JP2018529098A - 測定流体の貫流過程を測定するための、キャンドモータを備えた装置 - Google Patents

測定流体の貫流過程を測定するための、キャンドモータを備えた装置 Download PDF

Info

Publication number
JP2018529098A
JP2018529098A JP2018513597A JP2018513597A JP2018529098A JP 2018529098 A JP2018529098 A JP 2018529098A JP 2018513597 A JP2018513597 A JP 2018513597A JP 2018513597 A JP2018513597 A JP 2018513597A JP 2018529098 A JP2018529098 A JP 2018529098A
Authority
JP
Japan
Prior art keywords
flow
measuring
fluid
flow meter
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018513597A
Other languages
English (en)
Inventor
カマーシュテッター ヘリベアト
カマーシュテッター ヘリベアト
デアシュミット オトフリート
デアシュミット オトフリート
プロス マンフレート
プロス マンフレート
ブライトヴィーザー ヘアヴィヒ
ブライトヴィーザー ヘアヴィヒ
トーマス ベアガー クリスティアン
トーマス ベアガー クリスティアン
Original Assignee
アーファウエル リスト ゲゼルシャフト ミット ベシュレンクテル ハフツング
アーファウエル リスト ゲゼルシャフト ミット ベシュレンクテル ハフツング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アーファウエル リスト ゲゼルシャフト ミット ベシュレンクテル ハフツング, アーファウエル リスト ゲゼルシャフト ミット ベシュレンクテル ハフツング filed Critical アーファウエル リスト ゲゼルシャフト ミット ベシュレンクテル ハフツング
Priority claimed from PCT/EP2016/071758 external-priority patent/WO2017046199A1/de
Publication of JP2018529098A publication Critical patent/JP2018529098A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F3/00Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow
    • G01F3/02Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement
    • G01F3/04Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having rigid movable walls
    • G01F3/06Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having rigid movable walls comprising members rotating in a fluid-tight or substantially fluid-tight manner in a housing
    • G01F3/10Geared or lobed impeller meters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0057Driving elements, brakes, couplings, transmission specially adapted for machines or pumps
    • F04C15/0061Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C15/0069Magnetic couplings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/026Compensating or correcting for variations in pressure, density or temperature using means to maintain zero differential pressure across the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/24Application for metering throughflow

Abstract

入口(10)と、出口(12)と、流量計ハウジング(40)内に配置された、駆動ユニット(18)を介して駆動可能な容積式流量計(16)と、該容積式流量計(16)を迂回することができる迂回管路(20)と、該迂回管路(20)内に配置された圧力差検出器(22)と、駆動可能な前記容積式流量計(16)を、圧力差検出器(22)に生じている圧力差に関連して調整することができる、評価兼制御ユニット(32)と、を備えた、測定流体の貫流過程を測定するための装置。駆動ユニット(18)は、キャンドモータ(46)によって形成されており、このときキャン(54)が、内部にキャンドモータ(46)の駆動軸(52)およびロータ(50)が配置されていて測定流体で満たされた内室(60)を、内部にキャンドモータ(46)の、巻線(58)を保持するステータ(56)が配置されている外室(62)から隔てている。

