しない状況において、他の実施例でも実現可能である。したがって、本発明は、本文に示すこれらの実施例に限定されることはなく、本文で公開している原理及び新規な特徴と一致する最も広い範囲となる。

Claims (8)

  1. 自己修復材料の3D印刷における応用において、自己修復材料を3D印刷材料とし、
    前記自己修復材料は、可逆共有結合を利用して自己修復機能を実現する自己修復材料、非共有相互作用を利用して自己修復機能を実現する自己修復材料、及び、配位結合を利用して自己修復機能を実現する自己修復材料の中の1種であり、
    前記可逆共有結合を利用して自己修復機能を実現する自己修復材料中の共有結合が、ジスルフィド結合またはイミン結合であることを特徴とする、応用。
  2. 前記非共有相互作用を利用して自己修復機能を実現する自己修復材料中の非共有相互作用が、水素結合、ハロゲン結合、静電作用、疎水作用、π−πスタッキングまたは結晶作用であることを特徴とする、請求項1に記載の応用。
  3. 前記配位結合を利用して自己修復機能を実現する自己修復材料中の配位結合が、窒素、酸素、炭素、ホウ素、硫黄またはリンと金属とが形成する配位結合であることを特徴とする、請求項1に記載の応用。
  4. 前記自己修復材料の自己修復方法が、熱修復、光修復、補助剤修復及び無刺激自動修復の中の1種または複数種であることを特徴とする、請求項1〜3のいずれか1項に記載の応用。
  5. 前記自己修復材料が、式1に示す結合を有するポリシロキサンを含む原料により調製され、
    Figure 2018535304

    ここで、pは0〜1000、pは1〜1000であり、
    〜Rは、C1〜C8アルキル基、フェニル基及び式2〜式10の中から単独で選択される1種であり、
    Figure 2018535304

    前記式2〜式10において、p〜p11は0〜50から単独で選択され、
    Gは、−NH−、−O−、−S−または−CH(O)CH−であり、
    〜Rは、水素原子、または1〜30個の炭素原子を有するアルキル基から単独で選択され、
    Xは、ハロゲン原子である、ことを特徴とする、
    請求項1〜3のいずれか1項に記載の応用。
  6. 前記p及びpの比率が1/3〜100であることを特徴とする、請求項5に記載の応用。
  7. 前記pが10〜800、pが10〜800であることを特徴とする、請求項5に記載の応用。
  8. 前記R〜Rが、メチル基、フェニル基及び式2〜式10の中から単独で選択される1種であることを特徴とする、請求項5に記載の応用。
JP2018543416A 2016-06-29 2016-06-29 自己修復材料の3d印刷における応用 Active JP6669886B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/087670 WO2018000242A1 (zh) 2016-06-29 2016-06-29 自修复材料在3d打印中的应用

Publications (2)

Publication Number Publication Date
JP2018535304A true JP2018535304A (ja) 2018-11-29
JP6669886B2 JP6669886B2 (ja) 2020-03-18

Family

ID=60785926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018543416A Active JP6669886B2 (ja) 2016-06-29 2016-06-29 自己修復材料の3d印刷における応用

Country Status (4)

Country Link
US (1) US10744728B2 (ja)
EP (1) EP3418331A4 (ja)
JP (1) JP6669886B2 (ja)
WO (1) WO2018000242A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168277A1 (ja) * 2021-02-05 2022-08-11 パナソニックIpマネジメント株式会社 樹脂組成物及び成形体
WO2022264866A1 (ja) * 2021-06-16 2022-12-22 信越化学工業株式会社 フラニル基含有オルガノポリシロキサン及びその製造方法
WO2024090189A1 (ja) * 2022-10-27 2024-05-02 信越化学工業株式会社 リサイクル可能な硬化性シリコーン樹脂組成物

