JP2018517742A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2018517742A5 JP2018517742A5 JP2017565236A JP2017565236A JP2018517742A5 JP 2018517742 A5 JP2018517742 A5 JP 2018517742A5 JP 2017565236 A JP2017565236 A JP 2017565236A JP 2017565236 A JP2017565236 A JP 2017565236A JP 2018517742 A5 JP2018517742 A5 JP 2018517742A5
- Authority
- JP
- Japan
- Prior art keywords
- xrpd
- radiation
- crystalline form
- measured
- pattern
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000634 powder X-ray diffraction Methods 0.000 claims description 715
- 201000010099 disease Diseases 0.000 claims description 60
- ACVMJAJGCQUPKX-LIOBNPLQSA-N (1R,5S)-1-naphthalen-2-yl-3-azabicyclo[3.1.0]hexane;hydrochloride Chemical compound Cl.C1=CC=CC2=CC([C@@]34CNC[C@H]4C3)=CC=C21 ACVMJAJGCQUPKX-LIOBNPLQSA-N 0.000 claims description 46
- 238000001757 thermogravimetry curve Methods 0.000 claims description 44
- 238000000113 differential scanning calorimetry Methods 0.000 claims description 36
- 238000002411 thermogravimetry Methods 0.000 claims description 33
- 238000010928 TGA analysis Methods 0.000 claims description 32
- 206010003736 Attention deficit/hyperactivity disease Diseases 0.000 claims description 17
- 208000006096 Attention Deficit Disorder with Hyperactivity Diseases 0.000 claims description 13
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 claims description 12
- 201000006287 attention deficit hyperactivity disease Diseases 0.000 claims description 12
- 239000008194 pharmaceutical composition Substances 0.000 claims description 12
- 230000004580 weight loss Effects 0.000 claims description 12
- 208000001914 Fragile X Syndrome Diseases 0.000 claims description 10
- 108009000484 Fragile X Syndrome Proteins 0.000 claims description 10
- 239000003085 diluting agent Substances 0.000 claims description 10
- 206010057666 Anxiety disease Diseases 0.000 claims description 9
- 206010002855 Anxiety Diseases 0.000 claims description 8
- 230000036506 anxiety Effects 0.000 claims description 8
- 239000000969 carrier Substances 0.000 claims description 8
- 230000001747 exhibiting Effects 0.000 claims description 8
- 238000002844 melting Methods 0.000 claims description 8
- 201000009032 substance abuse Diseases 0.000 claims description 7
- 231100000736 substance abuse Toxicity 0.000 claims description 7
- 238000000354 decomposition reaction Methods 0.000 claims description 6
- 201000007185 autism spectrum disease Diseases 0.000 claims description 5
- HJLHTTJLVALHOP-UHFFFAOYSA-N hexane;hydron;chloride Chemical compound Cl.CCCCCC HJLHTTJLVALHOP-UHFFFAOYSA-N 0.000 claims description 5
- WJXYUEOVOQGJGV-UHFFFAOYSA-N 3-azabicyclo[3.1.0]hexane;hydrochloride Chemical compound Cl.C1NCC2CC21 WJXYUEOVOQGJGV-UHFFFAOYSA-N 0.000 claims description 4
- ACVMJAJGCQUPKX-UHFFFAOYSA-N 1-naphthalen-2-yl-3-azabicyclo[3.1.0]hexane;hydrochloride Chemical compound Cl.C1=CC=CC2=CC(C34CNCC4C3)=CC=C21 ACVMJAJGCQUPKX-UHFFFAOYSA-N 0.000 claims 1
- 239000010949 copper Substances 0.000 description 333
- 239000000203 mixture Substances 0.000 description 119
- 239000007787 solid Substances 0.000 description 98
- 239000000523 sample Substances 0.000 description 84
- KFZMGEQAYNKOFK-UHFFFAOYSA-N iso-propanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 72
- 239000000243 solution Substances 0.000 description 71
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 70
- VEXZGXHMUGYJMC-UHFFFAOYSA-N HCl Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 65
- 239000010410 layer Substances 0.000 description 57
- 229940011051 isopropyl acetate Drugs 0.000 description 47
- GWYFCOCPABKNJV-UHFFFAOYSA-M isovalerate Chemical compound CC(C)CC([O-])=O GWYFCOCPABKNJV-UHFFFAOYSA-M 0.000 description 47
- 238000007792 addition Methods 0.000 description 37
- 239000007858 starting material Substances 0.000 description 37
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 36
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 36
- 238000003756 stirring Methods 0.000 description 36
- YMWUJEATGCHHMB-UHFFFAOYSA-N methylene dichloride Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 35
- 239000002002 slurry Substances 0.000 description 35
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 34
- WYURNTSHIVDZCO-UHFFFAOYSA-N tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 34
- 239000011541 reaction mixture Substances 0.000 description 32
- 239000002904 solvent Substances 0.000 description 32
- 150000001875 compounds Chemical group 0.000 description 30
- 239000000047 product Substances 0.000 description 30
- 239000012065 filter cake Substances 0.000 description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 29
- 238000004458 analytical method Methods 0.000 description 28
- 210000004027 cells Anatomy 0.000 description 26
- 238000010438 heat treatment Methods 0.000 description 25
- 150000003839 salts Chemical class 0.000 description 25
- 238000006243 chemical reaction Methods 0.000 description 24
- OKKJLVBELUTLKV-UHFFFAOYSA-N methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 24
- 230000005540 biological transmission Effects 0.000 description 23
- 125000004429 atoms Chemical group 0.000 description 21
- 239000000843 powder Substances 0.000 description 21
- HKHCSWPSUSWGLI-CABCVRRESA-N (1R,5S)-1-naphthalen-2-yl-3-azabicyclo[3.1.0]hexane Chemical compound C1=CC=CC2=CC([C@@]34CNC[C@H]4C3)=CC=C21 HKHCSWPSUSWGLI-CABCVRRESA-N 0.000 description 20
- 238000004090 dissolution Methods 0.000 description 19
- 239000012044 organic layer Substances 0.000 description 19
- 238000001816 cooling Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 18
- 229910052757 nitrogen Inorganic materials 0.000 description 18
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- 239000003960 organic solvent Substances 0.000 description 17
- 239000001257 hydrogen Substances 0.000 description 16
- 229910052739 hydrogen Inorganic materials 0.000 description 16
- 238000002360 preparation method Methods 0.000 description 16
- 239000004677 Nylon Substances 0.000 description 15
- 229920001778 nylon Polymers 0.000 description 15
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 14
- 238000001035 drying Methods 0.000 description 14
- CSNNHWWHGAXBCP-UHFFFAOYSA-L mgso4 Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 14
- BDERNNFJNOPAEC-UHFFFAOYSA-N propanol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 14
- VUKAUDKDFVSVFT-UHFFFAOYSA-N 2-[6-[4,5-bis(2-hydroxypropoxy)-2-(2-hydroxypropoxymethyl)-6-methoxyoxan-3-yl]oxy-4,5-dimethoxy-2-(methoxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)-5-methoxyoxane-3,4-diol Chemical compound COC1C(OC)C(OC2C(C(O)C(OC)C(CO)O2)O)C(COC)OC1OC1C(COCC(C)O)OC(OC)C(OCC(C)O)C1OCC(C)O VUKAUDKDFVSVFT-UHFFFAOYSA-N 0.000 description 13
- 238000001914 filtration Methods 0.000 description 13
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 13
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 13
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 13
- 229910052710 silicon Inorganic materials 0.000 description 13
- 239000010703 silicon Substances 0.000 description 13
- XEKOWRVHYACXOJ-UHFFFAOYSA-N acetic acid ethyl ester Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- FYSNRJHAOHDILO-UHFFFAOYSA-N Thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 10
- 239000000706 filtrate Substances 0.000 description 10
- 239000004926 polymethyl methacrylate Substances 0.000 description 10
- 238000010583 slow cooling Methods 0.000 description 10
- 239000011780 sodium chloride Substances 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 239000000725 suspension Substances 0.000 description 10
- 238000003828 vacuum filtration Methods 0.000 description 10
- 230000035507 absorption Effects 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 9
- 239000000284 extract Substances 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 8
- 238000002441 X-ray diffraction Methods 0.000 description 8
- WEVYAHXRMPXWCK-UHFFFAOYSA-N acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 238000001704 evaporation Methods 0.000 description 8
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 8
- 230000035882 stress Effects 0.000 description 8
- JYMKTJSCJHGOMJ-UHFFFAOYSA-N 5-(hydroxymethyl)-6-[4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxane-2,3,4-triol Chemical compound OCC1OC(O)C(O)C(O)C1OC1C(CO)C(O)C(O)C(O)O1 JYMKTJSCJHGOMJ-UHFFFAOYSA-N 0.000 description 7
- VHUUQVKOLVNVRT-UHFFFAOYSA-N ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 7
- 235000011114 ammonium hydroxide Nutrition 0.000 description 7
- 235000012970 cakes Nutrition 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 7
- 235000011089 carbon dioxide Nutrition 0.000 description 7
- 229960003638 dopamine Drugs 0.000 description 7
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 7
- 235000019341 magnesium sulphate Nutrition 0.000 description 7
- 230000002265 prevention Effects 0.000 description 7
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 description 7
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 6
- BYEAHWXPCBROCE-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-ol Chemical compound FC(F)(F)C(O)C(F)(F)F BYEAHWXPCBROCE-UHFFFAOYSA-N 0.000 description 6
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-Methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 6
- 210000001736 Capillaries Anatomy 0.000 description 6
- 206010057668 Cognitive disease Diseases 0.000 description 6
- SFLSHLFXELFNJZ-MRVPVSSYSA-N L-Noradrenaline Natural products NC[C@@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-MRVPVSSYSA-N 0.000 description 6
- 229960002748 Norepinephrine Drugs 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 150000001412 amines Chemical class 0.000 description 6
- 230000006399 behavior Effects 0.000 description 6
- 230000003542 behavioural Effects 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 6
- 239000002775 capsule Substances 0.000 description 6
- 239000012141 concentrate Substances 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000010899 nucleation Methods 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- 238000001556 precipitation Methods 0.000 description 6
- 238000010992 reflux Methods 0.000 description 6
- 239000007790 solid phase Substances 0.000 description 6
- 239000012453 solvate Substances 0.000 description 6
- 230000002459 sustained Effects 0.000 description 6
- LPCWDVLDJVZIHA-UHFFFAOYSA-N 2-naphthalen-2-ylacetonitrile Chemical compound C1=CC=CC2=CC(CC#N)=CC=C21 LPCWDVLDJVZIHA-UHFFFAOYSA-N 0.000 description 5
- 102200096656 RNF126 H14A Human genes 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminum Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 239000012267 brine Substances 0.000 description 5
- 230000000875 corresponding Effects 0.000 description 5
- 238000002050 diffraction method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- KJIFKLIQANRMOU-UHFFFAOYSA-N oxidanium;4-methylbenzenesulfonate Chemical compound O.CC1=CC=C(S(O)(=O)=O)C=C1 KJIFKLIQANRMOU-UHFFFAOYSA-N 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 230000002194 synthesizing Effects 0.000 description 5
- 238000010268 HPLC based assay Methods 0.000 description 4
- 208000008589 Obesity Diseases 0.000 description 4
- WRIKHQLVHPKCJU-UHFFFAOYSA-N Sodium bis(trimethylsilyl)amide Chemical compound C[Si](C)(C)N([Na])[Si](C)(C)C WRIKHQLVHPKCJU-UHFFFAOYSA-N 0.000 description 4
- 239000012296 anti-solvent Substances 0.000 description 4
- MCQRPQCQMGVWIQ-UHFFFAOYSA-N boron;methylsulfanylmethane Chemical compound [B].CSC MCQRPQCQMGVWIQ-UHFFFAOYSA-N 0.000 description 4
- 238000007707 calorimetry Methods 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000005712 crystallization Effects 0.000 description 4
- 238000002447 crystallographic data Methods 0.000 description 4
- 230000004059 degradation Effects 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 125000004435 hydrogen atoms Chemical group [H]* 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 235000019359 magnesium stearate Nutrition 0.000 description 4
- 230000001404 mediated Effects 0.000 description 4
- 239000003607 modifier Substances 0.000 description 4
- 235000020824 obesity Nutrition 0.000 description 4
- 201000008430 obsessive-compulsive disease Diseases 0.000 description 4
- 201000000980 schizophrenia Diseases 0.000 description 4
- 238000004467 single crystal X-ray diffraction Methods 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000002336 sorption--desorption measurement Methods 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 4
- 239000003174 triple reuptake inhibitor Substances 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- BRLQWZUYTZBJKN-GSVOUGTGSA-N (2S)-2-(chloromethyl)oxirane Chemical compound ClC[C@@H]1CO1 BRLQWZUYTZBJKN-GSVOUGTGSA-N 0.000 description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 3
- RHQDFWAXVIIEBN-UHFFFAOYSA-N 2,2,2-trifluoroethyl alcohol Chemical compound OCC(F)(F)F RHQDFWAXVIIEBN-UHFFFAOYSA-N 0.000 description 3
- 208000004993 Alcohol-Related Disorders Diseases 0.000 description 3
- 208000009028 Amphetamine-Related Disorders Diseases 0.000 description 3
- 241000218236 Cannabis Species 0.000 description 3
- 208000000094 Chronic Pain Diseases 0.000 description 3
- 208000002723 Cocaine-Related Disorders Diseases 0.000 description 3
- 206010012401 Depressive disease Diseases 0.000 description 3
- SNICXCGAKADSCV-JTQLQIEISA-N Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 3
- 229960002715 Nicotine Drugs 0.000 description 3
- 208000001908 Opioid-Related Disorders Diseases 0.000 description 3
- 208000002193 Pain Diseases 0.000 description 3
- 206010061536 Parkinson's disease Diseases 0.000 description 3
- 229940076279 Serotonin Drugs 0.000 description 3
- 102220429455 WAPL H16A Human genes 0.000 description 3
- QKNDAUTYSODFJV-UHFFFAOYSA-N [dimethyl-(trimethylsilylamino)silyl]methane;sodium Chemical compound [Na].C[Si](C)(C)N[Si](C)(C)C QKNDAUTYSODFJV-UHFFFAOYSA-N 0.000 description 3
- 235000020127 ayran Nutrition 0.000 description 3
- 239000012455 biphasic mixture Substances 0.000 description 3
- 229910000085 borane Inorganic materials 0.000 description 3
- 229910000090 borane Inorganic materials 0.000 description 3
- 239000012043 crude product Substances 0.000 description 3
- DMJZZSLVPSMWCS-UHFFFAOYSA-N diborane Chemical compound B1[H]B[H]1 DMJZZSLVPSMWCS-UHFFFAOYSA-N 0.000 description 3
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 238000005755 formation reaction Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 239000008079 hexane Substances 0.000 description 3
- -1 hydroxypropoxy Chemical group 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229930015196 nicotine Natural products 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 201000008839 post-traumatic stress disease Diseases 0.000 description 3
- 230000002829 reduced Effects 0.000 description 3
- 238000002390 rotary evaporation Methods 0.000 description 3
- 238000002076 thermal analysis method Methods 0.000 description 3
- UORVGPXVDQYIDP-UHFFFAOYSA-N trihydridoboron Substances B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 description 3
- 239000003039 volatile agent Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 206010001584 Alcohol abuse Diseases 0.000 description 2
- 206010003805 Autism Diseases 0.000 description 2
- 206010004938 Bipolar disease Diseases 0.000 description 2
- 210000001772 Blood Platelets Anatomy 0.000 description 2
- 206010070976 Craniocerebral injury Diseases 0.000 description 2
- 229910017488 Cu K Inorganic materials 0.000 description 2
- 206010012335 Dependence Diseases 0.000 description 2
- 206010012378 Depression Diseases 0.000 description 2
- 206010054964 Dysphemia Diseases 0.000 description 2
- 206010015037 Epilepsy Diseases 0.000 description 2
- 208000001613 Gambling Diseases 0.000 description 2
- 208000004547 Hallucinations Diseases 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 206010061215 Impulse-control disease Diseases 0.000 description 2
- 206010021639 Incontinence Diseases 0.000 description 2
- 206010024094 Learning disease Diseases 0.000 description 2
- 206010057840 Major depression Diseases 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinylpyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N P-Toluenesulfonic acid Chemical class CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 206010033664 Panic attack Diseases 0.000 description 2
- 206010033666 Panic disease Diseases 0.000 description 2
- 206010034721 Personality disease Diseases 0.000 description 2
- 206010034912 Phobia Diseases 0.000 description 2
- 208000005374 Poisoning Diseases 0.000 description 2
- 206010040984 Sleep disease Diseases 0.000 description 2
- JHJLBTNAGRQEKS-UHFFFAOYSA-M Sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 2
- 206010054153 Somatoform disease Diseases 0.000 description 2
- 206010066218 Stress urinary incontinence Diseases 0.000 description 2
- 208000003028 Stuttering Diseases 0.000 description 2
- 208000005765 Traumatic Brain Injury Diseases 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K [O-]P([O-])([O-])=O Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 201000003082 alcohol use disease Diseases 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000000218 anomalous X-ray scattering Methods 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 201000002055 autistic disease Diseases 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000000035 biogenic Effects 0.000 description 2
- 201000008779 central nervous system disease Diseases 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000004296 chiral HPLC Methods 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 150000001860 citric acid derivatives Chemical class 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000002860 competitive Effects 0.000 description 2
- 239000002178 crystalline material Substances 0.000 description 2
- 238000010192 crystallographic characterization Methods 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 230000002354 daily Effects 0.000 description 2
- 239000002274 desiccant Substances 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 230000001066 destructive Effects 0.000 description 2
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 2
- 239000007884 disintegrant Substances 0.000 description 2
- 235000014632 disordered eating Nutrition 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 201000006180 eating disease Diseases 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 230000002934 lysing Effects 0.000 description 2
- 201000003895 major depressive disease Diseases 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000012452 mother liquor Substances 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- 239000008203 oral pharmaceutical composition Substances 0.000 description 2
- 230000036961 partial Effects 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 201000001552 phobic disease Diseases 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 231100000572 poisoning Toxicity 0.000 description 2
- 230000000607 poisoning Effects 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- XNSAINXGIQZQOO-SRVKXCTJSA-N protirelin Chemical compound NC(=O)[C@@H]1CCCN1C(=O)[C@@H](NC(=O)[C@H]1NC(=O)CC1)CC1=CN=CN1 XNSAINXGIQZQOO-SRVKXCTJSA-N 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 239000012047 saturated solution Substances 0.000 description 2
- 230000000698 schizophrenic Effects 0.000 description 2
- 238000007613 slurry method Methods 0.000 description 2
- 230000000391 smoking Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- BZKBCQXYZZXSCO-UHFFFAOYSA-N sodium hydride Inorganic materials [H-].[Na+] BZKBCQXYZZXSCO-UHFFFAOYSA-N 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 230000001225 therapeutic Effects 0.000 description 2
- 230000001052 transient Effects 0.000 description 2
- HKHCSWPSUSWGLI-UHFFFAOYSA-N 1-naphthalen-2-yl-3-azabicyclo[3.1.0]hexane Chemical compound C1=CC=CC2=CC(C34CNCC4C3)=CC=C21 HKHCSWPSUSWGLI-UHFFFAOYSA-N 0.000 description 1
- XSJVWZAETSBXKU-UHFFFAOYSA-N 2-ethoxypropane Chemical compound CCOC(C)C XSJVWZAETSBXKU-UHFFFAOYSA-N 0.000 description 1
- HGWUUOXXAIISDB-UHFFFAOYSA-N 3-azabicyclo[3.1.0]hexane Chemical compound C1NCC2CC21 HGWUUOXXAIISDB-UHFFFAOYSA-N 0.000 description 1
- 206010000117 Abnormal behaviour Diseases 0.000 description 1
- 206010001897 Alzheimer's disease Diseases 0.000 description 1
- 208000000103 Anorexia Nervosa Diseases 0.000 description 1
- 229920003084 Avicel® PH-102 Polymers 0.000 description 1
- 230000036912 Bioavailability Effects 0.000 description 1
- 206010006550 Bulimia nervosa Diseases 0.000 description 1
- 206010008874 Chronic fatigue syndrome Diseases 0.000 description 1
- 229940069078 Citric Acid / sodium citrate Drugs 0.000 description 1
- 229960000913 Crospovidone Drugs 0.000 description 1
- 229910017541 Cu-K Inorganic materials 0.000 description 1
- ZOOGRGPOEVQQDX-UUOKFMHZSA-N Cyclic guanosine monophosphate Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=C(NC2=O)N)=C2N=C1 ZOOGRGPOEVQQDX-UUOKFMHZSA-N 0.000 description 1
- FBPFZTCFMRRESA-KAZBKCHUSA-N D-Mannitol Natural products OC[C@@H](O)[C@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KAZBKCHUSA-N 0.000 description 1
- 241001607510 Daphne virus S Species 0.000 description 1
- SBJKKFFYIZUCET-JLAZNSOCSA-N Dehydro-L-ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(=O)C1=O SBJKKFFYIZUCET-JLAZNSOCSA-N 0.000 description 1
- 229940061607 Dibasic Sodium Phosphate Drugs 0.000 description 1
- 208000010309 Disruptive, Impulse Control, and Conduct Disorders Diseases 0.000 description 1
- 206010013654 Drug abuse Diseases 0.000 description 1
- 206010013982 Dysthymic disease Diseases 0.000 description 1
- 230000036826 Excretion Effects 0.000 description 1
- 208000001640 Fibromyalgia Diseases 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- OKMWKBLSFKFYGZ-UHFFFAOYSA-N Glyceryl behenate Chemical compound CCCCCCCCCCCCCCCCCCCCCC(=O)OCC(O)CO OKMWKBLSFKFYGZ-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- FBPFZTCFMRRESA-BXKVDMCESA-N L-mannitol Chemical compound OC[C@H](O)[C@H](O)[C@@H](O)[C@@H](O)CO FBPFZTCFMRRESA-BXKVDMCESA-N 0.000 description 1
- 229940057948 Magnesium stearate Drugs 0.000 description 1
- 206010026749 Mania Diseases 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 206010061284 Mental disease Diseases 0.000 description 1
- 230000036740 Metabolism Effects 0.000 description 1
- 229920003096 Methocel™ K100M Polymers 0.000 description 1
- 229920003095 Methocel™ K15M Polymers 0.000 description 1
- 229920003094 Methocel™ K4M Polymers 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 206010027599 Migraine Diseases 0.000 description 1
- 208000008085 Migraine Disorders Diseases 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 240000001439 Opuntia Species 0.000 description 1
- XAPRFLSJBSXESP-UHFFFAOYSA-N Oxycinchophen Chemical compound N=1C2=CC=CC=C2C(C(=O)O)=C(O)C=1C1=CC=CC=C1 XAPRFLSJBSXESP-UHFFFAOYSA-N 0.000 description 1
- 208000001293 Peripheral Nervous System Disease Diseases 0.000 description 1
- 206010034606 Peripheral neuropathy Diseases 0.000 description 1
- 229940069328 Povidone Drugs 0.000 description 1
- 208000002027 Psychomotor Disorders Diseases 0.000 description 1
- 206010037211 Psychomotor hyperactivity Diseases 0.000 description 1
- 206010061920 Psychotic disease Diseases 0.000 description 1
- 206010039775 Seasonal affective disease Diseases 0.000 description 1
- 206010041250 Social phobia Diseases 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229940032147 Starch Drugs 0.000 description 1
- 229940033134 Talc Drugs 0.000 description 1
- 206010043835 Tic disease Diseases 0.000 description 1
- 208000000323 Tourette Syndrome Diseases 0.000 description 1
- 206010044126 Tourette's disease Diseases 0.000 description 1
- 210000002700 Urine Anatomy 0.000 description 1
- 241000857212 Varanus nebulosus Species 0.000 description 1
- 102220429454 WAPL H12A Human genes 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 230000002378 acidificating Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000037328 acute stress Effects 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 238000004164 analytical calibration Methods 0.000 description 1
- 230000035514 bioavailability Effects 0.000 description 1
- 235000008429 bread Nutrition 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 230000037326 chronic stress Effects 0.000 description 1
- 230000003930 cognitive ability Effects 0.000 description 1
- 231100000867 compulsive behavior Toxicity 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000001143 conditioned Effects 0.000 description 1
- 201000002574 conversion disease Diseases 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 235000005824 corn Nutrition 0.000 description 1
- HTJDQJBWANPRPF-UHFFFAOYSA-N cyclopropylamine Chemical compound NC1CC1 HTJDQJBWANPRPF-UHFFFAOYSA-N 0.000 description 1
- 229940075894 denatured ethanol Drugs 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007416 differential thermogravimetric analysis Methods 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 230000035510 distribution Effects 0.000 description 1
- 235000020669 docosahexaenoic acid Nutrition 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- SRCZQMGIVIYBBJ-UHFFFAOYSA-N ethoxyethane;ethyl acetate Chemical compound CCOCC.CCOC(C)=O SRCZQMGIVIYBBJ-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000012520 frozen sample Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229940049654 glyceryl behenate Drugs 0.000 description 1