Description

本発明は、入口と、出口と、流量計ハウジング内に配置された、駆動ユニットを介して駆動可能な容積式流量計と、該容積式流量計を迂回することができる迂回管路と、該迂回管路内に配置された圧力差検出器と、駆動可能な容積式流量計を、圧力差検出器に生じている圧力差に関連して調整することができる、評価兼制御ユニットと、を備えた、測定流体の貫流過程若しくは貫流量を測定するための装置に関する。
このような装置は、何年も前から公知であり、例えば内燃機関における噴射量測定のために使用される。
貫流測定のためのこのような装置の本来のバージョンは、独国特許出願公告第1798080号明細書(DE-AS 1798080)に記載されている。この電子制御された貫流測定器は、入口および出口を備えた主管路を有しており、この主管路内には、歯車ポンプとして形成された回転式の容積式流量計が配置されている。主管路に対して並列に、迂回管路が延びており、この迂回管路を介して、回転式の容積式流量計は迂回可能であり、かつ迂回管路には、圧力差検出器として働くピストンが、測定室内に配置されている。貫流量を確定するために、測定室内におけるピストンの変位が、光学式センサを用いて測定される。歯車ポンプの回転数は、この信号に基づいて、評価兼制御ユニットを介して連続的に補正され、つまりピストンは可能な限り常に、その出発位置に戻され、これによって迂回管路内には単に僅かな流れだけが発生するようになっている。エンコーダを介して測定された、歯車ポンプの回転数または部分回転数と、1回転時における歯車ポンプの公知の搬送容積とから、予め設定された時間インターバル内における貫流量が計算される。
このように構成された貫流量測定器は、独国特許発明第10331228号明細書(DE 10331228 B3)においても開示されている。正確な噴射量変化を確定するために、歯車ポンプはそれぞれの噴射の開始前にその都度、一定の回転数に調節され、これによって次いでピストンの運動が測定され、かつこの変位が噴射変化を確定するために使用される。測定室内には追加的に、圧力センサおよび温度センサが配置されており、この圧力センサおよび温度センサの測定値が、噴射量変化を計算および修正するために同様に計算ユニットに供給される。
この測定器のためには、駆動制御および位置認識を必要な測定流体の正確な換算のために高精度で実施できる、調整可能な駆動ユニットを使用することが必要である。他方において注意すべきことは、たとえ腐食性の測定流体であっても測定流体は、駆動ユニットにおける損傷の原因ではないということである。
したがってこの容積式流量計を駆動するためには、通常、電動機が使用され、この電動機の出力軸に、磁気クラッチの、永久磁石を保持するアウタロータが固定されていて、この磁気クラッチのインナロータは、キャンによってアウタロータから隔てられている。このような磁気クラッチは、例えば国際公開第2015/018568号(WO 2015/0180568 A1)に基づいて公知である。
しかしながら、磁気クラッチの弾性、および磁気クラッチのインナロータに対するアウタロータの、保証され得ない完全な連行の弾性によって、測定誤差が発生し得るということが示されている。追加的に、測定の不正確さが、運転中に解離して容積式流量計の搬送室内に達する、キャンにおける気泡侵入によって発生する。
ゆえに本発明の課題は、測定結果を駆動装置の最適化によって改善する、測定流体の貫流過程を測定するための装置を提供することである。追加的に、コストが低減され、単に僅かな構造空間だけが使用されることが、望ましい。駆動ユニットの駆動制御は、必要な搬送量とは無関係に可能な限り正確に行われることが望ましい。また、押退け歯車の位置フィードバックも可能な限り正確に行われることが望ましく、このとき発生する弾性によるエラーは排除されることが望ましい。
この課題は、請求項1に記載の特徴を備えた、測定流体の貫流過程を測定するための装置によって解決される。
駆動ユニットが、キャンドモータによって形成されており、キャンが、内部にキャンドモータの駆動軸およびロータが配置されていて測定流体で満たされた内室を、内部にキャンドモータの、巻線を保持するステータが配置されている外室から隔てていることによって、電動機は容積式流量計を直接駆動するので、その結果、一方ではコストの原因となり、かつ他方では電動機と押退け歯車との間における弾性を高める、間に配置された部材がもはや不要になる。追加的に、所要構造空間も低減される。キャンドモータは、通常の形式で電子的に整流される直流モータである。
好ましくは、容積式流量計の押退け歯車が、キャンドモータの駆動軸に少なくとも回動不能に固定されていて、かつキャンドモータの、永久磁石を保持するロータは、キャンドモータの駆動軸に少なくとも回動不能に固定されているか、または駆動軸と一体に製造されている。このように構成されていると、押退け歯車の直接的な駆動が行われる。そして間に配置されたクラッチの弾性がなくなる。その代わりに、押退け歯車の位置のための位置フィードバックを、駆動される軸を介して直接行うことができる。このようにして、要求される容積流の極めて正確な制御および計算が可能になる。