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110218329B (zh) * 2018-03-04 2021-03-19 南京大学 一类改性的聚硅氧烷及其应用
CN110643058B (zh) * 2018-06-22 2022-02-11 苏州大学 一种受损的透明可卷曲折叠聚硅氧烷膜的自修复方法
CN110857359B (zh) * 2018-08-23 2021-07-09 天津大学 一种聚硅氧烷纳米复合材料的制备方法
CN109233571B (zh) * 2018-10-12 2021-01-15 南宁本吉生物科技有限公司 一种无溶剂自修复环氧树脂及其制备方法
US11692068B2 (en) * 2019-03-26 2023-07-04 Xerox Corporation Functionalized silicone materials for three-dimensional printing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007517077A (ja) * 2003-09-04 2007-06-28 ザ・ユナイテッド・ステイツ・オブ・アメリカ・アズ・リプレゼンティッド・バイ・ザ・デパートメント・オブ・ヴェテランズ・アフェアーズ 眼用ハイドロゲルナノコンポジット
WO2015138804A1 (en) * 2014-03-12 2015-09-17 The Regents Of The Univerity Of Colorado, A Body Corporate Novel covalently cross-linked malleable polymers and methods of use
CN104961881A (zh) * 2015-06-03 2015-10-07 四川大学 用于3d打印、含动态键的聚氨酯材料及其制备方法和用途
CN105111470A (zh) * 2015-08-13 2015-12-02 四川大学 一种可逆共价交联聚硅氧烷弹性体及其制备方法与应用
JP2015221562A (ja) * 2014-05-22 2015-12-10 ゼロックス コーポレイションXerox Corporation 3d印刷における可逆性ポリマー
CN105294936A (zh) * 2015-10-19 2016-02-03 杭州龙勤新材料科技有限公司 二官能度丙烯酸酯类交联剂及其在3d打印中的应用
JP2016098314A (ja) * 2014-11-21 2016-05-30 セイコーエプソン株式会社 セルロース系材料、造形物製造用組成物セット、造形物、ダイアライザー、透析装置、透析方法および造形物の製造方法
JP2017202980A (ja) * 2016-05-09 2017-11-16 国立大学法人東京工業大学 動的共有結合化合物及びその組換え方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4888095B2 (ja) * 2005-12-14 2012-02-29 日本電気株式会社 再成形可能かつ優れた形状回復能を有する形状記憶樹脂の高強度化
CN105088043B (zh) * 2015-09-17 2017-12-05 河北安耐哲新能源技术有限公司 一种液态合金及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007517077A (ja) * 2003-09-04 2007-06-28 ザ・ユナイテッド・ステイツ・オブ・アメリカ・アズ・リプレゼンティッド・バイ・ザ・デパートメント・オブ・ヴェテランズ・アフェアーズ 眼用ハイドロゲルナノコンポジット
WO2015138804A1 (en) * 2014-03-12 2015-09-17 The Regents Of The Univerity Of Colorado, A Body Corporate Novel covalently cross-linked malleable polymers and methods of use
JP2015221562A (ja) * 2014-05-22 2015-12-10 ゼロックス コーポレイションXerox Corporation 3d印刷における可逆性ポリマー
JP2016098314A (ja) * 2014-11-21 2016-05-30 セイコーエプソン株式会社 セルロース系材料、造形物製造用組成物セット、造形物、ダイアライザー、透析装置、透析方法および造形物の製造方法
CN104961881A (zh) * 2015-06-03 2015-10-07 四川大学 用于3d打印、含动态键的聚氨酯材料及其制备方法和用途
CN105111470A (zh) * 2015-08-13 2015-12-02 四川大学 一种可逆共价交联聚硅氧烷弹性体及其制备方法与应用
CN105294936A (zh) * 2015-10-19 2016-02-03 杭州龙勤新材料科技有限公司 二官能度丙烯酸酯类交联剂及其在3d打印中的应用
JP2017202980A (ja) * 2016-05-09 2017-11-16 国立大学法人東京工業大学 動的共有結合化合物及びその組換え方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168277A1 (ja) * 2021-02-05 2022-08-11 パナソニックIpマネジメント株式会社 樹脂組成物及び成形体
WO2022264866A1 (ja) * 2021-06-16 2022-12-22 信越化学工業株式会社 フラニル基含有オルガノポリシロキサン及びその製造方法
WO2024090189A1 (ja) * 2022-10-27 2024-05-02 信越化学工業株式会社 リサイクル可能な硬化性シリコーン樹脂組成物

Also Published As

Publication number Publication date
WO2018000242A1 (zh) 2018-01-04
EP3418331A1 (en) 2018-12-26
JP6669886B2 (ja) 2020-03-18
EP3418331A4 (en) 2019-10-09
US10744728B2 (en) 2020-08-18
US20190077100A1 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
JP2018535304A (ja) 自己修復材料の3d印刷における応用
CN106009702B (zh) 自修复材料在3d打印中的应用
CN103980397B (zh) 一种3d打印用组合物及其配制和使用方法以及制品
CN101522613B (zh) 锍盐光引发剂
CN104995257A (zh) 硬化性防带电有机聚硅氧烷组合物及防带电聚硅氧皮膜
TWI458746B (zh) Novel copolymer
CN105555867A (zh) 热熔融层积式三维造型用原材料及热熔融层积式3d打印设备用丝状物
CN108841097A (zh) 导电性高分子分散液及导电性膜
TWI834627B (zh) 化合物、潛在性鹼產生劑、含有該化合物之感光性樹脂組合物、硬化物、及硬化物之製造方法
CN101712822A (zh) 用荧光纳米颗粒制造的荧光固体油墨
CN110461820B (zh) 有机发光团
NZ567039A (en) Process of marking a substrate by applying a coating composition which comprises an acid ammonium salt and a sugar derivative prior to irradiating with electromagnetic radiation
JP6532865B2 (ja) インク組成物の工業的脱インク
CN104086675B (zh) 环糊精衍生物及其制备方法、光阻组合物和显示装置
WO2021037273A1 (zh) 一种香草醛基含席夫碱的共价有机框架阻燃剂及其制备方法
TWI781112B (zh) 硬化性組合物、硬化物及硬化物之製造方法
CN104080862B (zh) 墨水、被印刷基材、印刷装置、印刷方法、被印刷基材的制造方法
JP2019099666A (ja) 光学的立体造形用樹脂組成物
KR102603878B1 (ko) 화합물, 이의 제조 방법 및 이를 포함하는 착색제
CN109928902B (zh) 一种热敏显色剂4,4’-磺酰基双[2-(2-丙烯基)]苯酚的合成方法
CN109232497B (zh) 一种香豆素类阳离子光引发剂及其制备方法
KR101758726B1 (ko) 신규 에피술피드 화합물, 상기 에피술피드 화합물을 함유하는 경화성 수지 조성물 및 그 경화물
CN102127293B (zh) 一种热塑性聚氨酯液压密封圈材料配方及其生产工艺
CN104583276A (zh) 环硫化合物用固化剂、固化性组合物和环硫化合物的固化物、以及环硫化合物的固化方法
CN1665816A (zh) 新的二酮基吡咯并吡咯颜料

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200227

R150 Certificate of patent or registration of utility model

Ref document number: 6669886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250