- 239000000380 hallucinogen Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium(0) Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 201000001916 hypochondriasis Diseases 0.000 description 1
- 229920003130 hypromellose 2208 Polymers 0.000 description 1
- 229940031707 hypromellose 2208 Drugs 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000002427 irreversible Effects 0.000 description 1
- 201000003723 learning disability Diseases 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000011068 load Methods 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000035786 metabolism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- IMNFDUFMRHMDMM-UHFFFAOYSA-N n-heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 125000004433 nitrogen atoms Chemical group N* 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 201000008175 pain disease Diseases 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 238000011170 pharmaceutical development Methods 0.000 description 1
- 230000036231 pharmacokinetics Effects 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920000523 polyvinylpolypyrrolidone Polymers 0.000 description 1
- 235000013809 polyvinylpolypyrrolidone Nutrition 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 201000009916 postpartum depression Diseases 0.000 description 1
- 230000002035 prolonged Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000000306 recurrent Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 230000035489 relative bioavailability Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229940045902 sodium stearyl fumarate Drugs 0.000 description 1
- STFSJTPVIIDAQX-LTRPLHCISA-M sodium;(E)-4-octadecoxy-4-oxobut-2-enoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCCOC(=O)\C=C\C([O-])=O STFSJTPVIIDAQX-LTRPLHCISA-M 0.000 description 1
- 230000002269 spontaneous Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-M toluene-4-sulfonate Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-M 0.000 description 1
- 238000001665 trituration Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
Description
本出願は2015年6月17日付けで出願された米国仮出願番号62/181,174に基づく優先権を主張しており、その内容は援用により本明細書に組み込まれる。
本発明は、(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩の結晶形及びこれを含む組成物並びにこれらを製造及び使用する方法に関する。
(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサンは、(+)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサンとしても知られており、ノルエピネフリン(NE)再取り込みに対し最も有効であり、ドーパミン(DA)再取り込みに対してはその6分の1の有効性を有し、セロトニン(5−HT)再取り込みに対してはその14分の1の有効性を示す、アンバランスなトリプル再取り込み阻害剤(TRI)として有用な化合物である。この化合物及びその有用性は米国特許出願公開公報第2007/0082940号により詳細に開示されており、その内容はそのまま援用により本明細書に組み込まれる。
医薬品有効成分は異なる物理的形態(例えば異なる結晶、非晶質、水和物又は溶媒和物の形態である、液体又は固体)にて存在し得、医薬品有効成分及びこれを含む医薬組成物の加工性、安定性、溶解性、バイオアベイラビリティー、薬物動態(吸収、分布、代謝、排泄など)及び/又は生物学的同等性が異なり得る。ある化合物が特定の多形体にて存在するか否かは予測できない。医薬品有効成分の有利な物理的形態(例えば固体、液体、結晶、水和物、溶媒和物又は非晶質形態における遊離塩基又は塩)を生成させ特定することは医薬開発において重要である。従って、(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサンの特定の多形体が必要とされている。
(+)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサンとしても知られている(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン(「本化合物」)は以下の式Iで示される:
式I
本発明者らは本化合物の塩酸付加塩形態における特定の多形体を見いだした。これら特定の多形体は、異なる安定性及び溶解特性を有し、多種多様なガレヌス製剤の製造に特に有利であり、特に以下に示す結晶形Aは有用である。従って、第一態様において、本発明は(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩の結晶形態を提供し、例えば:
1.1 本化合物の塩酸付加塩形態((1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩)の結晶形A(「結晶形A」)。
1.2 P212121空間群に属し、以下の単位格子パラメータ:
a=5.7779(2)Å、b=8.6633(2)Å、c=25.7280(8)Å、α=β=γ=90゜
を有する結晶形Aである、項1.1。
1.3 P212121空間群に属し、以下の単位格子パラメータのいずれかの組合せ:
a=5〜7Å、例えば6Å、例えば5.6〜5.9Å、例えば5.7〜5.8Å、例えば5.8Å、例えば5.78、例えば5.778Å;
b=8〜10Å、例えば9Å、例えば8.5〜8.8Å、例えば8.6〜8.7Å、例えば8.7Å、例えば8.66Å、例えば8.663Å;
c=25〜27Å、例えば26Å、例えば25.6〜25.9Å、例えば25.7〜25.8Å、例えば25.7〜25.8Å、例えば25.73Å、例えば25.728Å;及び
α=β=γ=90゜
を有する結晶形Aである、項1.1。
1.4 結晶形AがV=1287.83(7)Å3の計算容積を有する、項1.1〜1.3のいずれか。
1.5 結晶形Aの結晶構造が0.38mm×0.30mm×0.18mmの概算体積を有する結晶、例えば0.38mm×0.30mm×0.18mmの概算体積を有する無色板状結晶で得られる、項1.1〜1.4のいずれか。
1.6 結晶形Aの結晶構造がMo Kα線、例えばλ=0.71073ÅのMo Kα線で得られる、項1.1〜1.5のいずれか。
1.7 結晶形Aの結晶構造が150Kにて得られる、項1.1〜1.6のいずれか。
1.8 結晶形Aが図18のORTEP図により示される単結晶構造を有する、項1.1〜1.7のいずれか。
1.9 結晶形Aが図23に示される計算XRPDパターンを有する、項1.1〜1.8のいずれか。
1.10 結晶形Aが15.4、16.6、17.2、18.5、19.5、20.5、20.7、22.9及び25.7からなる群から選択される少なくとも3つ、例えば少なくとも5つの2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.9のいずれか。
1.11 結晶形Aが15.4、16.6、17.2、18.5、19.5、20.5、20.7、22.9及び25.7の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.10のいずれか。
1.12 結晶形Aが15.4、16.6、17.2、18.5、19.5、20.5、20.7、22.9及び25.7の特徴的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.11のいずれか。
1.13 結晶形Aが15.42、16.55、17.15、18.50、19.45、20.46、20.68、22.90及び25.69からなる群から選択される少なくとも3つ、例えば少なくとも5つの2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.12のいずれか。
1.14 結晶形Aが15.42、16.55、17.15、18.50、19.45、20.46、20.68、22.90及び25.69の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定される、項1.1〜1.13のいずれか。
1.15 結晶形Aが15.42、16.55、17.15、18.50、19.45、20.46、20.68、22.90及び25.69の特徴的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.14のいずれか。
1.16 結晶形Aが以下の表A:
表A
に示されるものから選択される少なくとも3つ、例えば少なくとも5つの2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.15のいずれか。
1.17 結晶形Aが項1.16の表Aに示される2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.16のいずれか。
1.18 結晶形Aが項1.16の表Aに示される特徴的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.17のいずれか。
1.19 結晶形Aが12.3、13.8、15.4、16.6、17.2、18.2、18.5、19.5、20.5、20.7、22.9及び25.7からなる群から選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.18のいずれか。
1.20 結晶形Aが12.3、13.8、15.4、16.6、17.2、18.2、18.5、19.5、20.5、20.7、22.9及び25.7の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.19のいずれか。
1.21 結晶形Aが12.3、13.8、15.4、16.6、17.2、18.2、18.5、19.5、20.5、20.7、22.9及び25.7の典型的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.20のいずれか。
1.22 結晶形Aが12.26、13.78、15.42、16.55、17.15、18.19、18.50、19.45、20.46、20.68、22.90及び25.69からなる群から選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.21のいずれか。
1.23 結晶形Aが12.26、13.78、15.42、16.55、17.15、18.19、18.50、19.45、20.46、20.68、22.90及び25.69の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.22のいずれか。
1.24 結晶形Aが12.26、13.78、15.42、16.55、17.15、18.19、18.50、19.45、20.46、20.68、22.90及び25.69の典型的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.23のいずれか。
1.25 結晶形Aが以下の表B:
表B
に示されるものから選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.24のいずれか。
1.26 結晶形Aが項1.25の表Bに示される2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.25のいずれか。
1.27 結晶形Aが項1.25の表Bに示される典型的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.26のいずれか。
1.28 結晶形Aが6.9、12.3、13.8、14.5、15.4、16.6、17.2、18.2、18.5、19.5、20.1、20.5、20.7、21.0、21.5、22.9、24.7、25.2、25.4、25.7、26.4、27.5及び27.8からなる群から選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも9つ、例えば少なくとも10個、例えば少なくとも12個、例えば少なくとも15個、例えば少なくとも20個の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.27のいずれか。
1.29 結晶形Aが以下の2θ(゜)値:
6.9、12.3、13.8、14.5、15.4、16.6、17.2、18.2、18.5、19.5、20.1、20.5、20.7、21.0、21.5、22.9、24.7、25.2、25.4、25.7、26.4、27.5及び27.8
を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.28のいずれか。
1.30 結晶形Aが
6.87、12.26、13.78、14.49、15.42、16.55、17.15、18.19、18.50、19.45、20.06、20.46、20.68、20.96、21.54、22.90、24.69、25.17、25.44、25.69、26.36、27.52及び27.76
からなる群から選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも9個、例えば少なくとも10個、例えば少なくとも12個、例えば少なくとも15個、例えば少なくとも20個の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.29のいずれか。
1.31 結晶形Aが以下の2θ(゜)値:
6.87、12.26、13.78、14.49、15.42、16.55、17.15、18.19、18.50、19.45、20.06、20.46、20.68、20.96、21.54、22.90、24.69、25.17、25.44、25.69、26.36、27.52及び27.76
を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.30のいずれか。
1.32 結晶形Aが以下の表C:
表C
に示されるものから選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも9個、例えば少なくとも10個、例えば少なくとも12個、例えば少なくとも15個、例えば少なくとも20個の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.31のいずれか。
1.33 結晶形Aが項1.32の表Cに示される2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.32のいずれか。
1.34 結晶形Aが5.7、5.4、5.2、4.8、4.6、4.3、3.9及び3.5からなる群から選択される少なくとも3つ、例えば少なくとも5つのd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.33のいずれか。
1.35 結晶形Aが5.7、5.4、5.2、4.8、4.6、4.3、3.9及び3.5のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.34のいずれか。
1.36 結晶形Aが5.74、5.35、5.17、4.79、4.56、4.34、4.29、3.88及び3.47からなる群から選択される少なくとも3つ、例えば少なくとも5つのd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.35のいずれか。
1.37 結晶形Aが5.74、5.35、5.17、4.79、4.56、4.34、4.29、3.88及び3.47のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.36のいずれか。
1.38 結晶形Aが5.741、5.352、5.167、4.792、4.560、4.338、4.291、3.880及び3.466からなる群から選択される少なくとも3つ、例えば少なくとも5つのd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.37のいずれか。
1.39 結晶形Aが5.741、5.352、5.167、4.792、4.560、4.338、4.291、3.880及び3.466のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.38のいずれか。
1.40 結晶形Aが項1.16の表Aに示されるものから選択される少なくとも3つ、例えば少なくとも5つのd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.39のいずれか。
1.41 結晶形Aが項1.16の表Aに示されるd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.40のいずれか。
1.42 結晶形Aが7.2、6.4、5.7、5.4、5.2、4.9、4.8、4.6、4.3、3.9及び3.5からなる群から選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.41のいずれか。
1.43 結晶形Aが7.2、6.4、5.7、5.4、5.2、4.9、4.8、4.6、4.3、3.9及び3.5のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.42のいずれか。
1.44 結晶形Aが7.21、6.42、5.74、5.35、5.17、4.87、4.79、4.56、4.34、4.29、3.88及び3.47からなる群から選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.43のいずれか。
1.45 結晶形Aが7.21、6.42、5.74、5.35、5.17、4.87、4.79、4.56、4.34、4.29、3.88及び3.47のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.44のいずれか。
1.46 結晶形Aが7.211、6.421、5.741、5.352、5.167、4.873、4.792、4.560、4.338、4.291、3.880及び3.466からなる群から選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.45のいずれか。
1.47 結晶形Aが7.211、6.421、5.741、5.352、5.167、4.873、4.792、4.560、4.338、4.291、3.880及び3.466のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.46のいずれか。
1.48 結晶形Aが項1.25の表Bに示されるものから選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.47のいずれか。
1.49 結晶形Aが項1.25の表Bに示されるd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.48のいずれか。
1.50 結晶形Aが12.9、7.2、6.4、6.1、5.7、5.4、5.2、4.9、4.8、4.6、4.4、4.3、4.2、4.1、3.9、3.6、3.5、3.4及び3.2からなる群から選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも9個、例えば少なくとも10個、例えば少なくとも12個、例えば少なくとも15個のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.49のいずれか。
1.51 結晶形Aが12.9、7.2、6.4、6.1、5.7、5.4、5.2、4.9、4.8、4.6、4.4、4.3、4.2、4.1、3.9、3.6、3.5、3.4及び3.2のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.50のいずれか。
1.52 結晶形Aが12.86、7.21、6.42、6.11、5.74、5.35、5.17、4.87、4.79、4.56、4.42、4.34、4.29、4.24、4.12、3.88、3.60、3.54、3.50、3.47、3.38、3.24及び3.21からなる群から選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも9個、例えば少なくとも10個、例えば少なくとも12個、例えば少なくとも15個、例えば少なくとも20個のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.51のいずれか。
1.53 結晶形Aが12.86、7.21、6.42、6.11、5.74、5.35、5.17、4.87、4.79、4.56、4.42、4.34、4.29、4.24、4.12、3.88、3.60、3.54、3.50、3.47、3.38、3.24及び3.21のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.52のいずれか。
1.54 結晶形Aが12.859、7.211、6.421、6.106、5.741、5.352、5.167、4.873、4.792、4.560、4.422、4.338、4.291、4.236、4.123、3.880、3.602、3.535、3.499、3.466、3.378、3.239及び3.211からなる群から選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも9個、例えば少なくとも10個、例えば少なくとも12個、例えば少なくとも15個、例えば少なくとも20個のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.53のいずれか。
1.55 結晶形Aが12.859、7.211、6.421、6.106、5.741、5.352、5.167、4.873、4.792、4.560、4.422、4.338、4.291、4.236、4.123、3.880、3.602、3.535、3.499、3.466、3.378、3.239及び3.211のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.54のいずれか。
1.56 結晶形Aが項1.32の表Cに示されるものから選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも9個、例えば少なくとも10個、例えば少なくとも12個、例えば少なくとも15個、例えば少なくとも20個のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.55のいずれか。
1.57 結晶形Aが項1.32の表Cに示されるd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.56のいずれか。
1.58 結晶形Aが図1に示されるXRPDパターンの特徴的なピークを含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.57のいずれか。
1.59 結晶形Aが図1に示されるXRPDパターンの典型的なピークを含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.58のいずれか。
1.60 結晶形Aが、図1に示されるピークから選択される3つのピーク、いくつかの具体的態様において5つのピークを含む粉末X線回折(XRPD)パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターン、例えばCu Kα線の入射ビームを用いて測定される高分解能粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.59のいずれか。
1.61 結晶形Aが、図1に示されるピークから選択される少なくとも9個のピーク、例えば少なくとも10個のピーク、例えば少なくとも12個のピーク、例えば少なくとも15個のピーク、例えば少なくとも20個のピークを含むXRPDパターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定されるXRPDパターン、例えばCu Kα線の入射ビームを用いて測定される高分解能XRPDパターンを示し、例えばXRPDが波長1.54059Åを用いて測定される、項1.1〜1.60のいずれか。
1.62 結晶形Aが実質的に図1に示される粉末X線回折(XRPD)パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.61のいずれか。
1.63 結晶形Aが図1に示される粉末X線回折(XRPD)パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.62のいずれか。
1.64 結晶形Aが図1、35、37及び47のいずれか、例えば図1、例えば図35、例えば図37、例えば図47に示されるXRPDパターンの特徴的なピークを含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.63のいずれか。
1.65 結晶形Aが図1、35、37及び47のいずれか、例えば図1、例えば図35、例えば図37、例えば図47に示されるXRPDパターンの典型的なピークを含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.64のいずれか。
1.66 結晶形Aが図1、35、37及び47のいずれか、例えば図1、例えば図35、例えば図37、例えば図47に示されるものから選択される3つのピーク、いくつかの具体的態様において5つのピークを含むXRPDパターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定されるXRPDパターン、例えばCu Kα線の入射ビームを用いて測定される高分解能XRPDパターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.65のいずれか。
1.67 結晶形Aが図1、35、37及び47のいずれか、例えば図1、例えば図35、例えば図37、例えば図47に示されるものから選択される少なくとも9個のピーク、例えば少なくとも10個のピーク、例えば少なくとも12個のピーク、例えば少なくとも15個のピーク、例えば少なくとも20個のピークを含むXRPDパターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定されるXRPDパターン、例えばCu Kα線の入射ビームを用いて測定される高分解能XRPDパターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.66のいずれか。
1.68 結晶形Aが実質的に図1、35、37及び47のいずれか、例えば図1、例えば図35、例えば図37、例えば図47に示されるXRPDパターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定されるXRPDパターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.67のいずれか。
1.69 結晶形Aが図1、35、37及び47のいずれか、例えば図1、例えば図35、例えば図37、例えば図47に示されるXRPDパターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定されるXRPDパターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.68のいずれか。
1.70 結晶形Aが245℃〜249℃、例えば245℃〜248℃の間に吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを示し、例えば結晶形Aが245℃〜249℃、例えば245℃〜248℃の間に複数、例えば3つの吸熱を含む示差走査熱量測定(DSC)サーモグラムを示し、例えば結晶形Aが245℃から始まり247℃における吸熱ピーク、248℃における吸熱ショルダーピーク及び248℃における吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを示す、項1.1〜1.69のいずれか。
1.71 結晶形Aが247℃における吸熱ピーク、例えば245℃から始まり247℃における吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを示す、項1.1〜1.70のいずれか。
1.72 結晶形Aが248℃における吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを示す、項1.1〜1.71のいずれか。
1.73 結晶形Aが図2に示される示差走査熱量測定(DSC)サーモグラムを示す、項1.1〜1.72のいずれか。
1.74 結晶形Aが200℃以下で0.4%の重量減少を含む熱重量分析(TGA)サーモグラムを示す、項1.1〜1.73のいずれか。
1.75 276℃にて分解開始温度を含む熱重量分析(TGA)サーモグラムを有する、項1.1〜1.74のいずれか。
1.76 結晶形Aが図2に示される熱重量分析(TGA)サーモグラムを示す、項1.1〜1.75のいずれか。
1.77 結晶形Aが図3に示される動的蒸気吸着/脱着等温線、例えば結晶形Aが:
5%RHにおける平衡状態で0.03%の重量減少;
5%〜95%RHで0.10%の重量増加;及び
95%〜5%RHで0.10%の重量減少を示す動的蒸気吸着/脱着等温線を示す、項1.1〜1.76のいずれか。
1.78 本化合物の塩酸付加塩形態((1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩)の結晶形B(「結晶形B」)
1.79 結晶形BがP212121空間群に属し、以下の単位格子パラメータ:
a=5.9055(2)Å、b=7.4645(3)Å、c=29.1139(13)Å、α=β=γ=90゜
を有する、項1.78。
1.80 結晶形BがP212121空間群に属し、以下の単位格子パラメータ:
a=5〜7Å、例えば6Å、例えば5.7〜6.1Å、例えば5.8〜6.0Å、例えば5.9Å、例えば5.91、例えば5.906Å;
b=6〜8Å、例えば7Å、例えば7.3〜7.7Å、例えば7.4〜7.6Å、例えば7.5Å、例えば7.46Å、例えば7.465Å;
c=28〜30Å、例えば29Å、例えば28.9〜29.3Å、例えば29.0〜29.2Å、例えば29.1Å、例えば29.11Å、例えば29.114Å;及び
α=β=γ=90゜
の任意の組合せを有する、項1.78。
1.81 結晶形BがV=1283.39(9)Å3の計算容積を有する、項1.78〜1.80のいずれか。
1.82 結晶形Bの結晶構造が0.31mm×0.21mm×0.09mmの概算体積を有する結晶、例えば0.31mm×0.21mm×0.09mmの概算体積を有する無色板状結晶で得られる、項1.78〜1.81のいずれか。
1.83 結晶形Bの結晶構造がCu Kα線、例えばλ=1.54178Åを有するCu Kα線で得られる、項1.78〜1.82のいずれか。
1.84 結晶形Bの結晶構造が100(2)Kにて得られる、項1.78〜1.83のいずれか。
1.85 結晶形Bが図24の原子変位楕円体図で示される単結晶構造を有する、項1.78〜1.84のいずれか。
1.86 結晶形Bが図32に示される計算XRPDパターンを有する、項1.78〜1.85のいずれか。
1.87 結晶形Bが6.0、17.4、18.9、19.2及び24.4からなる群から選択される少なくとも3つの2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.86のいずれか。
1.88 結晶形Bが6.0、17.4、18.9、19.2及び24.4の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.87のいずれか。
1.89 結晶形Bが6.0、17.4、18.9、19.2及び24.4の特徴的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.88のいずれか。
1.90 結晶形Bが6.04、17.41、18.94、19.19及び24.39から成る群から選択される少なくとも3つの2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.89のいずれか。
1.91 結晶形Bが6.04、17.41、18.94、19.19及び24.39の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.90のいずれか。
1.92 結晶形Bが6.04、17.41、18.94、19.19及び24.39の特徴的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.91のいずれか。
1.93 結晶形Bが以下の表D:
表D
に示されるものから選択される少なくとも3つの2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.92のいずれか。
1.94 結晶形Bが項1.93の表Dに示される2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.93のいずれか。
1.95 結晶形Bが項1.93の表Dに示される特徴的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.94のいずれか。
1.96 結晶形Bが6.0、13.2、17.4、18.9、19.2、23.6、23.8、24.4及び28.2からなる群から選択される少なくとも3つ、例えば少なくとも5つの2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.95のいずれか。
1.97 結晶形Bが6.0、13.2、17.4、18.9、19.2、23.6、23.8、24.4及び28.2の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.96のいずれか。
1.98 結晶形Bが6.0、13.2、17.4、18.9、19.2、23.6、23.8、24.4及び28.2の典型的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.97のいずれか。
1.99 結晶形Bが6.04、13.21、17.41、18.94、19.19、23.59、23.79、24.39及び28.15からなる群から選択される少なくとも3つ、例えば少なくとも5つの2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.98のいずれか。
1.100 結晶形Bが6.04、13.21、17.41、18.94、19.19、23.59、23.79、24.39及び28.15の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.99のいずれか。
1.101 結晶形Bが6.04、13.21、17.41、18.94、19.19、23.59、23.79、24.39及び28.15の典型的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.100のいずれか。
1.102 結晶形Bが以下の表E:
表E
に示されるものから選択される少なくとも3つ、例えば少なくとも5つの2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.101のいずれか。
1.103 結晶形Bが項1.102の表Eに示される2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.102のいずれか。
1.104 結晶形Bが項1.102の表Eに示される典型的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.103のいずれか。
1.105 結晶形Bが6.0、12.1、13.2、14.9、15.1、16.0、16.9、17.4、18.2、18.9、19.2、19.9、21.1、21.3、21.7、22.6、23.6、23.8、24.4、25.3、26.1、26.6、27.2、28.2、28.7及び29.5からなる群から選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも9個、例えば少なくとも10個、例えば少なくとも15個、例えば少なくとも20個、例えば少なくとも25個の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.104のいずれか。
1.106 結晶形Bが以下の2θ(゜)値:
6.0、12.1、13.2、14.9、15.1、16.0、16.9、17.4、18.2、18.9、19.2、19.9、21.1、21.3、21.7、22.6、23.6、23.8、24.4、25.3、26.1、26.6、27.2、28.2、28.7及び29.5
を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.105のいずれか。
1.107 結晶形Bが6.04、12.12、13.21、14.86、15.13、16.02、16.90、17.41、18.23、18.94、19.19、19.91、21.05、21.27、21.74、22.55、23.59、23.79、24.39、25.34、26.06、26.61、27.15、28.15、28.66及び29.47
からなる群から選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも9個、例えば少なくとも10個、例えば少なくとも15個、例えば少なくとも20個、例えば少なくとも25個の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.106のいずれか。
1.108 結晶形Bが以下の2θ(゜)値:
6.04、12.12、13.21、14.86、15.13、16.02、16.90、17.41、18.23、18.94、19.19、19.91、21.05、21.27、21.74、22.55、23.59、23.79、24.39、25.34、26.06、26.61、27.15、28.15、28.66及び29.47
を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.107のいずれか。
1.109 結晶形Bが以下の表F:
表F
に示されるものから選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも9個、例えば少なくとも10個、例えば少なくとも15個、例えば少なくとも20個、例えば少なくとも25個の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.108のいずれか。
1.110 結晶形Bが項1.109の表Fに示される2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.109のいずれか。
1.111 結晶形Bが14.6、5.1、4.7、4.6及び3.6からなる群から選択される少なくとも3つのd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.110のいずれか。
1.112 結晶形Bが14.6、5.1、4.7、4.6及び3.6のd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.111のいずれか。
1.113 結晶形Bが14.62、5.09、4.68、4.62及び3.65からなる群から選択される少なくとも3つのd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.112のいずれか。
1.114 結晶形Bが14.62、5.09、4.68、4.62及び3.65のd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.113のいずれか。
1.115 結晶形Bが14.620、5.089、4.681、4.622及び3.646からなる群から選択される少なくとも3つのd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.114のいずれか。
1.116 結晶形Bが14.620、5.089、4.681、4.622及び3.646のd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.115のいずれか。
1.117 結晶形Bが項1.93の表Dに示されるものから選択される少なくとも3つのd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.116のいずれか。
1.118 結晶形Bが項1.93の表Dに示されるd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.117のいずれか。
1.119 結晶形Bが14.6、6.7、5.1、4.7、4.6、3.8、3.7、3.6及び3.2からなる群から選択される少なくとも3つ、例えば少なくとも5つのd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.118のいずれか。
1.120 結晶形Bが14.6、6.7、5.1、4.7、4.6、3.8、3.7、3.6及び3.2のd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.119のいずれか。
1.121 結晶形Bが14.62、6.70、5.09、4.68、4.62、3.77、3.74、3.65及び3.17からなる群から選択される少なくとも3つ、例えば少なくとも5つのd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.120のいずれか。
1.122 結晶形Bが14.62、6.70、5.09、4.68、4.62、3.77、3.74、3.65及び3.17のd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.121のいずれか。
1.123 結晶形Bが14.620、6.699、5.089、4.681、4.622、3.769、3.737、3.646及び3.168からなる群から選択される少なくとも3つ、例えば少なくとも5つのd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.122のいずれか。
1.124 結晶形Bが14.620、6.699、5.089、4.681、4.622、3.769、3.737、3.646及び3.168のd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.123のいずれか。
1.125 結晶形Bが項1.102の表Eに示されるものから選択される少なくとも3つ、例えば少なくとも5つのd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.124のいずれか。
1.126 結晶形Bが項1.102の表Eに示されるd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.125のいずれか。
1.127 結晶形Bが14.6、7.3、6.7、6.0、5.9、5.5、5.2、5.1、4.9、4.7、4.6、4.5、4.2、4.1、3.9、3.8、3.7、3.6、3.5、3.4、3.3、3.2、3.1及び3.0からなる群から選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも9個、例えば少なくとも10個、例えば少なくとも15個、例えば少なくとも20個のd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.126のいずれか。
1.128 結晶形Bが14.6、7.3、6.7、6.0、5.9、5.5、5.2、5.1、4.9、4.7、4.6、4.5、4.2、4.1、3.9、3.8、3.7、3.6、3.5、3.4、3.3、3.2、3.1及び3.0のd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.127のいずれか。
1.129 結晶形Bが14.62、7.30、6.70、5.96、5.85、5.53、5.24、5.09、4.86、4.68、4.62、4.46、4.22、4.17、4.09、3.94、3.77、3.74、3.65、3.51、3.42、3.35、3.28、3.17、3.11及び3.03からなる群から選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも9個、例えば少なくとも10個、例えば少なくとも15個、例えば少なくとも20個、例えば少なくとも25個のd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.128のいずれか。
1.130 結晶形Bが14.62、7.30、6.70、5.96、5.85、5.53、5.24、5.09、4.86、4.68、4.62、4.46、4.22、4.17、4.09、3.94、3.77、3.74、3.65、3.51、3.42、3.35、3.28、3.17、3.11及び3.03のd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.129のいずれか。
1.131 結晶形Bが14.620、7.296、6.699、5.958、5.853、5.529、5.242、5.089、4.861、4.681、4.622、4.457、4.217、4.173、4.085、3.939、3.769、3.737、3.646、3.512、3.416、3.347、3.282、3.168、3.112及び3.028からなる群から選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも9個、例えば少なくとも10個、例えば少なくとも15個、例えば少なくとも20個、例えば少なくとも25個のd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.130のいずれか。
1.132 結晶形Bが14.620、7.296、6.699、5.958、5.853、5.529、5.242、5.089、4.861、4.681、4.622、4.457、4.217、4.173、4.085、3.939、3.769、3.737、3.646、3.512、3.416、3.347、3.282、3.168、3.112及び3.028のd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.131のいずれか。
1.133 結晶形Bが項1.109の表Fに示されるものから選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも9個、例えば少なくとも10個、例えば少なくとも15個、例えば少なくとも20個、例えば少なくとも25個のd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.132のいずれか。
1.134 結晶形Bが項1.109の表Fに示されるd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.133のいずれか。
1.135 結晶形Bが図5に示されるXRPDパターンの特徴的なピークを含む粉末X線回折パターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.541871Åの放射線を用いて測定される、項1.78〜1.134のいずれか。
1.136 結晶形Bが図5に示されるXRPDパターンの典型的なピークを含む粉末X線回折パターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.541871Åの放射線を用いて測定される、項1.78〜1.135のいずれか。
1.137 結晶形Bが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図5に示されるピークから選択される3つのピーク、いくつかの具体的態様において5つのピークを含む、項1.78〜1.136のいずれか。
1.138 結晶形Bが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図5に示されるピークから選択される少なくとも5つのピーク、例えば少なくとも9個のピーク、例えば少なくとも10個のピーク、例えば少なくとも15個のピーク、例えば少なくとも20個のピーク、例えば少なくとも25個のピークを含む、項1.78〜1.137のいずれか。
1.139 結晶形Bが実質的に図5に示される粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定される、項1.78〜1.138のいずれか。
1.140 結晶形Bが図5に示される粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定される、項1.78〜1.139のいずれか。
1.141 結晶形Bが図7に示されるXRPDパターンの特徴的なピークを含む粉末X線回折パターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定され、例えばXRPDパターンが結晶形Aのピークも含む(例えば結晶形A及びBの混合物)、項1.78〜1.140のいずれか。
1.142 結晶形Bが図7に示されるXRPDパターンの典型的なピークを含む粉末X線回折パターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定され、例えばXRPDパターンが結晶形Aのピークも含む(例えば結晶形A及びBの混合物)、項1.78〜1.141のいずれか。
1.143 結晶形Bが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターン、例えばCu Kα線の入射ビームを用いて測定される高分解能粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定され、図7に示されるピークから選択される3つのピーク、いくつかの具体的態様において5つのピークを含み、例えばXRPDパターンが結晶形Aのピークも含む(例えば結晶形A及びBの混合物)、項1.78〜1.142のいずれか。
1.144 結晶形Bが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターン、例えばCu Kα線の入射ビームを用いて測定される高分解能粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定され、図7に示されるピークから選択される少なくとも5つのピーク、例えば少なくとも9個のピーク、例えば少なくとも10個のピーク、例えば少なくとも15個のピーク、例えば少なくとも20個のピーク、例えば少なくとも25個のピークを含み、例えばXRPDパターンが結晶形Aのピークを含む(例えば結晶形A及びBの混合物)、項1.78〜1.143のいずれか。
1.145 結晶形Bが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターン、例えばCu Kα線の入射ビームを用いて測定される高分解能粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定され、実質的に図7に示され、例えばXRPDパターンが結晶形Aのピークを含む(例えば結晶形A及びBの混合物)、項1.78〜1.144のいずれか。
1.146 結晶形Bが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターン、例えばCu Kα線の入射ビームを用いて測定される高分解能粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定され、図7に示され、例えばXRPDパターンが結晶形Aのピークを含む(例えば結晶形A及びBの混合物)、項1.78〜1.145のいずれか。
1.147 結晶形Bが図7、40及び48のいずれか、例えば図7、例えば図40、例えば図48に示されるXRPDパターンの特徴的なピークを含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.146のいずれか。
1.148 結晶形Bが図7、40及び48のいずれか、例えば図7、例えば図40、例えば図48に示されるXRPDパターンの典型的なピークを含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.147のいずれか。
1.149 結晶形BがXRPDパターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターン、例えばCu Kα線の入射ビームを用いて測定される高分解能粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定され、図7、40及び48のいずれか、例えば図7、例えば図40、例えば図48に示されるピークから選択される3つのピーク、いくつかの具体的態様において5つのピークを含む、項1.78〜1.148のいずれか。