本発明の好適な実施形態では、キャンの軸方向端部に、それぞれ1つの第1の軸受収容部および第2の軸受収容部が形成されていて、該第1の軸受収容部および該第2の軸受収容部内に、第1の軸受および第2の軸受が配置されており、該第1の軸受および該第2の軸受を介して駆動軸は支持されている。押退け歯車を支持するための追加的な軸受は、不要である。それというのは、軸受が互いに離れて配置されていることによって、発生する横力を確実に吸収することができるからである。
電動機を流量計ハウジングに特に簡単に取り付けることができるようにするために、キャンはフランジを有していて、該フランジを介して、キャンドモータは、容積式流量計の流量計ハウジングに固定されている。このように構成されていると、外室に対するキャン内室の確実なシールも保証される。
本発明の好適な実施形態では、内部に第1の軸受が配置されている、キャンのカラーが、フランジから流量計ハウジングの開口内に延びている。このように構成されていると、組立て時に、流量計ハウジングにおけるキャンの予備固定を、簡単な差込みによって行うことができる。追加的に、前側の軸受と押退け歯車との間における間隔が最小になり、これによってさらに、発生する横力が直接吸収される。
好適な実施形態では、流量計ハウジングに対して離れている軸方向端部において、キャンは閉鎖された底部を有している。すなわちキャンは、もっぱら流量計ハウジングに向かって開放されている。スプリットケージにおいて発生し得るような、背面領域における非シール性は、存在しない。
特に好適な実施形態では、駆動軸に、無接触式のセンサと共働する永久磁石が固定されている。このようなセンサ・磁石配置形態によって、高精度の位置フィードバックが可能であり、このとき駆動軸の検出された位置は、この駆動軸に直接配置された押退け歯車の位置にも相当する。相応に、押退け歯車の位置と検出された位置との間におけるずれは、発生し得ない。
本発明の、これに続く実施形態では、永久磁石は、駆動軸の、流量計ハウジングに対して離れている端部に配置されており、これによって磁石、および無接触式のセンサ、特に磁気抵抗式センサには、その位置に基づいて極めて良好に達することができ、かつ相応に簡単に取り付けることができる。ステータの磁界の比較的大きな影響は、駆動軸の回転軸線におけるセンサの位置によってなくなる。
これに続く実施形態では、キャンの底部は、駆動軸に配置された永久磁石と、無接触式のセンサ、特に磁気抵抗式センサとの間に配置されている。相応にセンサは、磁石から空間的に離れて位置しており、ひいては、貫流されない領域において保護されており、それにもかかわらず良好に接近可能であり、これによってセンサの電気的な接続も簡単に形成することができる。しかも、外部磁界によるエラーは、センサと磁石との間における短い間隔によって十分に排除されている。
本発明の特に好適な実施形態では、キャンに、入口開口および出口開口が形成されており、該入口開口および該出口開口を介して、前記キャンの内室は、貫流過程を測定するための装置のフラッシング管路に接続されている。これらの開口を介して、相応にキャンの内室の空気抜きが可能であるので、内室から解離して搬送室内に侵入する気泡による測定エラーが回避される。
このフラッシングを実施するために特に単純な実施形態では、入口開口および出口開口は、キャンのカラーの領域に形成されている。このように構成されていると、追加的な管路を取り付ける必要なしに、キャンの内室のフラッシングが可能である。その代わりにフラッシング管路への接続は、キャンの取付け時に自動的に行われる。キャンの内室は、1つのステップで、装置の残りのアセンブリと共に空気抜きすることができる。
好ましくは、入口開口は、キャンの測地学的に下側の領域に形成されており、かつ出口開口は、キャンの測地学的に上側の領域に形成されている。このように構成されていると、比較的大きな空気量が内室内において集まることが阻止される。それというのは、空気は、上方に向かって上昇し、かつそこに存在するデッドスペースが阻止されるからである。空気全体は、上側の出口開口を通って排出される。
本発明の発展形態では、フラッシング管路は、キャンの出口開口から、流量計ハウジングおよびピストンハウジングを通って出口へと延びている。空気抜きもしくはフラッシングのための外側の管路は、存在しない。その代わり、いずれにせよ存在している出口が、空気もしくはフラッシング流体を排出するためにも働くことができる。
好ましくは、フラッシング管路は、圧力差検出器の測定室から、ピストンハウジングおよび流量計ハウジングを通ってキャンの入口開口へと延びている。このような実施形態においても、追加的な管路は存在しない。その代わり測定室を、同時にかつただ1回の方法ステップにおいて、キャンと共に空気抜きすることができる。