1.150 結晶形BがXRPDパターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターン、例えばCu Kα線の入射ビームを用いて測定される高分解能粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定され、図7、40及び48のいずれか、例えば図7、例えば図40、例えば図48に示されるピークから選択される少なくとも5つ、例えば少なくとも9個、例えば少なくとも10個、例えば少なくとも15個、例えば少なくとも20個、例えば少なくとも25個を含む、項1.78〜1.149のいずれか。
1.151 結晶形BがXRPDパターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定され、実質的に図7、40及び48のいずれか、例えば図7、例えば図40、例えば図48に示される、項1.78〜1.150のいずれか。
1.152 結晶形Bが粉末X線回折(XRPD)パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定され、図7、40及び48のいずれか、例えば図7、例えば図40、例えば図48に示される、項1.1〜1.151のいずれか。
1.153 結晶形Bが247℃〜248℃の間に吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを示す、項1.78〜1.152のいずれか。
1.154 結晶形Bが247℃における吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを示す、項1.78〜1.153のいずれか。
1.155 結晶形Bが248℃における吸熱ピーク、例えば246℃から始まる248℃における吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを示す、項1.78〜1.154のいずれか。
1.156 結晶形Bが251℃における吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを示す、項1.78〜1.155のいずれか。
1.157 結晶形Bが264℃における吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを示す、項1.78〜1.156のいずれか。
1.158 結晶形Bが141℃における吸熱ピーク、例えば137℃〜138℃から始まる141℃における吸熱ピーク、137℃から始まる141℃における吸熱ピーク、例えば138℃から始まる141℃における吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを示す、項1.78〜1.157のいずれか。
1.159 結晶形Bが図8に示される示差走査熱量測定(DSC)サーモグラムを示す、項1.78〜1.158のいずれか。
1.160 結晶形Bが200℃以下で0.2%重量減少を含む熱重量分析(TGA)サーモグラムを示す、項1.78〜1.159のいずれか。
1.161 結晶形Bが281℃における分解開始温度を含む熱重量分析(TGA)サーモグラムを示す、項1.78〜1.160のいずれか。
1.162 結晶形Bが図8に示す熱重量分析(TGA)サーモグラムを示す、項1.78〜1.161のいずれか。
1.163 本化合物の塩酸付加塩形態((1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩)の結晶形C(「結晶形C」)。
1.164 結晶形Cが2θ(゜)値17.7を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163。
1.165 結晶形Cが特徴的な2θ(゜)値17.7を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163又は1.164。
1.166 結晶形Cが2θ(゜)値17.74を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.165のいずれか。
1.167 結晶形Cが特徴的な2θ(゜)値17.74を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.166のいずれか。
1.168 結晶形Cが以下の表G:
表G
の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.167のいずれか。
1.169 結晶形Cが項1.168の表Gに示される特徴的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.168のいずれか。
1.170 結晶形Cが7.0、13.2、14.4、17.7、18.0、19.9、21.3、22.6、23.7及び26.5からなる群から選択される少なくとも1つ、例えば少なくとも3つ、例えば少なくとも5つの2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.169のいずれか。
1.171 結晶形Cが7.0、13.2、14.4、17.7、18.0、19.9、21.3、22.6、23.7及び26.5の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.170のいずれか。
1.172 結晶形Cが7.0、13.2、14.4、17.7、18.0、19.9、21.3、22.6、23.7及び26.5の典型的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.171のいずれか。
1.173 結晶形Cが6.97、13.24、14.39、17.74、17.98、18.03、19.85、21.32、22.60、23.68及び26.52からなる群から選択される少なくとも1つ、例えば少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.172のいずれか。
1.174 結晶形Cが6.97、13.24、14.39、17.74、17.98、18.03、19.85、21.32、22.60、23.68及び26.52の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.173のいずれか。
1.175 結晶形Cが6.97、13.24、14.39、17.74、17.98、18.03、19.85、21.32、22.60、23.68及び26.52の典型的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.174のいずれか。
1.176 結晶形Cが以下の表H:
表H
に示されるものから選択される少なくとも1つ、例えば少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.175のいずれか。
1.177 結晶形Cが項1.176の表Hに示される2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.176のいずれか。
1.178 結晶形Cが項1.176の表Hに示される典型的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.177のいずれか。
1.179 結晶形Cが7.0、13.2、13.7、14.0、14.4、16.3、17.7、18.0、18.3、19.9、21.1、21.3、22.6、23.4、23.7、23.9、26.0、26.5、26.7、26.9、27.4、28.0、28.2、29.1及び29.5からなる群から選択される少なくとも1つ、例えば少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個、例えば少なくとも11個、例えば少なくとも15個、例えば少なくとも20個の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.178のいずれか。
1.180 結晶形Cが以下の2θ(゜)値:
7.0、13.2、13.7、14.0、14.4、16.3、17.7、18.0、18.3、19.9、21.1、21.3、22.6、23.4、23.7、23.9、26.0、26.5、26.7、26.9、27.4、28.0、28.2、29.1及び29.5
を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.179のいずれか。
1.181 結晶形Cが6.97、13.24、13.68、13.97、14.39、16.29、17.74、17.98、18.03、18.30、19.85、21.06、21.32、22.60、23.35、23.68、23.94、25.99、26.52、26.66、26.90、27.40、27.99、28.19、29.06及び29.52からなる群から選択される少なくとも1つ、例えば少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個、例えば少なくとも11個、例えば少なくとも15個、例えば少なくとも20個、例えば少なくとも25個の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.180のいずれか。
1.182 結晶形Cが以下の2θ(゜)値:
6.97、13.24、13.68、13.97、14.39、16.29、17.74、17.98、18.03、18.30、19.85、21.06、21.32、22.60、23.35、23.68、23.94、25.99、26.52、26.66、26.90、27.40、27.99、28.19、29.06及び29.52
を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.181のいずれか。
1.183 結晶形Cが以下の表I:
表I
に示されるものから選択される少なくとも1つ、例えば少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個、例えば少なくとも11個、例えば少なくとも15個、例えば少なくとも20個、例えば少なくとも25個の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.182のいずれか。
1.184 結晶形Cが項1.183の表Iに示される2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.183のいずれか。
1.185 結晶形Cがd間隔(Å)値5.0を含むXRPDパターンを示す、項1.163〜1.184のいずれか。
1.186 結晶形Cがd間隔(Å)値4.99を含むXRPDパターンを示す、項1.163〜1.185のいずれか。
1.187 結晶形Cがd間隔(Å)値4.994を含むXRPDパターンを示す、項1.163〜1.186のいずれか。
1.188 結晶形Cが項1.168の表Gにおけるd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.187のいずれか。
1.189 結晶形Cが12.7、6.7、6.2、5.0、4.9、4.5、4.2、3.9、3.8及び3.4からなる群から選択される少なくとも1つ、例えば少なくとも3つ、例えば少なくとも5つのd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.188のいずれか。
1.190 結晶形Cが12.7、6.7、6.2、5.0、4.9、4.5、4.2、3.9、3.8及び3.4のd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.189のいずれか。
1.191 結晶形Cが12.68、6.68、6.15、4.99、4.93、4.92、4.47、4.16、3.93、3.75及び3.36からなる群から選択される少なくとも1つ、例えば少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個のd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.190のいずれか。
1.192 結晶形Cが12.68、6.68、6.15、4.99、4.93、4.92、4.47、4.16、3.93、3.75及び3.36のd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.191のいずれか。
1.193 結晶形Cが12.677、6.683、6.150、4.994、4.929、4.915、4.470、4.164、3.931、3.754及び3.359からなる群から選択される少なくとも1つ、例えば少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個のd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.192のいずれか。
1.194 結晶形Cが12.677、6.683、6.150、4.994、4.929、4.915、4.470、4.164、3.931、3.754及び3.359のd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.193のいずれか。
1.195 結晶形Cが項1.176の表Hに示されるものから選択される少なくとも1つ、例えば少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個のd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.194のいずれか。
1.196 結晶形Cが項1.176の表Hに示されるd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.195のいずれか。
1.197 結晶形Cが12.7、6.7、6.5、6.3、6.2、5.4、5.0、4.9、4.8、4.5、4.2、3.9、3.8、3.7、3.4、3.3、3.2、3.1及び3.0からなる群から選択される少なくとも1つ、例えば少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個、例えば少なくとも11個、例えば少なくとも15個のd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.196のいずれか。
1.198 結晶形Cが12.7、6.7、6.5、6.3、6.2、5.4、5.0、4.9、4.8、4.5、4.2、3.9、3.8、3.7、3.4、3.3、3.2、3.1及び3.0のd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.197のいずれか。
1.199 結晶形Cが12.68、6.68、6.47、6.33、6.15、5.44、4.99、4.93、4.92、4.84、4.47、4.21、4.16、3.93、3.81、3.75、3.71、3.43、3.36、3.34、3.31、3.25、3.19、3.16、3.07及び3.02からなる群から選択される少なくとも1つ、例えば少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個、例えば少なくとも11個、例えば少なくとも15個、例えば少なくとも20個、例えば少なくとも25個のd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.198のいずれか。
1.200 結晶形Cが12.68、6.68、6.47、6.33、6.15、5.44、4.99、4.93、4.92、4.84、4.47、4.21、4.16、3.93、3.81、3.75、3.71、3.43、3.36、3.34、3.31、3.25、3.19、3.16、3.07及び3.02のd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.199のいずれか。
1.201 結晶形Cが12.677、6.683、6.469、6.333、6.150、5.435、4.994、4.929、4.915、4.843、4.470、4.214、4.164、3.931、3.806、3.754、3.714、3.426、3.359、3.340、3.311、3.252、3.185、3.163、3.070及び3.024からなる群から選択される少なくとも1つ、例えば少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個、例えば少なくとも11個、例えば少なくとも15個、例えば少なくとも20個、例えば少なくとも25個のd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.200のいずれか。
1.202 結晶形Cが12.677、6.683、6.469、6.333、6.150、5.435、4.994、4.929、4.915、4.843、4.470、4.214、4.164、3.931、3.806、3.754、3.714、3.426、3.359、3.340、3.311、3.252、3.185、3.163、3.070及び3.024のd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.201のいずれか。
1.203 結晶形Cが項1.183の表Iに示されるものから選択される少なくとも1つ、例えば少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個、例えば少なくとも11個、例えば少なくとも15個、例えば少なくとも20個、例えば少なくとも25個のd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.202のいずれか。
1.204 項1.183の表Iに示されるd間隔(Å)値を含むXRPDパターンを有する、項1.163〜1.203のいずれか。
1.205 結晶形Cが図9に示されるXRPDパターンの特徴的なピークを含む粉末X線回折パターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.541871Åの放射線を用いて測定される、項1.163〜1.204のいずれか。
1.206 結晶形Cが図9に示されるXRPDパターンの典型的なピークを含む粉末X線回折パターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.541871Åの放射線を用いて測定される、項1.163〜1.205のいずれか。
1.207 結晶形Cが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図9に示されるピークから選択される3つのピーク、いくつかの具体的態様において5つのピークを含む、項1.163〜1.206のいずれか。
1.208 結晶形Cが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図9に示されるピークから選択される少なくとも1つのピーク、例えば少なくとも5つのピーク、例えば少なくとも11個のピーク、例えば少なくとも15個のピーク、例えば少なくとも20個のピーク、例えば少なくとも25個のピークを含む、項1.163〜1.207のいずれか。
1.209 結晶形Cが実質的に図9に示される粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定される、項1.163〜1.208のいずれか。
1.210 結晶形Cが図9に示される粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定される、項1.163〜1.209のいずれか。
1.211 結晶形Cが図11に示されるXRPDパターンの特徴的なピークを含む粉末X線回折パターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定され、例えばXRPDパターンが結晶形Aのピークも含む(例えば結晶形A及びCの混合物)、項1.163〜1.210のいずれか。
1.212 結晶形Cが図11に示されるXRPDパターンの典型的なピークを含む粉末X線回折パターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定され、例えばXRPDパターンが結晶形Aのピークも含む(例えば結晶形A及びCの混合物)、項1.163〜1.211のいずれか。
1.213 結晶形Cが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターン、例えばCu Kα線の入射ビームを用いて測定される高分解能粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定され、図11に示されるピークから選択される3つのピーク、いくつかの具体的態様において5つのピークを含み、例えばXRPDパターンが結晶形Aのピークも含む(例えば結晶形A及びCの混合物)、項1.163〜1.212のいずれか。
1.214 結晶形Cが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターン、例えばCu Kα線の入射ビームを用いて測定される高分解能粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定される、図11に示されるピークから選択される少なくとも1つのピーク、例えば少なくとも5つのピーク、例えば少なくとも11個のピーク、例えば少なくとも15個のピーク、例えば少なくとも20個のピーク、例えば少なくとも25個のピークを含み、例えばXRPDパターンが結晶形Aのピークも含む(例えば結晶形A及びCの混合物)、項1.163〜1.213のいずれか。
1.215 結晶形Cが実質的に図11に示される粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターン、例えばCu Kα線の入射ビームを用いて測定される高分解能粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定され、例えばXRPDパターンが結晶形Aのピークも含む(例えば結晶形A及びCの混合物)、項1.163〜1.214のいずれか。
1.216 結晶形Cが図11に示される粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターン、例えばCu Kα線の入射ビームを用いて測定される高分解能粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定され、、例えばXRPDパターンが結晶形Aのピークも含む(例えば結晶形A及びCの混合物)、項1.163〜1.215のいずれか。
1.217 結晶形Cが図11及び43のいずれか、例えば図11、例えば図43に示されるXRPDパターンの特徴的なピークを含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.216のいずれか。
1.218 結晶形Cが図11及び43のいずれか、例えば図11、例えば図43に示されるXRPDパターンの典型的なピークを含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.217のいずれか。
1.219 結晶形CがXRPDパターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターン、例えばCu Kα線の入射ビームを用いて測定される高分解能粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定され、図11及び43のいずれか、例えば図11、例えば図43に示されるピークから選択される3つのピーク、いくつかの具体的態様において5つのピークを含む、項1.163〜1.218のいずれか。
1.220 結晶形CがXRPDパターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターン、例えばCu Kα線の入射ビームを用いて測定される高分解能粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定され、図11及び43のいずれか、例えば図11、例えば図43に示されるピークから選択される少なくとも1つのピーク、例えば少なくとも5つのピーク、例えば少なくとも10個のピーク、例えば少なくとも11個のピーク、例えば少なくとも15個のピーク、例えば少なくとも20個のピーク、例えば少なくとも25個のピークを含む、項1.163〜1.219のいずれか。
1.221 結晶形CがXRPDパターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定され、実質的に図11及び43のいずれか、例えば図11、例えば図43に示される、項1.163〜1.220のいずれか。
1.222 結晶形CがXRPDパターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定され、図11及び43のいずれか、例えば図11、例えば図43に示される、項1.163〜1.221のいずれか。
1.223 結晶形Cが247℃〜248℃、例えば246℃から始まる247℃〜248℃の吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを示す、項1.163〜1.222のいずれか。
1.224 結晶形Cが247℃における吸熱ピーク、例えば246℃から始まる247℃における吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを示す、項1.163〜1.223のいずれか。
1.225 結晶形Cが248℃における吸熱ピーク、例えば246℃から始まる248℃における吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを示す、項1.163〜1.224のいずれか。
1.226 結晶形Cが122℃における吸熱ピーク、例えば112℃から始まる122℃における吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを示す、項1.163〜1.225のいずれか。
1.227 結晶形Cが271℃における吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを示す、項1.163〜1.226のいずれか。
1.228 結晶形Cが図12に示される示差走査熱量測定(DSC)サーモグラムを示す、項1.163〜1.227のいずれか。
1.229 結晶形Cが200℃以下で1.3%の重量減少を含む熱重量分析(TGA)を示す、項1.163〜1.228のいずれか。
1.230 結晶形Cが266℃の分解開始温度を含む熱重量分析(TGA)サーモグラムを示す、項1.163〜1.229のいずれか。
1.231 結晶形Cが図12に示される熱重量分析(TGA)サーモグラムを示す、項1.163〜1.230のいずれか。
1.232 前記及び/又はいずれかの実施例のとおり製造される(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩の結晶形。
1.233 いずれかの図に記載の粉末X線回折及び/又はX線結晶構造を有する(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩の結晶形。
1.234 XRPDパターンが銅源、例えば銅アノードを用いて測定される、項1.1〜1.233のいずれかの結晶形。
1.235 結晶形A〜Fのいずれか、例えば項1.1〜1.234のいずれか及び項2.1-2.25のいずれかの組合せ、例えば結晶形A及び結晶形Bの組合せ;結晶形A及び結晶形Cの組合せ;結晶形A、結晶形B及び結晶形Cの組合せ;結晶形B及び結晶形Cの組合せ;結晶形B及び結晶形Dの組合せ;結晶形E及び結晶形Fの組合せ。
1.236 項1.1〜1.234のいずれかに記載の結晶形、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれかであって、ここで、結晶形は他のいずれかの形態を含まない又は実質的に含まない、例えば非晶質体が20重量%未満、例えば15重量%未満、例えば10重量%未満、好ましくは5重量%未満、好ましくは3重量%未満、より好ましくは2重量%未満、さらに好ましくは1重量%未満、さらに好ましくは0.1重量%未満、最も好ましくは0.01重量%未満である。
1.237 項1.1〜1.234のいずれかに記載の結晶形、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれかであって、ここで、結晶形は他のいずれかの形態を含まない又は実質的に含まない、例えば他のいずれかの結晶形態が20重量%未満、例えば10重量%未満、好ましくは5重量%未満、好ましくは3重量%未満、より好ましくは2重量%未満、さらに好ましくは1重量%未満、さらに好ましくは0.1重量%未満、最も好ましくは0.01重量%未満である。
1.238 項1.1〜1.234のいずれかに記載の結晶形、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれかであって、ここで、結晶形は他のいずれかの形態を含まない又は実質的に含まない、例えば非晶質体及び他のいずれかの結晶形態が20重量%未満、例えば10重量%未満、好ましくは5重量%未満、好ましくは3重量%未満、より好ましくは2重量%未満、さらに好ましくは1重量%未満、さらに好ましくは0.1重量%未満、最も好ましくは0.01重量%未満である。
1.239 項4.1〜4.20に記載のいずれかの方法によりもしくはいずれかの実施例と同様に製造される又はいずれかの図に記載の粉末X線回折又はX線結晶構造を有する、項1.1〜1.238のいずれかに記載の結晶形。
1.1 本化合物の塩酸付加塩形態((1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩)の結晶形A(「結晶形A」)。
1.2 P212121空間群に属し、以下の単位格子パラメータ:
a=5.7779(2)Å、b=8.6633(2)Å、c=25.7280(8)Å、α=β=γ=90゜
を有する結晶形Aである、項1.1。
1.3 P212121空間群に属し、以下の単位格子パラメータのいずれかの組合せ:
a=5〜7Å、例えば6Å、例えば5.6〜5.9Å、例えば5.7〜5.8Å、例えば5.8Å、例えば5.78、例えば5.778Å;
b=8〜10Å、例えば9Å、例えば8.5〜8.8Å、例えば8.6〜8.7Å、例えば8.7Å、例えば8.66Å、例えば8.663Å;
c=25〜27Å、例えば26Å、例えば25.6〜25.9Å、例えば25.7〜25.8Å、例えば25.7〜25.8Å、例えば25.73Å、例えば25.728Å;及び
α=β=γ=90゜
を有する結晶形Aである、項1.1。
1.4 結晶形AがV=1287.83(7)Å3の計算容積を有する、項1.1〜1.3のいずれか。
1.5 結晶形Aの結晶構造が0.38mm×0.30mm×0.18mmの概算体積を有する結晶、例えば0.38mm×0.30mm×0.18mmの概算体積を有する無色板状結晶で得られる、項1.1〜1.4のいずれか。
1.6 結晶形Aの結晶構造がMo Kα線、例えばλ=0.71073ÅのMo Kα線で得られる、項1.1〜1.5のいずれか。
1.7 結晶形Aの結晶構造が150Kにて得られる、項1.1〜1.6のいずれか。
1.8 結晶形Aが図18のORTEP図により示される単結晶構造を有する、項1.1〜1.7のいずれか。
1.9 結晶形Aが図23に示される計算XRPDパターンを有する、項1.1〜1.8のいずれか。
1.10 結晶形Aが15.4、16.6、17.2、18.5、19.5、20.5、20.7、22.9及び25.7からなる群から選択される少なくとも3つ、例えば少なくとも5つの2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.9のいずれか。
1.11 結晶形Aが15.4、16.6、17.2、18.5、19.5、20.5、20.7、22.9及び25.7の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.10のいずれか。
1.12 結晶形Aが15.4、16.6、17.2、18.5、19.5、20.5、20.7、22.9及び25.7の特徴的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.11のいずれか。
1.13 結晶形Aが15.42、16.55、17.15、18.50、19.45、20.46、20.68、22.90及び25.69からなる群から選択される少なくとも3つ、例えば少なくとも5つの2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.12のいずれか。
1.14 結晶形Aが15.42、16.55、17.15、18.50、19.45、20.46、20.68、22.90及び25.69の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定される、項1.1〜1.13のいずれか。
1.15 結晶形Aが15.42、16.55、17.15、18.50、19.45、20.46、20.68、22.90及び25.69の特徴的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.14のいずれか。
1.16 結晶形Aが以下の表A:
表A
1.17 結晶形Aが項1.16の表Aに示される2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.16のいずれか。
1.18 結晶形Aが項1.16の表Aに示される特徴的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.17のいずれか。
1.19 結晶形Aが12.3、13.8、15.4、16.6、17.2、18.2、18.5、19.5、20.5、20.7、22.9及び25.7からなる群から選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.18のいずれか。
1.20 結晶形Aが12.3、13.8、15.4、16.6、17.2、18.2、18.5、19.5、20.5、20.7、22.9及び25.7の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.19のいずれか。
1.21 結晶形Aが12.3、13.8、15.4、16.6、17.2、18.2、18.5、19.5、20.5、20.7、22.9及び25.7の典型的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.20のいずれか。
1.22 結晶形Aが12.26、13.78、15.42、16.55、17.15、18.19、18.50、19.45、20.46、20.68、22.90及び25.69からなる群から選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.21のいずれか。
1.23 結晶形Aが12.26、13.78、15.42、16.55、17.15、18.19、18.50、19.45、20.46、20.68、22.90及び25.69の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.22のいずれか。
1.24 結晶形Aが12.26、13.78、15.42、16.55、17.15、18.19、18.50、19.45、20.46、20.68、22.90及び25.69の典型的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.23のいずれか。
1.25 結晶形Aが以下の表B:
表B
1.26 結晶形Aが項1.25の表Bに示される2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.25のいずれか。
1.27 結晶形Aが項1.25の表Bに示される典型的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.26のいずれか。
1.28 結晶形Aが6.9、12.3、13.8、14.5、15.4、16.6、17.2、18.2、18.5、19.5、20.1、20.5、20.7、21.0、21.5、22.9、24.7、25.2、25.4、25.7、26.4、27.5及び27.8からなる群から選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも9つ、例えば少なくとも10個、例えば少なくとも12個、例えば少なくとも15個、例えば少なくとも20個の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.27のいずれか。
1.29 結晶形Aが以下の2θ(゜)値:
6.9、12.3、13.8、14.5、15.4、16.6、17.2、18.2、18.5、19.5、20.1、20.5、20.7、21.0、21.5、22.9、24.7、25.2、25.4、25.7、26.4、27.5及び27.8
を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.28のいずれか。
1.30 結晶形Aが
6.87、12.26、13.78、14.49、15.42、16.55、17.15、18.19、18.50、19.45、20.06、20.46、20.68、20.96、21.54、22.90、24.69、25.17、25.44、25.69、26.36、27.52及び27.76
からなる群から選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも9個、例えば少なくとも10個、例えば少なくとも12個、例えば少なくとも15個、例えば少なくとも20個の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.29のいずれか。
1.31 結晶形Aが以下の2θ(゜)値:
6.87、12.26、13.78、14.49、15.42、16.55、17.15、18.19、18.50、19.45、20.06、20.46、20.68、20.96、21.54、22.90、24.69、25.17、25.44、25.69、26.36、27.52及び27.76
を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.30のいずれか。
1.32 結晶形Aが以下の表C:
表C
1.33 結晶形Aが項1.32の表Cに示される2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.32のいずれか。
1.34 結晶形Aが5.7、5.4、5.2、4.8、4.6、4.3、3.9及び3.5からなる群から選択される少なくとも3つ、例えば少なくとも5つのd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.33のいずれか。
1.35 結晶形Aが5.7、5.4、5.2、4.8、4.6、4.3、3.9及び3.5のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.34のいずれか。
1.36 結晶形Aが5.74、5.35、5.17、4.79、4.56、4.34、4.29、3.88及び3.47からなる群から選択される少なくとも3つ、例えば少なくとも5つのd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.35のいずれか。
1.37 結晶形Aが5.74、5.35、5.17、4.79、4.56、4.34、4.29、3.88及び3.47のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.36のいずれか。
1.38 結晶形Aが5.741、5.352、5.167、4.792、4.560、4.338、4.291、3.880及び3.466からなる群から選択される少なくとも3つ、例えば少なくとも5つのd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.37のいずれか。
1.39 結晶形Aが5.741、5.352、5.167、4.792、4.560、4.338、4.291、3.880及び3.466のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.38のいずれか。
1.40 結晶形Aが項1.16の表Aに示されるものから選択される少なくとも3つ、例えば少なくとも5つのd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.39のいずれか。
1.41 結晶形Aが項1.16の表Aに示されるd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.40のいずれか。
1.42 結晶形Aが7.2、6.4、5.7、5.4、5.2、4.9、4.8、4.6、4.3、3.9及び3.5からなる群から選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.41のいずれか。
1.43 結晶形Aが7.2、6.4、5.7、5.4、5.2、4.9、4.8、4.6、4.3、3.9及び3.5のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.42のいずれか。
1.44 結晶形Aが7.21、6.42、5.74、5.35、5.17、4.87、4.79、4.56、4.34、4.29、3.88及び3.47からなる群から選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.43のいずれか。
1.45 結晶形Aが7.21、6.42、5.74、5.35、5.17、4.87、4.79、4.56、4.34、4.29、3.88及び3.47のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.44のいずれか。
1.46 結晶形Aが7.211、6.421、5.741、5.352、5.167、4.873、4.792、4.560、4.338、4.291、3.880及び3.466からなる群から選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.45のいずれか。
1.47 結晶形Aが7.211、6.421、5.741、5.352、5.167、4.873、4.792、4.560、4.338、4.291、3.880及び3.466のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.46のいずれか。
1.48 結晶形Aが項1.25の表Bに示されるものから選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.47のいずれか。
1.49 結晶形Aが項1.25の表Bに示されるd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.48のいずれか。
1.50 結晶形Aが12.9、7.2、6.4、6.1、5.7、5.4、5.2、4.9、4.8、4.6、4.4、4.3、4.2、4.1、3.9、3.6、3.5、3.4及び3.2からなる群から選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも9個、例えば少なくとも10個、例えば少なくとも12個、例えば少なくとも15個のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.49のいずれか。
1.51 結晶形Aが12.9、7.2、6.4、6.1、5.7、5.4、5.2、4.9、4.8、4.6、4.4、4.3、4.2、4.1、3.9、3.6、3.5、3.4及び3.2のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.50のいずれか。
1.52 結晶形Aが12.86、7.21、6.42、6.11、5.74、5.35、5.17、4.87、4.79、4.56、4.42、4.34、4.29、4.24、4.12、3.88、3.60、3.54、3.50、3.47、3.38、3.24及び3.21からなる群から選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも9個、例えば少なくとも10個、例えば少なくとも12個、例えば少なくとも15個、例えば少なくとも20個のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.51のいずれか。
1.53 結晶形Aが12.86、7.21、6.42、6.11、5.74、5.35、5.17、4.87、4.79、4.56、4.42、4.34、4.29、4.24、4.12、3.88、3.60、3.54、3.50、3.47、3.38、3.24及び3.21のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.52のいずれか。
1.54 結晶形Aが12.859、7.211、6.421、6.106、5.741、5.352、5.167、4.873、4.792、4.560、4.422、4.338、4.291、4.236、4.123、3.880、3.602、3.535、3.499、3.466、3.378、3.239及び3.211からなる群から選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも9個、例えば少なくとも10個、例えば少なくとも12個、例えば少なくとも15個、例えば少なくとも20個のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.53のいずれか。
1.55 結晶形Aが12.859、7.211、6.421、6.106、5.741、5.352、5.167、4.873、4.792、4.560、4.422、4.338、4.291、4.236、4.123、3.880、3.602、3.535、3.499、3.466、3.378、3.239及び3.211のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.54のいずれか。
1.56 結晶形Aが項1.32の表Cに示されるものから選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも9個、例えば少なくとも10個、例えば少なくとも12個、例えば少なくとも15個、例えば少なくとも20個のd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.55のいずれか。
1.57 結晶形Aが項1.32の表Cに示されるd間隔(Å)値を含むXRPDパターンを示す、項1.1〜1.56のいずれか。
1.58 結晶形Aが図1に示されるXRPDパターンの特徴的なピークを含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.57のいずれか。
1.59 結晶形Aが図1に示されるXRPDパターンの典型的なピークを含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.58のいずれか。
1.60 結晶形Aが、図1に示されるピークから選択される3つのピーク、いくつかの具体的態様において5つのピークを含む粉末X線回折(XRPD)パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターン、例えばCu Kα線の入射ビームを用いて測定される高分解能粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.59のいずれか。
1.61 結晶形Aが、図1に示されるピークから選択される少なくとも9個のピーク、例えば少なくとも10個のピーク、例えば少なくとも12個のピーク、例えば少なくとも15個のピーク、例えば少なくとも20個のピークを含むXRPDパターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定されるXRPDパターン、例えばCu Kα線の入射ビームを用いて測定される高分解能XRPDパターンを示し、例えばXRPDが波長1.54059Åを用いて測定される、項1.1〜1.60のいずれか。
1.62 結晶形Aが実質的に図1に示される粉末X線回折(XRPD)パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.61のいずれか。
1.63 結晶形Aが図1に示される粉末X線回折(XRPD)パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.62のいずれか。
1.64 結晶形Aが図1、35、37及び47のいずれか、例えば図1、例えば図35、例えば図37、例えば図47に示されるXRPDパターンの特徴的なピークを含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.63のいずれか。
1.65 結晶形Aが図1、35、37及び47のいずれか、例えば図1、例えば図35、例えば図37、例えば図47に示されるXRPDパターンの典型的なピークを含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.64のいずれか。
1.66 結晶形Aが図1、35、37及び47のいずれか、例えば図1、例えば図35、例えば図37、例えば図47に示されるものから選択される3つのピーク、いくつかの具体的態様において5つのピークを含むXRPDパターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定されるXRPDパターン、例えばCu Kα線の入射ビームを用いて測定される高分解能XRPDパターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.65のいずれか。
1.67 結晶形Aが図1、35、37及び47のいずれか、例えば図1、例えば図35、例えば図37、例えば図47に示されるものから選択される少なくとも9個のピーク、例えば少なくとも10個のピーク、例えば少なくとも12個のピーク、例えば少なくとも15個のピーク、例えば少なくとも20個のピークを含むXRPDパターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定されるXRPDパターン、例えばCu Kα線の入射ビームを用いて測定される高分解能XRPDパターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.66のいずれか。
1.68 結晶形Aが実質的に図1、35、37及び47のいずれか、例えば図1、例えば図35、例えば図37、例えば図47に示されるXRPDパターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定されるXRPDパターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.67のいずれか。
1.69 結晶形Aが図1、35、37及び47のいずれか、例えば図1、例えば図35、例えば図37、例えば図47に示されるXRPDパターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定されるXRPDパターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.1〜1.68のいずれか。
1.70 結晶形Aが245℃〜249℃、例えば245℃〜248℃の間に吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを示し、例えば結晶形Aが245℃〜249℃、例えば245℃〜248℃の間に複数、例えば3つの吸熱を含む示差走査熱量測定(DSC)サーモグラムを示し、例えば結晶形Aが245℃から始まり247℃における吸熱ピーク、248℃における吸熱ショルダーピーク及び248℃における吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを示す、項1.1〜1.69のいずれか。
1.71 結晶形Aが247℃における吸熱ピーク、例えば245℃から始まり247℃における吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを示す、項1.1〜1.70のいずれか。
1.72 結晶形Aが248℃における吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを示す、項1.1〜1.71のいずれか。
1.73 結晶形Aが図2に示される示差走査熱量測定(DSC)サーモグラムを示す、項1.1〜1.72のいずれか。
1.74 結晶形Aが200℃以下で0.4%の重量減少を含む熱重量分析(TGA)サーモグラムを示す、項1.1〜1.73のいずれか。
1.75 276℃にて分解開始温度を含む熱重量分析(TGA)サーモグラムを有する、項1.1〜1.74のいずれか。
1.76 結晶形Aが図2に示される熱重量分析(TGA)サーモグラムを示す、項1.1〜1.75のいずれか。
1.77 結晶形Aが図3に示される動的蒸気吸着/脱着等温線、例えば結晶形Aが:
5%RHにおける平衡状態で0.03%の重量減少;
5%〜95%RHで0.10%の重量増加;及び
95%〜5%RHで0.10%の重量減少を示す動的蒸気吸着/脱着等温線を示す、項1.1〜1.76のいずれか。
1.78 本化合物の塩酸付加塩形態((1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩)の結晶形B(「結晶形B」)
1.79 結晶形BがP212121空間群に属し、以下の単位格子パラメータ:
a=5.9055(2)Å、b=7.4645(3)Å、c=29.1139(13)Å、α=β=γ=90゜
を有する、項1.78。
1.80 結晶形BがP212121空間群に属し、以下の単位格子パラメータ:
a=5〜7Å、例えば6Å、例えば5.7〜6.1Å、例えば5.8〜6.0Å、例えば5.9Å、例えば5.91、例えば5.906Å;
b=6〜8Å、例えば7Å、例えば7.3〜7.7Å、例えば7.4〜7.6Å、例えば7.5Å、例えば7.46Å、例えば7.465Å;
c=28〜30Å、例えば29Å、例えば28.9〜29.3Å、例えば29.0〜29.2Å、例えば29.1Å、例えば29.11Å、例えば29.114Å;及び
α=β=γ=90゜
の任意の組合せを有する、項1.78。
1.81 結晶形BがV=1283.39(9)Å3の計算容積を有する、項1.78〜1.80のいずれか。
1.82 結晶形Bの結晶構造が0.31mm×0.21mm×0.09mmの概算体積を有する結晶、例えば0.31mm×0.21mm×0.09mmの概算体積を有する無色板状結晶で得られる、項1.78〜1.81のいずれか。
1.83 結晶形Bの結晶構造がCu Kα線、例えばλ=1.54178Åを有するCu Kα線で得られる、項1.78〜1.82のいずれか。
1.84 結晶形Bの結晶構造が100(2)Kにて得られる、項1.78〜1.83のいずれか。
1.85 結晶形Bが図24の原子変位楕円体図で示される単結晶構造を有する、項1.78〜1.84のいずれか。
1.86 結晶形Bが図32に示される計算XRPDパターンを有する、項1.78〜1.85のいずれか。
1.87 結晶形Bが6.0、17.4、18.9、19.2及び24.4からなる群から選択される少なくとも3つの2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.86のいずれか。
1.88 結晶形Bが6.0、17.4、18.9、19.2及び24.4の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.87のいずれか。
1.89 結晶形Bが6.0、17.4、18.9、19.2及び24.4の特徴的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.88のいずれか。
1.90 結晶形Bが6.04、17.41、18.94、19.19及び24.39から成る群から選択される少なくとも3つの2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.89のいずれか。
1.91 結晶形Bが6.04、17.41、18.94、19.19及び24.39の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.90のいずれか。
1.92 結晶形Bが6.04、17.41、18.94、19.19及び24.39の特徴的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.91のいずれか。
1.93 結晶形Bが以下の表D:
表D
1.94 結晶形Bが項1.93の表Dに示される2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.93のいずれか。
1.95 結晶形Bが項1.93の表Dに示される特徴的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.94のいずれか。
1.96 結晶形Bが6.0、13.2、17.4、18.9、19.2、23.6、23.8、24.4及び28.2からなる群から選択される少なくとも3つ、例えば少なくとも5つの2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.95のいずれか。
1.97 結晶形Bが6.0、13.2、17.4、18.9、19.2、23.6、23.8、24.4及び28.2の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.96のいずれか。
1.98 結晶形Bが6.0、13.2、17.4、18.9、19.2、23.6、23.8、24.4及び28.2の典型的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.97のいずれか。
1.99 結晶形Bが6.04、13.21、17.41、18.94、19.19、23.59、23.79、24.39及び28.15からなる群から選択される少なくとも3つ、例えば少なくとも5つの2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.98のいずれか。
1.100 結晶形Bが6.04、13.21、17.41、18.94、19.19、23.59、23.79、24.39及び28.15の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.99のいずれか。
1.101 結晶形Bが6.04、13.21、17.41、18.94、19.19、23.59、23.79、24.39及び28.15の典型的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.100のいずれか。
1.102 結晶形Bが以下の表E:
表E
1.103 結晶形Bが項1.102の表Eに示される2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.102のいずれか。
1.104 結晶形Bが項1.102の表Eに示される典型的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.103のいずれか。
1.105 結晶形Bが6.0、12.1、13.2、14.9、15.1、16.0、16.9、17.4、18.2、18.9、19.2、19.9、21.1、21.3、21.7、22.6、23.6、23.8、24.4、25.3、26.1、26.6、27.2、28.2、28.7及び29.5からなる群から選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも9個、例えば少なくとも10個、例えば少なくとも15個、例えば少なくとも20個、例えば少なくとも25個の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.104のいずれか。
1.106 結晶形Bが以下の2θ(゜)値:
6.0、12.1、13.2、14.9、15.1、16.0、16.9、17.4、18.2、18.9、19.2、19.9、21.1、21.3、21.7、22.6、23.6、23.8、24.4、25.3、26.1、26.6、27.2、28.2、28.7及び29.5
を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.105のいずれか。
1.107 結晶形Bが6.04、12.12、13.21、14.86、15.13、16.02、16.90、17.41、18.23、18.94、19.19、19.91、21.05、21.27、21.74、22.55、23.59、23.79、24.39、25.34、26.06、26.61、27.15、28.15、28.66及び29.47
からなる群から選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも9個、例えば少なくとも10個、例えば少なくとも15個、例えば少なくとも20個、例えば少なくとも25個の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.106のいずれか。
1.108 結晶形Bが以下の2θ(゜)値:
6.04、12.12、13.21、14.86、15.13、16.02、16.90、17.41、18.23、18.94、19.19、19.91、21.05、21.27、21.74、22.55、23.59、23.79、24.39、25.34、26.06、26.61、27.15、28.15、28.66及び29.47
を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.107のいずれか。
1.109 結晶形Bが以下の表F:
表F
1.110 結晶形Bが項1.109の表Fに示される2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.109のいずれか。
1.111 結晶形Bが14.6、5.1、4.7、4.6及び3.6からなる群から選択される少なくとも3つのd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.110のいずれか。
1.112 結晶形Bが14.6、5.1、4.7、4.6及び3.6のd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.111のいずれか。
1.113 結晶形Bが14.62、5.09、4.68、4.62及び3.65からなる群から選択される少なくとも3つのd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.112のいずれか。
1.114 結晶形Bが14.62、5.09、4.68、4.62及び3.65のd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.113のいずれか。
1.115 結晶形Bが14.620、5.089、4.681、4.622及び3.646からなる群から選択される少なくとも3つのd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.114のいずれか。
1.116 結晶形Bが14.620、5.089、4.681、4.622及び3.646のd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.115のいずれか。
1.117 結晶形Bが項1.93の表Dに示されるものから選択される少なくとも3つのd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.116のいずれか。
1.118 結晶形Bが項1.93の表Dに示されるd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.117のいずれか。
1.119 結晶形Bが14.6、6.7、5.1、4.7、4.6、3.8、3.7、3.6及び3.2からなる群から選択される少なくとも3つ、例えば少なくとも5つのd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.118のいずれか。
1.120 結晶形Bが14.6、6.7、5.1、4.7、4.6、3.8、3.7、3.6及び3.2のd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.119のいずれか。
1.121 結晶形Bが14.62、6.70、5.09、4.68、4.62、3.77、3.74、3.65及び3.17からなる群から選択される少なくとも3つ、例えば少なくとも5つのd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.120のいずれか。
1.122 結晶形Bが14.62、6.70、5.09、4.68、4.62、3.77、3.74、3.65及び3.17のd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.121のいずれか。
1.123 結晶形Bが14.620、6.699、5.089、4.681、4.622、3.769、3.737、3.646及び3.168からなる群から選択される少なくとも3つ、例えば少なくとも5つのd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.122のいずれか。
1.124 結晶形Bが14.620、6.699、5.089、4.681、4.622、3.769、3.737、3.646及び3.168のd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.123のいずれか。
1.125 結晶形Bが項1.102の表Eに示されるものから選択される少なくとも3つ、例えば少なくとも5つのd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.124のいずれか。
1.126 結晶形Bが項1.102の表Eに示されるd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.125のいずれか。
1.127 結晶形Bが14.6、7.3、6.7、6.0、5.9、5.5、5.2、5.1、4.9、4.7、4.6、4.5、4.2、4.1、3.9、3.8、3.7、3.6、3.5、3.4、3.3、3.2、3.1及び3.0からなる群から選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも9個、例えば少なくとも10個、例えば少なくとも15個、例えば少なくとも20個のd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.126のいずれか。
1.128 結晶形Bが14.6、7.3、6.7、6.0、5.9、5.5、5.2、5.1、4.9、4.7、4.6、4.5、4.2、4.1、3.9、3.8、3.7、3.6、3.5、3.4、3.3、3.2、3.1及び3.0のd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.127のいずれか。
1.129 結晶形Bが14.62、7.30、6.70、5.96、5.85、5.53、5.24、5.09、4.86、4.68、4.62、4.46、4.22、4.17、4.09、3.94、3.77、3.74、3.65、3.51、3.42、3.35、3.28、3.17、3.11及び3.03からなる群から選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも9個、例えば少なくとも10個、例えば少なくとも15個、例えば少なくとも20個、例えば少なくとも25個のd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.128のいずれか。
1.130 結晶形Bが14.62、7.30、6.70、5.96、5.85、5.53、5.24、5.09、4.86、4.68、4.62、4.46、4.22、4.17、4.09、3.94、3.77、3.74、3.65、3.51、3.42、3.35、3.28、3.17、3.11及び3.03のd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.129のいずれか。
1.131 結晶形Bが14.620、7.296、6.699、5.958、5.853、5.529、5.242、5.089、4.861、4.681、4.622、4.457、4.217、4.173、4.085、3.939、3.769、3.737、3.646、3.512、3.416、3.347、3.282、3.168、3.112及び3.028からなる群から選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも9個、例えば少なくとも10個、例えば少なくとも15個、例えば少なくとも20個、例えば少なくとも25個のd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.130のいずれか。
1.132 結晶形Bが14.620、7.296、6.699、5.958、5.853、5.529、5.242、5.089、4.861、4.681、4.622、4.457、4.217、4.173、4.085、3.939、3.769、3.737、3.646、3.512、3.416、3.347、3.282、3.168、3.112及び3.028のd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.131のいずれか。
1.133 結晶形Bが項1.109の表Fに示されるものから選択される少なくとも3つ、例えば少なくとも5つ、例えば少なくとも9個、例えば少なくとも10個、例えば少なくとも15個、例えば少なくとも20個、例えば少なくとも25個のd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.132のいずれか。
1.134 結晶形Bが項1.109の表Fに示されるd間隔(Å)値を含むXRPDパターンを示す、項1.78〜1.133のいずれか。
1.135 結晶形Bが図5に示されるXRPDパターンの特徴的なピークを含む粉末X線回折パターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.541871Åの放射線を用いて測定される、項1.78〜1.134のいずれか。
1.136 結晶形Bが図5に示されるXRPDパターンの典型的なピークを含む粉末X線回折パターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.541871Åの放射線を用いて測定される、項1.78〜1.135のいずれか。
1.137 結晶形Bが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図5に示されるピークから選択される3つのピーク、いくつかの具体的態様において5つのピークを含む、項1.78〜1.136のいずれか。
1.138 結晶形Bが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図5に示されるピークから選択される少なくとも5つのピーク、例えば少なくとも9個のピーク、例えば少なくとも10個のピーク、例えば少なくとも15個のピーク、例えば少なくとも20個のピーク、例えば少なくとも25個のピークを含む、項1.78〜1.137のいずれか。
1.139 結晶形Bが実質的に図5に示される粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定される、項1.78〜1.138のいずれか。
1.140 結晶形Bが図5に示される粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定される、項1.78〜1.139のいずれか。
1.141 結晶形Bが図7に示されるXRPDパターンの特徴的なピークを含む粉末X線回折パターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定され、例えばXRPDパターンが結晶形Aのピークも含む(例えば結晶形A及びBの混合物)、項1.78〜1.140のいずれか。
1.142 結晶形Bが図7に示されるXRPDパターンの典型的なピークを含む粉末X線回折パターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定され、例えばXRPDパターンが結晶形Aのピークも含む(例えば結晶形A及びBの混合物)、項1.78〜1.141のいずれか。
1.143 結晶形Bが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターン、例えばCu Kα線の入射ビームを用いて測定される高分解能粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定され、図7に示されるピークから選択される3つのピーク、いくつかの具体的態様において5つのピークを含み、例えばXRPDパターンが結晶形Aのピークも含む(例えば結晶形A及びBの混合物)、項1.78〜1.142のいずれか。
1.144 結晶形Bが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターン、例えばCu Kα線の入射ビームを用いて測定される高分解能粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定され、図7に示されるピークから選択される少なくとも5つのピーク、例えば少なくとも9個のピーク、例えば少なくとも10個のピーク、例えば少なくとも15個のピーク、例えば少なくとも20個のピーク、例えば少なくとも25個のピークを含み、例えばXRPDパターンが結晶形Aのピークを含む(例えば結晶形A及びBの混合物)、項1.78〜1.143のいずれか。
1.145 結晶形Bが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターン、例えばCu Kα線の入射ビームを用いて測定される高分解能粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定され、実質的に図7に示され、例えばXRPDパターンが結晶形Aのピークを含む(例えば結晶形A及びBの混合物)、項1.78〜1.144のいずれか。
1.146 結晶形Bが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターン、例えばCu Kα線の入射ビームを用いて測定される高分解能粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定され、図7に示され、例えばXRPDパターンが結晶形Aのピークを含む(例えば結晶形A及びBの混合物)、項1.78〜1.145のいずれか。
1.147 結晶形Bが図7、40及び48のいずれか、例えば図7、例えば図40、例えば図48に示されるXRPDパターンの特徴的なピークを含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.146のいずれか。
1.148 結晶形Bが図7、40及び48のいずれか、例えば図7、例えば図40、例えば図48に示されるXRPDパターンの典型的なピークを含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.78〜1.147のいずれか。
1.149 結晶形BがXRPDパターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターン、例えばCu Kα線の入射ビームを用いて測定される高分解能粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定され、図7、40及び48のいずれか、例えば図7、例えば図40、例えば図48に示されるピークから選択される3つのピーク、いくつかの具体的態様において5つのピークを含む、項1.78〜1.148のいずれか。
1.150 結晶形BがXRPDパターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターン、例えばCu Kα線の入射ビームを用いて測定される高分解能粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定され、図7、40及び48のいずれか、例えば図7、例えば図40、例えば図48に示されるピークから選択される少なくとも5つ、例えば少なくとも9個、例えば少なくとも10個、例えば少なくとも15個、例えば少なくとも20個、例えば少なくとも25個を含む、項1.78〜1.149のいずれか。
1.151 結晶形BがXRPDパターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定され、実質的に図7、40及び48のいずれか、例えば図7、例えば図40、例えば図48に示される、項1.78〜1.150のいずれか。
1.152 結晶形Bが粉末X線回折(XRPD)パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定され、図7、40及び48のいずれか、例えば図7、例えば図40、例えば図48に示される、項1.1〜1.151のいずれか。
1.153 結晶形Bが247℃〜248℃の間に吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを示す、項1.78〜1.152のいずれか。
1.154 結晶形Bが247℃における吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを示す、項1.78〜1.153のいずれか。
1.155 結晶形Bが248℃における吸熱ピーク、例えば246℃から始まる248℃における吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを示す、項1.78〜1.154のいずれか。
1.156 結晶形Bが251℃における吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを示す、項1.78〜1.155のいずれか。
1.157 結晶形Bが264℃における吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを示す、項1.78〜1.156のいずれか。
1.158 結晶形Bが141℃における吸熱ピーク、例えば137℃〜138℃から始まる141℃における吸熱ピーク、137℃から始まる141℃における吸熱ピーク、例えば138℃から始まる141℃における吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを示す、項1.78〜1.157のいずれか。
1.159 結晶形Bが図8に示される示差走査熱量測定(DSC)サーモグラムを示す、項1.78〜1.158のいずれか。
1.160 結晶形Bが200℃以下で0.2%重量減少を含む熱重量分析(TGA)サーモグラムを示す、項1.78〜1.159のいずれか。
1.161 結晶形Bが281℃における分解開始温度を含む熱重量分析(TGA)サーモグラムを示す、項1.78〜1.160のいずれか。
1.162 結晶形Bが図8に示す熱重量分析(TGA)サーモグラムを示す、項1.78〜1.161のいずれか。
1.163 本化合物の塩酸付加塩形態((1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩)の結晶形C(「結晶形C」)。
1.164 結晶形Cが2θ(゜)値17.7を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163。
1.165 結晶形Cが特徴的な2θ(゜)値17.7を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163又は1.164。
1.166 結晶形Cが2θ(゜)値17.74を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.165のいずれか。
1.167 結晶形Cが特徴的な2θ(゜)値17.74を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.166のいずれか。
1.168 結晶形Cが以下の表G:
表G
1.169 結晶形Cが項1.168の表Gに示される特徴的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.168のいずれか。
1.170 結晶形Cが7.0、13.2、14.4、17.7、18.0、19.9、21.3、22.6、23.7及び26.5からなる群から選択される少なくとも1つ、例えば少なくとも3つ、例えば少なくとも5つの2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.169のいずれか。
1.171 結晶形Cが7.0、13.2、14.4、17.7、18.0、19.9、21.3、22.6、23.7及び26.5の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.170のいずれか。
1.172 結晶形Cが7.0、13.2、14.4、17.7、18.0、19.9、21.3、22.6、23.7及び26.5の典型的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.171のいずれか。
1.173 結晶形Cが6.97、13.24、14.39、17.74、17.98、18.03、19.85、21.32、22.60、23.68及び26.52からなる群から選択される少なくとも1つ、例えば少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.172のいずれか。
1.174 結晶形Cが6.97、13.24、14.39、17.74、17.98、18.03、19.85、21.32、22.60、23.68及び26.52の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.173のいずれか。
1.175 結晶形Cが6.97、13.24、14.39、17.74、17.98、18.03、19.85、21.32、22.60、23.68及び26.52の典型的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.174のいずれか。
1.176 結晶形Cが以下の表H:
表H
1.177 結晶形Cが項1.176の表Hに示される2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.176のいずれか。
1.178 結晶形Cが項1.176の表Hに示される典型的な2θ(゜)値を有するXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.177のいずれか。
1.179 結晶形Cが7.0、13.2、13.7、14.0、14.4、16.3、17.7、18.0、18.3、19.9、21.1、21.3、22.6、23.4、23.7、23.9、26.0、26.5、26.7、26.9、27.4、28.0、28.2、29.1及び29.5からなる群から選択される少なくとも1つ、例えば少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個、例えば少なくとも11個、例えば少なくとも15個、例えば少なくとも20個の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.178のいずれか。
1.180 結晶形Cが以下の2θ(゜)値:
7.0、13.2、13.7、14.0、14.4、16.3、17.7、18.0、18.3、19.9、21.1、21.3、22.6、23.4、23.7、23.9、26.0、26.5、26.7、26.9、27.4、28.0、28.2、29.1及び29.5
を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.179のいずれか。
1.181 結晶形Cが6.97、13.24、13.68、13.97、14.39、16.29、17.74、17.98、18.03、18.30、19.85、21.06、21.32、22.60、23.35、23.68、23.94、25.99、26.52、26.66、26.90、27.40、27.99、28.19、29.06及び29.52からなる群から選択される少なくとも1つ、例えば少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個、例えば少なくとも11個、例えば少なくとも15個、例えば少なくとも20個、例えば少なくとも25個の2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.180のいずれか。
1.182 結晶形Cが以下の2θ(゜)値:
6.97、13.24、13.68、13.97、14.39、16.29、17.74、17.98、18.03、18.30、19.85、21.06、21.32、22.60、23.35、23.68、23.94、25.99、26.52、26.66、26.90、27.40、27.99、28.19、29.06及び29.52
を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.181のいずれか。
1.183 結晶形Cが以下の表I:
表I
1.184 結晶形Cが項1.183の表Iに示される2θ(゜)値を含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線の入射ビームを用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.183のいずれか。
1.185 結晶形Cがd間隔(Å)値5.0を含むXRPDパターンを示す、項1.163〜1.184のいずれか。
1.186 結晶形Cがd間隔(Å)値4.99を含むXRPDパターンを示す、項1.163〜1.185のいずれか。
1.187 結晶形Cがd間隔(Å)値4.994を含むXRPDパターンを示す、項1.163〜1.186のいずれか。
1.188 結晶形Cが項1.168の表Gにおけるd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.187のいずれか。
1.189 結晶形Cが12.7、6.7、6.2、5.0、4.9、4.5、4.2、3.9、3.8及び3.4からなる群から選択される少なくとも1つ、例えば少なくとも3つ、例えば少なくとも5つのd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.188のいずれか。
1.190 結晶形Cが12.7、6.7、6.2、5.0、4.9、4.5、4.2、3.9、3.8及び3.4のd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.189のいずれか。
1.191 結晶形Cが12.68、6.68、6.15、4.99、4.93、4.92、4.47、4.16、3.93、3.75及び3.36からなる群から選択される少なくとも1つ、例えば少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個のd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.190のいずれか。
1.192 結晶形Cが12.68、6.68、6.15、4.99、4.93、4.92、4.47、4.16、3.93、3.75及び3.36のd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.191のいずれか。
1.193 結晶形Cが12.677、6.683、6.150、4.994、4.929、4.915、4.470、4.164、3.931、3.754及び3.359からなる群から選択される少なくとも1つ、例えば少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個のd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.192のいずれか。
1.194 結晶形Cが12.677、6.683、6.150、4.994、4.929、4.915、4.470、4.164、3.931、3.754及び3.359のd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.193のいずれか。
1.195 結晶形Cが項1.176の表Hに示されるものから選択される少なくとも1つ、例えば少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個のd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.194のいずれか。
1.196 結晶形Cが項1.176の表Hに示されるd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.195のいずれか。
1.197 結晶形Cが12.7、6.7、6.5、6.3、6.2、5.4、5.0、4.9、4.8、4.5、4.2、3.9、3.8、3.7、3.4、3.3、3.2、3.1及び3.0からなる群から選択される少なくとも1つ、例えば少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個、例えば少なくとも11個、例えば少なくとも15個のd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.196のいずれか。
1.198 結晶形Cが12.7、6.7、6.5、6.3、6.2、5.4、5.0、4.9、4.8、4.5、4.2、3.9、3.8、3.7、3.4、3.3、3.2、3.1及び3.0のd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.197のいずれか。
1.199 結晶形Cが12.68、6.68、6.47、6.33、6.15、5.44、4.99、4.93、4.92、4.84、4.47、4.21、4.16、3.93、3.81、3.75、3.71、3.43、3.36、3.34、3.31、3.25、3.19、3.16、3.07及び3.02からなる群から選択される少なくとも1つ、例えば少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個、例えば少なくとも11個、例えば少なくとも15個、例えば少なくとも20個、例えば少なくとも25個のd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.198のいずれか。
1.200 結晶形Cが12.68、6.68、6.47、6.33、6.15、5.44、4.99、4.93、4.92、4.84、4.47、4.21、4.16、3.93、3.81、3.75、3.71、3.43、3.36、3.34、3.31、3.25、3.19、3.16、3.07及び3.02のd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.199のいずれか。
1.201 結晶形Cが12.677、6.683、6.469、6.333、6.150、5.435、4.994、4.929、4.915、4.843、4.470、4.214、4.164、3.931、3.806、3.754、3.714、3.426、3.359、3.340、3.311、3.252、3.185、3.163、3.070及び3.024からなる群から選択される少なくとも1つ、例えば少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個、例えば少なくとも11個、例えば少なくとも15個、例えば少なくとも20個、例えば少なくとも25個のd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.200のいずれか。
1.202 結晶形Cが12.677、6.683、6.469、6.333、6.150、5.435、4.994、4.929、4.915、4.843、4.470、4.214、4.164、3.931、3.806、3.754、3.714、3.426、3.359、3.340、3.311、3.252、3.185、3.163、3.070及び3.024のd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.201のいずれか。
1.203 結晶形Cが項1.183の表Iに示されるものから選択される少なくとも1つ、例えば少なくとも3つ、例えば少なくとも5つ、例えば少なくとも10個、例えば少なくとも11個、例えば少なくとも15個、例えば少なくとも20個、例えば少なくとも25個のd間隔(Å)値を含むXRPDパターンを示す、項1.163〜1.202のいずれか。
1.204 項1.183の表Iに示されるd間隔(Å)値を含むXRPDパターンを有する、項1.163〜1.203のいずれか。
1.205 結晶形Cが図9に示されるXRPDパターンの特徴的なピークを含む粉末X線回折パターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.541871Åの放射線を用いて測定される、項1.163〜1.204のいずれか。
1.206 結晶形Cが図9に示されるXRPDパターンの典型的なピークを含む粉末X線回折パターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.541871Åの放射線を用いて測定される、項1.163〜1.205のいずれか。
1.207 結晶形Cが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図9に示されるピークから選択される3つのピーク、いくつかの具体的態様において5つのピークを含む、項1.163〜1.206のいずれか。
1.208 結晶形Cが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図9に示されるピークから選択される少なくとも1つのピーク、例えば少なくとも5つのピーク、例えば少なくとも11個のピーク、例えば少なくとも15個のピーク、例えば少なくとも20個のピーク、例えば少なくとも25個のピークを含む、項1.163〜1.207のいずれか。
1.209 結晶形Cが実質的に図9に示される粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定される、項1.163〜1.208のいずれか。
1.210 結晶形Cが図9に示される粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定される、項1.163〜1.209のいずれか。
1.211 結晶形Cが図11に示されるXRPDパターンの特徴的なピークを含む粉末X線回折パターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定され、例えばXRPDパターンが結晶形Aのピークも含む(例えば結晶形A及びCの混合物)、項1.163〜1.210のいずれか。
1.212 結晶形Cが図11に示されるXRPDパターンの典型的なピークを含む粉末X線回折パターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定され、例えばXRPDパターンが結晶形Aのピークも含む(例えば結晶形A及びCの混合物)、項1.163〜1.211のいずれか。
1.213 結晶形Cが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターン、例えばCu Kα線の入射ビームを用いて測定される高分解能粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定され、図11に示されるピークから選択される3つのピーク、いくつかの具体的態様において5つのピークを含み、例えばXRPDパターンが結晶形Aのピークも含む(例えば結晶形A及びCの混合物)、項1.163〜1.212のいずれか。
1.214 結晶形Cが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターン、例えばCu Kα線の入射ビームを用いて測定される高分解能粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定される、図11に示されるピークから選択される少なくとも1つのピーク、例えば少なくとも5つのピーク、例えば少なくとも11個のピーク、例えば少なくとも15個のピーク、例えば少なくとも20個のピーク、例えば少なくとも25個のピークを含み、例えばXRPDパターンが結晶形Aのピークも含む(例えば結晶形A及びCの混合物)、項1.163〜1.213のいずれか。
1.215 結晶形Cが実質的に図11に示される粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターン、例えばCu Kα線の入射ビームを用いて測定される高分解能粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定され、例えばXRPDパターンが結晶形Aのピークも含む(例えば結晶形A及びCの混合物)、項1.163〜1.214のいずれか。
1.216 結晶形Cが図11に示される粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターン、例えばCu Kα線の入射ビームを用いて測定される高分解能粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定され、、例えばXRPDパターンが結晶形Aのピークも含む(例えば結晶形A及びCの混合物)、項1.163〜1.215のいずれか。
1.217 結晶形Cが図11及び43のいずれか、例えば図11、例えば図43に示されるXRPDパターンの特徴的なピークを含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.216のいずれか。
1.218 結晶形Cが図11及び43のいずれか、例えば図11、例えば図43に示されるXRPDパターンの典型的なピークを含むXRPDパターンを示し、XRPDがCu線、例えばCu Kα線を用いて測定され、例えばXRPDが波長1.54059Åの放射線を用いて測定される、項1.163〜1.217のいずれか。
1.219 結晶形CがXRPDパターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターン、例えばCu Kα線の入射ビームを用いて測定される高分解能粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定され、図11及び43のいずれか、例えば図11、例えば図43に示されるピークから選択される3つのピーク、いくつかの具体的態様において5つのピークを含む、項1.163〜1.218のいずれか。
1.220 結晶形CがXRPDパターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターン、例えばCu Kα線の入射ビームを用いて測定される高分解能粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定され、図11及び43のいずれか、例えば図11、例えば図43に示されるピークから選択される少なくとも1つのピーク、例えば少なくとも5つのピーク、例えば少なくとも10個のピーク、例えば少なくとも11個のピーク、例えば少なくとも15個のピーク、例えば少なくとも20個のピーク、例えば少なくとも25個のピークを含む、項1.163〜1.219のいずれか。
1.221 結晶形CがXRPDパターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定され、実質的に図11及び43のいずれか、例えば図11、例えば図43に示される、項1.163〜1.220のいずれか。
1.222 結晶形CがXRPDパターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.54059Åの放射線を用いて測定され、図11及び43のいずれか、例えば図11、例えば図43に示される、項1.163〜1.221のいずれか。
1.223 結晶形Cが247℃〜248℃、例えば246℃から始まる247℃〜248℃の吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを示す、項1.163〜1.222のいずれか。
1.224 結晶形Cが247℃における吸熱ピーク、例えば246℃から始まる247℃における吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを示す、項1.163〜1.223のいずれか。
1.225 結晶形Cが248℃における吸熱ピーク、例えば246℃から始まる248℃における吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを示す、項1.163〜1.224のいずれか。
1.226 結晶形Cが122℃における吸熱ピーク、例えば112℃から始まる122℃における吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを示す、項1.163〜1.225のいずれか。
1.227 結晶形Cが271℃における吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを示す、項1.163〜1.226のいずれか。
1.228 結晶形Cが図12に示される示差走査熱量測定(DSC)サーモグラムを示す、項1.163〜1.227のいずれか。
1.229 結晶形Cが200℃以下で1.3%の重量減少を含む熱重量分析(TGA)を示す、項1.163〜1.228のいずれか。
1.230 結晶形Cが266℃の分解開始温度を含む熱重量分析(TGA)サーモグラムを示す、項1.163〜1.229のいずれか。
1.231 結晶形Cが図12に示される熱重量分析(TGA)サーモグラムを示す、項1.163〜1.230のいずれか。
1.232 前記及び/又はいずれかの実施例のとおり製造される(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩の結晶形。
1.233 いずれかの図に記載の粉末X線回折及び/又はX線結晶構造を有する(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩の結晶形。
1.234 XRPDパターンが銅源、例えば銅アノードを用いて測定される、項1.1〜1.233のいずれかの結晶形。
1.235 結晶形A〜Fのいずれか、例えば項1.1〜1.234のいずれか及び項2.1-2.25のいずれかの組合せ、例えば結晶形A及び結晶形Bの組合せ;結晶形A及び結晶形Cの組合せ;結晶形A、結晶形B及び結晶形Cの組合せ;結晶形B及び結晶形Cの組合せ;結晶形B及び結晶形Dの組合せ;結晶形E及び結晶形Fの組合せ。
1.236 項1.1〜1.234のいずれかに記載の結晶形、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれかであって、ここで、結晶形は他のいずれかの形態を含まない又は実質的に含まない、例えば非晶質体が20重量%未満、例えば15重量%未満、例えば10重量%未満、好ましくは5重量%未満、好ましくは3重量%未満、より好ましくは2重量%未満、さらに好ましくは1重量%未満、さらに好ましくは0.1重量%未満、最も好ましくは0.01重量%未満である。
1.237 項1.1〜1.234のいずれかに記載の結晶形、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれかであって、ここで、結晶形は他のいずれかの形態を含まない又は実質的に含まない、例えば他のいずれかの結晶形態が20重量%未満、例えば10重量%未満、好ましくは5重量%未満、好ましくは3重量%未満、より好ましくは2重量%未満、さらに好ましくは1重量%未満、さらに好ましくは0.1重量%未満、最も好ましくは0.01重量%未満である。
1.238 項1.1〜1.234のいずれかに記載の結晶形、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれかであって、ここで、結晶形は他のいずれかの形態を含まない又は実質的に含まない、例えば非晶質体及び他のいずれかの結晶形態が20重量%未満、例えば10重量%未満、好ましくは5重量%未満、好ましくは3重量%未満、より好ましくは2重量%未満、さらに好ましくは1重量%未満、さらに好ましくは0.1重量%未満、最も好ましくは0.01重量%未満である。
1.239 項4.1〜4.20に記載のいずれかの方法によりもしくはいずれかの実施例と同様に製造される又はいずれかの図に記載の粉末X線回折又はX線結晶構造を有する、項1.1〜1.238のいずれかに記載の結晶形。
第二態様において、本発明は(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサンのクエン酸塩を提供する。
第三態様において、本発明は(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサンのリン酸塩を提供する。
第四態様において、本発明はいずれかの実施例において製造又は記載されるか、又はいずれかの図に示される粉末X線回折を有する結晶形を提供し、例えば:
2.1 結晶形D。
2.2 結晶形Dが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図15に示されるXRPDパターンの特徴的なピークを含む、項2.1。
2.3 結晶形Dが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図15に示されるXRPDパターンの典型的なピークを含む、項2.1又は2.2。
2.4 結晶形Dが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図15に示されるものから選択される3つのピーク、いくつかの具体的態様において5つのピークを含む、項2.1〜2.3のいずれか。
2.5 結晶形Dが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図15に示されるものから選択される10個のピーク、いくつかの具体的態様において20個のピーク、いくつかの具体的態様において25個のピークを含む、項2.1〜2.4のいずれか。
2.6 結晶形Dが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、実質的に図15に示される、項2.1〜2.5のいずれか。
2.7 結晶形Dが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図15に示される、項2.1〜2.6のいずれか。
2.8 結晶形Dが(1R,5S)-1-(ナフタレン-2-イル)-3-アザビシクロ[3.1.0]ヘキサンのクエン酸塩である、項2.1〜2.7のいずれか。
2.9 結晶形E。
2.10 結晶形Eが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図16に示されるXRPDパターンの特徴的なピークを含む、項2.9。
2.11 結晶形Eが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図16に示されるXRPDパターンの典型的なピークを含む、項2.9又は2.10。
2.12 結晶形Eが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図16に示されるものから選択される3つのピーク、いくつかの具体的態様において5つのピークを含む、項2.9〜2.11のいずれか。
2.13 結晶形Eが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図16に示されるものから選択される10個のピーク、いくつかの具体的態様において20個のピーク、いくつかの具体的態様において25個のピークを含む、項2.9〜2.12のいずれか。
2.14 結晶形Eが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、実質的に図16に示される、項2.9〜2.13のいずれか。
2.15 結晶形Eが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図16に示される、項2.9〜2.14のいずれか。
2.16 結晶形Eが(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサンのリン酸塩である、項2.9〜2.15のいずれか。
2.17 結晶形F。
2.18 結晶形Fが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図17に示されるXRPDパターンの特徴的なピークを含む、項2.17。
2.19 結晶形Fが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図17に示されるXRPDパターンの典型的なピークを含む、項2.17又は2.18。
2.20 結晶形Fが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図17に示されるものから選択される3つのピーク、いくつかの具体的態様において5つのピークを含む、項2.17〜2.19のいずれか。
2.21 結晶形Fが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図17に示されるものから選択される10個のピーク、いくつかの具体的態様において20個のピーク、いくつかの具体的態様において25個のピークを含む、項2.17〜2.20のいずれか。
2.22 結晶形Fが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、実質的に図17に示される、項2.17〜2.21のいずれか。
2.23 結晶形Fが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図17に示される、項2.17〜2.22のいずれか。
2.24 結晶形Fが(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサンのリン酸塩である、項2.17〜2.23のいずれか。
2.25 XRPDパターンが銅源、例えば銅アノードを用いて測定される、項2.1〜2.24のいずれかの結晶形。
2.26 結晶形A〜Fのいずれか、例えば項1.1〜1.234のいずれか及び項2.1〜2.25のいずれかの組合せ、例えば結晶形A及び結晶形Bの組合せ;結晶形A及び結晶形Cの組合せ;結晶形A、結晶形B及び結晶形Cの組合せ;結晶形B及び結晶形Cの組合せ;結晶形B及び結晶形Dの組合せ;結晶形E及び結晶形Fの組合せ。
2.27 項2.1〜2.25のいずれかに記載の結晶形であって、ここで、結晶形は他のいずれかの形態を含まない又は実質的に含まない、例えば非晶質体が20重量%未満、例えば15重量%未満、例えば10重量%未満、好ましくは5重量%未満、好ましくは3重量%未満、より好ましくは2重量%未満、さらに好ましくは1重量%未満、さらに好ましくは0.1重量%未満、最も好ましくは0.01重量%未満である。
2.28 項2.1〜2.25のいずれかに記載の結晶形であって、ここで、結晶形は他のいずれかの形態を含まない又は実質的に含まない、例えば他のいずれかの結晶形態が20重量%未満、例えば10重量%未満、好ましくは5重量%未満、好ましくは3重量%未満、より好ましくは2重量%未満、さらに好ましくは1重量%未満、さらに好ましくは0.1重量%未満、最も好ましくは0.01重量%未満である。
2.29 項2.1〜2.25のいずれかに記載の結晶形であって、ここで、結晶形は他のいずれかの形態を含まない又は実質的に含まない、例えば非晶質体及び他のいずれかの結晶形態が20重量%未満、例えば10重量%未満、好ましくは5重量%未満、好ましくは3重量%未満、より好ましくは2重量%未満、さらに好ましくは1重量%未満、さらに好ましくは0.1重量%未満、最も好ましくは0.01重量%未満である。