このようにして、容積式流量計の駆動ユニットが僅かな部材および小さな所要構造空間しか有しておらず、かつ押退け歯車を高精度で駆動制御することができる、測定流体の貫流過程を測定するための装置が、提供される。追加的に、高い分解能を有する正確な位置フィードバックが可能であり、その結果、装置の測定値が改善される。それというのは、位置フィードバックが、押退け歯車に連結された機構において直接行われ、かつパワートレインにおける弾性が回避されるからである。追加的に、確実な空気抜きが保証され、これによって測定結果が改善されることが保証される。
次に、本発明に係る、流体の貫流過程を測定するための装置を、図面に示された実施形態を参照しながら説明する。なお本発明は、図示の実施形態に制限されるものではない。
流れ概略図の形態で、本発明に係る、流体の貫流過程を測定するための装置を、概略的に示す図である。 本発明に係る装置の外観を示す斜視図である。 流量計ハウジングに接続可能な駆動ユニットを示す斜視図である。 流量計ハウジングに固定された駆動ユニットを断面して示す図である。
図1に示された、流体の貫流過程若しくは貫流量を測定するための装置は、入口10および出口12を有しており、この入口10と出口12とは、主管路14によって互いに接続されており、この主管路14内には、歯車ポンプとして形成された回転式の容積式流量計16が配置されている。
入口10を介して、測定すべき流体、特に燃料が、通流を生ぜしめる装置、特に燃料高圧ポンプまたは噴射弁から、主管路14内に流入し、駆動ユニット18を介して駆動することができる容積式流量計16を介して搬送される。
主管路14からは、入口10と回転式の容積式流量計16との間において迂回管路20が分岐しており、この迂回管路20は、回転式の容積式流量計16の下流で、この容積式流量計16と出口12との間において再び主管路14に開口し、かつ主管路14のように入口10および出口12に流体接続されている。この迂回管路20には、並進式の圧力差検出器22が配置されており、この圧力差検出器22は、測定室24と、この測定室24内において軸方向に自由移動可能に配置されたピストン26とから成っており、このピストン26は、測定流体、つまり燃料と同じ比重を有していて、かつ測定室24のように円筒形に成形されている。したがって測定室24は、ピストン26の外径にほぼ相当する内径を有している。
容積式流量計16を用いた燃料の搬送によって、および入口10内への燃料の噴射によって、ならびにピストン26の前面への入口10の流体接続によって、および迂回管路20を介したピストン26の背面への出口12の流体接続によって、ピストン26の前面と背面との間において圧力差を発生させることができ、この圧力差によって、ピストン26はその休止位置から変位する。相応にピストン26の変位が、存在する圧力差の尺度となる。
この変位を正確に算出できるようにするために、測定室24には、磁気抵抗式センサ28が配置されており、この磁気抵抗式センサ28は、ピストン26に固定された磁石30と作用し合うように作用結合しており、かつ磁気抵抗式センサ28において、ピストン26の変位によって、ピストン26の変位の大きさに関連した電圧が、変化しかつセンサ28に作用する磁界に対する運動時に生ぜしめられる。
センサ28は、評価兼制御ユニット32に接続されており、この評価兼制御ユニット32は、このセンサ28の値を処理し、かつ相応の制御信号を駆動モータ18に伝達し、この駆動モータ18は可能な限り次のように、すなわちこの場合ピストン26が、常に、確定された出発位置に位置するように、つまり容積式流量計16が噴射された流体に基づいてピストン26において発生する圧力差を、搬送によって常に幾分相殺するように、駆動制御される。そのために、測定室24内におけるピストン26の変位もしくはピストン26によって押し退けられた容積は、伝達関数を用いて、容積式流量計16の所望の搬送容積にもしくは駆動モータ18の回転数に換算され、かつ駆動モータ18は相応に給電される。
測定室24内には、追加的に圧力センサ34が配置されており、この圧力センサ34は連続的に、この領域において発生する圧力を測定する。主管路14内には、追加的に流体温度を測定するための温度センサ36が配置されている。両方の測定値が、さらに評価兼制御ユニット32に供給され、これによって密度の変化を計算時に考慮することができる。
測定の順序は、次のように行われる。すなわちこの場合、評価兼制御ユニット32において算出すべき全貫流量の計算時に、ピストン26の移動もしくは位置およびこれによって押し退けられる測定室24内における容積によって生じる、迂回管路20内における貫流量と、容積式流量計16の実際の貫流量とが、決定された時間インターバルにおいて考慮され、かつ両方の貫流量が、総貫流量を算出するために、互いに加算される。