2.30 項4.1〜4.20に記載のいずれかの方法によりもしくはいずれかの実施例と同様に製造される又はいずれかの図に記載の粉末X線回折又はX線結晶構造を有する、項2.1〜2.29のいずれかに記載の結晶形。
2.1 結晶形D。
2.2 結晶形Dが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図15に示されるXRPDパターンの特徴的なピークを含む、項2.1。
2.3 結晶形Dが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図15に示されるXRPDパターンの典型的なピークを含む、項2.1又は2.2。
2.4 結晶形Dが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図15に示されるものから選択される3つのピーク、いくつかの具体的態様において5つのピークを含む、項2.1〜2.3のいずれか。
2.5 結晶形Dが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図15に示されるものから選択される10個のピーク、いくつかの具体的態様において20個のピーク、いくつかの具体的態様において25個のピークを含む、項2.1〜2.4のいずれか。
2.6 結晶形Dが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、実質的に図15に示される、項2.1〜2.5のいずれか。
2.7 結晶形Dが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図15に示される、項2.1〜2.6のいずれか。
2.8 結晶形Dが(1R,5S)-1-(ナフタレン-2-イル)-3-アザビシクロ[3.1.0]ヘキサンのクエン酸塩である、項2.1〜2.7のいずれか。
2.9 結晶形E。
2.10 結晶形Eが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図16に示されるXRPDパターンの特徴的なピークを含む、項2.9。
2.11 結晶形Eが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図16に示されるXRPDパターンの典型的なピークを含む、項2.9又は2.10。
2.12 結晶形Eが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図16に示されるものから選択される3つのピーク、いくつかの具体的態様において5つのピークを含む、項2.9〜2.11のいずれか。
2.13 結晶形Eが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図16に示されるものから選択される10個のピーク、いくつかの具体的態様において20個のピーク、いくつかの具体的態様において25個のピークを含む、項2.9〜2.12のいずれか。
2.14 結晶形Eが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、実質的に図16に示される、項2.9〜2.13のいずれか。
2.15 結晶形Eが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図16に示される、項2.9〜2.14のいずれか。
2.16 結晶形Eが(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサンのリン酸塩である、項2.9〜2.15のいずれか。
2.17 結晶形F。
2.18 結晶形Fが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図17に示されるXRPDパターンの特徴的なピークを含む、項2.17。
2.19 結晶形Fが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図17に示されるXRPDパターンの典型的なピークを含む、項2.17又は2.18。
2.20 結晶形Fが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図17に示されるものから選択される3つのピーク、いくつかの具体的態様において5つのピークを含む、項2.17〜2.19のいずれか。
2.21 結晶形Fが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図17に示されるものから選択される10個のピーク、いくつかの具体的態様において20個のピーク、いくつかの具体的態様において25個のピークを含む、項2.17〜2.20のいずれか。
2.22 結晶形Fが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、実質的に図17に示される、項2.17〜2.21のいずれか。
2.23 結晶形Fが粉末X線回折パターン、例えばCu線、例えばCu Kα線の入射ビームを用いて測定される粉末X線回折パターンを示し、例えばXRPDが波長1.541871Åの放射線を用いて測定され、図17に示される、項2.17〜2.22のいずれか。
2.24 結晶形Fが(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサンのリン酸塩である、項2.17〜2.23のいずれか。
2.25 XRPDパターンが銅源、例えば銅アノードを用いて測定される、項2.1〜2.24のいずれかの結晶形。
2.26 結晶形A〜Fのいずれか、例えば項1.1〜1.234のいずれか及び項2.1〜2.25のいずれかの組合せ、例えば結晶形A及び結晶形Bの組合せ;結晶形A及び結晶形Cの組合せ;結晶形A、結晶形B及び結晶形Cの組合せ;結晶形B及び結晶形Cの組合せ;結晶形B及び結晶形Dの組合せ;結晶形E及び結晶形Fの組合せ。
2.27 項2.1〜2.25のいずれかに記載の結晶形であって、ここで、結晶形は他のいずれかの形態を含まない又は実質的に含まない、例えば非晶質体が20重量%未満、例えば15重量%未満、例えば10重量%未満、好ましくは5重量%未満、好ましくは3重量%未満、より好ましくは2重量%未満、さらに好ましくは1重量%未満、さらに好ましくは0.1重量%未満、最も好ましくは0.01重量%未満である。
2.28 項2.1〜2.25のいずれかに記載の結晶形であって、ここで、結晶形は他のいずれかの形態を含まない又は実質的に含まない、例えば他のいずれかの結晶形態が20重量%未満、例えば10重量%未満、好ましくは5重量%未満、好ましくは3重量%未満、より好ましくは2重量%未満、さらに好ましくは1重量%未満、さらに好ましくは0.1重量%未満、最も好ましくは0.01重量%未満である。
2.29 項2.1〜2.25のいずれかに記載の結晶形であって、ここで、結晶形は他のいずれかの形態を含まない又は実質的に含まない、例えば非晶質体及び他のいずれかの結晶形態が20重量%未満、例えば10重量%未満、好ましくは5重量%未満、好ましくは3重量%未満、より好ましくは2重量%未満、さらに好ましくは1重量%未満、さらに好ましくは0.1重量%未満、最も好ましくは0.01重量%未満である。
2.30 項4.1〜4.20に記載のいずれかの方法によりもしくはいずれかの実施例と同様に製造される又はいずれかの図に記載の粉末X線回折又はX線結晶構造を有する、項2.1〜2.29のいずれかに記載の結晶形。
固体の相転移は熱力学的に可逆的又は不可逆的でありうる。ある具体的な転移温度(Tt)にて可逆的に変形する結晶形は互変形的多形体である。結晶形がこれらの条件下で相互に変換できない場合、その系は単変形的(一つの熱力学的に安定な形態)である。
結晶形A、B及びCは(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩の無水互変形体である。結晶形Cは転移温度Tt,C→B未満で安定な固体相であり、結晶形BはTt,C→B及びTt,B→Aの間で安定な固体相であり、結晶形AはTt,B→Aを超える温度で安定な固体相である。Tt,C→Bは2℃未満と考えられる。Tt,C→Aは2℃〜常温の間であり、Tt,B→Aは37〜54℃である。
速度論的制約により、結晶形Aから結晶形Bへの熱力学的変形は妨げられる。従って、驚くべきことに、結晶形Aは、熱力学的に準安定な温度条件下で固体状態が持続するため、速度論的に十分安定であるようである。
結晶形Aをスラリーとして常温にてジクロロメタン中で16日間撹拌しても(実施例6a参照)、その温度でのより安定な形態である結晶形Bへの溶媒媒介形態変換を生じない。これは、より安定な多形体の種がない場合、評価した時間枠内で核形成のための臨界自由エネルギー障壁を乗り越えられないことを示す。
2週間の加速苛酷条件下に曝しても、結晶形A及びBは30℃/56%RH又は40℃/75%RHで変化しないままである(実施例11)。これに対し、結晶形Cは40℃/75%RHでは2週間以内に結晶形A及びBの混合物に変形した(実施例11)。従って、結晶形Aと異なり、結晶形Cは準安定な条件下で変形する。
結晶形Aについて、より安定な多形体の種がない場合、結晶形Bの核形成のための臨界自由エネルギー障壁は、評価した時間内で固体状態又は溶媒媒介変換実験において乗り越えられない。
従って、結晶形Aは容易に大規模合成し得、さらに驚くべきことに熱力学的に準安定な条件下でも固体状態が持続する。
第五態様において、本発明は以下を提供する:
3.1. 項1.1〜1.239又は項2.1〜2.30のいずれかに記載の結晶形A〜Fのいずれか、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれか、及び薬学的に許容される希釈剤又は担体を含む医薬組成物。
3.2. 組成物が持続放出性である、項3.1に記載の医薬組成物。
3.3. 本発明の結晶形A〜Fのいずれか、例えば項1.1〜1.239のいずれか、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれか、例えば項2.1〜2.30のいずれかを1 mg〜1800 mg、例えば10 mg〜1800 mg、例えば25 mg〜1800 mg、例えば10 mg〜1600 mg、例えば10 mg〜1200 mg、例えば50 mg〜1200 mg、例えば50 mg〜1000 mg、例えば75 mg〜1000 mg、例えば75 mg〜800 mg、例えば75 mg〜500 mg、例えば100 mg〜750 mg、例えば100 mg〜500 mg、例えば100 mg〜400 mg、例えば100 mg〜300 mg、例えば100 mg〜200 mg含む、項3.1又は3.2に記載の医薬組成物。
3.4. 本発明の結晶形A〜Fのいずれか、例えば項1.1〜1.239のいずれか、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれか、例えば項2.1〜2.30のいずれかを75 mg〜1000 mg、例えば100 mg〜600 mg、例えば100 mg〜400 mg、例えば100 mg〜200 mg含む、項3.1〜3.3のいずれかの組成物。
3.5. 本発明の結晶形A〜Fのいずれか、例えば項1.1〜1.239のいずれか、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれか、例えば項2.1〜2.30のいずれかを50 mg〜600 mg、例えば100 mg〜600 mg、例えば100 mg〜400 mg、例えば100 mg〜200 mg含む、項3.1〜3.3のいずれかの組成物。
3.6. 本発明の結晶形A〜Fのいずれか、例えば項1.1〜1.239のいずれか、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれか、例えば項2.1〜2.30のいずれかを5 mg〜500 mg、例えば5 mg〜10 mg、例えば10 mg〜25 mg、例えば30 mg〜50 mg、例えば10 mg〜300 mg、例えば25 mg〜300 mg、例えば50 mg〜100 mg、例えば100 mg〜250 mg、例えば250 mg〜500 mg含む、項3.1〜3.3のいずれかの組成物。
3.7. 本発明の結晶形A〜Fのいずれか、例えば項1.1〜1.239のいずれか、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれか、例えば項2.1〜2.30のいずれかを0.5 mg/kg〜20 mg/kg/日、例えば1 mg/kg〜15 mg/kg/日、例えば1 mg/kg〜10 mg/kg/日、例えば2 mg/kg〜20 mg/kg/日、例えば2 mg/kg〜10 mg/kg/日、例えば3 mg/kg〜15 mg/kg/日投与するための項3.1〜3.3のいずれかの組成物。
3.8. 本発明の結晶形A〜Fのいずれかを50重量%未満、例えば項1.1〜1.239のいずれか、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれか、例えば項2.1〜2.30のいずれかを例えば40重量%未満、例えば30重量%未満、20重量%未満、例えば1〜40重量%、例えば5〜40重量%、例えば10〜30重量%、例えば15〜25重量%、例えば15〜20重量%、例えば17重量%、例えば25重量%含む、項3.1〜3.7のいずれかの組成物。
3.9. 薬学的に許容される希釈剤又は担体がヒドロキシプロピルメチルセルロースを含む、項3.1〜3.8のいずれかの組成物。
3.10. 組成物がヒドロキシプロピルメチルセルロースを少なくとも10重量%、例えば10〜50重量%、例えば10〜40重量%、例えば20〜50重量%、例えば20〜40重量%、例えば30〜40重量%、例えば37重量%含む、項3.9の組成物。
3.11. ヒドロキシプロピルメチルセルロースのメトキシ置換度が19〜24%である、項3.9又は3.10の組成物。
3.12. ヒドロキシプロピルメチルセルロースのヒドロキシプロポキシ置換度が4〜12%である、項3.9〜3.11のいずれかの組成物。
3.13. ヒドロキシプロピルメチルセルロースがヒプロメロース2208である、項3.9〜3.12のいずれかの組成物。
3.14. ヒドロキシプロピルメチルセルロースが4,000mPA・σの公称粘度を有する、項3.9〜3.13のいずれかの組成物。
3.15. ヒドロキシプロピルメチルセルロースが2,000〜6,000mPA・σ、例えば2,600〜5,000mPA・σ、例えば2,663〜4,970mPA・σの粘度を有する、項3.9〜3.13のいずれかの組成物。
3.16. 薬学的に許容される希釈剤又は担体がアルファ−ラクトース一水和物を含む、項3.9〜3.15のいずれかの組成物。
3.17. 組成物がアルファ−ラクトース一水和物を少なくとも10重量%、例えば10〜80重量%、例えば20〜70重量%、例えば20〜60重量%、例えば20〜50重量%、例えば20〜40重量%、例えば20〜30重量%、例えば30〜70重量%、例えば30〜60重量%、例えば30〜50重量%、例えば30〜40重量%、例えば37重量%含む、項3.16の組成物。
3.18. 組成物が粉砕されたアルファ−ラクトース一水和物を含む、項3.16又は3.17の組成物。
3.19. 組成物がヒドロキシプロピルメチルセルロース及びアルファ−ラクトース一水和物の共処理混合物(例えばRetalac(登録商標))を含む、項3.1〜3.18のいずれかの組成物。
3.20. 混合物が等量のヒドロキシプロピルメチルセルロース及びアルファ−ラクトース一水和物を含む、項3.19の組成物。
3.21. 混合物が100μm〜200μmの範囲、例えば125μmのd50(メジアン径)を有するヒドロキシプロピルメチルセルロース及びアルファ−ラクトース一水和物の粒子を含む、項3.19又は3.20の組成物。
3.22. 混合物がヒドロキシプロピルメチルセルロース及びアルファ−ラクトース一水和物の粒子を有し、粒度分布が以下:
<63μm≦25%
<100μm:35%
<250μm≧80%
のとおりである、項3.19〜3.21のいずれかの組成物。
3.23. 組成物が混合物の少なくとも20重量%、例えば少なくとも30重量%、例えば少なくとも40重量%、例えば少なくとも50重量%、例えば少なくとも60重量%、例えば少なくとも70重量%、例えば少なくとも80重量%、例えば20〜90重量%、例えば30〜80重量%、例えば40〜80重量%、例えば50〜80重量%、例えば60〜80重量%、例えば70〜80重量%、例えば75重量%を含む、項3.19〜3.22のいずれかの組成物。
3.24. 薬学的に許容される希釈剤又は担体が滑沢剤、例えばステアリン酸マグネシウムを含む、項3.1〜3.23のいずれかの組成物。
3.25. 滑沢剤がベヘン酸グリセリル、ステアリン酸マグネシウム、タルク及びフマル酸ステアリルナトリウム、例えばステアリン酸マグネシウムの1つ以上である、項3.24の組成物。
3.26. 組成物が滑沢剤を10重量%未満、例えば5重量%未満、3重量%未満、1重量%未満、例えば0.1〜1重量%、例えば0.1〜0.8重量%、例えば0.5重量%含む、項3.24又は3.25の組成物。
3.27. 組成物がステアリン酸マグネシウムを10重量%未満、例えば5重量%未満、3重量%未満、1重量%未満、例えば0.1〜1重量%、例えば0.1〜0.8重量%、例えば0.5重量%含む、項3.24〜3.26のいずれかの組成物。
3.28. 薬学的に許容される希釈剤又は担体が希釈剤、崩壊剤、結合剤及び放出調節剤の1つ以上を含む、項3.1〜3.27のいずれかの組成物。
3.29. 希釈剤がマンニトール(例えばPearlitol 300 DC)、微結晶性セルロース(例えばAvicel pH102)及びアルファ化デンプン(例えばStarch 1500)の1つ以上である、項3.28の組成物。
3.30. 崩壊剤がクロスポビドン(例えばPolyplasdone XL-10)及びデンプングリコール酸ナトリウム(例えばExplotab)の1つ又は両方である、項3.29の組成物。
3.31. 結合剤がポリビニルピロリドン(例えばPovidone K29/32)である、項3.28の組成物。
3.32. 放出調節剤がヒドロキシプロピルセルロース(例えばKlucel EXF, Klucel MXF及び/又はKlucel HXF)及びヒドロキシプロピルメチルセルロース(例えばMethocel K100M、Methocel K4M PREM、Methocel K15M PREM CR)の1つ以上である、項3.28の組成物。
3.33. 組成物が放出調節剤を少なくとも5重量%、例えば5〜60重量%、例えば10〜50重量%、例えば10〜40重量%含む、項3.28又は3.32の組成物。
3.34. 放出調節剤がヒドロキシプロピルメチルセルロースである、項3.32又は3.33の組成物。
3.35. 治療的有効量の、項1.1〜1.239のいずれかに記載の結晶形A〜Fのいずれか、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれか、例えば項2.1〜2.30のいずれか、又は項3.1〜3.34のいずれかに記載の医薬組成物を必要とする患者に投与することを特徴とする、標的中枢神経系障害に原因として関連する複数の生体アミンの再取り込みを阻害することにより治療しうる障害の予防もしくは治療及び/又はいずれかの障害に伴う症状の緩和のための方法であって、再取り込み阻害の標的となる生体アミンがノルエピネフリン及び/又はセロトニン及び/又はドーパミンから選択される方法、特定の具体的態様において以下のいずれかの障害を予防又は治療する方法:
(i)注意欠陥多動性障害(ADHD、小児及び成人の両方)及び関連する行動障害並びにアルコール乱用、薬物乱用、強迫性障害、学習障害、読解力障害、ギャンブル中毒、躁症状、恐怖症、パニック発作、反抗挑戦性障害、行為障害、破壊的行動障害、学校での学業上の問題、喫煙、異常性行動、統合失調症的行動、身体化、鬱(大うつ病性障害、再発性;気分変調性障害;特定不能のうつ病性障害(NOS);大うつ病性障害、単一エピソード;双極性障害、アルツハイマー病、精神病又はパーキンソン病に伴う鬱;産後うつ;及び季節性情動障害などであるが、これらに限定されない)、睡眠障害、全般不安症、吃音及びチック症(トゥレット障害など)の形態及び症状;
(ii)ADHD、物質乱用、鬱、不安症(パニック障害、全般不安症、強迫性障害、外傷後ストレス障害及び社交不安症などであるが、これらに限定されない)、自閉症、外傷性脳損傷、認知障害、統合失調症(特に認知力について)、肥満、慢性疼痛性障害、パーソナリティ障害及び軽度認知障害;
(iii)不安症、パニック障害、外傷後ストレス障害、強迫性障害、統合失調症及び関連障害、肥満、チック症、中毒、パーキンソン病及び慢性疼痛;
(iv)物質乱用障害(アルコール関連障害、ニコチン関連障害、アンフェタミン関連障害、大麻関連障害、コカイン関連障害、幻覚薬使用障害、吸入剤関連障害及びオピオイド関連障害などであるが、これらに限定されない);
(v)認知障害、双極性障害、神経性無食欲症、神経性過食症、気分循環性障害、慢性疲労症候群、慢性又は急性ストレス、線維筋痛症及び他の身体表現性障害(身体化障害、転換性障害、疼痛性障害、心気症、身体醜形障害、未分化身体表現性障害、身体表現性NOSなど)、失禁(すなわち、緊張性尿失禁、真性腹圧性尿失禁及び混合性尿失禁)、吸入障害、躁病、片頭痛、末梢神経障害;
(vi)嗜癖性障害(摂食障害、衝動制御障害、アルコール関連障害、ニコチン関連障害、アンフェタミン関連障害、大麻関連障害、コカイン関連障害、幻覚薬使用障害、吸入剤関連障害、オピオイド関連障害などであるが、これらに限定されない);
(vii)脆弱X症候群関連障害;
(viii)自閉症スペクトラム障害(ASD)、例えば脆弱X症候群関連障害の患者におけるもの;
(ix)脆弱X症候群関連障害の患者におけるADHD;
(x)ADHDと鬱の併存症;
(xi)ADHDと物質乱用の併存症;
(xii)ADHDと不安症の併存症。
3.36. 医薬としての使用、例えば項3.35に記載のいずれかの障害の治療又は予防のための医薬の製造における使用のための、項3.1〜3.34のいずれかに記載の医薬組成物。
3.37. 項3.35に記載のいずれかの障害の予防もしくは治療における使用又は項3.35に記載のいずれかの障害の治療もしくは予防のための医薬の製造における使用のための、項1.1〜1.239のいずれかに記載の結晶形A〜F、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれか、例えば項2.1〜2.30のいずれか。
3.1. 項1.1〜1.239又は項2.1〜2.30のいずれかに記載の結晶形A〜Fのいずれか、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれか、及び薬学的に許容される希釈剤又は担体を含む医薬組成物。
3.2. 組成物が持続放出性である、項3.1に記載の医薬組成物。
3.3. 本発明の結晶形A〜Fのいずれか、例えば項1.1〜1.239のいずれか、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれか、例えば項2.1〜2.30のいずれかを1 mg〜1800 mg、例えば10 mg〜1800 mg、例えば25 mg〜1800 mg、例えば10 mg〜1600 mg、例えば10 mg〜1200 mg、例えば50 mg〜1200 mg、例えば50 mg〜1000 mg、例えば75 mg〜1000 mg、例えば75 mg〜800 mg、例えば75 mg〜500 mg、例えば100 mg〜750 mg、例えば100 mg〜500 mg、例えば100 mg〜400 mg、例えば100 mg〜300 mg、例えば100 mg〜200 mg含む、項3.1又は3.2に記載の医薬組成物。
3.4. 本発明の結晶形A〜Fのいずれか、例えば項1.1〜1.239のいずれか、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれか、例えば項2.1〜2.30のいずれかを75 mg〜1000 mg、例えば100 mg〜600 mg、例えば100 mg〜400 mg、例えば100 mg〜200 mg含む、項3.1〜3.3のいずれかの組成物。
3.5. 本発明の結晶形A〜Fのいずれか、例えば項1.1〜1.239のいずれか、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれか、例えば項2.1〜2.30のいずれかを50 mg〜600 mg、例えば100 mg〜600 mg、例えば100 mg〜400 mg、例えば100 mg〜200 mg含む、項3.1〜3.3のいずれかの組成物。
3.6. 本発明の結晶形A〜Fのいずれか、例えば項1.1〜1.239のいずれか、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれか、例えば項2.1〜2.30のいずれかを5 mg〜500 mg、例えば5 mg〜10 mg、例えば10 mg〜25 mg、例えば30 mg〜50 mg、例えば10 mg〜300 mg、例えば25 mg〜300 mg、例えば50 mg〜100 mg、例えば100 mg〜250 mg、例えば250 mg〜500 mg含む、項3.1〜3.3のいずれかの組成物。
3.7. 本発明の結晶形A〜Fのいずれか、例えば項1.1〜1.239のいずれか、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれか、例えば項2.1〜2.30のいずれかを0.5 mg/kg〜20 mg/kg/日、例えば1 mg/kg〜15 mg/kg/日、例えば1 mg/kg〜10 mg/kg/日、例えば2 mg/kg〜20 mg/kg/日、例えば2 mg/kg〜10 mg/kg/日、例えば3 mg/kg〜15 mg/kg/日投与するための項3.1〜3.3のいずれかの組成物。
3.8. 本発明の結晶形A〜Fのいずれかを50重量%未満、例えば項1.1〜1.239のいずれか、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれか、例えば項2.1〜2.30のいずれかを例えば40重量%未満、例えば30重量%未満、20重量%未満、例えば1〜40重量%、例えば5〜40重量%、例えば10〜30重量%、例えば15〜25重量%、例えば15〜20重量%、例えば17重量%、例えば25重量%含む、項3.1〜3.7のいずれかの組成物。
3.9. 薬学的に許容される希釈剤又は担体がヒドロキシプロピルメチルセルロースを含む、項3.1〜3.8のいずれかの組成物。
3.10. 組成物がヒドロキシプロピルメチルセルロースを少なくとも10重量%、例えば10〜50重量%、例えば10〜40重量%、例えば20〜50重量%、例えば20〜40重量%、例えば30〜40重量%、例えば37重量%含む、項3.9の組成物。
3.11. ヒドロキシプロピルメチルセルロースのメトキシ置換度が19〜24%である、項3.9又は3.10の組成物。
3.12. ヒドロキシプロピルメチルセルロースのヒドロキシプロポキシ置換度が4〜12%である、項3.9〜3.11のいずれかの組成物。
3.13. ヒドロキシプロピルメチルセルロースがヒプロメロース2208である、項3.9〜3.12のいずれかの組成物。
3.14. ヒドロキシプロピルメチルセルロースが4,000mPA・σの公称粘度を有する、項3.9〜3.13のいずれかの組成物。
3.15. ヒドロキシプロピルメチルセルロースが2,000〜6,000mPA・σ、例えば2,600〜5,000mPA・σ、例えば2,663〜4,970mPA・σの粘度を有する、項3.9〜3.13のいずれかの組成物。
3.16. 薬学的に許容される希釈剤又は担体がアルファ−ラクトース一水和物を含む、項3.9〜3.15のいずれかの組成物。
3.17. 組成物がアルファ−ラクトース一水和物を少なくとも10重量%、例えば10〜80重量%、例えば20〜70重量%、例えば20〜60重量%、例えば20〜50重量%、例えば20〜40重量%、例えば20〜30重量%、例えば30〜70重量%、例えば30〜60重量%、例えば30〜50重量%、例えば30〜40重量%、例えば37重量%含む、項3.16の組成物。
3.18. 組成物が粉砕されたアルファ−ラクトース一水和物を含む、項3.16又は3.17の組成物。
3.19. 組成物がヒドロキシプロピルメチルセルロース及びアルファ−ラクトース一水和物の共処理混合物(例えばRetalac(登録商標))を含む、項3.1〜3.18のいずれかの組成物。
3.20. 混合物が等量のヒドロキシプロピルメチルセルロース及びアルファ−ラクトース一水和物を含む、項3.19の組成物。
3.21. 混合物が100μm〜200μmの範囲、例えば125μmのd50(メジアン径)を有するヒドロキシプロピルメチルセルロース及びアルファ−ラクトース一水和物の粒子を含む、項3.19又は3.20の組成物。
3.22. 混合物がヒドロキシプロピルメチルセルロース及びアルファ−ラクトース一水和物の粒子を有し、粒度分布が以下:
<63μm≦25%
<100μm:35%
<250μm≧80%
のとおりである、項3.19〜3.21のいずれかの組成物。
3.23. 組成物が混合物の少なくとも20重量%、例えば少なくとも30重量%、例えば少なくとも40重量%、例えば少なくとも50重量%、例えば少なくとも60重量%、例えば少なくとも70重量%、例えば少なくとも80重量%、例えば20〜90重量%、例えば30〜80重量%、例えば40〜80重量%、例えば50〜80重量%、例えば60〜80重量%、例えば70〜80重量%、例えば75重量%を含む、項3.19〜3.22のいずれかの組成物。
3.24. 薬学的に許容される希釈剤又は担体が滑沢剤、例えばステアリン酸マグネシウムを含む、項3.1〜3.23のいずれかの組成物。
3.25. 滑沢剤がベヘン酸グリセリル、ステアリン酸マグネシウム、タルク及びフマル酸ステアリルナトリウム、例えばステアリン酸マグネシウムの1つ以上である、項3.24の組成物。
3.26. 組成物が滑沢剤を10重量%未満、例えば5重量%未満、3重量%未満、1重量%未満、例えば0.1〜1重量%、例えば0.1〜0.8重量%、例えば0.5重量%含む、項3.24又は3.25の組成物。
3.27. 組成物がステアリン酸マグネシウムを10重量%未満、例えば5重量%未満、3重量%未満、1重量%未満、例えば0.1〜1重量%、例えば0.1〜0.8重量%、例えば0.5重量%含む、項3.24〜3.26のいずれかの組成物。
3.28. 薬学的に許容される希釈剤又は担体が希釈剤、崩壊剤、結合剤及び放出調節剤の1つ以上を含む、項3.1〜3.27のいずれかの組成物。
3.29. 希釈剤がマンニトール(例えばPearlitol 300 DC)、微結晶性セルロース(例えばAvicel pH102)及びアルファ化デンプン(例えばStarch 1500)の1つ以上である、項3.28の組成物。
3.30. 崩壊剤がクロスポビドン(例えばPolyplasdone XL-10)及びデンプングリコール酸ナトリウム(例えばExplotab)の1つ又は両方である、項3.29の組成物。
3.31. 結合剤がポリビニルピロリドン(例えばPovidone K29/32)である、項3.28の組成物。
3.32. 放出調節剤がヒドロキシプロピルセルロース(例えばKlucel EXF, Klucel MXF及び/又はKlucel HXF)及びヒドロキシプロピルメチルセルロース(例えばMethocel K100M、Methocel K4M PREM、Methocel K15M PREM CR)の1つ以上である、項3.28の組成物。
3.33. 組成物が放出調節剤を少なくとも5重量%、例えば5〜60重量%、例えば10〜50重量%、例えば10〜40重量%含む、項3.28又は3.32の組成物。
3.34. 放出調節剤がヒドロキシプロピルメチルセルロースである、項3.32又は3.33の組成物。
3.35. 治療的有効量の、項1.1〜1.239のいずれかに記載の結晶形A〜Fのいずれか、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれか、例えば項2.1〜2.30のいずれか、又は項3.1〜3.34のいずれかに記載の医薬組成物を必要とする患者に投与することを特徴とする、標的中枢神経系障害に原因として関連する複数の生体アミンの再取り込みを阻害することにより治療しうる障害の予防もしくは治療及び/又はいずれかの障害に伴う症状の緩和のための方法であって、再取り込み阻害の標的となる生体アミンがノルエピネフリン及び/又はセロトニン及び/又はドーパミンから選択される方法、特定の具体的態様において以下のいずれかの障害を予防又は治療する方法:
(i)注意欠陥多動性障害(ADHD、小児及び成人の両方)及び関連する行動障害並びにアルコール乱用、薬物乱用、強迫性障害、学習障害、読解力障害、ギャンブル中毒、躁症状、恐怖症、パニック発作、反抗挑戦性障害、行為障害、破壊的行動障害、学校での学業上の問題、喫煙、異常性行動、統合失調症的行動、身体化、鬱(大うつ病性障害、再発性;気分変調性障害;特定不能のうつ病性障害(NOS);大うつ病性障害、単一エピソード;双極性障害、アルツハイマー病、精神病又はパーキンソン病に伴う鬱;産後うつ;及び季節性情動障害などであるが、これらに限定されない)、睡眠障害、全般不安症、吃音及びチック症(トゥレット障害など)の形態及び症状;
(ii)ADHD、物質乱用、鬱、不安症(パニック障害、全般不安症、強迫性障害、外傷後ストレス障害及び社交不安症などであるが、これらに限定されない)、自閉症、外傷性脳損傷、認知障害、統合失調症(特に認知力について)、肥満、慢性疼痛性障害、パーソナリティ障害及び軽度認知障害;
(iii)不安症、パニック障害、外傷後ストレス障害、強迫性障害、統合失調症及び関連障害、肥満、チック症、中毒、パーキンソン病及び慢性疼痛;
(iv)物質乱用障害(アルコール関連障害、ニコチン関連障害、アンフェタミン関連障害、大麻関連障害、コカイン関連障害、幻覚薬使用障害、吸入剤関連障害及びオピオイド関連障害などであるが、これらに限定されない);
(v)認知障害、双極性障害、神経性無食欲症、神経性過食症、気分循環性障害、慢性疲労症候群、慢性又は急性ストレス、線維筋痛症及び他の身体表現性障害(身体化障害、転換性障害、疼痛性障害、心気症、身体醜形障害、未分化身体表現性障害、身体表現性NOSなど)、失禁(すなわち、緊張性尿失禁、真性腹圧性尿失禁及び混合性尿失禁)、吸入障害、躁病、片頭痛、末梢神経障害;
(vi)嗜癖性障害(摂食障害、衝動制御障害、アルコール関連障害、ニコチン関連障害、アンフェタミン関連障害、大麻関連障害、コカイン関連障害、幻覚薬使用障害、吸入剤関連障害、オピオイド関連障害などであるが、これらに限定されない);
(vii)脆弱X症候群関連障害;
(viii)自閉症スペクトラム障害(ASD)、例えば脆弱X症候群関連障害の患者におけるもの;
(ix)脆弱X症候群関連障害の患者におけるADHD;
(x)ADHDと鬱の併存症;
(xi)ADHDと物質乱用の併存症;
(xii)ADHDと不安症の併存症。
3.36. 医薬としての使用、例えば項3.35に記載のいずれかの障害の治療又は予防のための医薬の製造における使用のための、項3.1〜3.34のいずれかに記載の医薬組成物。
3.37. 項3.35に記載のいずれかの障害の予防もしくは治療における使用又は項3.35に記載のいずれかの障害の治療もしくは予防のための医薬の製造における使用のための、項1.1〜1.239のいずれかに記載の結晶形A〜F、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれか、例えば項2.1〜2.30のいずれか。
第六態様において、本発明は以下に記載の方法又はこれらと同様の方法のいずれかにより製造された、項1.1〜1.239のいずれか又は項2.1〜2.30のいずれかに記載の結晶形を提供する:
4.1 本化合物の塩酸付加塩形態((1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩)に水を加え;
すべての固体を加熱溶解し、例えば30〜40℃、例えば34℃の内部温度に加熱し;
有機溶媒、例えばテトラヒドロフラン及び/又は酢酸イソプロピルを加え;
水層を分離し;
塩基、例えばアンモニア水を水層に加え;
有機溶媒、例えば酢酸イソプロピルを加え;
例えば少なくとも15分間撹拌し;
例えば少なくとも30分間、層を静置させ;
有機層を分離し;
有機層を、例えば硫酸マグネシウムで乾燥し;
ろ過し;
ろ過ケーキを有機溶媒、例えば酢酸イソプロピルで洗浄し;
ろ液及び洗浄液を濃縮し;
イソプロピルアルコールを加え;
室温にて撹拌してすべての固体を溶解し;
塩酸、例えばHCl/イソプロパノールを加えて固体を形成させ、例えばHClを10分にわたり加え、例えばHCl/イソプロパノールを10分にわたり加え;
さらに塩酸、例えばHCl/イソプロパノールを加え、例えばさらにHClを55分にわたり加え、例えばHCl/イソプロパノールを55分にわたり加え;
スラリーを撹拌し、例えばスラリーを35分間撹拌し;
さらに塩酸、例えばHCl/イソプロパノールを加え、例えばさらにHClを10分にわたり加え、例えばさらにHCl/イソプロパノールを10分にわたり加え;
スラリーを撹拌し、例えばスラリーを30分間撹拌し;
ろ過し;
ろ過ケーキを有機溶媒、例えばイソプロピルアルコールで洗浄し;
ろ過ケーキを乾燥する。
4.2 結晶形Aを40℃/75%RHにて保存し、例えば結晶形Aを40℃/75%RHにて7日間保存し;
結晶を単離する。
4.3 (1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩、例えば結晶形Aの、例えばクロロホルム、ジクロロメタン、ヘキサフルオロイソプロピルアルコール、メタノール及び/又は2,2,2−トリフルオロエタノール(TFE)溶液を調製し;
超音波処理し;
目視観測で判断して完全な溶解を達成し;
ろ過し;
周囲条件にて、例えば小さな穴を開けたアルミホイルで覆われた容器内で、溶媒を蒸発させ;
結晶を単離する。
4.4 (1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩、例えば結晶形Aの、例えばクロロホルム、ジクロロメタン、エタノール及び/又はメタノール溶液を調製し;
ろ過し;
貧溶媒、例えばトルエン、ヘプタン、アセトニトリル、メチルエチルケトン、アセトン、ヘキサン、テトラヒドロフラン、ジオキサン、酢酸エチル及び/又はイソプロピルエーテルと混合し;
結晶を単離する。
4.5 (1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩、例えば結晶形Aを蒸気、例えば有機溶媒の蒸気、例えばジクロロメタン及び/又はエタノールの蒸気に曝し;
結晶を単離する。
4.6 (1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩、例えば結晶形Aの、例えばジクロロメタン、エタノール、イソプロピルアルコール、1−プロパノール及び/又は水の懸濁液を調製し;
常温又は昇温下、撹拌し;
結晶を、例えば真空ろ過により単離する。
4.7 (1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩、例えば結晶形Aの、有機溶媒、例えばジクロロメタン、エタノール、イソプロピルアルコール及び/又は1−プロパノール溶液を昇温下、調製し;
例えば0.2μmナイロンフィルターを通して、温めた容器中にろ過し;
冷却し;
適宜、冷蔵庫及び/又は冷凍庫内に置くことによりさらに冷却し;
結晶を単離する。
4.8 (1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩、例えば結晶形Aの、有機溶媒、例えばジクロロメタン、エタノール、イソプロピルアルコール及び/又は1−プロパノール溶液を昇温下、調製し;
例えば0.2μmナイロンフィルターを通して、冷やした容器中にろ過し;
0℃未満、例えば−78℃浴、例えばイソプロピルアルコール/ドライアイス浴中に置いて冷却し;
適宜、冷凍庫内に置くことによりさらに冷却し;
結晶を単離する。
4.9 (1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩、例えば結晶形Aの、有機溶媒、例えばエタノール、イソプロピルアルコール、メタノール、アセトン、トルエン、1−プロパノール、水及び/又はジオキサン溶液を調製し;
超音波処理し;
目視観測で判断して完全な溶解を達成し;
例えば0.2μmナイロンフィルターを通してろ過し;
常温にて溶媒を蒸発させ;
結晶を単離する。
4.10 (1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩、例えば結晶形Aの、有機溶媒、例えばジクロロメタン、エタノール、イソプロピルアルコール及び/又は1−プロパノール溶液又は懸濁液を調製し;
例えば冷凍庫内で冷却し;
結晶を単離する。
4.11 (1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩、例えば結晶形Aの、有機溶媒、例えばヘキサフルオロイソプロピルアルコール及び/又は2,2,2−トリフルオロエタノール溶液又は懸濁液を調製し;
例えば0.2μmナイロンフィルターを通してろ過し;
貧溶媒、例えば有機貧溶媒、例えばイソプロピルエーテル、テトラヒドロフラン、アセトニトリル、酢酸エチル及び/又はメチルエチルケトンを加えて析出させ;
例えば真空ろ過により、結晶を単離する。
4.12 (1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサンを有機溶媒、例えばイソプロパノールに溶解し;
HCl、例えばHCl/イソプロパノールを加え;
適宜ろ過する。
4.13 溶液又はスラリーに所望の形態の結晶を添加し、例えば溶液又はスラリーに結晶形Aを添加し、例えば溶液又はスラリーの温度が室温を超えている間、例えば65℃にて、添加する。
4.14 (1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩の有機溶媒、例えばエタノール溶液を、例えば70℃に加熱しながら溶解し;
適宜、例えばカプセルカーボンフィルターによりろ過し;
適宜、例えば全5倍容量(添加した(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩に対して)まで濃縮し;
適宜、再加熱して固体を再溶解し;
適宜、冷却、例えば65℃まで冷却し;
溶液に種晶を添加し;
適宜撹拌してシードベッドを成長させ;
適宜冷却し;
適宜ろ過する。
4.15 (1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩を水に、例えば加熱しながら、例えば30〜40℃、例えば34℃の内部温度まで加熱しながら、溶解し;
水溶液を洗浄し;
塩基、例えばアンモニアを添加し;
(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサンを有機溶媒、例えば酢酸イソプロピルで抽出し;
適宜、例えば硫酸マグネシウムで乾燥し;
適宜濃縮して固体を得;
適宜、有機溶媒、例えばイソプロパノールを添加して固体を溶解し;
HCl、例えばHCl/イソプロパノールを加え;
適宜ろ過し;
適宜、有機溶媒、例えばイソプロパノールで洗浄する。
4.16 (1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩の、有機溶媒、例えばエタノール溶液を、例えば70℃まで加熱しながら、溶解し;
適宜、例えばカプセルカーボンフィルターによりろ過し;
例えば全5倍容量(添加した(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩に対して)まで濃縮し;
適宜、濃縮前又は後に種晶を添加し;
適宜ろ過する。
4.17 (1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサンを有機溶媒に溶解し;
HCl、例えばHCl/イソプロパノールを加え;
適宜ろ過する。
4.18 結晶形、例えば項1.1〜1.239又は2.1〜2.30のいずれか、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれかを単離することを含む、項4.1〜4.17のいずれかに記載の方法。
4.19 実施例1〜3のいずれか、例えば実施例1により製造された、項1.1〜1.239又は2.1〜2.30のいずれかに記載の結晶形。
4.20 実施例、例えば実施例1、例えば実施例3、例えば実施例6〜13のいずれか、例えば実施例17、例えば実施例18に記載のいずれかの合成法により製造された、項1.1〜1.239又は2.1〜2.30のいずれかに記載の結晶形。
4.1 本化合物の塩酸付加塩形態((1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩)に水を加え;
すべての固体を加熱溶解し、例えば30〜40℃、例えば34℃の内部温度に加熱し;
有機溶媒、例えばテトラヒドロフラン及び/又は酢酸イソプロピルを加え;
水層を分離し;
塩基、例えばアンモニア水を水層に加え;
有機溶媒、例えば酢酸イソプロピルを加え;
例えば少なくとも15分間撹拌し;
例えば少なくとも30分間、層を静置させ;
有機層を分離し;
有機層を、例えば硫酸マグネシウムで乾燥し;
ろ過し;
ろ過ケーキを有機溶媒、例えば酢酸イソプロピルで洗浄し;
ろ液及び洗浄液を濃縮し;
イソプロピルアルコールを加え;
室温にて撹拌してすべての固体を溶解し;
塩酸、例えばHCl/イソプロパノールを加えて固体を形成させ、例えばHClを10分にわたり加え、例えばHCl/イソプロパノールを10分にわたり加え;
さらに塩酸、例えばHCl/イソプロパノールを加え、例えばさらにHClを55分にわたり加え、例えばHCl/イソプロパノールを55分にわたり加え;
スラリーを撹拌し、例えばスラリーを35分間撹拌し;
さらに塩酸、例えばHCl/イソプロパノールを加え、例えばさらにHClを10分にわたり加え、例えばさらにHCl/イソプロパノールを10分にわたり加え;
スラリーを撹拌し、例えばスラリーを30分間撹拌し;
ろ過し;
ろ過ケーキを有機溶媒、例えばイソプロピルアルコールで洗浄し;
ろ過ケーキを乾燥する。
4.2 結晶形Aを40℃/75%RHにて保存し、例えば結晶形Aを40℃/75%RHにて7日間保存し;
結晶を単離する。
4.3 (1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩、例えば結晶形Aの、例えばクロロホルム、ジクロロメタン、ヘキサフルオロイソプロピルアルコール、メタノール及び/又は2,2,2−トリフルオロエタノール(TFE)溶液を調製し;
超音波処理し;
目視観測で判断して完全な溶解を達成し;
ろ過し;
周囲条件にて、例えば小さな穴を開けたアルミホイルで覆われた容器内で、溶媒を蒸発させ;
結晶を単離する。
4.4 (1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩、例えば結晶形Aの、例えばクロロホルム、ジクロロメタン、エタノール及び/又はメタノール溶液を調製し;
ろ過し;
貧溶媒、例えばトルエン、ヘプタン、アセトニトリル、メチルエチルケトン、アセトン、ヘキサン、テトラヒドロフラン、ジオキサン、酢酸エチル及び/又はイソプロピルエーテルと混合し;
結晶を単離する。
4.5 (1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩、例えば結晶形Aを蒸気、例えば有機溶媒の蒸気、例えばジクロロメタン及び/又はエタノールの蒸気に曝し;
結晶を単離する。
4.6 (1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩、例えば結晶形Aの、例えばジクロロメタン、エタノール、イソプロピルアルコール、1−プロパノール及び/又は水の懸濁液を調製し;
常温又は昇温下、撹拌し;
結晶を、例えば真空ろ過により単離する。
4.7 (1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩、例えば結晶形Aの、有機溶媒、例えばジクロロメタン、エタノール、イソプロピルアルコール及び/又は1−プロパノール溶液を昇温下、調製し;
例えば0.2μmナイロンフィルターを通して、温めた容器中にろ過し;
冷却し;
適宜、冷蔵庫及び/又は冷凍庫内に置くことによりさらに冷却し;
結晶を単離する。
4.8 (1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩、例えば結晶形Aの、有機溶媒、例えばジクロロメタン、エタノール、イソプロピルアルコール及び/又は1−プロパノール溶液を昇温下、調製し;
例えば0.2μmナイロンフィルターを通して、冷やした容器中にろ過し;
0℃未満、例えば−78℃浴、例えばイソプロピルアルコール/ドライアイス浴中に置いて冷却し;
適宜、冷凍庫内に置くことによりさらに冷却し;
結晶を単離する。
4.9 (1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩、例えば結晶形Aの、有機溶媒、例えばエタノール、イソプロピルアルコール、メタノール、アセトン、トルエン、1−プロパノール、水及び/又はジオキサン溶液を調製し;
超音波処理し;
目視観測で判断して完全な溶解を達成し;
例えば0.2μmナイロンフィルターを通してろ過し;
常温にて溶媒を蒸発させ;
結晶を単離する。
4.10 (1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩、例えば結晶形Aの、有機溶媒、例えばジクロロメタン、エタノール、イソプロピルアルコール及び/又は1−プロパノール溶液又は懸濁液を調製し;
例えば冷凍庫内で冷却し;
結晶を単離する。
4.11 (1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩、例えば結晶形Aの、有機溶媒、例えばヘキサフルオロイソプロピルアルコール及び/又は2,2,2−トリフルオロエタノール溶液又は懸濁液を調製し;
例えば0.2μmナイロンフィルターを通してろ過し;
貧溶媒、例えば有機貧溶媒、例えばイソプロピルエーテル、テトラヒドロフラン、アセトニトリル、酢酸エチル及び/又はメチルエチルケトンを加えて析出させ;
例えば真空ろ過により、結晶を単離する。
4.12 (1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサンを有機溶媒、例えばイソプロパノールに溶解し;
HCl、例えばHCl/イソプロパノールを加え;
適宜ろ過する。
4.13 溶液又はスラリーに所望の形態の結晶を添加し、例えば溶液又はスラリーに結晶形Aを添加し、例えば溶液又はスラリーの温度が室温を超えている間、例えば65℃にて、添加する。
4.14 (1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩の有機溶媒、例えばエタノール溶液を、例えば70℃に加熱しながら溶解し;
適宜、例えばカプセルカーボンフィルターによりろ過し;
適宜、例えば全5倍容量(添加した(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩に対して)まで濃縮し;
適宜、再加熱して固体を再溶解し;
適宜、冷却、例えば65℃まで冷却し;
溶液に種晶を添加し;
適宜撹拌してシードベッドを成長させ;
適宜冷却し;
適宜ろ過する。
4.15 (1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩を水に、例えば加熱しながら、例えば30〜40℃、例えば34℃の内部温度まで加熱しながら、溶解し;
水溶液を洗浄し;
塩基、例えばアンモニアを添加し;
(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサンを有機溶媒、例えば酢酸イソプロピルで抽出し;
適宜、例えば硫酸マグネシウムで乾燥し;
適宜濃縮して固体を得;
適宜、有機溶媒、例えばイソプロパノールを添加して固体を溶解し;
HCl、例えばHCl/イソプロパノールを加え;
適宜ろ過し;
適宜、有機溶媒、例えばイソプロパノールで洗浄する。
4.16 (1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩の、有機溶媒、例えばエタノール溶液を、例えば70℃まで加熱しながら、溶解し;
適宜、例えばカプセルカーボンフィルターによりろ過し;
例えば全5倍容量(添加した(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩に対して)まで濃縮し;
適宜、濃縮前又は後に種晶を添加し;
適宜ろ過する。
4.17 (1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサンを有機溶媒に溶解し;
HCl、例えばHCl/イソプロパノールを加え;
適宜ろ過する。
4.18 結晶形、例えば項1.1〜1.239又は2.1〜2.30のいずれか、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれかを単離することを含む、項4.1〜4.17のいずれかに記載の方法。
4.19 実施例1〜3のいずれか、例えば実施例1により製造された、項1.1〜1.239又は2.1〜2.30のいずれかに記載の結晶形。
4.20 実施例、例えば実施例1、例えば実施例3、例えば実施例6〜13のいずれか、例えば実施例17、例えば実施例18に記載のいずれかの合成法により製造された、項1.1〜1.239又は2.1〜2.30のいずれかに記載の結晶形。
第七態様において、本発明は、項1.1〜1.239又は2.1〜2.30のいずれかに記載の結晶形A〜F、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれかを、項4.1〜4.20又は実施例のいずれかに記載の方法により製造する方法を提供する。
第八態様において、本発明は、項1.1〜1.239又は2.1〜2.30のいずれかに記載の結晶形A〜Fのいずれか、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれかを含む医薬組成物、例えば項3.1〜3.34のいずれかに記載の医薬組成物を製造する方法であって、以下の工程:
項1.1〜1.239又は2.1〜2.30のいずれかに記載の結晶形A〜Fのいずれか、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれかを単離する工程、及び
単離した結晶形を薬学的に許容される希釈剤又は担体と混合する工程
を含む方法を提供する。
項1.1〜1.239又は2.1〜2.30のいずれかに記載の結晶形A〜Fのいずれか、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれかを単離する工程、及び
単離した結晶形を薬学的に許容される希釈剤又は担体と混合する工程
を含む方法を提供する。
本明細書において用語「本化合物」は(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサンを指し、(+)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサンとしても知られている。用語「本化合物の塩酸付加塩形態」は以下の構造:
を有する(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩又は(+)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩を指す。
この化合物は対応する(−)−エナンチオマーを含まないか、又は実質的に含まない、例えば対応する(−)エナンチオマーの遊離形態又は薬学的に許容される塩形態を20重量%以下で含むか、例えば対応する(−)エナンチオマーの遊離形態又は薬学的に許容される塩形態を10重量%以下で含むか、例えば対応する(−)エナンチオマーの遊離形態又は薬学的に許容される塩形態を5重量%以下で含むか、例えば対応する(−)エナンチオマーの遊離形態又は薬学的に許容される塩形態を2重量%以下で含むか、例えば対応する(−)エナンチオマーの遊離形態又は薬学的に許容される塩形態を1重量%以下で含む。
この化合物は対応する(−)−エナンチオマーを含まないか、又は実質的に含まない、例えば対応する(−)エナンチオマーの遊離形態又は薬学的に許容される塩形態を20重量%以下で含むか、例えば対応する(−)エナンチオマーの遊離形態又は薬学的に許容される塩形態を10重量%以下で含むか、例えば対応する(−)エナンチオマーの遊離形態又は薬学的に許容される塩形態を5重量%以下で含むか、例えば対応する(−)エナンチオマーの遊離形態又は薬学的に許容される塩形態を2重量%以下で含むか、例えば対応する(−)エナンチオマーの遊離形態又は薬学的に許容される塩形態を1重量%以下で含む。
「結晶形A」は項1.1〜1.77のいずれかに記載の、又は以下の実施例の関連個所にて特徴付けられる、本化合物の塩酸付加塩形態の結晶形態を指す。
「結晶形B」は項1.78〜1.162のいずれかに記載の、又は以下の実施例の関連個所にて特徴付けられる、本化合物の塩酸付加塩形態の結晶形態を指す。
「結晶形C」は項1.163〜1.231のいずれかに記載の、又は以下の実施例の関連個所にて特徴付けられる、本化合物の塩酸付加塩形態の結晶形態を指す。
「結晶形D」は項2.1〜2.8のいずれかに記載の、又は以下の実施例の関連個所にて特徴付けられる、結晶形態を指す。
「結晶形E」は項2.9〜2.16のいずれかに記載の、又は以下の実施例の関連個所にて特徴付けられる、結晶形態を指す。
「結晶形F」は項2.17〜2.24のいずれかに記載の、又は以下の実施例の関連個所にて特徴付けられる、結晶形態を指す。
本発明は、本明細書、例えば項1.1〜1.239のいずれか又は項2.1〜2.30のいずれかに記載の結晶形A〜F及びその組合せを特許請求する。これらの結晶形は以下の実施例部分に記載されるように製造し、特徴づけることができる。従って、本発明は項1.1〜1.239のいずれか又は項2.1〜2.30のいずれかに示される、又は以下の実施例部分にて特徴づけられる、結晶形A〜Fのいずれかを提供する。
用語他の結晶形を「実質的に含まない」は、他の形態又は結晶形、例えば非晶質又は他の結晶形態が10重量%未満、いくつかの具体的態様において5重量%未満、いくつかの具体的態様において2重量%未満、さらにいくつかの具体的態様において1重量%未満、さらにいくつかの具体的態様において0.1重量%未満、さらにいくつかの具体的態様において0.01重量%未満であることを指す。
用語「溶媒和物」は結晶構造内に化学両論量又は非化学両論量の溶媒を包含する結晶性固体付加物を指す。従って、本明細書において用語「非溶媒和物」形態は本発明の結晶構造内に溶媒分子を含まない又は実質的に含まない結晶形態を指す。同様に、本明細書において用語「非水和物」形態は本発明の結晶構造内に水分子を含まない又は実質的に含まない塩結晶を指す。
用語「非晶質」形態は不規則な分子配列の固体を指し、識別可能な結晶格子を持たない。
用語「患者」はヒト及び非ヒトを含む。ある態様において、患者はヒトである。別の態様において、患者は非ヒトである。
用語「貧溶媒」は本化合物及び/又は本化合物の塩酸付加塩形態((1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩)が難溶性又は不溶性である溶媒を意味する。例えば、貧溶媒としては、本化合物及び/又は本化合物の塩酸付加塩形態の溶解度が35mg/ml未満、例えば10〜30mg/ml、例えば1〜10mg/ml、例えば1mg/ml未満である溶媒が挙げられる。
用語「XRPD」は粉末X線回折を意味する。
所定のサンプルの粉末X線回折パターンは使用機器、サンプル測定時の時間及び温度、及び標準実験誤差に応じて変化しうる(標準偏差)ことが理解されよう。従って、ピークの2θ値、d間隔値、高さ及び相対強度は許容可能な偏差を有する。例えば、これらの値は例えば約20%、15%、10%、5%、3%、2%又は1%の許容可能な偏差を有してもよい。特定の態様において、本発明の結晶形のXRPDパターンの2θ(゜)値又はd間隔値(Å)は±0.2度及び/又は±0.2Åの許容可能な偏差を有してもよい。さらに、本発明の結晶形のXRPDパターンは、当業者に認識されている特徴的なピークにより同定してもよい。例えば、本発明の結晶形は、例えば2つの特徴的なピーク、いくつかの場合には3つの特徴的なピーク、別の場合には5つの特徴的なピークで同定してもよい。従って、用語「実質的に」特定の表で示される、或いは特定の図面に示されるは、当業者に認識されているように当該表/図面に示される主な又は特徴的なピークを有するXRPDを有する任意の結晶を指す。
所定のサンプルの示差走査熱量測定又は熱重量分析サーモグラムは使用機器、サンプル測定時の時間及び温度、及び標準実験誤差に応じて変化しうる(標準偏差)ことが理解されよう。温度値自体は参照温度の±10℃、好ましくは±5℃、好ましくは±3℃の偏差であってもよい。
XRPDについて、ほとんどの場合、約30゜2θまでの範囲内のピークを選択する。丸めアルゴリズムを用いて、データ及び/又は固有のピーク分解能を収集するための使用機器に応じて各ピークを最も近い0.1゜又は0.01゜2θの概数にする。ピーク位置の変動性は±0.2゜2θの範囲内とする。
本明細書においてd間隔(Å)値を算出するために用いた波長は1.5405929Å、Cu−Kα1波長である(Phys. Rev., A56 (6), 4554-4568 (1997))。
米国薬局方ガイドラインにより、変化しやすい水和物及び溶媒和物のピークは±0.2゜2θよりも大きく相違してもよい。
「顕著なピーク」は全観測ピークのサブセットであり、好ましくは重なっておらず、低角度、高強度のピークを同定することにより実測ピークから選択される。
複数の回折パターンが得られる場合、粒子統計(PS)及び/または好ましい選択配向(PO)を評価することができる。一台の回折計で分析した複数のサンプルのXRPDパターン間の再現性により粒子統計が適切であることが示される。複数の回折計によるXRPDパターン間の相対強度の一致は良好な配向統計を示す。あるいは、観測されたXRPDパターンは、可能であれば、単結晶構造に基づく計算XRPDパターンと比較してもよい。面積検出器を用いた二次元散乱パターンを、PS/POを評価するために用いることもできる。PS及びPOの影響を無視できると判断した場合、そのXRPDパターンはそのサンプルの粉末平均強度の典型であり、顕著なピークは「典型的なピーク」として同定してもよい。一般に、典型的なピークを決定するためにより多くのデータを集めれば集めるほど、そのようなピークをより確実に分類することができる。
存在する範囲で「特徴的なピーク」は、典型的なピークのサブセットであり、ある結晶性多形体を別の結晶性多形体(同じ化学組成を有する結晶形態である多形体)から区別するために用いる。特徴的なピークは、典型的なピークが、もしあれば、化合物のある結晶性多形体中に、その化合物の他のすべての既知の結晶性多形体に対し±0.2゜2θ以内に存在することを評価することにより決定する。化合物のすべての結晶性多形体が必ずしも少なくとも1つの特徴的なピークを有しているわけではない。
結晶形Aを製造するための反応において、結晶形Bも形成される場合があることが観察された。しかし、製品の合成は例えば結晶形Aを種晶とすることにより制御してもよい。
本明細書に記載のとおり、結晶形A〜F、例えば項1.1〜1.239、例えば項2.1〜2.30及びそれらの組合せは、アンバランスなトリプル再取り込み阻害剤(TRI)として有用であり、ノルエピネフリン(NE)再取り込みに対し最も有効であり、ドーパミン(DA)再取り込みに対してはその6分の1の有効性を有し、セロトニン(5−HT)再取り込みに対してはその14分の1程度である。従って、本明細書に記載のとおり、結晶形A〜F、例えば項1.1〜1.239、例えば項2.1〜2.30及びそれらの組合せは、標的中枢神経系障害に原因として関連する複数の生体アミンの再取り込みを阻害することにより治療可能な障害の予防もしくは治療及び/又はいずれかの障害に伴う症状の緩和に有用であり、再取り込み阻害の標的となる生体アミンがノルエピネフリン及び/又はセロトニン及び/又はドーパミンから選択される。従って、本発明は、治療的有効量の、項1.1〜1.239のいずれかに記載の結晶形A〜Fのいずれか、例えば結晶形A、例えば項1.1〜1.77のいずれか、例えば結晶形B、例えば項1.78〜1.162のいずれか、例えば項2.1〜2.30のいずれかを、必要とする患者に投与することを含む、以下のいずれかの障害の予防又は治療のための方法を提供する:
・ 注意欠陥多動性障害(ADHD)及び関連行動障害並びに物質乱用(アルコール乱用、薬物乱用)、強迫的行動、学習障害、読解力障害、ギャンブル中毒、躁症状、恐怖症、パニック発作、反抗的態度、行為障害、学校での学業上の問題、喫煙、異常性行動、統合失調症的行動、身体化、鬱、睡眠障害、全般不安症、吃音及びチック症の型及び症状。さらなる障害は米国特許出願公報第2007/0082940号に開示されており、その内容はそのまま参照により本明細書に組み込まれる;
・ 鬱、不安症、自閉症、外傷性脳損傷、認知障害及び統合失調症(特に認知障害)、肥満、慢性疼痛性障害、パーソナリティ障害及び軽度認知障害;
・ パニック障害、外傷後ストレス障害、強迫性障害、統合失調症及び関連障害、肥満、チック症、パーキンソン病;
・ 国際公開公報第WO2013/019271号に開示される疾患、その内容はそのまま参照により本明細書に組み込まれる;
・ 脆弱X症候群関連障害;
・ 患者が先の脆弱X症候群関連障害治療に無効であった脆弱X症候群関連障害;
・ 例えば脆弱X症候群関連障害の患者における不安症及び鬱の一方又は両方との併存症(例えば鬱)である、注意欠陥/多動性障害(ADHD);
・ 自閉症スペクトラム障害(ASD);
・ 国際出願番号第PCT/US2014/069401号に開示される障害、その内容はそのまま参照により本明細書に組み込まれる。
・ 注意欠陥多動性障害(ADHD)及び関連行動障害並びに物質乱用(アルコール乱用、薬物乱用)、強迫的行動、学習障害、読解力障害、ギャンブル中毒、躁症状、恐怖症、パニック発作、反抗的態度、行為障害、学校での学業上の問題、喫煙、異常性行動、統合失調症的行動、身体化、鬱、睡眠障害、全般不安症、吃音及びチック症の型及び症状。さらなる障害は米国特許出願公報第2007/0082940号に開示されており、その内容はそのまま参照により本明細書に組み込まれる;
・ 鬱、不安症、自閉症、外傷性脳損傷、認知障害及び統合失調症(特に認知障害)、肥満、慢性疼痛性障害、パーソナリティ障害及び軽度認知障害;
・ パニック障害、外傷後ストレス障害、強迫性障害、統合失調症及び関連障害、肥満、チック症、パーキンソン病;
・ 国際公開公報第WO2013/019271号に開示される疾患、その内容はそのまま参照により本明細書に組み込まれる;
・ 脆弱X症候群関連障害;
・ 患者が先の脆弱X症候群関連障害治療に無効であった脆弱X症候群関連障害;
・ 例えば脆弱X症候群関連障害の患者における不安症及び鬱の一方又は両方との併存症(例えば鬱)である、注意欠陥/多動性障害(ADHD);
・ 自閉症スペクトラム障害(ASD);
・ 国際出願番号第PCT/US2014/069401号に開示される障害、その内容はそのまま参照により本明細書に組み込まれる。
本明細書に記載の本発明の結晶形を用いた治療が検討される障害としては、DSM−IV(精神障害の診断と統計マニュアル第四版)米国精神医学会、ワシントンD.C.,1994年による診断基準へのクイック・レファレンスに記載の障害が挙げられる。これらの標的障害としては、注意欠陥/多動性障害、不注意優勢型;注意欠陥/多動性障害、多動性衝動性優勢型;注意欠陥/多動性障害、混合型;特定不能(NOS)の注意欠陥/多動性障害;行為障害;反抗挑戦性障害;及び特定不能(NOS)の破壊的行動障害が挙げられるが、これらに限定されない。
本発明に記載の治療及び/又は予防に適した抑鬱障害としては、大鬱病性障害、反復性;気分変調性障害;特定不能(NOS)の抑鬱障害;及び大鬱病性障害、単一エピソードが挙げられるが、これらに限定されない。
本発明の方法及び組成物を用いた治療及び/又は予防に適した嗜癖障害としては、摂食障害、衝動制御障害、アルコール関連障害、ニコチン関連障害、アンフェタミン関連障害、大麻関連障害、コカイン関連障害、幻覚薬使用障害、吸入剤関連障害及びオピオイド関連障害が挙げられるが、これらに限定されない。
好ましくは、本発明の結晶形は結晶形Aである。
本明細書において「治療的有効量」は、ヒト又は非ヒトに投与した場合に、症状の緩和などの治療的有用性を提供するために有効な量を指す。治療的有用性を得るために投与される物質の具体的な用量は、もちろん、例えば投与される具体的な物質、投与経路、治療される病態及び治療される個体などの具体的な環境により決定されよう。
本開示の用量又は該用量の投与方法は特に制限されない。本開示を実施するのに用いられる投与量はもちろん、例えば投与の形態及び所望の療法に応じて変化する。一般に、満足のいく結果は約0.01〜2.0mg/kgオーダーの投与量における経口投与にて得られることが示される。経口投与のために指示される1日投与量は、約0.75mg〜200mgの範囲で、好適には1日1回又は2〜4回に分けて、あるいは持続放出形態で投与してもよい。従って、経口投与用単位投与形態は、例えば約0.2mg〜75mg又は150mg、例えば約0.2mg又は2.0mg又は50mg又は75mg又は100mg〜200mg又は500mgの、結晶形A〜Fのいずれか又はその組合せ、好ましくは結晶形A、例えば項1.1〜1.77のいずれかを、そのための薬学的に許容される希釈剤又は担体とともに含んでもよい。
本発明の結晶形は、種々の他の既知の送達経路、装置及び方法を用いることができるが、経口、非経口、経皮、吸入、又は持続放出などの任意の適切な経路により投与してもよい。いくつかの具体的態様において、本発明の結晶形のいずれか、例えば結晶形A、例えば項1.1〜1.77のいずれかを含む、持続放出医薬組成物、例えば持続放出経口医薬組成物は、約6時間以上、例えば8時間以上、例えば12時間以上、例えば18時間以上、例えば24時間以上の持続送達期間にわたるものとして提供される。いくつかの具体的態様において、本発明のいずれかの結晶形、例えば結晶形A、例えば項1.1〜1.77のいずれかを含む、即時放出医薬組成物、例えば即時放出経口医薬組成物を提供する。
さらなる投与量及び製剤は国際出願番号第PCT/US2014/069401号及び国際出願番号第PCT/US2014/069416号に提供され、これらの内容はそれぞれ参照により本明細書にそのまま引用される。
(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサンの塩酸付加塩形態は、米国特許公報第2007/0082940号又は国際公開番号第WO2013/019271号に記載されるとおりに製造してもよく、これらはいずれも参照により本明細書にそのまま引用される。
米国特許公報第2007/0082940号及び国際公開番号第WO2013/019271号はいずれも(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩の合成を記載するが、(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩の特定の結晶形については何ら議論されていない。
次のセクションは本発明の結晶形A〜Fを製造及び特徴付けるための方法を例示する。熱力学的及び速度論的結晶化の両方を用いる。これらの技術は以下により詳細に記載する。
貧溶媒析出:種々の溶媒で溶液を調製し、0.2μmナイロンフィルターを通してバイアル中にろ過する。次いで、貧溶媒を析出が観察されるまで添加する。得られる固体を真空ろ過により単離し、分析する。
クラッシュ・クール(CC):溶液を種々の溶媒で、昇温下にて調製し、0.2μmナイロンフィルターを通して予め冷却したバイアル中に熱時ろ過する。バイアルを(ドライアイス+イソプロパノール)冷却バスに置く。固体の析出がすぐに観察されない場合、サンプルを冷凍庫内に置く。得られる固体を真空ろ過により単離し、分析する。
ファースト・エバポレーション(FE):溶液を種々の溶媒で調製し、溶解を補助するために分けて添加するごとに超音波処理する。混合物の溶解が目視観測で判断して完了するとすぐに、0.2μmナイロンフィルターを通して溶液をろ過する。ろ過した溶液を蓋なしバイアル中、周囲環境下にて蒸発させる。部分的な蒸発と指定されていない場合は、溶液を蒸発乾固する。形成される固体を単離し、分析する。
フリーズ・ドライ(凍結乾燥):溶液を1:1ジオキサン:水又は水で調製し、0.2μmナイロンフィルターを通してろ過し、ドライアイス及びイソプロパノールのバスに浸したバイアル又はフラスコ内で凍結させる。凍結サンプルを含むバイアル又はフラスコをFlexi-Dry凍結乾燥機に取り付け、一定時間乾燥する。乾燥後、固体を単離し、使用まで乾燥剤付き冷凍庫にて貯蔵する。
粉砕:固体サンプルを、摩砕ボールを備えたステンレス鋼摩砕ジャーに置く。次いで、サンプルをボールミル(Retsch Mixer Mill model MM200)で30Hzにて一定時間摩砕する。固体を集め、分析する。
相対湿度ストレス:固体を制御された条件下、蓋をした温度/湿度のチャンバー内のバイアルに置くことにより一定時間、約40℃/75%RH条件にて貯蔵する。サンプルをストレス環境から取り出した後に分析する。
ロータリー・エバポレーション:本化合物の塩酸付加塩形態((1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩)のHFIPA溶液を調製する。サンプルバイアルを約40℃にて加熱した水バスに浸しながら、真空下溶媒のロータリー・エバポレーションにより固体を得る。次いで、固体を周囲温度にて真空下さらに約10分間乾燥する。エバポレーション後、固体を使用まで乾燥剤付き冷凍庫にて貯蔵する。
徐冷(SC):溶液を昇温下、種々の溶媒で調製する。0.2μmナイロンフィルターを通して、溶液を温めたバイアル中に熱時ろ過する。バイアルに蓋をしてホットプレート上に放置し、ホットプレートの電源を切ってサンプルを周囲温度までゆっくりと冷却させる。周囲温度まで冷却しても固体が存在しない場合、サンプルをさらに冷却するために冷蔵庫及び/又は冷凍庫内に置く。固体を真空ろ過により集め、分析する。
スロー・エバポレーション(SE):溶液を種々の溶媒で調製し、溶解を補助するために超音波処理する。目視観測で判断して混合物が完全に溶解してすぐに、0.2μmナイロンフィルターを通して溶液をろ過する。小さな穴を開けたアルミホイルで覆われたバイアル内で、ろ過した溶液を周囲温度にて溶媒留去する。部分的な蒸発と指定されていない場合、溶液を蒸発乾固する。形成される固体を単離し、分析する。
スラリー法:過剰な固体が存在するほど十分な固体を所定の溶媒に加えて懸濁液を調製する。次いで、混合物を周囲温度又は昇温下、蓋をしたバイアル中にて撹拌する。一定時間後に、固体を真空ろ過により単離し、分析する。
蒸気拡散(VD):溶液を種々の溶媒で調製し、0.2μmナイロンフィルターを通してろ過する。ろ過した溶液を1ドラムバイアルに分配し、次いで貧溶媒を含む20mLバイアル内に置く。1ドラムバイアルは蓋をせずに放置し、20mLバイアルは蓋をして蒸気拡散させる。得られた固体を単離し、分析する。
蒸気ストレス(VS):固体サンプルを1ドラムバイアル中に置く。次いで溶媒を含む20mLバイアルにその1ドラムバイアルを置く。20mLバイアルに蓋をし、一定時間、周囲環境下に置く。サンプルをストレス環境から取り出した後に分析する。
XRPDオーバーレイ:XRPDパターンのオーバーレイはPattern Match 2.3.6を用いて生成する。
XRPDインデキシング:本発明の結晶形の高分解能XRPDパターンは、X'Pert High Score Plus(X'Pert High Score Plus 2.2a (2.2.1))又は専用ソフトウェアを用いてインデキシングする。インデキシング及び構造精密化はコンピュータ解析である。
機器技術:本研究における試験物質は以下に記載の機器技術を用いて分析する。
示差走査熱量測定(DSC):DSCはTAインスツルメント製示差走査熱量計を用いて行う。温度較正はNISTトレーサブルなインジウム金属を用いて行う。サンプルをアルミニウムDSCパンに置き、蓋(リッド)で覆い、重量を正確に記録する。サンプルパンとして設定した、重量を測定したアルミニウムパンをセルの参照側に置く。データ取得パラメータ及びパンの構成は各サーモグラムのイメージに表示される。サーモグラム上の方法コードは開始及び終了温度並びに加熱速度の略記であり、例えば-30-250-10は「−30℃〜250℃、10℃/分」を意味する。次の表はパンの構成についての各イメージで用いられる略語を要約する:
略語 意味
T0C Tzeroクリンプパン
HS 蓋が密封シールされている
HSLP 蓋が密封シールされ、レーザーピンホールで穴が
開けられている
C 蓋がクリンプされている
NC 蓋がクリンプされていない
略語 意味
T0C Tzeroクリンプパン
HS 蓋が密封シールされている
HSLP 蓋が密封シールされ、レーザーピンホールで穴が
開けられている
C 蓋がクリンプされている
NC 蓋がクリンプされていない
熱重量分析(TGA):TAインスツルメント製熱重量分析計を用いてTG分析を行う。温度較正はニッケル及びAlumel(商標)を用いて行う。各サンプルをアルミニウムパンに置く。サンプルを密封し、蓋に穴を開けた後、TG炉内に挿入する。炉は窒素下で加熱する。データ取得パラメータは各サーモグラムのイメージに表示される。サーモグラム上の方法コードは開始及び終了温度並びに加熱速度の略記であり、例えば25-350-10は「25℃〜350℃、10℃/分」を意味する。
粉末X線回折(XRPD):Inel XRG-300。粉末X線回折解析は2θ範囲120゜の曲線状位置検出素子を備えたInel XRG-3000回折計で行う。リアルタイムデータは0.03゜2θの分解能にてCu Kα線を用いて収集する。チューブ電圧及び電流をそれぞれ40kV及び30mAに設定する。直接パターン比較を容易にするためにパターンを2.5〜40゜2θに表示する。サンプルは、薄壁ガラスキャピラリーに詰めて分析用に調製する。各キャピラリーは、データ取得中にキャピラリーを回転させるためにモーターを取り付けたゴニオメーター・ヘッドに搭載する。機器較正はシリコン参照標準を用いて毎日行う。データ取得及び処理パラメータはデータセクションで見られる各パターン上に表示する。
粉末X線回折(XRPD):Bruker D-8 Discover回折計。XRPDパターンはBruker D-8 Discover回折計及びBruker's General Area Diffraction Detection System(GADDS, v. 4.1.20)を用いて収集する。Cu Kα線の入射ビームは微細焦点管(40kV、40mA)、ゲーベル鏡及び0.5mm二つ穴コリメータを用いて生成する。サンプルを3ミクロン厚さのフィルム間に詰め、携帯用ディスク形状の試料を形成させる。調製した試料を並進台に固定されたホルダーに充填し、透過ジオメトリで分析する。入射ビームをスキャンし、ラスターして配向統計を最適化する。ビームストップを用いて低角度の入射ビームからの空気散乱を最小化する。回折パターンは、サンプルから15cmに位置するHi-Star領域検出器を用いて集め、GADDSを用いて処理する。分析前にシリコン標準を分析し、Si 111ピーク位置を確認する。データ取得及び処理パラメータはデータセクションで見られる各パターン上に表示する。
粉末X線回折(XRPD):PANalytical X'Pert Pro回折計。XRPDパターンはPANalytical X'Pert Pro回折計を用いて収集する。試料はOptix long高精度焦点源を用いて作成したCu線を用いて分析する。楕円状段階的多層鏡を用いて、Cu KαX線の焦点を試料に合わせ、検出器に向ける。試料を3ミクロン厚さのフィルム間に挟み、透過ジオメトリで分析し、回折進路と平行に回転させて配向統計を最適化する。ビームストップ、散乱防止短拡張子、散乱防止ナイフエッジ及びヘリウム充填を用いて、空気散乱により生成するバックグラウンドを最小化する。ソーラースリットを入射及び回折ビームに用いて、軸発散を最小化する。回折パターンは、試料から240mmに位置する散乱位置検出素子(X'Celerator)を用いて収集する。各回折パターンのデータ取得パラメータはデータセクションの各パターンのイメージ上に表示する。分析前にシリコン試料(NIST参照標準物質640d)を分析し、シリコン111ピークの位置を確認する。
インデキシングのために、許容ピーク位置、バーでマークされたもの、及び実測ピーク間の一致により、単位格子決定の一致が示される。パターンのインデキシングが成功すると、サンプルが主に単結晶相から成ることが示される。割り当てられた消衰記号、単位格子パラメータ及び誘導量に一致した空間群は図面の下方に一覧にする。暫定的なインデキシング結果を確認するために、結晶学的単位格子内の分子充填モチーフを決定しなければならない。分子充填は試さない。
略語
アセトニトリル(ACN)
複屈折(B)
飽和食塩水(飽和塩化ナトリウム水溶液)
密度(d)
ジクロロメタン(DCM)
当量(eq)
エタノール(EtOH)
酢酸エチル(EtOAc)
消衰(E)
式量(FW)
グラム(g)
時間(h,hrs)
ヘキサフルオロイソプロパノール(HFIPA)
高速(高圧)液体クロマトグラフィー(HPLC)
イソプロパノール(IPA)
酢酸イソプロピル(IPAc)
イソプロピルエーテル(IPE)
キログラム(kg)
リットル(L)
メタノール(MeOH)
メチルエチルケトン(MEK)
分(min)
ミリリットル(mL)
溶液のモル濃度(mol/L)(M)
分子量(MW)
モル(mol)
室温(RT)
飽和(sat)
ヘキサメチルジシラザンナトリウム(NaHMDS)
出発物質(SM)
テトラヒドロフラン(THF)
2,2,2−トリフルオロエタノール(TFE)
対(vs)
重量(wt)
実施例1−結晶形Aの調製
アセトニトリル(ACN)
複屈折(B)
飽和食塩水(飽和塩化ナトリウム水溶液)
密度(d)
ジクロロメタン(DCM)
当量(eq)
エタノール(EtOH)
酢酸エチル(EtOAc)
消衰(E)
式量(FW)
グラム(g)
時間(h,hrs)
ヘキサフルオロイソプロパノール(HFIPA)
高速(高圧)液体クロマトグラフィー(HPLC)
イソプロパノール(IPA)
酢酸イソプロピル(IPAc)
イソプロピルエーテル(IPE)
キログラム(kg)
リットル(L)
メタノール(MeOH)
メチルエチルケトン(MEK)
分(min)
ミリリットル(mL)
溶液のモル濃度(mol/L)(M)
分子量(MW)
モル(mol)
室温(RT)
飽和(sat)
ヘキサメチルジシラザンナトリウム(NaHMDS)
出発物質(SM)
テトラヒドロフラン(THF)
2,2,2−トリフルオロエタノール(TFE)
対(vs)
重量(wt)
実施例1−結晶形Aの調製
オーバーヘッド撹拌子、滴下漏斗、熱電対、冷却バス、窒素注入口及び乾燥管を備えた50 L三ツ口丸底フラスコに2-ナフチルアセトニトリル(1500 g, 8.97 mol, SM)を加える。テトラヒドロフラン(6.0 L, 4 mL/g, SM)をその反応容器に加える。2-ナフチルアセトニトリルが全て溶解するまで室温にて撹拌する。(S)-(+)-エピクロロヒドリン(1081 g, 11.67 mol, 1.30 eq)をその反応容器に加える。反応混合物を−28℃の内部温度に冷却する。ドライアイス/アセトンバスを用いて冷却する。ドライアイスはバスに断続的に加え、ナトリウムビス(トリメチルシリル)アミドの添加中、冷却バスを−35〜−25℃に維持する。ナトリウムビス(トリメチルシリル)アミドのTHF溶液(9.0 L, 18.0 mol, 2 mol eq)を滴下漏斗に充填し、内部温度が−14℃未満となるような速度でゆっくりと冷却した反応混合物に加える。添加は1時間40分かかる。添加中の内部温度は一般的に−20〜−17℃である。添加完了後、得られた溶液を−21〜−16℃にて2時間30分撹拌する。HPLCにより反応をモニターする。反応混合物を−20〜−15℃の温度に保ち、HPLCでサンプルを分析する。
2時間30分でのHPLCアッセイによれば、反応が完了していないことを示す。さらにナトリウムビス(トリメチルシリル)アミドのTHF溶液(0.30 L, 0.60 mol, 0.067 mole eq)を、反応混合物の内部温度を−15℃未満に維持しながら滴下漏斗で10分かけて加える。HPLCアッセイにより反応が完了した時点である15分間撹拌する。反応混合物の内部温度が0℃以下であるような速度にてボラン−ジメチルスルフィド(2.25 L, 22.5 mol, 2.5 mole eq)錯体を滴下漏斗で添加する。添加に40分間かかる。ボランの添加が完了した後、反応混合物を40℃にゆっくりと加熱する。内部温度が40℃になれば、加熱を停止する。約2時間にわたりゆっくりと安定した発熱が観察され、最大内部温度が49℃となる。発熱が終わると、内部温度は60℃まで上昇する。反応混合物を60℃にて終夜撹拌する。HPLCで反応をモニターする。反応混合物の温度を60℃に保ち、HPLCによりサンプルを分析する。
さらにボラン−ジメチルスルフィド(0.35 L, 0.70 mol, 0.39 mole eq)を反応混合物に滴下漏斗で添加する。反応混合物を60℃にて3時間30分撹拌する。反応混合物を室温まで冷却する。
オーバーヘッド撹拌子、熱電対、冷却バス及び窒素注入口を備えた第二50 L三ツ口丸底フラスコに、2M HCl/水(17.3 L, 11.5 mL/g SM, 濃HCl 2.9 L及び水14.4 Lから調製)を充填する。HCl水溶液を3℃に冷却する。クエンチ混合物の最大内部温度が23℃であるような速度で、シクロプロピルアミンを含む室温の反応混合物を冷却したHCl溶液にゆっくりと添加する。クエンチに2時間50分かかる。反応のクエンチが完了して、二相混合物を50℃に加熱する。50℃にて1時間撹拌する。室温まで冷却する。酢酸イソプロピル(6.0 L, 4 mL/g SM)を加える。水(7.5 L, 5 mL/g SM)を加える。最低15分間混合物を撹拌する。撹拌を停止し、層を最低30分間静置する。有機(上)層を廃棄する。アンモニア水(2.25 L, 1.5 mL/g SM)を水層に加える。酢酸イソプロピル(7.5 L, 5 mL/g)を加える。混合物を最低15分間撹拌する。撹拌を停止し、層を最低30分間静置する。層を分離する。生成物は有機(上)層にある。酢酸イソプロピル(7.5 L, 5 mL/g SM)を水層に加える。混合物を最低15分間撹拌する。撹拌を停止し、層を最低30分間静置する。層を分離する。生成物は有機(上)層にある。二つの酢酸イソプロピル抽出物を合わせる。5%二塩基性リン酸ナトリウム水溶液(6.0 L, 4 mL/g SM)を合わせた抽出物に加える。混合物を最低15分間撹拌する。撹拌を停止し、層を最低30分間静置する。層を分離し、水(下)層を廃棄する。飽和食塩水(6.0 L, 4 mL/g SM)を合わせた抽出物に加える。混合物を最低15分間撹拌する。撹拌を停止し、層を最低30分間静置する。層を分離し、水(下)層を廃棄する。最終有機層を正味(tared)20 LのBuchiフラスコ中で減圧濃縮する。明橙色ろう状固体を全1967.6 g得る。固体をオーバーヘッド撹拌子、熱電対、加熱マントル、窒素注入口及び乾燥管を備えた50 L三ツ口丸底フラスコに移す。酢酸イソプロピル(15 L, 10 mL/g SM)を加える。混合物を50℃に加熱する。p-トルエンスルホン酸一水和物(1586 g, 8.34 mol, 0.93 mole eq)を、温度を60℃未満に保ちながら30分かけて少しずつ加える。添加が完了して、加熱を停止し、混合物を室温まで冷却させる。固体をろ過して回収する。ろ過ケーキを酢酸イソプロピル(3 L, 2 mL/g SM)で洗浄する。ろ過ケーキをもう一度酢酸イソプロピル(3 L, 2 mL/g SM)で洗浄する。真空でケーキから空気を吸引することによりろ過ケーキをフィルター漏斗中で一定重量まで乾燥する。最初の乾燥後、ろ過ケーキをスパチュラで潰し、ケーキを周期的に撹拌して乾燥を促進させる。白色固体2049 gを得る。HPLCアッセイ:主ピークについて98.2%、シス:トランス比98.5:1.5。
注:5M NaOHの反応混合物への添加は発熱するため、積極的な冷却が必要である。
上記で得られたナフチルシクロプロピルアミントシル酸塩2039.7 g(5.10 mol, 1.0 mol eq)をオーバーヘッド撹拌子、熱電対、滴下漏斗、窒素注入口、乾燥管及び室温水バスを備えた50 L三ツ口丸底フラスコに充填する。13.2 Lの酢酸イソプロピル(IPAc, 13.2 L, 6.5 mL/g SM)を反応フラスコに充填し、室温で撹拌して白色スラリーを得る。塩化チオニル445 mL(6.13 mol, 1.2 mol eq)を、温度を25℃未満に保ちながら滴下漏斗で加える。添加に1時間5分要する。粘性のあるスラリーを常温にて最低2時間撹拌する。反応をHPLCでモニターする。サンプルをHPLCで分析する間、反応混合物を常温にて維持する。5M NaOH(6.1 L, 30.5 mol, 6.0 mol eq)を、氷/水バスを用いて30℃未満に保ち、滴下漏斗で加える。添加に1時間40分要する。反応をHPLCでモニターする。サンプルをHPLCで分析する間、反応混合物を常温にて維持する。反応混合物を25℃で1時間5分撹拌した後、層を静置する。層を分離する。有機(上)層を1M NaOH(2.1 L, 1 mL/g SM)で洗浄する。二つの水層を合わせる。合わせた水層を酢酸イソプロピル(7.6 L, 3.75 mL/g SM)で逆抽出する。洗浄した有機層を逆抽出物と合わせる。合わせた有機層を飽和食塩水(4.1 L, 2 mL/g SM)で洗浄する。有機層を粒状硫酸マグネシウムで乾燥する。固体をろ過して除去する。ろ過ケーキを酢酸イソプロピル(1 L, 0.5 mL/g SM)で洗浄する。合わせたろ液及び洗浄物を20 L Buchi Rotavapフラスコ中で全容積4.2 Lまで濃縮する。オーバーヘッド撹拌子、滴下漏斗、熱電対、冷却バス、窒素注入口及び乾燥管を備えた22 L三ツ口丸底フラスコに移す。酢酸イソプロピル(7.2 L, 溶液の全容積=11.4 L, 5.6 mL/g SM)で希釈する。内部温度が30℃以下となるような速度で、HCl/イソプロピルアルコール(5.7 M, 0.90 L, 5.13 mol, 1.0 mol eq)を滴下漏斗で50分かけて添加する。スラリーを室温にて45分間撹拌する。ろ過し、固体を回収する。ろ過ケーキを酢酸イソプロピル(2.3 L, 1.13 mL/g SM)で洗浄する。ろ過ケーキをもう一度酢酸イソプロピル(2.3 L, 1.13 mL/g SM)で洗浄する。真空でケーキから空気を吸引することによりろ過ケーキを部分的に乾燥する。湿ケーキのHPLCアッセイにより96.3面積%純度及び89.5%EEが示される。
この実験及び別のバッチからの湿ケーキをオーバーヘッド撹拌子、加熱マントル、熱電対、還流冷却器、窒素注入口及び乾燥管を備えた50 L三ツ口丸底フラスコ中で合わせる。イソプロピルアルコール(34.6 L, 7.45 mL/g SM)を加える。スラリーを加熱し、還流する。3時間還流を維持する。加熱を停止し、室温まで冷却させる。ろ過し、固体を回収する。ろ過ケーキをイソプロピルアルコール(6.9 L, 1.5 mL/g SM)で洗浄する。ろ過ケーキをもう一度イソプロピルアルコール(6.9L, 1.5 mL/g SM)で洗浄する。真空でケーキから空気を吸引することによりろ過ケーキを一定重量に乾燥する。生成物2009 gを黄褐色固体として得る。HPLC:>99.5%。キラルHPLC:95.4%。
注:出発物質を完全に溶解するのに必要最低限量のエタノールを用いるべきである。
(1R,5S)-1-(ナフタレン-2-イル)-3-アザビシクロ[3.1.0]ヘキサン塩酸塩をオーバーヘッド撹拌子、熱電対、還流冷却器、加熱マントル、窒素注入口及び乾燥管を備えた50 L三ツ口丸底フラスコに充填する。エタノール(20 L, mL/g SM)を加える。撹拌したスラリーを77℃まで加熱する。さらにエタノールを0.5 Lアリコートに加え、混合物をすべての固体が溶解するまで再還流する。さらに1.5 Lのエタノールを加えた後(全21.5 L)、溶解を完了する。加熱を停止し、溶液を室温まで冷却させる。ろ過し、固体を回収する。ろ過ケーキをエタノール(4.3 L, 2.14 mL/g SM)で洗浄する。真空でろ過ケーキから空気を吸引することによりろ過ケーキを一定重量まで乾燥する。明黄褐色固体1435 gを得る。収率=74%。HPLC:99.5%。キラルHPLC:99.9%。
塩酸付加塩形態の化合物((1R,5S)-1-(ナフタレン-2-イル)-3-アザビシクロ[3.1.0]ヘキサン塩酸塩)(1406 g, 5.72 mol, 1.0 mol eq)(上記工程及び別のバッチから得られた化合物)をオーバーヘッド撹拌子、加熱マントル、熱電対及び窒素注入口を備えた22 L三ツ口丸底フラスコに充填する。水(14 L, 10 mL/g SM)を加える。スラリーを内部温度34℃まで加熱し、すべての固体を溶解する。大きめの分液漏斗に移す。テトラヒドロフラン(2.8 L, 2 mL/g SM)を加える。酢酸イソプロピル(2.8 L, 2 mL/g SM)を加える。撹拌を停止し、層を分離する。有機(上)層を廃棄する。生成物は下(水)層にある。水(下)層にアンモニア水(1.14 L, 17.1 mol, 3.0 mol eq)を加える。酢酸イソプロピル(14.0 L, 10 mL/g SM)を加える。混合物を最低15分間撹拌する。撹拌を停止し、層を最低30分間静置する。層を分離する。生成物は有機(上)層にある。粒状硫酸マグネシウムを有機層に加える。ろ過し、固体を除去する。ろ過ケーキを酢酸イソプロピル(1 L)で洗浄する。ろ過ケーキをもう一度酢酸イソプロピル(1 L)で洗浄する。回収したろ液及び洗浄物を濃縮し、20 L Buchi rotavapフラスコ中で濃縮し、灰白色固体を得る。固体をオーバーヘッド撹拌子、熱電対、滴下漏斗、窒素注入口及び乾燥管を備えた22 L丸底フラスコに充填する。イソプロピルアルコール(14 L, 10 mL/g SM)を加える。室温にて撹拌し、すべての固体を溶解する。5.7 N HCl/IPA(175 mL, 1.0 mol, 0.17 mol eq)を滴下漏斗により10分かけて添加し、白色固体を形成させる。薄いスラリーを室温にて30分間撹拌する。5.7 N HCl/IPA(670 mL, 3.82 mol, 0.67 mol eq)、次いで5.6 N HCl/IPA(110 mL, 0.62 mol, 0.11 mol eq)を滴下漏斗で55分かけて添加する。スラリーを35分間撹拌した後、母液の減量を確認する。5.6 N HCl/IPA(60 mL, 0.34 mol, 0.06 mol eq)を滴下漏斗で10分かけて加える。スラリーを30分間撹拌した後、母液の減量を確認する。ろ過し、固体を回収する。ろ過ケーキをイソプロピルアルコール(2.8 L, 2 mL/g SM)で洗浄する。ろ過ケーキをもう一度イソプロピルアルコール(2.8 L, 2 mL/g SM)で洗浄する。真空でろ過ケーキから空気を吸引することによりろ過ケーキを一定重量まで乾燥する。生成物1277 gを灰白色固体として得る。HPLC:99.9%。
得られた化合物は結晶XRPDパターン(図1)を示し、結晶形Aと表す。XRPDパターンはOptix long高精度焦点源を用いて生成されたCu線入射ビームを用いたPANalytical X'Pert PRO MPD回折計で収集する。楕円状段階的多層鏡を用いてCu Kα X線の焦点を試料に合わせ、検出器に向ける。分析前に、シリコン試料(NIST SRM 640d)を分析し、Si 111ピーク位置を確認する。サンプル試料を3μm厚さのフィルム間で挟み、透過ジオメトリで分析する。ビームストップ、散乱防止短拡張子及び散乱防止ナイフエッジを用いて、空気により生成するバックグラウンドを最小化する。ソーラースリットを入射及び回折ビームに用いて、軸発散からの広がりを最小化する。回折パターンは、試料から240mmに位置する散乱位置検出素子(X'Celerator)及びData Collectorソフトウェアv. 2.2bを用いて収集する。実験XRPDパターンはcGMP仕様書に従い収集する。収集したXRPDパターンは図1に示される(Panalytical X-Pert Pro MPD PW3040 Pro、X線管:Cu(1.54059Å)、電圧:45 kV、電流:40 mA、スキャン範囲:1.01-40.00゜2θ、ステップサイズ:0.017゜2θ、収集時間:1939 s、スキャン速度:1.2゜/min.、スリット:DS:1/2゜、SS:ゼロ、回転時間:1.0 s、モード:透過)。
熱分析結果を図2に示す(DSC、サイズ:1.7800 mg、方法:(-30)-300-10、T0C;TGA、サイズ:6.8320 mg、方法:00-350-10)。TGAによれば、結晶形Aは200℃まで約0.4%重量減少を示す。約276℃におけるTGAの劇的な重量変化は分解と一致する。DSCサーモグラム(図2)は約245〜248℃で複数の吸熱を示し、TGAによれば劇的な重量変化が同時に起こっており、加熱中に重複した事象が起こっていることを示す。
収集した動的蒸気吸着/脱着データ(図3)に基づけば、得られた結晶形Aは非吸湿性物質である。5%RHにおける初期平衡において、結晶形Aは0.03%の重量減少を示し、0.10%の重量増加が5%〜95%RHで観察される。95%〜5%RHの脱着過程中、結晶形Aは約0.10%の重量減少を示す。
湿度調整後の物質は、XRPDによると出発物質と類似する(図50)。
実施例2−結晶形Aの結晶調製
化合物の塩酸付加塩形態((1R,5S)-1-(ナフタレン-2-イル)-3-アザビシクロ[3.1.0]ヘキサン塩酸塩)の溶液を、実施例1の化合物98.5 mgを用いてメタノール2 mLで調製し、0.2μmナイロンフィルターでろ過する。ろ過した溶液の0.5 mLアリコートを1ドラム開口バイアルに分配した後、3 mLの貧溶媒、酢酸エチルを入れた20 mLバイアル内に置く。1ドラムバイアルは蓋をせずに放置し、20 mLバイアルに蓋をして蒸気拡散を起こさせる。単結晶が約7日後に1ドラムバイアル内で成長する。
化合物の塩酸付加塩形態((1R,5S)-1-(ナフタレン-2-イル)-3-アザビシクロ[3.1.0]ヘキサン塩酸塩)の溶液を、実施例1の化合物98.5 mgを用いてメタノール2 mLで調製し、0.2μmナイロンフィルターでろ過する。ろ過した溶液の0.5 mLアリコートを1ドラム開口バイアルに分配した後、3 mLの貧溶媒、酢酸エチルを入れた20 mLバイアル内に置く。1ドラムバイアルは蓋をせずに放置し、20 mLバイアルに蓋をして蒸気拡散を起こさせる。単結晶が約7日後に1ドラムバイアル内で成長する。
データ収集:概算体積0.38×0.30×0.18 mmの無色板状物C15H16ClN [Cl, C15H16N]をランダム配向にてファイバー上にマウントする。予備試験及びデータ収集はグラファイト結晶、入射ビーム単色光分光器を備えたNonius Kappa CCD回折計のMo Kα照射(λ=0.71073Å)により行う。精密化をSHELX97(Sheldrick, G. M. Acta Cryst., 2008, A64, 112)を用いて行う。データ収集のためのセル定数及び配向性マトリックスは、1゜<θ<27゜の範囲の5812反射の設定角を用いた最小二乗精密化から得られる。DENZO/SCALEPACKからの精密化モザイク性は、良好な結晶質(Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307)を示す0.38゜である。空間群はプログラムXPREP(Bruker, XPREP in SHELXTL v. 6.12., Bruker AXS Inc., Madison, WI, USA, 2002)により決定する。以下の条件:h00 h=2n; 0k0 k=2n; 00l l=2nの系統的な存在及びこれに続く最小二乗精密化から、空間群はP212121(no. 19)と決定する。データは150±1 Kの温度で最大2θ値55.71゜まで収集する。
データ整理:フレームをDENZO-SMN(Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307)で積分する。合計5812反射を収集し、そのうち2930は特有である。ロレンツ及び偏光補正をデータに適用する。線形吸収係数はMo Kα照射について0.273 mm-1である。SCALEPACKを用いた経験的吸収補正(Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307)を適用する。透過係数は0.953〜0.953の範囲である。等価な反射の強度を平均化する。平均化のためのアグリーメント因子は強度に基づき2.9%である。
構造解析及び精密化:SIR2004を用いた直接的方法(Burla, M.C., Caliandro, R., Camalli, M,. Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C., Polidori, G., and Spagna, R., J. Appl. Cryst. 2005, 38, 381)により構造を解析する。残りの原子は続く差フーリエ合成により置いていく。水素原子は精密化に含めるが、結合する原子次第で拘束される。構造は関数:
を最小化することにより完全行列最小二乗法にて精密化する。
重量wは1/[σ2(Fo 2) + (0.0384P)2 +(0.2436P)](式中、P=(Fo 2 +2Fc 2)/3)として定義する。
散乱因子は「International Tables for Crystallography」(International Tables for Crystallography, Vol. C, Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992, 表4.2.6.8及び6.1.1.4)から採用する。精密化に用いられる2930反射のうちFo 2>2σ(Fo 2)の反射のみをRの計算において用いる。全2678反射を計算に用いる。精密化の最終サイクルは162変数パラメータを含み、式:
の非加重及び加重アグリーメント因子に収斂する(最大パラメータシフトはその推定標準偏差の<0.01倍である)。
単位重量の観測の標準偏差(適合度)は1.066である。最終差フーリエにおける最高ピークは0.19 e/Å3の高さである。最小負ピークは-0.24 e/Å3の高さである。絶対構造の決定のためのFlack因子(Flack, H. D. Acta Cryst. 1983, A39, 876)は-0.02(6)に精密化する。
重量wは1/[σ2(Fo 2) + (0.0384P)2 +(0.2436P)](式中、P=(Fo 2 +2Fc 2)/3)として定義する。
散乱因子は「International Tables for Crystallography」(International Tables for Crystallography, Vol. C, Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992, 表4.2.6.8及び6.1.1.4)から採用する。精密化に用いられる2930反射のうちFo 2>2σ(Fo 2)の反射のみをRの計算において用いる。全2678反射を計算に用いる。精密化の最終サイクルは162変数パラメータを含み、式:
単位重量の観測の標準偏差(適合度)は1.066である。最終差フーリエにおける最高ピークは0.19 e/Å3の高さである。最小負ピークは-0.24 e/Å3の高さである。絶対構造の決定のためのFlack因子(Flack, H. D. Acta Cryst. 1983, A39, 876)は-0.02(6)に精密化する。
計算粉末X線回折(XRPD)パターン:計算XRPDパターンはPowderCell 2.3(PowderCell for Windows Version 2.3 Kraus, W.; Nolze, G. Federal Institute for Materials Research and Testing, Berlin Germany, EU, 1999)を用いたCu線及び単結晶データからの原子座標、空間群及び単位格子について生成する。単結晶データは低温(150 K)にて収集するため、ピークシフトは低温データから計算したパターンと室温実験粉末回折パターンとの間で、特に高回折角において明らかでありうる。
ORTEP図及び充填図:ORTEP図はPLATON(Spek, A. L. PLATON. Molecular Graphics Program. Utrecht University, Utrecht, The Netherlands, 2008. Spek, A. L, J. Appl. Cryst. 2003, 36, 7)ソフトウェアパッケージ内のORTEP III(Johnson, C. K. ORTEPIII, Report ORNL-6895, Oak Ridge National Laboratory, TN, U.S.A. 1996. OPTEP-3 for Windows V1.05, Farrugia, L.J., J. Appl. Cryst. 1997, 30, 565)プログラムを用いて調製する。原子は50%蓋然性の異方性熱振動楕円体により表される。充填図はCAMERON(Watkin, D. J.; Prout, C. K.; Pearce, L. J. CAMERON, Chemical Crystallography Laboratory, University of Oxford, Oxford, 1996)モデルソフトウェアを用いて調製する。キラル中心の評価はPLATON(Spek, A. L. PLATON. Molecular Graphics Program. Utrecht University, Utrecht, The Netherlands, 2008. Spek, A. L, J.Appl.Cryst. 2003, 36, 7)ソフトウェアパッケージで行う。絶対配置は分子キラル則の仕様(Cahn, R.S.; Ingold, C; Prelog, V. Angew. Chem. Intern. Ed. Eng., 1966, 5, 385; Prelog, V. G. Helmchen Angew. Chem. Intern. Ed. Eng., 1982, 21, 567)を用いて評価する。さらなる図はMercury 2.4(Macrae, C. F. Edgington, P. R. McCabe, P. Pidcock, E. Shields, G. P. Taylor, R. Towler M. and van de Streek, J.; J. Appl. Cryst., 2006, 39, 453-457)視覚化パッケージで作成する。水素結合は破線で表す。
結果:斜方晶系セルパラメータ及び計算容積は、a=5.7779(2)Å、b=8.6633(2)Å、c=25.7280(8)Å、α=β=γ=90゜、V=1287.83(7)Å3である。結晶構造における非対称ユニットの式量は、Z=4で245.75 g mol-1であり、1.267 g cm-3の計算密度となる。空間群はP212121と決定する。結晶データ及び結晶学的データ収集パラメータの概要は以下の第2表に示す。
R値は0.033(3.3%)である。
結晶形AのORTEP図は図18に示される。
図18に示される非対称ユニットは、プロトン化(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン分子及び塩化物対イオンを含む。プロトンは差分布図に位置し、窒素上に自由に精密化することができ、これは塩形成を示す。
a、b及びc結晶軸に沿った充填図はそれぞれ図19〜21に示される。水素結合は塩素及び窒素原子間で起こり、構造は図22に示されるように、a結晶軸に沿った無限の一次元水素結合鎖からなる。
絶対構造は、結晶による異常X線散乱の分析を通して決定することができる。Flackパラメータとして知られている精密化パラメータx(Flack, H.D.; Bernardinelli, G., Acta Cryst., 1999, A55, 908; Flack, H.D.; Bernardinelli, G., J. Appl. Cryst., 2000, 33, 1143)は逆双晶における二成分の相対存在度をコード化する。構造は精密化されるモデルのフラクション1−x及びその逆数xを含む。低標準不確かさが得られる場合、Flackパラメータは解析された構造が正確である場合に0に近く、逆モデルが正確である場合に1に近くなるべきである。図18に示される結晶形Aの構造についての測定Flackパラメータは−0.02であり、標準不確かさ0.06である。
構造を解析した後、データの質の評価はその反転構造を区別する力(inversion-distinguishing power)について行うことができ、Flackパラメータの標準不確かさの試験により行う。結晶形Aについて、標準不確かさ(u)は0.06であり、これは反転構造を区別する力が強いことを示す。化合物はエナンチオピュアであり、絶対構造は結晶構造から直接割り当てることができる。
Flackパラメータ(x)の精密化(Flack, H.D. Acta Cryst. 1983, A39, 876)によって、絶対構造の割り当てについて定量的な提示がされるものではない。しかしながら、Bayesian統計をBijvoet差に適用するアプローチは絶対構造の異なる仮説について一連の蓋然性を提供することができる(Hooft, R.W., J. Appl. Cryst., 2008, 41, 96-103; Bijvoet, J.M.; Peederman, A.F.; van Bommel, A.J., Nature 1951, 168, 271)。この分析は、絶対構造が正しいか、誤りか、又はラセミ双晶なのかの蓋然性に加え、Flack等価(Hooft)パラメータを提供する。現在のデータについて、Flack等価(Hooft)パラメータは−0.01(3)であると決定され、構造が正確である蓋然性は1.000であり、構造が誤りである蓋然性は0.000であり、物質がラセミ双晶である蓋然性は0.4−59である。
構造はC11及びC15に二つのキラル中心を含み(図18、ORTEP図参照)、それぞれR及びS配置として割り当てられる。
図23は、単結晶データから作成した結晶形Aの計算粉末X線回折パターンを示す。
結晶形Aの実験粉末X線回折パターンは図1に示される。
図34では図1の結晶形Aの実験XRPDを計算パターンと重ねる。
計算及び実験粉末X線回折パターン間の強度の差は選択配向による。選択配向は、結晶が数度のオーダーで整列する傾向である。このサンプルの選択配向は、実験粉末回折パターンにおけるピーク強度に有意に影響しうるが、ピーク位置には影響しない。さらに、実験粉末パターンが常温にて収集され、単結晶データが150Kで収集されるため、計算及び実験粉末回折パターン間のピーク位置がいくらかシフトすることが予想し得る。単結晶分析では低温を用いて構造の質が改善されるが、単位格子パラメータにおける変化をもたらす結晶を縮小させ得、これは計算粉末回折パターンに反映される。このようなシフトは特に高分散回折角で明らかである。
位置パラメータ及びその推定標準偏差(第3表)、異方性温度因子係数(第4表)、結合距離(第5表)、結合角(第6表)、水素結合及び角(第7表)及びねじれ角(第8表)の表は以下のとおりである。
第2表.(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩形態A(結晶形A)についての結晶データ及びデータ収集パラメータ
式 C15H16ClN
式量 245.75
空間群 P212121 (No. 19)
a,Å 5.7779(2)
b,Å 8.6633(2)
c,Å 25.7280(8)
V,Å3 1287.83(7)
Z 4
dcalc, g cm-3 1.267
結晶次元, mm 0.38 x 0.30 x 0.18
温度, K 150
照射(波長,Å) Mo Kα (0.71073)
単色光分光器 グラファイト
線形吸収係数, mm-1 0.273
適用吸収補正 経験的a
透過因子:最小、最大 0.953, 0.953
回折計 Nonius Kappa CCD
h, k, l範囲 -7〜7 -11〜11 -33〜33
2θ範囲, 度 1.58-55.71
モザイク性, 度 0.38
使用プログラム SHELXTL
F000 520.0
重量
1/[σ2(Fo 2)+(0.0384P)2+0.2436P](式中、P=(Fo 2+2Fc 2)/3)
収集データ 5812
特異データ 2930
Rint 0.029
精密化に用いたデータ 2930
R因子計算に用いた切り捨て Fo 2>2.0σ(Fo 2)
I>2.0σ(I)のデータ 2678
変数の数 162
最終サイクルにおける最大シフト/esd 0.00
R(Fo) 0.033
Rw(Fo 2) 0.080
適合度 1.066
絶対構造決定 Flackパラメータb(-0.02(6))
Hooftパラメータc(-0.01(3))
Friedelカバレージ90%
a Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307.
b Flack, H. D. Acta Cryst., 1983 A39, 876.
c Hooft, R.W.W., Straver, L.H., and Spek, A.L. J. Appl. Cryst., 2008, 41, 96-103.