ピストン26における貫流量の算出は、例えば次のように行われる。すなわちこの場合、センサ28に接続されている評価兼制御ユニット32において、ピストン26の変位が微分され、次いでピストン26の底面積と乗算され、これによって、この時間インターバルにおける迂回管路20における容積流(流量)が得られる。
容積式流量計16を通る貫流量、ひいては主管路14における貫流量は、容積式流量計16を調整するための算出された制御データから確定することができ、または回転数によって計算することができ、後者の場合、回転数は直接、例えば光学式のエンコーダまたは磁気抵抗式センサを介して測定される。
図2には、時間分解された貫流過程を測定するためのこのような本発明に係る装置の外観が示されている。本発明に係る装置は、ハウジング38を有していて、このハウジング38は2部分から製造されており、このとき流量計ハウジング40として働く第1のハウジング部分内には、容積式流量計16が配置されており、かつピストンハウジング42として働く第2のハウジング部分内には、圧力差検出器22が配置されている。追加的にピストンハウジング42には、入口10および出口12が形成されている。容積式流量計16の駆動ユニット18および評価兼制御ユニット32は、フード44の内部に配置されており、このフード44は、ピストンハウジング42と同様に流量計ハウジング40に固定されている。
図3には、容積式流量計16を駆動するための駆動ユニット18が示されている。この駆動ユニット18は、本発明によればキャンドモータ46から成っている。このキャンドモータ46は、永久磁石48を保持するロータ50を有しており、このロータ50は、駆動軸52の半径方向の拡大部分によって形成されていて、かつ内部に永久磁石48が保持される収容部53を有している。これらの永久磁石48を半径方向において固定するために、ロータ50は、スリーブ55によって取り囲まれており、このスリーブ55によって収容部53は閉鎖され、かつスリーブ55はロータ50に固定されている。このロータ50は、公知のように、キャン54の半径方向外側に配置されていてロータ50を取り囲むステータ56と対応し、このステータ56は、キャンドモータ46を駆動するために決定された順序で給電される巻線58を有している。このときキャン54は、キャン54の、内部にロータ50が配置されていて測定流体によって貫流される内室60を、内部にステータ56が配置されている乾燥した外室62から、シール作用をもって隔てている。相応にキャン54の内部における駆動軸52の支持は、ロータ50の、軸方向において互いに逆側に配置された2つの軸受64,66によって行われ、これらの軸受64,66は、その内レースで拡大部分に軸方向で接触している。第1の軸受収容部68が、キャン54のカラー70の内部に位置しており、このカラー70は、図4において認識できるように、取り付けられた状態において、流量計ハウジング40の背壁74における開口72内に延びていて、かつ開口72を画定する壁に半径方向で接触している。第1の軸受64は、その外レースで軸方向において、カラー70におけるストッパ75に接触している。第2の軸受収容部76が、キャン54の、カラー70とは反対側の軸方向端部に位置しており、この端部は、キャン54の底部78によって軸方向において閉鎖されていて、このとき第2の軸受66はその外レースで、軸方向において底部78に接触している。
半径方向内側の領域において底部78は、円形の凹部80を有しており、この凹部80内には、駆動軸52の端部が進入しており、この端部には、円形の永久磁石82が配置されていて、この永久磁石82は、相応に直接底部78に向かい合って位置するように回転軸線上に配置されている。キャン54の底部78の、永久磁石82とは軸方向において反対に位置する側に、例えばホールセンサとして形成されてよい無接触式のセンサ84が配置されている。このセンサ84は、直接キャン54の底部に直接配置されているか、または基板に配置されており、この基板は、周りに位置するモータハウジング86の、キャン54の底部78に向いた端部に配置されてもよく、モータハウジング86は、図示されていない開口を有していて、この開口を通して、センサ84およびモータハウジング86内に不動に配置されたステータ56の電気的な接続を行う導電線が延びている。
モータハウジング86は、キャン54の、センサ84が配置されている軸方向端部を閉鎖しており、かつここから、ステータ56およびキャン54を中空円筒形に取り囲んで、キャン54のフランジ88まで延びており、このフランジ88は、軸方向においてカラー70と、ロータ50の、永久磁石48を保持する部分との間において、半径方向に延びており、そしてモータハウジング86は、フランジ88において固定される。
図4において認識できるように、キャン54は、組立て時にまずそのカラー70が流量計ハウジングの開口72内に押し込まれ、この動作は、フランジ88が流量計ハウジング40の背壁74に接触するまで続けられ、このときカラー70の半径方向外側の領域に、リング形状の溝90が形成されており、この溝90内にシール部材92が挿入され、このシール部材92は、開口72を画定する壁に接触しているので、これによって測定流体が外方に向かって進出することはできない。次いでキャン54は、フランジ88における孔を通して差し込まれるねじ94を介して、流量計ハウジング40に固定される。駆動軸52の、流量計ハウジング40内に進入する端部には、押退け歯車96が固定され、この押退け歯車96は、外歯車として形成されていて、内歯車98の内歯列と噛み合い、内歯車98は、背面において閉鎖されたブシュ100内に支持されており、このブシュ100は、容積式流量計16の搬送室102を画定していて、かつ流量計ハウジング40の収容開口104内において固定されている。
キャン54のカラー70の上側において、溝90と第1の軸受収容部68との間には、キャン54の内室60から半径方向外側に向かって延びる出口開口106が形成されており、この出口開口106は、さらに流量計ハウジング40の、開口72を半径方向において画定する壁における凹部108に開口しており、この凹部108は、直接半径方向において、出口開口106に向かい合って位置するように配置されている。流量計ハウジング40の、ブシュ100に向いた背壁111に設けられていて部分的に開口72の周りを延びている溝110が、凹部108を、ブシュ100における軸方向孔の前まで延長しており、この軸方向孔は、ブシュ100の溝において開口しており、この溝は、装置の排出通路に流体接続されていて、この排出通路は、ピストンハウジング42を貫いて出口12へと延びている。追加的に、キャン54のカラー70の設置状態での測地学的に下側(つまり重力方向で見て下側)の領域において、溝90と第1の軸受収容部68との間には、キャン54の内室60内に半径方向内側に向かって延びる入口開口116が形成されており、この入口開口116は同様に、流量計ハウジング40の、開口72を半径方向において画定する壁における凹部118への流体接続部を有しており、この凹部118もまた同様に、入口開口116に直接向かい合って位置するように配置されている。この凹部118は、背壁111における、供給通路として働く溝119に流体接続されており、この溝119はさらに、ブシュ100における貫通孔とピストンハウジング42におけるさらに延びる通路とを介して、圧力差検出器22の測定室24の図示されていないバイパス開口に接続されており、このバイパス開口を介して、入口10に通じる接続部が形成可能である。これによって溝110,119、凹部108,118および孔120は、フラッシング管路124として働く。
始動時に測定流体は、容積式流量計16の駆動なしに入口10内に流入し、圧力差検出器22の測定室24、バイパス開口、ピストンハウジング42における通路、貫通孔、溝119および凹部118を介して、さらに入口開口116を介して、キャン54の内室60内に達する。キャン54内に存在する空気は上方に向かって上昇するので、この空気は、フラッシング時に、出口開口106、凹部108、溝110、孔、ブシュ100の溝、およびピストンハウジング42における排出通路を介して、出口12へと排出される。相応にキャン54の内室60内には、気泡が集まらない。このような気泡は、もしこれらの気泡が運転中に解離して搬送室102内に進入すると、空気の可縮性に基づいて測定エラーを惹起するおそれがある。
容積式流量計16を用いて搬送された容積流を計算するための位置フィードバックもまた高精度である。それというのは、押退け歯車96は、駆動ユニット18の駆動軸52に直接配置されていて、かつ位置の測定もまた、この駆動軸52において直接、磁石82とセンサ84との組合せを用いて行われるからである。その結果、測定された位置は、常に正確に、押退け歯車96の位置もしくは回転数にも相当する。磁気クラッチにおいて発生し得る、押退け歯車96の位置と測定箇所との間における弾性、またはエラー測定を惹起する可能性がある、磁気クラッチロータ相互のスリップは、存在しない。圧力差検出器22の信号に相応する駆動制御もまた、高精度で行うことができる。
このようにして、高精度の測定結果が得られる。追加的に、キャン54の使用によって、必要な構造空間が小さくなり、部材数が減じられる。それにもかかわらず装置の高いシール性が得られるので、測定流体の流出が確実に阻止され、その結果、ステータの巻線も保護される。そして相応に装置はまた、長い耐用寿命をも有する。
明らかにすべく付言すると、本発明は記載された実施形態に制限されるものではなく、独立請求項の保護範囲内において種々様々な変更が可能である。例えば通路およびハウジング部分の配置形態は、例えばダブル歯車ポンプまたはベーンポンプとして構成されていてよい容積式流量計の構成同様に、変更することができる。またキャンドモータの構造も、独立請求項の保護範囲内において変更することができる。