第3表.結晶形Aについての位置パラメータ及びその推定標準偏差
原子 x y z U(Å 2 )
Cl1 -0.21843(7) 1.09587(4) 0.483829(15) 0.02856(9)
N13 0.2878(3) 1.04618(14) 0.53004(5) 0.0234(3)
C1 0.4183(3) 0.93704(19) 0.70605(6) 0.0294(4)
C2 0.2847(3) 0.88296(17) 0.66572(6) 0.0268(4)
C3 0.0828(3) 0.7983(2) 0.67700(7) 0.0380(5)
C4 0.0151(3) 0.7719(3) 0.72723(8) 0.0426(6)
C5 0.1497(3) 0.8274(2) 0.76923(7) 0.0340(5)
C6 0.0855(4) 0.8007(3) 0.82173(8) 0.0465(6)
C7 0.2208(4) 0.8543(2) 0.86149(7) 0.0483(6)
C8 0.4249(4) 0.9340(2) 0.85125(7) 0.0447(6)
C9 0.4915(4) 0.9627(2) 0.80087(7) 0.0391(5)
C10 0.3549(3) 0.9099(2) 0.75855(6) 0.0294(4)
C11 0.3521(3) 0.91598(19) 0.61066(6) 0.0261(4)
C12 0.2704(3) 1.06743(16) 0.58785(5) 0.0270(4)
C14 0.2577(3) 0.87808(16) 0.51906(6) 0.0282(4)
C15 0.3409(3) 0.7984(2) 0.56741(7) 0.0314(5)
C16 0.5712(3) 0.8497(2) 0.58846(7) 0.0352(5)
H131 0.436(4) 1.082(2) 0.5177(8) 0.036(5)*
H132 0.168(4) 1.105(2) 0.5138(7) 0.039(5)*
H1 0.555 0.993 0.699 0.035
H3 -0.008 0.759 0.649 0.046
H4 -0.123 0.716 0.734 0.051
H6 -0.052 0.745 0.829 0.056
H7 0.175 0.837 0.896 0.058
H8 0.519 0.969 0.879 0.054
H9 0.630 1.018 0.794 0.047
H15 0.285 0.692 0.575 0.038
H12A 0.109 1.089 0.598 0.032
H12B 0.370 1.154 0.600 0.032
H14A 0.351 0.847 0.489 0.034
H14B 0.093 0.853 0.512 0.034
H16A 0.659 0.776 0.610 0.042
H16B 0.667 0.918 0.566 0.042
星印の原子は等方的に精密化される。
Ueq=(1/3)σiσj Uija* ia* jai.aj
水素原子は構造因子の計算に含めるが、精密化には含めない。
第4表.異方性温度因子係数−結晶形AについてのU's
名称 U(1,1) U(2,2) U(3,3) U(1,2) U(1,3) U(2,3)
Cl1 0.02543(19) 0.02561(17) 0.03463(19) 0.00075(15) 0.00262(16) 0.00196(16)
N13 0.0268(7) 0.0213(6) 0.0222(6) 0.0008(6) -0.0013(6) -0.0002(5)
C1 0.0292(9) 0.0301(9) 0.0290(8) -0.0056(7) 0.0005(7) 0.0014(7)
C2 0.0258(8) 0.0290(8) 0.0256(7) 0.0017(7) -0.0019(6) 0.0053(6)
C3 0.0278(9) 0.0550(12) 0.0313(9) -0.0099(9) -0.0063(8) 0.0089(8)
C4 0.0286(10) 0.0605(13) 0.0388(11) -0.0118(10) -0.0015(8) 0.0154(10)
C5 0.0326(10) 0.0394(10) 0.0301(8) 0.0019(8) 0.0016(7) 0.0094(8)
C6 0.0458(12) 0.0584(13) 0.0354(10) -0.0020(11) 0.0068(10) 0.0160(9)
C7 0.0664(14) 0.0518(11) 0.0266(8) 0.0055(12) 0.0037(10) 0.0084(8)
C8 0.0628(14) 0.0437(12) 0.0276(9) 0.0012(10) -0.0062(9) -0.0020(8)
C9 0.0479(12) 0.0386(10) 0.0309(10) -0.0053(9) -0.0015(8) -0.0037(8)
C10 0.0334(9) 0.0282(8) 0.0265(8) 0.0020(7) -0.0002(6) 0.0017(7)
C11 0.0252(8) 0.0282(8) 0.0249(7) -0.0008(7) -0.0014(6) 0.0018(7)
C12 0.0352(9) 0.0244(7) 0.0215(7) -0.0015(7) 0.0001(7) -0.0019(5)
C14 0.0343(8) 0.0221(7) 0.0283(7) 0.0013(6) -0.0041(7) -0.0040(6)
C15 0.0393(11) 0.0245(8) 0.0303(8) 0.0047(7) -0.0011(7) 0.0004(7)
C16 0.0308(9) 0.0452(10) 0.0297(8) 0.0105(8) 0.0006(7) 0.0081(8)
異方性温度因子の形態は:
exp[-2π h2a*2U(1,1) + k2b*2U(2,2) + l2c*2U(3,3) + 2hka*b*U(1,2) + 2hla*c*U(1,3)+ 2klb*c*U(2,3)]
(式中、a*、b*及びc*は相互格子定数である)
第5表.結晶形Aについての結合距離(オングストローム)
原子1 原子2 距離 原子1 原子2 距離
N13 C14 1.4936(18) C7 H7 0.950
N13 C12 1.5023(18) C8 C9 1.375(3)
N13 H131 0.96(2) C8 H8 0.950
N13 H132 0.96(2) C9 C10 1.420(3)
C1 C2 1.376(2) C9 H9 0.950
C1 C10 1.419(2) C11 C16 1.503(2)
C1 H1 0.950 C11 C15 1.510(2)
C2 C3 1.408(2) C11 C12 1.513(2)
C2 C11 1.497(2) C12 H12A 0.990
C3 C4 1.370(3) C12 H12B 0.990
C3 H3 0.950 C14 C15 1.501(2)
C4 C5 1.415(3) C14 H14A 0.990
C4 H4 0.950 C14 H14B 0.990
C5 C10 1.412(3) C15 C16 1.504(3)
C5 C6 1.420(3) C15 H15 1.000
C6 C7 1.369(3) C16 H16A 0.990
C6 H6 0.950 C16 H16B 0.990
C7 C8 1.391(3)
括弧内の数字は最小有効数字での推定標準偏差である。
第6表.結晶形Aについての結合角(度)
原子1 原子2 原子3 角度 原子1 原子2 原子3 角度
C14 N13 C12 107.39(11) C5 C10 C1 119.08(16)
C14 N13 H131 110.6(12) C5 C10 C9 118.71(16)
C12 N13 H131 110.3(12) C1 C10 C9 122.21(17)
C14 N13 H132 110.8(13) C2 C11 C16 120.40(14)
C12 N13 H132 108.7(12) C2 C11 C15 123.87(14)
H131 N13 H132 109.2(16) C16 C11 C15 59.90(12)
C2 C1 C10 121.10(16) C2 C11 C12 116.85(14)
C2 C1 H1 119.50 C16 C11 C12 116.53(15)
C10 C1 H1 119.50 C15 C11 C12 106.60(13)
C1 C2 C3 119.14(15) N13 C12 C11 104.89(12)
C1 C2 C11 120.17(15) N13 C12 H12A 110.80
C3 C2 C11 120.69(15) C11 C12 H12A 110.80
C4 C3 C2 121.22(17) N13 C12 H12B 110.80
C4 C3 H3 119.40 C11 C12 H12B 110.80
C2 C3 H3 119.40 H12A C12 H12B 108.80
C3 C4 C5 120.43(18) N13 C14 C15 104.74(12)
C3 C4 H4 119.80 N13 C14 H14A 110.80
C5 C4 H4 119.80 C15 C14 H14A 110.80
C10 C5 C4 119.01(16) N13 C14 H14B 110.80
C10 C5 C6 119.16(17) C15 C14 H14B 110.80
C4 C5 C6 121.82(18) H14A C14 H14B 108.90
C7 C6 C5 120.4(2) C14 C15 C16 116.45(15)
C7 C6 H6 119.80 C14 C15 C11 108.31(14)
C5 C6 H6 119.80 C16 C15 C11 59.81(11)
C6 C7 C8 120.71(18) C14 C15 H15 119.20
C6 C7 H7 119.60 C16 C15 H15 119.20
C8 C7 H7 119.60 C11 C15 H15 119.20
C9 C8 C7 120.36(19) C11 C16 C15 60.29(12)
C9 C8 H8 119.80 C11 C16 H16A 117.70
C7 C8 H8 119.80 C15 C16 H16A 117.70
C8 C9 C10 120.6(2) C11 C16 H16B 117.70
C8 C9 H9 119.70 C15 C16 H16B 117.70
C10 C9 H9 119.70 H16A C16 H16B 114.90
括弧内の数字は最小有効数字での推定標準偏差である。
第7表.結晶形Aについての水素結合距離(オングストローム及び角度)
D H A D-H A-H D-A D-H-A
N13 H131 Cl1 0.96(2) 2.18(2) 3.121(2) 164.1(15)
N13 H132 Cl1 0.96(2) 2.36(2) 3.187(2) 144.0(15)
N13 H132 Cl1 0.96(2) 2.674(18) 3.1217(19) 109.2(14)
括弧内の数字は最小有効数字での推定標準偏差である。
第8表.結晶形Aについてのねじれ角(度)
原子1 原子2 原子3 原子4 角度
C14 N13 C12 C11 28.20 ( 0.18)
C12 N13 C14 C15 -27.51 ( 0.18)
C10 C1 C2 C3 -0.50 ( 0.25)
C10 C1 C2 C11 178.63 ( 0.15)
C2 C1 C10 C5 -0.71 ( 0.25)
C2 C1 C10 C9 179.13 ( 0.16)
C1 C2 C3 C4 1.39 ( 0.26)
C11 C2 C3 C4 -177.73 ( 0.18)
C1 C2 C11 C12 -85.92 ( 0.20)
C1 C2 C11 C15 137.54 ( 0.17)
C1 C2 C11 C16 65.41 ( 0.21)
C3 C2 C11 C12 93.19 ( 0.19)
C3 C2 C11 C15 -43.34 ( 0.24)
C3 C2 C11 C16 -115.47 ( 0.18)
C2 C3 C4 C5 -1.05 ( 0.30)
C3 C4 C5 C6 -179.38 ( 0.20)
C3 C4 C5 C10 -0.18 ( 0.30)
C4 C5 C6 C7 179.21 ( 0.21)
C10 C5 C6 C7 0.02 ( 0.46)
C4 C5 C10 C1 1.04 ( 0.26)
C4 C5 C10 C9 -178.80 ( 0.18)
C6 C5 C10 C1 -179.74 ( 0.18)
C6 C5 C10 C9 0.42 ( 0.27)
C5 C6 C7 C8 -0.85 ( 0.33)
C6 C7 C8 C9 1.25 ( 0.30)
C7 C8 C9 C10 -0.80 ( 0.29)
C8 C9 C10 C1 -179.87 ( 0.17)
C8 C9 C10 C5 -0.03 ( 0.25)
C2 C11 C12 N13 -160.97 ( 0.14)
C15 C11 C12 N13 -17.56 ( 0.17)
C16 C11 C12 N13 46.58 ( 0.18)
C2 C11 C15 C14 141.11 ( 0.16)
C2 C11 C15 C16 -108.36 ( 0.18)
C12 C11 C15 C14 0.94 ( 0.18)
C12 C11 C15 C16 111.47 ( 0.15)
C16 C11 C15 C14 -110.53 ( 0.16)
C2 C11 C16 C15 114.01 ( 0.17)
C12 C11 C16 C15 -94.57 ( 0.15)
N13 C14 C15 C11 16.15 ( 0.18)
N13 C14 C15 C16 -48.59 ( 0.19)
C14 C15 C16 C11 96.68 ( 0.16)
括弧内の数字は最小有効数字での推定標準偏差である。
第2表.(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩形態A(結晶形A)についての結晶データ及びデータ収集パラメータ
式 C15H16ClN
式量 245.75
空間群 P212121 (No. 19)
a,Å 5.7779(2)
b,Å 8.6633(2)
c,Å 25.7280(8)
V,Å3 1287.83(7)
Z 4
dcalc, g cm-3 1.267
結晶次元, mm 0.38 x 0.30 x 0.18
温度, K 150
照射(波長,Å) Mo Kα (0.71073)
単色光分光器 グラファイト
線形吸収係数, mm-1 0.273
適用吸収補正 経験的a
透過因子:最小、最大 0.953, 0.953
回折計 Nonius Kappa CCD
h, k, l範囲 -7〜7 -11〜11 -33〜33
2θ範囲, 度 1.58-55.71
モザイク性, 度 0.38
使用プログラム SHELXTL
F000 520.0
重量
1/[σ2(Fo 2)+(0.0384P)2+0.2436P](式中、P=(Fo 2+2Fc 2)/3)
収集データ 5812
特異データ 2930
Rint 0.029
精密化に用いたデータ 2930
R因子計算に用いた切り捨て Fo 2>2.0σ(Fo 2)
I>2.0σ(I)のデータ 2678
変数の数 162
最終サイクルにおける最大シフト/esd 0.00
R(Fo) 0.033
Rw(Fo 2) 0.080
適合度 1.066
絶対構造決定 Flackパラメータb(-0.02(6))
Hooftパラメータc(-0.01(3))
Friedelカバレージ90%
a Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307.
b Flack, H. D. Acta Cryst., 1983 A39, 876.
c Hooft, R.W.W., Straver, L.H., and Spek, A.L. J. Appl. Cryst., 2008, 41, 96-103.
第3表.結晶形Aについての位置パラメータ及びその推定標準偏差
原子 x y z U(Å 2 )
Cl1 -0.21843(7) 1.09587(4) 0.483829(15) 0.02856(9)
N13 0.2878(3) 1.04618(14) 0.53004(5) 0.0234(3)
C1 0.4183(3) 0.93704(19) 0.70605(6) 0.0294(4)
C2 0.2847(3) 0.88296(17) 0.66572(6) 0.0268(4)
C3 0.0828(3) 0.7983(2) 0.67700(7) 0.0380(5)
C4 0.0151(3) 0.7719(3) 0.72723(8) 0.0426(6)
C5 0.1497(3) 0.8274(2) 0.76923(7) 0.0340(5)
C6 0.0855(4) 0.8007(3) 0.82173(8) 0.0465(6)
C7 0.2208(4) 0.8543(2) 0.86149(7) 0.0483(6)
C8 0.4249(4) 0.9340(2) 0.85125(7) 0.0447(6)
C9 0.4915(4) 0.9627(2) 0.80087(7) 0.0391(5)
C10 0.3549(3) 0.9099(2) 0.75855(6) 0.0294(4)
C11 0.3521(3) 0.91598(19) 0.61066(6) 0.0261(4)
C12 0.2704(3) 1.06743(16) 0.58785(5) 0.0270(4)
C14 0.2577(3) 0.87808(16) 0.51906(6) 0.0282(4)
C15 0.3409(3) 0.7984(2) 0.56741(7) 0.0314(5)
C16 0.5712(3) 0.8497(2) 0.58846(7) 0.0352(5)
H131 0.436(4) 1.082(2) 0.5177(8) 0.036(5)*
H132 0.168(4) 1.105(2) 0.5138(7) 0.039(5)*
H1 0.555 0.993 0.699 0.035
H3 -0.008 0.759 0.649 0.046
H4 -0.123 0.716 0.734 0.051
H6 -0.052 0.745 0.829 0.056
H7 0.175 0.837 0.896 0.058
H8 0.519 0.969 0.879 0.054
H9 0.630 1.018 0.794 0.047
H15 0.285 0.692 0.575 0.038
H12A 0.109 1.089 0.598 0.032
H12B 0.370 1.154 0.600 0.032
H14A 0.351 0.847 0.489 0.034
H14B 0.093 0.853 0.512 0.034
H16A 0.659 0.776 0.610 0.042
H16B 0.667 0.918 0.566 0.042
星印の原子は等方的に精密化される。
Ueq=(1/3)σiσj Uija* ia* jai.aj
水素原子は構造因子の計算に含めるが、精密化には含めない。
第4表.異方性温度因子係数−結晶形AについてのU's
名称 U(1,1) U(2,2) U(3,3) U(1,2) U(1,3) U(2,3)
Cl1 0.02543(19) 0.02561(17) 0.03463(19) 0.00075(15) 0.00262(16) 0.00196(16)
N13 0.0268(7) 0.0213(6) 0.0222(6) 0.0008(6) -0.0013(6) -0.0002(5)
C1 0.0292(9) 0.0301(9) 0.0290(8) -0.0056(7) 0.0005(7) 0.0014(7)
C2 0.0258(8) 0.0290(8) 0.0256(7) 0.0017(7) -0.0019(6) 0.0053(6)
C3 0.0278(9) 0.0550(12) 0.0313(9) -0.0099(9) -0.0063(8) 0.0089(8)
C4 0.0286(10) 0.0605(13) 0.0388(11) -0.0118(10) -0.0015(8) 0.0154(10)
C5 0.0326(10) 0.0394(10) 0.0301(8) 0.0019(8) 0.0016(7) 0.0094(8)
C6 0.0458(12) 0.0584(13) 0.0354(10) -0.0020(11) 0.0068(10) 0.0160(9)
C7 0.0664(14) 0.0518(11) 0.0266(8) 0.0055(12) 0.0037(10) 0.0084(8)
C8 0.0628(14) 0.0437(12) 0.0276(9) 0.0012(10) -0.0062(9) -0.0020(8)
C9 0.0479(12) 0.0386(10) 0.0309(10) -0.0053(9) -0.0015(8) -0.0037(8)
C10 0.0334(9) 0.0282(8) 0.0265(8) 0.0020(7) -0.0002(6) 0.0017(7)
C11 0.0252(8) 0.0282(8) 0.0249(7) -0.0008(7) -0.0014(6) 0.0018(7)
C12 0.0352(9) 0.0244(7) 0.0215(7) -0.0015(7) 0.0001(7) -0.0019(5)
C14 0.0343(8) 0.0221(7) 0.0283(7) 0.0013(6) -0.0041(7) -0.0040(6)
C15 0.0393(11) 0.0245(8) 0.0303(8) 0.0047(7) -0.0011(7) 0.0004(7)
C16 0.0308(9) 0.0452(10) 0.0297(8) 0.0105(8) 0.0006(7) 0.0081(8)
異方性温度因子の形態は:
exp[-2π h2a*2U(1,1) + k2b*2U(2,2) + l2c*2U(3,3) + 2hka*b*U(1,2) + 2hla*c*U(1,3)+ 2klb*c*U(2,3)]
(式中、a*、b*及びc*は相互格子定数である)
第5表.結晶形Aについての結合距離(オングストローム)
原子1 原子2 距離 原子1 原子2 距離
N13 C14 1.4936(18) C7 H7 0.950
N13 C12 1.5023(18) C8 C9 1.375(3)
N13 H131 0.96(2) C8 H8 0.950
N13 H132 0.96(2) C9 C10 1.420(3)
C1 C2 1.376(2) C9 H9 0.950
C1 C10 1.419(2) C11 C16 1.503(2)
C1 H1 0.950 C11 C15 1.510(2)
C2 C3 1.408(2) C11 C12 1.513(2)
C2 C11 1.497(2) C12 H12A 0.990
C3 C4 1.370(3) C12 H12B 0.990
C3 H3 0.950 C14 C15 1.501(2)
C4 C5 1.415(3) C14 H14A 0.990
C4 H4 0.950 C14 H14B 0.990
C5 C10 1.412(3) C15 C16 1.504(3)
C5 C6 1.420(3) C15 H15 1.000
C6 C7 1.369(3) C16 H16A 0.990
C6 H6 0.950 C16 H16B 0.990
C7 C8 1.391(3)
括弧内の数字は最小有効数字での推定標準偏差である。
第6表.結晶形Aについての結合角(度)
原子1 原子2 原子3 角度 原子1 原子2 原子3 角度
C14 N13 C12 107.39(11) C5 C10 C1 119.08(16)
C14 N13 H131 110.6(12) C5 C10 C9 118.71(16)
C12 N13 H131 110.3(12) C1 C10 C9 122.21(17)
C14 N13 H132 110.8(13) C2 C11 C16 120.40(14)
C12 N13 H132 108.7(12) C2 C11 C15 123.87(14)
H131 N13 H132 109.2(16) C16 C11 C15 59.90(12)
C2 C1 C10 121.10(16) C2 C11 C12 116.85(14)
C2 C1 H1 119.50 C16 C11 C12 116.53(15)
C10 C1 H1 119.50 C15 C11 C12 106.60(13)
C1 C2 C3 119.14(15) N13 C12 C11 104.89(12)
C1 C2 C11 120.17(15) N13 C12 H12A 110.80
C3 C2 C11 120.69(15) C11 C12 H12A 110.80
C4 C3 C2 121.22(17) N13 C12 H12B 110.80
C4 C3 H3 119.40 C11 C12 H12B 110.80
C2 C3 H3 119.40 H12A C12 H12B 108.80
C3 C4 C5 120.43(18) N13 C14 C15 104.74(12)
C3 C4 H4 119.80 N13 C14 H14A 110.80
C5 C4 H4 119.80 C15 C14 H14A 110.80
C10 C5 C4 119.01(16) N13 C14 H14B 110.80
C10 C5 C6 119.16(17) C15 C14 H14B 110.80
C4 C5 C6 121.82(18) H14A C14 H14B 108.90
C7 C6 C5 120.4(2) C14 C15 C16 116.45(15)
C7 C6 H6 119.80 C14 C15 C11 108.31(14)
C5 C6 H6 119.80 C16 C15 C11 59.81(11)
C6 C7 C8 120.71(18) C14 C15 H15 119.20
C6 C7 H7 119.60 C16 C15 H15 119.20
C8 C7 H7 119.60 C11 C15 H15 119.20
C9 C8 C7 120.36(19) C11 C16 C15 60.29(12)
C9 C8 H8 119.80 C11 C16 H16A 117.70
C7 C8 H8 119.80 C15 C16 H16A 117.70
C8 C9 C10 120.6(2) C11 C16 H16B 117.70
C8 C9 H9 119.70 C15 C16 H16B 117.70
C10 C9 H9 119.70 H16A C16 H16B 114.90
括弧内の数字は最小有効数字での推定標準偏差である。
第7表.結晶形Aについての水素結合距離(オングストローム及び角度)
D H A D-H A-H D-A D-H-A
N13 H131 Cl1 0.96(2) 2.18(2) 3.121(2) 164.1(15)
N13 H132 Cl1 0.96(2) 2.36(2) 3.187(2) 144.0(15)
N13 H132 Cl1 0.96(2) 2.674(18) 3.1217(19) 109.2(14)
括弧内の数字は最小有効数字での推定標準偏差である。
第8表.結晶形Aについてのねじれ角(度)
原子1 原子2 原子3 原子4 角度
C14 N13 C12 C11 28.20 ( 0.18)
C12 N13 C14 C15 -27.51 ( 0.18)
C10 C1 C2 C3 -0.50 ( 0.25)
C10 C1 C2 C11 178.63 ( 0.15)
C2 C1 C10 C5 -0.71 ( 0.25)
C2 C1 C10 C9 179.13 ( 0.16)
C1 C2 C3 C4 1.39 ( 0.26)
C11 C2 C3 C4 -177.73 ( 0.18)
C1 C2 C11 C12 -85.92 ( 0.20)
C1 C2 C11 C15 137.54 ( 0.17)
C1 C2 C11 C16 65.41 ( 0.21)
C3 C2 C11 C12 93.19 ( 0.19)
C3 C2 C11 C15 -43.34 ( 0.24)
C3 C2 C11 C16 -115.47 ( 0.18)
C2 C3 C4 C5 -1.05 ( 0.30)
C3 C4 C5 C6 -179.38 ( 0.20)
C3 C4 C5 C10 -0.18 ( 0.30)
C4 C5 C6 C7 179.21 ( 0.21)
C10 C5 C6 C7 0.02 ( 0.46)
C4 C5 C10 C1 1.04 ( 0.26)
C4 C5 C10 C9 -178.80 ( 0.18)
C6 C5 C10 C1 -179.74 ( 0.18)
C6 C5 C10 C9 0.42 ( 0.27)
C5 C6 C7 C8 -0.85 ( 0.33)
C6 C7 C8 C9 1.25 ( 0.30)
C7 C8 C9 C10 -0.80 ( 0.29)
C8 C9 C10 C1 -179.87 ( 0.17)
C8 C9 C10 C5 -0.03 ( 0.25)
C2 C11 C12 N13 -160.97 ( 0.14)
C15 C11 C12 N13 -17.56 ( 0.17)
C16 C11 C12 N13 46.58 ( 0.18)
C2 C11 C15 C14 141.11 ( 0.16)
C2 C11 C15 C16 -108.36 ( 0.18)
C12 C11 C15 C14 0.94 ( 0.18)
C12 C11 C15 C16 111.47 ( 0.15)
C16 C11 C15 C14 -110.53 ( 0.16)
C2 C11 C16 C15 114.01 ( 0.17)
C12 C11 C16 C15 -94.57 ( 0.15)
N13 C14 C15 C11 16.15 ( 0.18)
N13 C14 C15 C16 -48.59 ( 0.19)
C14 C15 C16 C11 96.68 ( 0.16)
括弧内の数字は最小有効数字での推定標準偏差である。
実施例3−結晶形A〜Fの調製
結晶形A〜結晶形Fは、上記実施例1で得られた結晶形Aを用いて以下のとおり調製する。上記したエバポレーション、冷却、溶媒/貧溶媒析出、スラリー、蒸気ストレス及び蒸気拡散などの種々の結晶化技術を用いる。結果を以下の第9表に示す。
結晶形A〜結晶形Fは、上記実施例1で得られた結晶形Aを用いて以下のとおり調製する。上記したエバポレーション、冷却、溶媒/貧溶媒析出、スラリー、蒸気ストレス及び蒸気拡散などの種々の結晶化技術を用いる。結果を以下の第9表に示す。
結晶形B−上記概説したとおり、結晶形Bはエバポレーション及び水中スラリー、スラリー、DCM中での徐冷及びクラッシュ・クール並びに1−プロパノール中での徐冷から得る。さらに、結晶形Bピークとともに結晶形AのXRPDパターンを示す物質はDCM、エタノール、HFIPA及びTFEでのエバポレーションから得られる。結晶形A及び結晶形Cの弱いピークとともに結晶形BのXRPDパターンを示す物質は1−プロパノールでのクラッシュ・クール実験から観測される。
結晶形BはX'Pert High Score Plus(X'Pert High Score Plus 2.2a (2.2.1))を用いて高分解能XRPDパターンからインデキシングする(図6、高分解能XRPDパターンも図7に示す)。パターンは結晶形B及びAの混合物を示しているようである。許容ピーク位置、現在の形態についてバーでマークしたもの及び実測ピーク間の一致は一致した単位格子の決定を示す。18.5゜、20.7゜、25.7゜及び27.5゜の2θにおけるピークは結晶形Bのインデキシング結果と一致せず、結晶形Aからのもののようである。割り当てられた消衰記号、単位格子パラメータ及び誘導量と一致した空間群を以下の図に一覧にする。一時的なインデキシング結果を確認するために、結晶学的単位格子内の分子充填モチーフを決定しなければならない。分子充填における試みは行われていない。結晶形Bは、結晶形Aに対し、式単位あたり同様の容積でインデキシングされ、これは結晶形Bが非溶媒和の結晶形態であることを示している。
図4B及び5についてのXRPDデータ取得パラメータ:INEL XRG-3000、X線管:1.54187100Å、電圧:40 (kV)、電流:30 (mA)、取得時間:300 sec、回転キャピラリー、ステップサイズ:約0.03゜2θ。
図6及び7についてのXRPDデータ取得パラメータ:Panalytical X-Pert Pro MPD PW3040 Pro、X線管:Cu(1.54059Å)、電圧:45 kV、電流:40 mA、スキャン範囲:1.00-39.99゜2θ、ステップサイズ:0.017゜2θ、収集時間:1939 s、スキャン速度:1.2゜/min.、スリット:DS:1/2゜、SS:ゼロ、回転時間:1.0 s、モード:透過。
結晶形Bについての熱分析結果を図8に示す(DSC、サイズ:1.2600 mg、方法:(-30)-300-10、T0C; TGA、サイズ:9.4320 mg、方法:00-350-10)。TGAによれば、結晶形Bは常温から200℃まで約0.2%の少量の重量減少を示し、おそらく微量の溶媒に起因する。約281℃におけるTGAサーモグラムの傾きの劇的な変化は分解と一致する。DSCによれば、約141℃(ピーク)で観測された広範な吸熱は、固体形態変化、又は加熱時の揮発物の喪失によるものと思われる。結晶形Bは、結晶形Aについて観測された熱挙動と同様に約248℃(ピーク)にて吸熱を示した後、約251及び264℃にて二つの広範な吸熱を示す。得られたデータに基づけば、結晶形Bは非溶媒和結晶性物質である。
結晶形C−結晶形Cはイソプロパノール中での徐冷により調製してもよい。結晶形Cの弱いピークとともに結晶形AのXRPDパターンを示す物質はエタノール中での徐冷実験に由来するが、エタノール及びイソプロパノールでのクラッシュ・クール実験により結晶形Aの弱いピークとともに結晶形CのXRPDパターンが得られる。
6回のスケールアップを試み、イソプロパノール中、約50〜150 mgスケールで冷却することにより結晶形Cを調製し(第11表)、固体をXRPDで試験する。冷蔵温度にて析出した固体は結晶形Bである。冷蔵庫内での冷却後(固体は観測されていない)及び冷凍庫内に放置する前に結晶形Cの種晶を添加し、結晶形Bのピークとともに結晶形CのXRPDパターンが得られる。冷凍温度での析出では、結晶形Aのピークとともに結晶形CのXRPDパターンを有する固体が得られる。低濃度(10 mg/mLに対し7 mg/mL)で室温まで冷却した後、冷凍庫に放置した溶液では結晶形Bが得られる。クラッシュ・クール(ドライアイス/イソプロパノール中に置いた周囲溶液)により生成した固体は結晶形B及びAの混合物である。最後に約50 mgスケールで試すと、結晶形A及びCの混合物が生成する。これらの実験の結果が異なることから、大スケールでの結晶形Cの結晶化に影響を及ぼす可能性のある因子(例えば濃度、温度、冷却時間及び種晶添加)及び用いた実験条件下でより安定な可能性のある結晶形AとBの競合的結晶化が示唆される。結晶形Cは常温保存の22日後でもXRPDでは変化していないことに留意する。
図13A、C及びFにおけるXRPDデータ取得パラメータ:Panalytical X-Pert Pro MPD PW3040 Pro、X線管:Cu(1.54059Å)、電圧:45 kV、電流:40 mA、スキャン範囲:1.00-39.99゜2θ、ステップサイズ:0.017゜2θ、収集時間:717 s、スキャン速度:3.3゜/min.、スリット:DS:1/2゜、SS:ゼロ、回転時間:1.0 s、モード:透過。
図13BにおけるXRPDデータ取得パラメータ:Panalytical X-Pert Pro MPD PW3040 Pro、X線管:Cu(1.54059Å)、電圧:45 kV、電流:40 mA、スキャン範囲:1.00-39.99゜2θ、ステップサイズ:0.017゜2θ、収集時間:720 s、スキャン速度:3.2゜/min.、スリット:DS:1/2゜、SS:ゼロ、回転時間:1.0 s、モード:透過。
図13DにおけるXRPDデータ取得パラメータ:Panalytical X-Pert Pro MPD PW3040 Pro、X線管:Cu(1.54059Å)、電圧:45 kV、電流:40 mA、スキャン範囲:1.00-39.99゜2θ、ステップサイズ:0.017゜2θ、収集時間:718 s、スキャン速度:3.3゜/min.、スリット:DS:1/2゜、SS:ゼロ、回転時間:1.0 s、モード:透過。
図13EにおけるXRPDデータ取得パラメータ:Panalytical X-Pert Pro MPD PW3040 Pro、X線管:Cu(1.54060Å)、電圧:45 kV、電流:40 mA、スキャン範囲:1.00-39.99゜2θ、ステップサイズ:0.017゜2θ、収集時間:720 s、スキャン速度:3.2゜/min.、スリット:DS:1/2゜、SS:ゼロ、回転時間:1.0 s、モード:透過。
結晶形Cは専用ソフトウェアを用いた高分解能XRPDパターン(図10)からインデキシングする。パターンは結晶形C及びAの混合物を示しているようである。許容ピーク位置、現在の形態についてバーでマークしたもの及び実測ピーク間の一致は一致した単位格子の決定を示す。12.3゜、15.4゜、16.6゜、20.7゜及び25.7゜の2θにおけるピークは結晶形Cのインデキシング結果と一致せず、結晶形Aからのもののようである。割り当てられた消衰記号、単位格子パラメータ及び誘導量と一致した空間群を以下の図に一覧にする。一時的なインデキシング結果を確認するために、結晶学的単位格子内の分子充填モチーフを決定しなければならない。分子充填における試みは行われていない。結晶形Cは、結晶形Aに対し、式単位あたり同様の容積でインデキシングされ、これは結晶形Cが非溶媒和の結晶形態であることを示している。
図4C、9及び13GにおけるXRPDデータ取得パラメータ:INEL XRG-3000、X線管:1.54187100Å、電圧:40 (kV)、電流:30 (mA)、取得時間:300 sec、回転キャピラリー、ステップサイズ:約0.03゜2θ。
図10及び11におけるXRPDデータ取得パラメータ:Panalytical X-Pert Pro MPD PW3040 Pro、X線管:Cu(1.54059Å)、電圧:45 kV、電流:40 mA、スキャン範囲:1.00-39.99゜2θ、ステップサイズ:0.017゜2θ、収集時間:720 s、スキャン速度:3.2゜/min.、スリット:DS:1/2゜、SS:ゼロ、回転時間:1.0 s、モード:透過。
結晶形Cについての熱分析結果は図12に示される(DSC、サイズ:1.0100 mg、方法:(-30)-300-10、T0C;TGA、サイズ:2.2300 mg、方法:00-350-10)。TGAによれば、結晶形Cは常温から200℃まで約1.3%の重量減少を示し、加熱時の揮発物の喪失によるものと思われる。約266℃におけるTGAサーモグラムの傾きの劇的な変化は分解と一致する。DSCによれば、約122℃(ピーク)で観測された広範な少量の吸熱は、固体形態変化、又は加熱時の揮発物の喪失によるものと思われる。結晶形Cは、結晶形Aについて観測された熱挙動と同様に約248℃(ピーク)にて吸熱を示した後、約271℃にて広範な吸熱を示す。
得られたデータに基づけば、結晶形Cは非溶媒和結晶性物質である。
結晶形D、E及びF−結晶形AをpH調節緩衝媒体中に溶解させる。観測された非溶解固体又は析出物はXRPDにより分析する。いくつかの実験は溶解性を向上させるために昇温下で行い、非溶解固体もXRPDで分析する。得られた結晶形D、E及びFは以下の第13表に概略するようにこれらの実験中に生成される。
図14D〜FにおけるXRPDデータ取得パラメータ:INEL XRG-3000、X線管:1.54187100Å、電圧:40 (kV)、電流:30 (mA)、取得時間:300 sec、回転キャピラリー、ステップサイズ:約0.03゜2θ。
- pH2.0緩衝液(50 mM KCl/HCl):結晶形Aは徐冷(約70℃〜常温)及び室温におけるスラリーから回収する。
- pH4.4緩衝液(50 mM クエン酸/クエン酸ナトリウム):結晶形Dは室温における自然析出及び約70℃における懸濁液の撹拌後に得られる;室温スラリーによりXRPDにおいて結晶形Dの弱いピークを含む結晶形Bが得られる。
- pH6.0緩衝液(50 mM Na2HPO4/NaH2PO4):XRPDにより結晶形Fでも見られたピークを有する結晶形Eは約50℃でのスラリーから観測される。
- pH8.1緩衝液(50 mM Na2HPO4/NaH2PO4):結晶形Fは約70℃での懸濁液の撹拌から得られる。
- pH4.4緩衝液(50 mM クエン酸/クエン酸ナトリウム):結晶形Dは室温における自然析出及び約70℃における懸濁液の撹拌後に得られる;室温スラリーによりXRPDにおいて結晶形Dの弱いピークを含む結晶形Bが得られる。
- pH6.0緩衝液(50 mM Na2HPO4/NaH2PO4):XRPDにより結晶形Fでも見られたピークを有する結晶形Eは約50℃でのスラリーから観測される。
- pH8.1緩衝液(50 mM Na2HPO4/NaH2PO4):結晶形Fは約70℃での懸濁液の撹拌から得られる。
結晶形D、E及びFは図14に示されるXRPDにより特徴付けられる。
実施例4−非晶質
非晶質(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩を調製する試みは、粉砕、凍結乾燥及びロータリー・エバポレーションによりなされる(第14表)。本検討において用いたすべての試みから不規則な結晶形Aの可能性のある物質が回収される。
非晶質(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩を調製する試みは、粉砕、凍結乾燥及びロータリー・エバポレーションによりなされる(第14表)。本検討において用いたすべての試みから不規則な結晶形Aの可能性のある物質が回収される。
図52〜55におけるXRPDデータ取得パラメータ:Bruker Discovery D8、X線管:Cu(1.54059Å)、スキャン範囲:2.14-37.02゜2θ、ステップサイズ:0.04゜2θ、取得時間:900 s。
2-ナフチルアセトニトリル(4500 g)をTHF(32 L)に溶解し、3.2 kgの(S)-(+)-エピクロロヒドリンを加え、溶液を-16℃に冷却する。次いで、内部温度を-10℃以下に保ちながら、ナトリウムヘキサメチルジシラザン/テトラヒドロフラン(THF)の2.0 M溶液(24.7 kg)を加える。この添加が完了するまで2時間45分要する。次いで、反応混合物を約-15℃にてさらに6時間撹拌し、その後、サンプルをHPLCで分析する。内部温度を0℃未満に保ちながら、ボラン−ジメチルスルフィド(6.5 kg)を36分かけて加える。ボラン添加完了後、反応混合物を60℃までゆっくりと加熱し、ニトリルをアミンに還元する。加熱中、発熱が見られ、45℃を示す。60℃にて2時間加熱した後、反応混合物のサンプルをHPLCで分析する。反応混合物を24℃に冷却し、2M HClの溶液に1時間かけて移す。二相混合物を50℃に加熱し、この温度にて1時間撹拌した後、29℃に冷却する。クエンチした反応混合物のpHを測定し、5であることが分かる。さらに2M HClを加え、混合物を50℃に加熱し、1時間撹拌した後、25℃に冷却する。pHを測定し、1であることが分かる。反応の後処理は、酢酸イソプロピル(IPAc)を添加し、撹拌し、層分離し、有機層を廃棄することにより行う。アンモニア水を水層に加え、pHを測定したところ、pH8を示す。さらにアンモニアを加え、pHを再測定して8.5であることが分かる。次いで、後処理は水層をIPAcで二段抽出により抽出して行う。集めた有機抽出物を5%二塩基性リン酸ナトリウム/水、次いで飽和食塩水で洗浄する。得られた有機層を一部濃縮し、共沸乾燥後、IPAcで希釈する。次いで、p-トルエンスルホン酸水和物(4.9 kg)を少しずつ加え、pTsOH塩として所望の生成物を析出させ、ろ過により単離する。ろ過ケーキをIPAcで洗浄した後、一定重量まで乾燥し、所望の生成物5785 gを白色固体として得る。収率:54%。HPLC:98.2%。
工程3及び4:
工程3及び4:
工程3:
工程2で得られたアミン-pTsOH塩(5785 g)をIPAc(176 L)に懸濁し、スラリーを得る。次いで塩化チオニル(2.1 kg)を1時間かけて加える。塩化チオニルの添加完了後、反応混合物をさらに1時間撹拌し、サンプルをHPLCで分析する。水酸化ナトリウム水溶液(5M, 6 mol当量)を1時間かけて加えた後、さらに4時間撹拌する。層を静置すると、水層のpHは9と分かる。層を分離し、有機層を1M NaOH/水で洗浄する。水層を合わせ、IPAcで逆抽出し、最初の有機層及び逆抽出物を合わせる。これらの合わせた有機層を0.5M HClで洗浄し、(1R,5S)-1-(ナフタレン-2-イル)-3-アザビシクロ[3.1.0]ヘキサンを水層に抽出する。酸性水層をIPAc及びTHFの1:1混合物で洗浄し、発色物を除去する。水層をアンモニア水で塩基性化した後、IPAcで抽出する。層を分離した後、有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥し、一部濃縮する。濃縮後、HCl/イソプロピルアルコール(IPA)(1.0 mol当量のHCl, 0.90 L)を加えて粗製の塩を形成させ、ろ過により単離し、IPAcで洗浄した後、一部乾燥する。湿ケーキをIPAcで還流する。粗製の塩をIPAで還流し、固体をろ過により単離し、IPAで洗浄した後、乾燥する。>99.5 HPLC面積パーセント及び97.7%キラル面積パーセント純度。所望の生成物1759 g。