Claims (14)

  1. 入口(10)と、
    出口(12)と、
    流量計ハウジング(40)内に配置された、駆動ユニット(18)を介して駆動可能な容積式流量計(16)と、
    該容積式流量計(16)を迂回することができる迂回管路(20)と、
    該迂回管路(20)内に配置された圧力差検出器(22)と、
    駆動可能な前記容積式流量計(16)を、前記圧力差検出器(22)に生じている圧力差に関連して調整することができる、評価兼制御ユニット(32)と、
    を備えた、測定流体の貫流過程を測定するための装置において、
    前記駆動ユニット(18)は、キャンドモータ(46)によって形成されており、キャン(54)が、内部に前記キャンドモータ(46)の駆動軸(52)およびロータ(50)が配置されていて測定流体で満たされた内室(60)を、内部に前記キャンドモータ(46)の、巻線(58)を保持するステータ(56)が配置されている外室(62)から隔てていることを特徴とする、測定流体の貫流過程を測定するための装置。
  2. 前記容積式流量計(16)の押退け歯車(96)が、前記キャンドモータ(46)の前記駆動軸(52)に少なくとも回動不能に固定されていて、かつ前記キャンドモータ(46)の、永久磁石(48)を保持する前記ロータ(50)は、前記キャンドモータ(46)の前記駆動軸(52)に少なくとも回動不能に固定されているか、または前記駆動軸(52)と一体に製造されている、請求項1記載の流体の貫流過程を測定するための装置。
  3. 前記キャン(54)の軸方向端部に、第1の軸受収容部(68)および第2の軸受収容部(76)が形成されていて、該第1の軸受収容部(68)および該第2の軸受収容部(76)内に、第1の軸受(64)および第2の軸受(66)が配置されており、該第1の軸受(64)および該第2の軸受(66)を介して前記駆動軸(52)が支持されている、請求項1または2記載の流体の貫流過程を測定するための装置。
  4. 前記キャン(54)はフランジ(88)を有していて、該フランジ(88)を介して、前記キャンドモータ(46)は、前記容積式流量計(16)の前記流量計ハウジング(40)に固定されている、請求項1から3までのいずれか1項記載の流体の貫流過程を測定するための装置。
  5. 前記キャン(54)のカラー(70)が、前記フランジ(88)から前記流量計ハウジング(40)の開口(72)内に延びていて、前記カラー(70)の内部に前記第1の軸受(64)が配置されている、請求項4記載の流体の貫流過程を測定するための装置。
  6. 前記流量計ハウジング(40)に対して離れている軸方向端部において、前記キャン(54)は閉鎖された底部(78)を有している、請求項1から5までのいずれか1項記載の流体の貫流過程を測定するための装置。
  7. 前記駆動軸(52)に、無接触式のセンサ(84)と共働する永久磁石(82)が固定されている、請求項1から6までのいずれか1項記載の流体の貫流過程を測定するための装置。
  8. 前記永久磁石(82)は、前記駆動軸(52)の、前記流量計ハウジング(40)から離れている端部に固定されている、請求項7記載の流体の貫流過程を測定するための装置。
  9. 前記キャン(54)の前記底部(78)は、前記駆動軸(52)に配置された前記永久磁石(82)と、前記無接触式のセンサ(84)との間に配置されている、請求項8記載の流体の貫流過程を測定するための装置。
  10. 前記キャン(54)に、入口開口(116)および出口開口(106)が形成されており、該入口開口(116)および該出口開口(106)を介して、前記キャン(54)の前記内室(60)は、貫流過程を測定するための当該装置のフラッシング管路(124)に接続されている、請求項1から9までのいずれか1項記載の流体の貫流過程を測定するための装置。
  11. 前記入口開口(116)および前記出口開口(106)は、前記キャン(54)の前記カラー(70)の領域に形成されている、請求項10記載の流体の貫流過程を測定するための装置。
  12. 前記入口開口(116)は、前記キャン(54)の測地学的に下側の領域に形成されており、かつ前記出口開口(106)は、前記キャン(54)の測地学的に上側の領域に形成されている、請求項10または11記載の流体の貫流過程を測定するための装置。
  13. 前記フラッシング管路(124)は、前記キャン(54)の前記出口開口(106)から、前記流量計ハウジング(40)およびピストンハウジング(42)を通って前記出口(12)へと延びている、請求項10から12までのいずれか1項記載の流体の貫流過程を測定するための装置。
  14. 前記フラッシング管路(124)は、前記圧力差検出器(22)の測定室から、前記ピストンハウジング(42)および前記流量計ハウジング(40)を通って前記キャン(54)の前記入口開口(116)へと延びている、請求項10から13までのいずれか1項記載の流体の貫流過程を測定するための装置。
JP2018513597A 2015-09-15 2016-09-15 測定流体の貫流過程を測定するための、キャンドモータを備えた装置 Pending JP2018529098A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ATA600/2015A AT517817B1 (de) 2015-09-15 2015-09-15 Vorrichtung mit Spalttopfmotor zur Messung von Durchflussvorgängen von Messfluiden
ATA600/2015 2015-09-15
PCT/EP2016/071758 WO2017046199A1 (de) 2015-09-15 2016-09-15 Vorrichtung mit spalttopfmotor zur messung von durchflussvorgängen von messfluiden

Publications (1)

Publication Number Publication Date
JP2018529098A true JP2018529098A (ja) 2018-10-04

Family

ID=56936409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018513597A Pending JP2018529098A (ja) 2015-09-15 2016-09-15 測定流体の貫流過程を測定するための、キャンドモータを備えた装置

Country Status (4)

Country Link
US (1) US20190145810A1 (ja)
JP (1) JP2018529098A (ja)
CN (1) CN108138765A (ja)
AT (1) AT517817B1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11168690B2 (en) * 2019-04-11 2021-11-09 Schaeffler Technologies AG & Co. KG Integrated motor and pump including axially placed coils
CA3109053A1 (en) * 2020-02-26 2021-08-26 Romet Limited Rotary gas meter working condition monitoring system and a rotary gas meter having a rotary gas meter working condition monitoring system
CN114000867B (zh) * 2021-11-10 2024-02-02 海默科技(集团)股份有限公司 浅水水下流量计

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2835229A (en) * 1955-07-19 1958-05-20 Liquid Controls Corp Rotary positive displacement device for liquids
US3238884A (en) * 1962-07-09 1966-03-08 Tokheim Corp Variable positive displacement pump with rising pressure curve
US3255630A (en) * 1963-11-04 1966-06-14 Rockwell Mfg Co Positive displacement rotary gas meter
US3442126A (en) * 1967-04-05 1969-05-06 Neptune Meter Co Magnetic coupling
DE1798080C2 (de) * 1968-08-19 1974-05-16 Pierburg Luftfahrtgeraete Union Gmbh, 4040 Neuss Elektronisch gesteuertes Durchflußmeß- und Dosiergerät
US3618383A (en) * 1969-11-13 1971-11-09 Grinnell Corp Recirculating fluid supply system with flow measuring means
DK137612B (da) * 1972-07-25 1978-04-03 Inst Produktudvikling Apparat til måling af en fluidumstrom.
US4105377A (en) * 1974-10-15 1978-08-08 William Mayall Hydraulic roller motor
DE2728250A1 (de) * 1977-06-23 1979-01-04 Pierburg Luftfahrtgeraete Durchflussmess- und dosiergeraet
GB2185785B (en) * 1986-01-25 1989-11-01 Ford Motor Co Liquid flow meter
US4953403A (en) * 1989-03-15 1990-09-04 Binks Manufacturing Company Positive displacement flushable flow meter
US5435698A (en) * 1993-07-29 1995-07-25 Techco Corporation Bootstrap power steering systems
JPH09502236A (ja) * 1993-07-29 1997-03-04 テクコ・コーポレイション 改良式ブートストラップパワーステアリングシステム
US5749237A (en) * 1993-09-28 1998-05-12 Jdm, Ltd. Refrigerant system flash gas suppressor with variable speed drive
US5763973A (en) * 1996-10-30 1998-06-09 Imo Industries, Inc. Composite barrier can for a magnetic coupling
US6629411B2 (en) * 2001-05-09 2003-10-07 Valeo Electrical Systems, Inc. Dual displacement motor control
KR100536432B1 (ko) * 2001-05-21 2005-12-16 가부시키가이샤 오바루 서보형 용적식 유량계
DE10331228B3 (de) * 2003-07-10 2005-01-27 Pierburg Instruments Gmbh Vorrichtung zur Messung von zeitlich aufgelösten volumetrischen Durchflußvorgängen
US7513150B2 (en) * 2005-06-16 2009-04-07 Parris Earl H Check valve module for flow meters with fluid hammer relief
US7295934B2 (en) * 2006-02-15 2007-11-13 Dresser, Inc. Flow meter performance monitoring system
WO2008046828A1 (en) * 2006-10-17 2008-04-24 Johnson Pump Brussels N.V. Rotary positive displacement pump with magnetic coupling having integrated cooling system
JP4246237B2 (ja) * 2007-02-05 2009-04-02 株式会社オーバル ポンプユニット式サーボ型容積流量計
JP4183096B2 (ja) * 2007-02-05 2008-11-19 株式会社オーバル サーボ型容積流量計における被測定流体の流れと差圧検出とに係る経路構造
US20090035121A1 (en) * 2007-07-31 2009-02-05 Dresser, Inc. Fluid Flow Modulation and Measurement
AT504605B1 (de) * 2008-03-10 2009-06-15 Avl List Gmbh Vorrichtung zur messung von zeitlich aufgelösten volumetrischen durchflussvorgängen
JP4599454B1 (ja) * 2009-09-07 2010-12-15 株式会社オーバル 容積式気液二相流量計及び多相流量計測システム
US9618376B2 (en) * 2010-07-30 2017-04-11 Ecolab Usa Inc. Apparatus, method and system for calibrating a liquid dispensing system
ES2676721T3 (es) * 2010-07-30 2018-07-24 Ecolab Usa Inc. Método y sistema para calibrar un sistema de distribución de líquido
DE102011001041B9 (de) * 2010-11-15 2014-06-26 Hnp Mikrosysteme Gmbh Magnetisch angetriebene Pumpenanordnung mit einer Mikropumpe mit Zwangsspuelung und Arbeitsverfahren
AT512027B1 (de) * 2013-01-30 2014-04-15 Avl List Gmbh Durchflussmessgerät
AT512619B1 (de) * 2013-06-26 2015-02-15 Avl List Gmbh Durchflussmessgerät
AT516622B1 (de) * 2015-03-24 2016-07-15 Avl List Gmbh System zur Messung von zeitlich aufgelösten Durchflussvorgängen von Fluiden

Also Published As

Publication number Publication date
AT517817A1 (de) 2017-04-15
AT517817B1 (de) 2017-08-15
CN108138765A (zh) 2018-06-08
US20190145810A1 (en) 2019-05-16

Similar Documents

Publication Publication Date Title
JP2018529098A (ja) 測定流体の貫流過程を測定するための、キャンドモータを備えた装置
JP6695184B2 (ja) 流体の流動プロセスを時間分解方式で測定するためのシステム
JP6567172B2 (ja) 流体の貫流過程を測定するためのフラッシング可能な装置
CA2764083C (en) Mass flow meter
KR20110086514A (ko) 토출 펌프의 토출량 개회로 제어 방법
JP6993969B2 (ja) 車両用気化ガスポンプ
US20100043568A1 (en) Servo type volumetric flowmeter employing a pump unit system
RU2649722C1 (ru) Лопастной насос
ITCR20080008A1 (it) Contatore volumetrico per macchine da caffe'
JPWO2005042979A1 (ja) 回転式ドライ真空ポンプ
JP6894871B2 (ja) 真空ポンプ
CN111677899A (zh) 带有流量检测功能的输送阀
US20150362349A1 (en) Throughflow measurement device for a beverage preparation machine
JP2013096284A (ja) 遠心式電動送風機
JP2010285885A (ja) 水中軸受
US11644032B2 (en) Pump with detection of absolute angle of rotation
CN106123972A (zh) 一种组合水箱接头
JP2021076113A (ja) 真空機器内の状態情報を求める方法
JPS5912572Y2 (ja) 流量検出器
WO2018210483A1 (en) A flowrate sensor
JPH09196715A (ja) 流量センサ
JPH04318426A (ja) 流量計
JP2001124685A (ja) 粘度測定方法及び粘度測定装置
CN220206749U (zh) 一种转子装置以及具有其的流量传感器、球阀
JP2005257309A (ja) タービン流量計及び流体回転機械

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191203