工程2で得られたアミン-pTsOH塩(5785 g)をIPAc(176 L)に懸濁し、スラリーを得る。次いで塩化チオニル(2.1 kg)を1時間かけて加える。塩化チオニルの添加完了後、反応混合物をさらに1時間撹拌し、サンプルをHPLCで分析する。水酸化ナトリウム水溶液(5M, 6 mol当量)を1時間かけて加えた後、さらに4時間撹拌する。層を静置すると、水層のpHは9と分かる。層を分離し、有機層を1M NaOH/水で洗浄する。水層を合わせ、IPAcで逆抽出し、最初の有機層及び逆抽出物を合わせる。これらの合わせた有機層を0.5M HClで洗浄し、(1R,5S)-1-(ナフタレン-2-イル)-3-アザビシクロ[3.1.0]ヘキサンを水層に抽出する。酸性水層をIPAc及びTHFの1:1混合物で洗浄し、発色物を除去する。水層をアンモニア水で塩基性化した後、IPAcで抽出する。層を分離した後、有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥し、一部濃縮する。濃縮後、HCl/イソプロピルアルコール(IPA)(1.0 mol当量のHCl, 0.90 L)を加えて粗製の塩を形成させ、ろ過により単離し、IPAcで洗浄した後、一部乾燥する。湿ケーキをIPAcで還流する。粗製の塩をIPAで還流し、固体をろ過により単離し、IPAで洗浄した後、乾燥する。>99.5 HPLC面積パーセント及び97.7%キラル面積パーセント純度。所望の生成物1759 g。
工程4:
工程3で得られた粗製の(1R,5S)-1-(ナフタレン-2-イル)-3-アザビシクロ[3.1.0]ヘキサン塩酸塩(1753 g)を20容積の熱エタノール(70℃)に溶解した後、仕上げろ過としてインライン・フィルターによりろ過する。次いで溶解容器及びインライン・フィルター及び移送ラインをさらに熱エタノール(61℃)ですすぎ、洗浄物をろ液と合わせる。合わせたろ液及び洗浄物を全約11.5容積(投入した粗製(1R,5S)-1-(ナフタレン-2-イル)-3-アザビシクロ[3.1.0]ヘキサン塩酸塩に対して)に一部減圧濃縮した後、固体を再加熱して再溶解する。溶液を65℃に冷却し、種晶をエタノールのスラリーとして添加する。シードベッドを成長させるために約65℃にて撹拌した後、スラリーを室温に冷却する。得られた固体をろ過により単離し、ろ過ケーキをエタノールで洗浄し、洗浄した固体を乾燥する。全1064 gの黄褐色生成物を得る。キラル及びアキラルHPLCの両方について>99.5%。
工程3で得られた粗製の(1R,5S)-1-(ナフタレン-2-イル)-3-アザビシクロ[3.1.0]ヘキサン塩酸塩(1753 g)を20容積の熱エタノール(70℃)に溶解した後、仕上げろ過としてインライン・フィルターによりろ過する。次いで溶解容器及びインライン・フィルター及び移送ラインをさらに熱エタノール(61℃)ですすぎ、洗浄物をろ液と合わせる。合わせたろ液及び洗浄物を全約11.5容積(投入した粗製(1R,5S)-1-(ナフタレン-2-イル)-3-アザビシクロ[3.1.0]ヘキサン塩酸塩に対して)に一部減圧濃縮した後、固体を再加熱して再溶解する。溶液を65℃に冷却し、種晶をエタノールのスラリーとして添加する。シードベッドを成長させるために約65℃にて撹拌した後、スラリーを室温に冷却する。得られた固体をろ過により単離し、ろ過ケーキをエタノールで洗浄し、洗浄した固体を乾燥する。全1064 gの黄褐色生成物を得る。キラル及びアキラルHPLCの両方について>99.5%。
工程5:
工程4で得られた(1R,5S)-1-(ナフタレン-2-イル)-3-アザビシクロ[3.1.0]ヘキサン塩酸塩(1064 g)を35℃に加熱しながら10.7 Lの水に溶解する。すべての固体が溶解してすぐに、水溶液を1:1 THF:IPAcで洗浄し、発色物のほとんどを除去する。洗浄後、アンモニア水を水層に加え、(1R,5S)-1-(ナフタレン-2-イル)-3-アザビシクロ[3.1.0]ヘキサンをIPAcに抽出する。有機層を硫酸マグネシウムで乾燥した後、減圧濃縮し、灰白色固体を得る。固体をIPAに溶解し、インラインろ過により22 L三ツ口丸底フラスコに移す。次いでろ過したHCl/IPAを加え、塩を再形成させ、ろ過により単離する。ろ過ケーキをIPAで洗浄した後、乾燥して926 gの(1R,5S)-1-(ナフタレン-2-イル)-3-アザビシクロ[3.1.0]ヘキサン塩酸塩を灰白色がかった固体として得る。
工程4で得られた(1R,5S)-1-(ナフタレン-2-イル)-3-アザビシクロ[3.1.0]ヘキサン塩酸塩(1064 g)を35℃に加熱しながら10.7 Lの水に溶解する。すべての固体が溶解してすぐに、水溶液を1:1 THF:IPAcで洗浄し、発色物のほとんどを除去する。洗浄後、アンモニア水を水層に加え、(1R,5S)-1-(ナフタレン-2-イル)-3-アザビシクロ[3.1.0]ヘキサンをIPAcに抽出する。有機層を硫酸マグネシウムで乾燥した後、減圧濃縮し、灰白色固体を得る。固体をIPAに溶解し、インラインろ過により22 L三ツ口丸底フラスコに移す。次いでろ過したHCl/IPAを加え、塩を再形成させ、ろ過により単離する。ろ過ケーキをIPAで洗浄した後、乾燥して926 gの(1R,5S)-1-(ナフタレン-2-イル)-3-アザビシクロ[3.1.0]ヘキサン塩酸塩を灰白色がかった固体として得る。
生成物のXRPDは図35に示され、結晶形Aと一致する。XRPDパターンはOptix long高精度焦点源を用いて作成したCu線入射ビームを用いたPANalytical X'Pert Pro MPD回折計を用いて収集する。楕円状段階的多層鏡を用いて、Cu KαX線の焦点を試料に合わせ、検出器に向ける。分析前にシリコン試料(NIST SRM 640d)を分析し、Si 111ピークの観測位置がNIST認証位置と一致することを確認する。サンプル試料を3μm厚さのフィルム間に挟み、透過ジオメトリで分析する。ビームストップ、散乱防止短拡張子及び散乱防止ナイフエッジを用いて、空気により生成するバックグラウンドを最小化する。ソーラースリットを入射及び回折ビームに用いて、軸発散からの拡張を最小化する。回折パターンは、試料から240mmに位置する散乱位置検出素子(X'Celerator)及びData Collectorソフトウェアv. 2.2bを用いて収集する。データ取得パラメータは:Panalytical X-Pert Pro MPD PW3040 Pro、X線管:Cu(1.54059Å)、電圧:45 kV、電流:40 mA、スキャン範囲:1.00-39.99゜2θ、ステップサイズ:0.017゜2θ、収集時間:717 s、スキャン速度:3.3゜/min.、スリット:DS:1/2゜、SS:ゼロ、回転時間:1.0 s、モード:透過。
図36は図1及び図35のXRPDパターンの重ね合わせである。選択配向(PO)によると思われる相対ピーク強度にある程度差がある。POは、互いにある秩序度をもって充填される、通常板状又は針状などの結晶の傾向である。POはXRPDパターンのピーク強度に影響されうるが、ピーク位置には影響されない。
長期間保存後の生成物のXRPDは図37に示され、結晶形Aと一致する。XRPDパターンはOptix long高精度焦点源を用いて作成したCu線入射ビームを用いたPANalytical X'Pert Pro MPD回折計を用いて収集する。楕円状段階的多層鏡を用いて、Cu KαX線の焦点を試料に合わせ、検出器に向ける。分析前にシリコン試料(NIST SRM 640e)を分析し、Si 111ピークの観測位置がNIST認証位置と一致することを確認する。サンプル試料を3μm厚さのフィルム間に挟み、透過ジオメトリで分析する。ビームストップ、散乱防止短拡張子及び散乱防止ナイフエッジを用いて、空気により生成するバックグラウンドを最小化する。ソーラースリットを入射及び回折ビームに用いて、軸発散からの拡張を最小化する。回折パターンは、試料から240mmに位置する散乱位置検出素子(X'Celerator)及びData Collectorソフトウェアv. 2.2bを用いて収集する。データ取得パラメータは:Panalytical X-Pert Pro MPD PW3040 Pro、X線管:Cu(1.54059Å)、電圧:45 kV、電流:40 mA、スキャン範囲:1.00-39.99゜2θ、ステップサイズ:0.017゜2θ、収集時間:719 s、スキャン速度:3.3゜/min.、スリット:DS:1/2゜、SS:ゼロ、回転時間:1.0 s、モード:透過。
結晶形AについてのPANalyticalパターンの一つを分析し、選択配向及び粒子統計効果を、単結晶分析からの計算XRPDパターンに加えて代替ジオメトリを用いて分析したもう一つのXRPDパターンと比較して評価する。Cu Kα線で収集した図37に示されるXRPDについてのインデキシング結果を図38に示す。XRPDパターンはX'Pert High Score Plus 2.2a(2.2.1)を用いてインデキシングする。観測ピークは図39に示され、上記項1.32の表Cに示され、典型的なピークは上記項1.25の表Bに示され、特徴的なピークは上記項1.16の表Aに示される。
実施例6−結晶形Bの結晶の調製
実施例6a
上記実施例5の結晶形A(558.9 mg)をジクロロメタン(5 mL)中でスラリー化する。封をしたバイアル中で調製物を常温にて16日間撹拌する(300 RPM)。白色固体を真空ろ過により単離し、ジクロロメタン(1 mL)ですすぎ、窒素下で短時間乾燥する。生成物は結晶形Aである。生成物のXRPDパターンは図47に示す。XRPDパターンはOptix long高精度焦点源を用いて作成したCu線入射ビームを用いたPANalytical X'Pert PRO MPD回折計を用いて収集する。楕円状段階的多層鏡を用いて、Cu KαX線の焦点を試料に合わせ、検出器に向ける。分析前にシリコン試料(NIST SRM 640e)を分析し、Si 111ピークの観測位置がNIST認証位置と一致することを確認する。サンプル試料を3μm厚さのフィルム間に挟み、透過ジオメトリで分析する。ビームストップ、散乱防止短拡張子及び散乱防止ナイフエッジを用いて、空気により生成するバックグラウンドを最小化する。ソーラースリットを入射及び回折ビームに用いて、軸発散からの拡張を最小化する。回折パターンは、試料から240mmに位置する散乱位置検出素子(X'Celerator)及びData Collectorソフトウェアv. 2.2bを用いて収集する。データ取得パラメータは:Panalytical X-Pert Pro MPD PW3040 Pro、X線管:Cu(1.54059Å)、電圧:45 kV、電流:40 mA、スキャン範囲:1.00-39.99゜2θ、ステップサイズ:0.017゜2θ、収集時間:720 s、スキャン速度:3.2゜/min.、スリット:DS:1/2゜、SS:ゼロ、回転時間:1.0 s、モード:透過。
実施例6a
上記実施例5の結晶形A(558.9 mg)をジクロロメタン(5 mL)中でスラリー化する。封をしたバイアル中で調製物を常温にて16日間撹拌する(300 RPM)。白色固体を真空ろ過により単離し、ジクロロメタン(1 mL)ですすぎ、窒素下で短時間乾燥する。生成物は結晶形Aである。生成物のXRPDパターンは図47に示す。XRPDパターンはOptix long高精度焦点源を用いて作成したCu線入射ビームを用いたPANalytical X'Pert PRO MPD回折計を用いて収集する。楕円状段階的多層鏡を用いて、Cu KαX線の焦点を試料に合わせ、検出器に向ける。分析前にシリコン試料(NIST SRM 640e)を分析し、Si 111ピークの観測位置がNIST認証位置と一致することを確認する。サンプル試料を3μm厚さのフィルム間に挟み、透過ジオメトリで分析する。ビームストップ、散乱防止短拡張子及び散乱防止ナイフエッジを用いて、空気により生成するバックグラウンドを最小化する。ソーラースリットを入射及び回折ビームに用いて、軸発散からの拡張を最小化する。回折パターンは、試料から240mmに位置する散乱位置検出素子(X'Celerator)及びData Collectorソフトウェアv. 2.2bを用いて収集する。データ取得パラメータは:Panalytical X-Pert Pro MPD PW3040 Pro、X線管:Cu(1.54059Å)、電圧:45 kV、電流:40 mA、スキャン範囲:1.00-39.99゜2θ、ステップサイズ:0.017゜2θ、収集時間:720 s、スキャン速度:3.2゜/min.、スリット:DS:1/2゜、SS:ゼロ、回転時間:1.0 s、モード:透過。
実施例6b
実施例6aの結晶形A(34.3 mg)を水(1 mL)と接触させる。サンプルを固体が溶解するまで超音波処理する。サンプルに蓋をし、核生成が観測されるまで(1日以内)常温にて放置する。単体を分析用バルクサンプルから単離する。
実施例6aの結晶形A(34.3 mg)を水(1 mL)と接触させる。サンプルを固体が溶解するまで超音波処理する。サンプルに蓋をし、核生成が観測されるまで(1日以内)常温にて放置する。単体を分析用バルクサンプルから単離する。
データ収集:概算体積0.31×0.21×0.09 mmの無色板状物C15H16ClN [C15H16N, Cl]をランダム配向にてナイロン・ループ上にマウントする。予備試験及びデータ収集は共焦点光学系を備えたRigaku Rapid II回折計のCu Kα線(λ=1.54178Å)により行う。精密化をSHELX2014(Sheldrick, G. M. Acta Cryst. 2015, C71, 3-8)を用いて行う。データ収集のためのセル定数及び配向性マトリックスは、2゜<θ<26゜の範囲の22958反射の設定角を用いた最小二乗精密化から得られる。以下の条件:h00 h=2n; 0k0 k=2n; 00l l=2nの系統的な存在及びこれに続く最小二乗精密化から、空間群はP212121(no. 19)と決定する。データは100 Kの温度で最大回折角(2θ)値144.79゜まで収集する。
データ整理:フレームをHKL3000(Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307)で積分する。合計22958反射を収集し、そのうち2415は特有である。ロレンツ及び偏光補正をデータに適用する。線形吸収係数はCu Kα線について2.422 mm-1である。SCALEPACKを用いた経験的吸収補正(Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307)を適用する。透過係数は0.753〜0.976の範囲である。二次消衰補正を適用する(Sheldrick, G. M. Acta Cryst. 2015, C71, 3-8)。最小二乗で精密化した最終係数は0.0055(8)(絶対単位にて)である。等価な反射の強度を平均化する。平均化のためのアグリーメント因子は強度に基づき4.95%である。
構造解析及び精密化:SHELXS-97を用いた直接的方法(Sheldrick, G. M. Acta Cryst. 2015, C71, 3-8)により構造を解析する。残りの原子は続く差フーリエ合成により置いていく。水素原子は精密化に含めるが、結合する原子次第で拘束される。構造は関数:
を最小化することにより完全行列最小二乗法にて精密化する。
重量wは1/[σ2(Fo 2) + (0.0437P)2 +(2.1802P)](式中、P=(Fo 2 +2Fc 2)/3)として定義する。散乱因子は「International Tables for Crystallography」(International Tables for Crystallography, Vol. C, Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992, 表4.2.6.8及び6.1.1.4)から採用する。精密化に用いられる2415反射のうちFo 2>2σ(Fo 2)の反射のみをフィット剰余Rの計算において用いる。全2372反射を計算に用いる。精密化の最終サイクルは155変数パラメータを含み、式:
の非加重及び加重アグリーメント因子に収斂する。
単位重量の観測の標準偏差(適合度)は1.150である。最終差フーリエにおける最高ピークは0.318 e/Å3の高さである。最小負ピークは-0.313 e/Å3の高さである。
重量wは1/[σ2(Fo 2) + (0.0437P)2 +(2.1802P)](式中、P=(Fo 2 +2Fc 2)/3)として定義する。散乱因子は「International Tables for Crystallography」(International Tables for Crystallography, Vol. C, Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992, 表4.2.6.8及び6.1.1.4)から採用する。精密化に用いられる2415反射のうちFo 2>2σ(Fo 2)の反射のみをフィット剰余Rの計算において用いる。全2372反射を計算に用いる。精密化の最終サイクルは155変数パラメータを含み、式:
単位重量の観測の標準偏差(適合度)は1.150である。最終差フーリエにおける最高ピークは0.318 e/Å3の高さである。最小負ピークは-0.313 e/Å3の高さである。
計算粉末X線回折(XRPD)パターン:計算XRPDパターンはMercury(Macrae, C.F.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Shields, G.P.; Taylor, R.; Towler, M.; and van de Streek, J., J. Appl. Cryst., 2006, 39, 453-457)を用いたCu線及び単結晶構造からの原子座標、空間群及び単位格子パラメータについて生成する。単結晶データは低温(100 K)にて収集するため、ピークシフトは低温データから計算したパターンと室温実験粉末回折パターンとの間で、特に高回折角において明らかでありうる。計算XRPDパターンはXRPDインデキシングから先に得られた単位格子パラメータを用いて室温に調節する。
原子変位楕円体図及び充填図:原子変位楕円体図はMercury(Macrae, C.F.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Shields, G.P.; Taylor, R.; Towler, M.; and van de Streek, J., J. Appl. Cryst., 2006, 39, 453-457)を用いて作成する。原子は50%蓋然性の異方性熱振動楕円体により表される。充填図及び追加の図はMercuryを用いて作成する。水素結合は破線で表される。キラル中心の分析はPLATON(Spek, A.L. PLATON. Molecular Graphics Program. Utrecht University, Utrecht, The Netherlands, 2008. Spek, A.L., J. Appl. Cryst. 2003, 36, 7)で行う。絶対配置は分子キラル則の仕様書を用いて分析する(Cahn, R.S.; Ingold, C; Prelog, V. Angew. Chem. Intern. Ed. Eng., 1966, 5, 385 and Prelog, V., Helmchen, G. Angew. Chem. Intern. Ed. Eng., 1982, 21, 567)。
結果:斜方晶系セルパラメータ及び計算容積は:a=5.9055(2)Å、b=7.4645(3)Å、c=29.1139(13)Å(α=β=γ=90゜)、V=1283.39(9)Å3。結晶形Bにおける非対称ユニットの式量はZ=4の245.74 g mol−1であり、計算密度は1.272 g cm−3となる。空間群はP212121(no. 19)と決定される。結晶データ及び結晶学的データ収集パラメータの概要は以下の第15表に示す。空間群及び単位格子パラメータはXRPDインデキシングにより結晶形Bについて得られたものと一致する。
R値は0.0453(4.53%)である。
結晶形Bの原子変位楕円体図は図24に示す。
図24に示される非対称ユニットはプロトン化された(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン分子を一つ及び塩化物対イオンを一つ含む。
a、b及びc結晶軸に沿った充填図を図25〜27にそれぞれ示す。水素結合はアミンから塩化物に向かい、図28に示される、a軸に沿った一次的水素結合したらせん鎖を形成する。
結晶形Bの構造内の(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン分子の分子コンフォメーションは図29にて結晶形Aの構造にて観測される分子コンフォメーションと比較し、a軸に沿った二つの形態の充填は図30にて比較する。結晶形A及びBの構造における水素結合は図31に示される。隣接する分子は結晶形Aにおける塩化物イオンを通してa軸に沿って直鎖を形成する水素結合で連結される。結晶形B充填では、隣接分子のアミン基ははるかに離れすぎているため同様に連結されず、水素結合の代わりに、結晶形Bではらせん鎖を形成する。
絶対構造は結晶による異常X線散乱の分析を通して決定することができる。Flackパラメータ(Flack, H.D.; Bernardinelli, G., Acta Cryst. 1999, A55, 908; Flack, H.D., Bernardinelli, G., J. Appl. Cryst. 2000, 33, 1143, Flack, H.D., Acta Cryst. 1983, A39, 876; Parsons, S.; Flack, H.D.; Wagner, T., Acta Cryst. 2013, B69, 249-259)として知られる精密化パラメータxは逆双晶内の二成分の相対存在度をコード化する。当該構造は精密化されたモデルのフラクション1−x及びその逆数のxを含む。低標準不確かさが得られる場合、Flackパラメータは解析した構造が正しい場合には0に近く、逆モデルが正しい場合には1に近いものであるべきである。図24に示される結晶形Bの構造について測定したFlackパラメータは0.010であり、標準不確かさは0.010であり、反転構造を区別する力が強いことを示す。化合物はエナンチオピュアであり、絶対配置は結晶構造から直接割り当てることができる。
Flackパラメータ(x)の精密化によって、絶対構造の割り当てについて定量的な提示がされるものではない。しかし、Bayesian統計をBijvoet差に適用するアプローチは絶対構造の異なる仮説について一連の蓋然性を提供することができる(Hooft, R.W.W.; Straver, L.H.; and Spek, A.L., J. Appl. Cryst., 2008, 41, 96-103及びBijvoet, J.M.; Peerdeman, A.F.; van Bommel, A.J., Nature, 1951, 168, 271)。この分析は、絶対構造が正しいか、誤りか、又はラセミ双晶なのかの蓋然性に加え、Flack等価(Hooft)パラメータを提供する。現在のデータについて、Flack等価(Hooft)パラメータは−0.001(7)であると決定され、構造が正確である蓋然性は1.000であり、構造が誤りである蓋然性は0.000であり、物質がラセミ双晶である蓋然性は0.000である。
この構造はC2及びC3に二つのキラル中心を含み(図24参照)、それぞれS及びR配置にて結合する。
図32は単結晶構造から生成される結晶形Bの計算XRPDパターンを示す。
図33に示される結晶形Bの実験XRPDパターン(図40、実施例8のXRPDパターンと同じ)は計算パターン及び室温に調節された計算パターンと重ね合わされる。実験パターンのすべてのピークは計算XRPDパターンにて示され、単一相を示す。
計算及び実験粉末回折パターン間の強度の差は選択配向に起因することがある。選択配向は、結晶が数度のオーダーで整列する傾向である。このサンプルの選択配向は、実験粉末回折パターンにおけるピーク強度に有意に影響しうるが、ピーク位置には影響しない。さらに、実験粉末パターンが常温にて収集され、単結晶データが100Kで収集されるため、計算及び実験粉末回折パターン間のピーク位置がいくらかシフトすることが予想し得る。単結晶分析では低温を用いて構造の質が改善されるが、単位格子パラメータにおける変化をもたらす結晶を縮小させ得、これは計算粉末回折パターンに反映される。このようなシフトは特に高分散回折角で明らかである。計算XRPDパターンはXRPDインデキシングから先に得られた単位格子を用いて室温に調節された。
第15表.(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩結晶形B(結晶形B)の結晶データ及びデータ収集パラメータ
経験式 C15H16ClN
式量 245.74
温度 100(2) K
波長 1.54178Å
結晶系 斜方晶系
空間群 P212121
単位格子寸法 a=5.9055(2)Å α=90゜
b=7.4645(3)Å β=90゜
c=29.1139(13)Å γ=90゜
容積 1283.39(9)Å3
Z 4
密度(計算) 1.272 Mg/m3
吸収係数 2.422 mm-1
F(000) 520
結晶サイズ 0.310 x 0.210 x 0.090 mm3
データ収集についてのシータ範囲 6.080〜72.393゜
インデックス範囲 -7<=h<=7, -8<=k<=8, -35<=l<=35
収集反射 22958
独立反射 2415 [R(int)=0.0495]
シータに対する完全性=67.679゜ 98.5%
吸収補正 等価物からの半経験的
最大及び最小透過 0.976及び0.753
精密化方法 F2における完全マトリックス最小二乗
データ/抑制/パラメータ 2415 / 0 / 155
F2における適合度 1.150
最終Rインデックス[I>2シグマ(I)] R1=0.0453, wR2=0.1224
Rインデックス(全データ) R1=0.0464, wR2=0.1240
絶対構造パラメータ Flackパラメータ: 0.010(10)
Hooftパラメータ: -0.001(7)
消衰係数 0.0055(8)
最大差ピーク及びホール 0.318及び-0.313 e.Å-3
第15表.(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩結晶形B(結晶形B)の結晶データ及びデータ収集パラメータ
経験式 C15H16ClN
式量 245.74
温度 100(2) K
波長 1.54178Å
結晶系 斜方晶系
空間群 P212121
単位格子寸法 a=5.9055(2)Å α=90゜
b=7.4645(3)Å β=90゜
c=29.1139(13)Å γ=90゜
容積 1283.39(9)Å3
Z 4
密度(計算) 1.272 Mg/m3
吸収係数 2.422 mm-1
F(000) 520
結晶サイズ 0.310 x 0.210 x 0.090 mm3
データ収集についてのシータ範囲 6.080〜72.393゜
インデックス範囲 -7<=h<=7, -8<=k<=8, -35<=l<=35
収集反射 22958
独立反射 2415 [R(int)=0.0495]
シータに対する完全性=67.679゜ 98.5%
吸収補正 等価物からの半経験的
最大及び最小透過 0.976及び0.753
精密化方法 F2における完全マトリックス最小二乗
データ/抑制/パラメータ 2415 / 0 / 155
F2における適合度 1.150
最終Rインデックス[I>2シグマ(I)] R1=0.0453, wR2=0.1224
Rインデックス(全データ) R1=0.0464, wR2=0.1240
絶対構造パラメータ Flackパラメータ: 0.010(10)
Hooftパラメータ: -0.001(7)
消衰係数 0.0055(8)
最大差ピーク及びホール 0.318及び-0.313 e.Å-3
実施例7−結晶形Bの調製
上記実施例5の結晶形A(470.9 mg)を20 mLガラスバイアル中にて水(5 mL)と混合する。スラリーを撹拌バーで常温にて16日間撹拌し、変換させる。真空ろ過及び窒素下での短時間乾燥により固体を回収する。
上記実施例5の結晶形A(470.9 mg)を20 mLガラスバイアル中にて水(5 mL)と混合する。スラリーを撹拌バーで常温にて16日間撹拌し、変換させる。真空ろ過及び窒素下での短時間乾燥により固体を回収する。
実施例8−結晶形Bの調製
以下の実施例16の生成物(1 g)を特別工業用200(変性エタノール)5 mL中で常温にて週末にわたって撹拌する。混合物をろ過し、特別工業用200(変性エタノール)2 mL、次いで酢酸イソプロピル(2 x 3 mL)ですすぐ。固体を2時間かけて吸引乾燥した後、40℃で6時間乾燥し、生成物0.81 gを得る。
以下の実施例16の生成物(1 g)を特別工業用200(変性エタノール)5 mL中で常温にて週末にわたって撹拌する。混合物をろ過し、特別工業用200(変性エタノール)2 mL、次いで酢酸イソプロピル(2 x 3 mL)ですすぐ。固体を2時間かけて吸引乾燥した後、40℃で6時間乾燥し、生成物0.81 gを得る。
XRPDにより生成物が結晶形Bであることが示される(図40及び図33の一番上のXRPDパターン参照)。XRPDパターンはOptix long高精度焦点源を用いて生成されたCu線入射ビームを用いたPANalytical X'Pert PRO MPD回折計で収集する。楕円状段階的多層鏡を用いてCu Kα X線の焦点を試料に合わせ、検出器に向ける。分析前にシリコン試料(NIST SRM 640d)を分析し、Si 111ピークの観測位置がNIST認証位置と一致することを確認する。サンプル試料を3μm厚さのフィルム間に挟み、透過ジオメトリで分析する。ビームストップ、散乱防止短拡張子及び散乱防止ナイフエッジを用いて、空気により生成するバックグラウンドを最小化する。ソーラースリットを入射及び回折ビームに用いて、軸発散からの拡張を最小化する。回折パターンは、試料から240mmに位置する散乱位置検出素子(X'Celerator)及びData Collectorソフトウェアv. 2.2bを用いて収集する。データ取得パラメータは:Panalytical X-Pert Pro MPD PW3040 Pro、X線管:Cu(1.54059Å)、電圧:45 kV、電流:40 mA、スキャン範囲:1.01-39.98゜2θ、ステップサイズ:0.017゜2θ、収集時間:720 s、スキャン速度:3.2゜/min.、スリット:DS:1/2゜、SS:ゼロ、回転時間:1.0 s、モード:透過。
この物質についてのPANalyticalパターンの一つを分析し、選択配向及び粒子統計効果を、単結晶分析からの計算XRPDパターンに加えて代替ジオメトリを用いて分析したもう一つのXRPDパターンと比較して評価する。Cu Kα線で収集した図40に示されるXRPDについてのインデキシング結果を図41に示す。XRPDパターンはX'Pert High Score Plus 2.2a(2.2.1)を用いてインデキシングする。観測ピークは図42に示され、項1.109の表Fに示され、典型的なピークは項1.102の表Eに示され、特徴的なピークは上記項1.93の表Dに示される。
実施例9−結晶形C
実施例5の結晶形A(458.2 mg)及びIPA(40 mL)を含む不透明溶液を昇温させながら作成する。熱溶液をきれいなバイアル中に0.2μmナイロンフィルターでろ過し、冷凍庫に置く。2日後、固体を真空ろ過により回収し、窒素下、短時間乾燥する。固体は結晶形A及びCの混合物として同定される。スラリーは混合物(42.2 mg)及び飽和DCM溶液(0.8 mL)で作成する(飽和溶液はDCM 5 mL中、実施例5の結晶形A(65.4 mg)から常温にて作成する。翌日、過剰の固体を0.2μmナイロンフィルターで溶液からろ別する。)スラリーを瑪瑙ボールで100 RPM、2℃にて3週間撹拌し、変換させる。真空ろ過により得られた懸濁液から単離された固体を-25〜-10℃の温度で保存する。
実施例5の結晶形A(458.2 mg)及びIPA(40 mL)を含む不透明溶液を昇温させながら作成する。熱溶液をきれいなバイアル中に0.2μmナイロンフィルターでろ過し、冷凍庫に置く。2日後、固体を真空ろ過により回収し、窒素下、短時間乾燥する。固体は結晶形A及びCの混合物として同定される。スラリーは混合物(42.2 mg)及び飽和DCM溶液(0.8 mL)で作成する(飽和溶液はDCM 5 mL中、実施例5の結晶形A(65.4 mg)から常温にて作成する。翌日、過剰の固体を0.2μmナイロンフィルターで溶液からろ別する。)スラリーを瑪瑙ボールで100 RPM、2℃にて3週間撹拌し、変換させる。真空ろ過により得られた懸濁液から単離された固体を-25〜-10℃の温度で保存する。
生成物のXRPDは図43に示される。XRPDパターンはOptix long高精度焦点源を用いて生成されたCu線入射ビームを用いたPANalytical X'Pert PRO MPD回折計で収集する。楕円状段階的多層鏡を用いてCu Kα X線の焦点を試料に合わせ、検出器に向ける。分析前にシリコン試料(NIST SRM 640d)を分析し、Si 111ピークの観測位置がNIST認証位置と一致することを確認する。サンプル試料を3μm厚さのフィルム間に挟み、透過ジオメトリで分析する。ビームストップ、散乱防止短拡張子及び散乱防止ナイフエッジを用いて、空気により生成するバックグラウンドを最小化する。ソーラースリットを入射及び回折ビームに用いて、軸発散からの拡張を最小化する。回折パターンは、試料から240mmに位置する散乱位置検出素子(X'Celerator)及びData Collectorソフトウェアv. 2.2bを用いて収集する。データ取得パラメータは:Panalytical X-Pert Pro MPD PW3040 Pro、X線管:Cu(1.54059Å)、電圧:45 kV、電流:40 mA、スキャン範囲:1.00-39.99゜2θ、ステップサイズ:0.017゜2θ、収集時間:720 s、スキャン速度:3.2゜/min.、スリット:DS:1/2゜、SS:ゼロ、回転時間:1.0 s、モード:透過。
この物質についてのPANalyticalパターンの一つを分析し、選択配向及び粒子統計効果を、代替ジオメトリを用いて分析したもう一つのXRPDパターンと比較して評価する。Cu Kα線で収集した図43に示されるXRPDパターンについてのインデキシング結果を図44に示す。XRPDパターンは専用ソフトウェア(米国特許第8,576,985号)を用いてインデキシングする。観測ピークは図45に示され、項1.183の表Iに示され、典型的なピークは項1.176の表Hに示され、特徴的なピークは項1.168の表Gに示される。
実施例10−相互変換スラリー法
エネルギー−温度図はGibbs−Helmholtz式(ここで、各形態についてのエンタルピー(H)及び自由エネルギー(G)曲線は温度の関数として示される)の半定量的図解である。グラフによれば、自由エネルギー曲線は多くて一回交差し、第二に、多形体のエンタルピー曲線は交差しないと想定される。多形体の融点は多形体の自由エネルギー曲線が液体の自由エネルギー曲線と交差する温度と定義される。転移温度はある多形体の自由エネルギー曲線が第二の多形体の自由エネルギー曲線と交差する温度と定義される。従って、Ttにて両方の多形体の自由エネルギーは等しく、結果的に互いに平衡となる。
エネルギー−温度図はGibbs−Helmholtz式(ここで、各形態についてのエンタルピー(H)及び自由エネルギー(G)曲線は温度の関数として示される)の半定量的図解である。グラフによれば、自由エネルギー曲線は多くて一回交差し、第二に、多形体のエンタルピー曲線は交差しないと想定される。多形体の融点は多形体の自由エネルギー曲線が液体の自由エネルギー曲線と交差する温度と定義される。転移温度はある多形体の自由エネルギー曲線が第二の多形体の自由エネルギー曲線と交差する温度と定義される。従って、Ttにて両方の多形体の自由エネルギーは等しく、結果的に互いに平衡となる。
提示されたエネルギー−図46に示される結晶形A、B及びCについての温度図。図において、各形態についてのエンタルピー(H)及び自由エネルギー(G)曲線は温度(T)の関数として示される。下付き記号A、B、C及びLはそれぞれ結晶形A、B、C及び液相を意味する。下付き記号f、t及びmはそれぞれ融解、転移点及び融点を意味する。グラフによれば、自由エネルギー曲線は多くて一回交差し、次に、多形体のエンタルピー曲線は交差しないと想定される。多形体の融点は多形体の自由エネルギー曲線が液体の自由エネルギー曲線と交差する温度と定義される。転移温度はある多形体の自由エネルギー曲線がもう一つの多形体の自由エネルギー曲線と交差する温度と定義される。従って、Ttにて両方の多形体の自由エネルギーは等しく、結果的に互いに平衡となる。結晶形CはTt,C→B未満で安定な固体相であり(結晶形Cの自由エネルギーは結晶形Bのものよりも低いため)、結晶形BはTt,C→BとTt,B→Aの間で安定な固体相であり、結晶形AはTt,B→Aを超える温度で安定な固体相である。低エネルギー多形体は、フガシティー、蒸気圧、熱力学的活量、溶解性、単位表面積当たりの溶出速度及び他の多形体に対する反応速度が低い。
相互変換実験を行い、上記エネルギー−温度図により示される物質間の仮想の熱力学的関係を試験する。相互変換又は競合的スラリー法は、溶解性の低い(より安定な)結晶がより溶解性の高い結晶形態を犠牲にして成長する経路を提供する溶液媒介工程である(Bernstein, J. Polymorphism in Molecular Crystals. Clarendon Press, Oxford, 2006; Brittain, H.G., Polymorphism in Pharmaceutical Solids. Marcel Dekker, Inc., New York, 1999)。溶媒和物の形成又は分解は別として、より熱力学的に安定な多形体は低エネルギーであるため低溶解性であるから、相互変換実験から得られたより安定な多形体は用いた溶媒とは無関係である。溶媒の選択は多形体変換の速度論に影響するが、多形体間の熱力学的関係には影響しない(Gu, C.H., Young, V. Jr., Grant, D.J., J. Pharm. Sci. 2001, 90 (11), 1878-1890)。
約2〜67℃の温度での異なる溶媒系における結晶形A、B及びC間の二元相互変換スラリー法は以下の第16表に概略する。飽和溶液を生成した後、二つの多形体のおよそ等量から成る混合物に加える。サンプルを終夜から3週間スラリー化し、固体を得、XRPDにより分析する。相互変換研究の結果によれば、互変型の結晶形A、B及びCの相対熱力学的安定性が提示されたエネルギー−温度図に正確に表されるものであることが示される。さらに、Tt,C→Bは2℃(決定されていない)未満と思われ、Tt,C→Aは2℃〜常温の間であり、Tt,B→Aは37〜54℃の間である。
結晶形Bはメタノール及び水の両方で結晶形Aよりも見掛けの溶解性が低いことが示される(以下の第17表)。溶解熱量測定(SolCal)分析も行い、メタノール中25℃での溶液の熱を測定し、この温度での安定な形態を確認する(実施例15参照)。SolCalデータに基づき、両方の結晶形A及びBのメタノールへの溶解は、それぞれ48.618及び64.567 J/gの平均溶解熱の吸熱事象であり、これは25℃では結晶形Bが結晶形Aよりも安定であることを示す。
実験:近似溶解度
重量を測定したサンプルは室温における試験溶媒のアリコートで処理する。混合物を添加間で超音波処理し、溶解を促進する。試験物質の完全な溶解は目視検査で決定する。溶解度は完全な溶解を提供するために用いられる全溶媒に基づき推定される。実際の溶解性は、大量の溶媒アリコートの使用又は遅い溶解速度により計算された値よりも大きくてもよい。
重量を測定したサンプルは室温における試験溶媒のアリコートで処理する。混合物を添加間で超音波処理し、溶解を促進する。試験物質の完全な溶解は目視検査で決定する。溶解度は完全な溶解を提供するために用いられる全溶媒に基づき推定される。実際の溶解性は、大量の溶媒アリコートの使用又は遅い溶解速度により計算された値よりも大きくてもよい。
実施例11−加速ストレス条件
結晶形A、B及びCを二週間の加速ストレス条件に曝す(以下の第18表)。XRPDに基づけば、結晶形A及びBは評価した時間枠内で30℃/56%RH又は40℃/75%RHで変化しないままである。しかし、結晶形Cは40℃/75%RHでは二週間以内に結晶形A及びBの混合物に変換される。結晶形Cはこの条件では準安定である。結晶形Aについて、より安定な多形体の種晶がない場合、結晶形Bの核生成のための臨界自由エネルギー障壁は評価した時間枠内で固体状態又は溶媒媒介形態にて変換実験を乗り越えられない。
結晶形A、B及びCを二週間の加速ストレス条件に曝す(以下の第18表)。XRPDに基づけば、結晶形A及びBは評価した時間枠内で30℃/56%RH又は40℃/75%RHで変化しないままである。しかし、結晶形Cは40℃/75%RHでは二週間以内に結晶形A及びBの混合物に変換される。結晶形Cはこの条件では準安定である。結晶形Aについて、より安定な多形体の種晶がない場合、結晶形Bの核生成のための臨界自由エネルギー障壁は評価した時間枠内で固体状態又は溶媒媒介形態にて変換実験を乗り越えられない。
Tt,B→Aは37〜54℃である。結晶形A及びBの混合物(実施例17の分量1及び2の混合)は230℃にした際に完全に結晶形Aに変換される(以下の第19表)。
実験:相対湿度ストレス
実験:相対湿度ストレス
以下の相対湿度瓶(飽和塩溶液を用いて所望の相対湿度を生成する)を用いる:75%RH (NaCl)及び56%RH (NaBr)(Nyqvist, H., Int. J. Pharm. Tech.&Prod. Mfr. 1983, 4 (2), 47-48)。
実施例12−結晶形Bの調製
上記実施例5の結晶形Aの一部を常温にて16日間水でスラリー化する。結晶形Bを単離する。生成物のXRPDは図48に示す。XRPDパターンはOptix long高精度焦点源を用いて生成されたCu線入射ビームを用いたPANalytical X'Pert PRO MPD回折計で収集する。楕円状段階的多層鏡を用いてCu Kα X線の焦点を試料に合わせ、検出器に向ける。分析前にシリコン試料(NIST SRM 640e)を分析し、Si 111ピークの観測位置がNIST認証位置と一致することを確認する。サンプル試料を3μm厚さのフィルム間に挟み、透過ジオメトリで分析する。ビームストップ、散乱防止短拡張子及び散乱防止ナイフエッジを用いて、空気により生成するバックグラウンドを最小化する。ソーラースリットを入射及び回折ビームに用いて、軸発散からの拡張を最小化する。回折パターンは、試料から240mmに位置する散乱位置検出素子(X'Celerator)及びData Collectorソフトウェアv. 2.2bを用いて収集する。データ取得パラメータは:Panalytical X-Pert Pro MPD PW3040 Pro、X線管:Cu(1.54059Å)、電圧:45 kV、電流:40 mA、スキャン範囲:1.00-39.99゜2θ、ステップサイズ:0.017゜2θ、収集時間:716 s、スキャン速度:3.3゜/min.、スリット:DS:1/2゜、SS:ゼロ、回転時間:1.0 s、モード:透過。
上記実施例5の結晶形Aの一部を常温にて16日間水でスラリー化する。結晶形Bを単離する。生成物のXRPDは図48に示す。XRPDパターンはOptix long高精度焦点源を用いて生成されたCu線入射ビームを用いたPANalytical X'Pert PRO MPD回折計で収集する。楕円状段階的多層鏡を用いてCu Kα X線の焦点を試料に合わせ、検出器に向ける。分析前にシリコン試料(NIST SRM 640e)を分析し、Si 111ピークの観測位置がNIST認証位置と一致することを確認する。サンプル試料を3μm厚さのフィルム間に挟み、透過ジオメトリで分析する。ビームストップ、散乱防止短拡張子及び散乱防止ナイフエッジを用いて、空気により生成するバックグラウンドを最小化する。ソーラースリットを入射及び回折ビームに用いて、軸発散からの拡張を最小化する。回折パターンは、試料から240mmに位置する散乱位置検出素子(X'Celerator)及びData Collectorソフトウェアv. 2.2bを用いて収集する。データ取得パラメータは:Panalytical X-Pert Pro MPD PW3040 Pro、X線管:Cu(1.54059Å)、電圧:45 kV、電流:40 mA、スキャン範囲:1.00-39.99゜2θ、ステップサイズ:0.017゜2θ、収集時間:716 s、スキャン速度:3.3゜/min.、スリット:DS:1/2゜、SS:ゼロ、回転時間:1.0 s、モード:透過。
実施例13−結晶形A及び少量の結晶形Bの混合物のXRPD
結晶形A及び少量の結晶形B生成物の混合物のXRPDパターンは図49に示す(合成は実施例17)。XRPDパターンはOptix long高精度焦点源を用いて生成されたCu線入射ビームを用いたPANalytical X'Pert PRO MPD回折計で収集する。楕円状段階的多層鏡を用いてCu Kα X線の焦点を試料に合わせ、検出器に向ける。分析前にシリコン試料(NIST SRM 640e)を分析し、Si 111ピークの観測位置がNIST認証位置と一致することを確認する。サンプル試料を3μm厚さのフィルム間に挟み、透過ジオメトリで分析する。ビームストップ、散乱防止短拡張子及び散乱防止ナイフエッジを用いて、空気により生成するバックグラウンドを最小化する。ソーラースリットを入射及び回折ビームに用いて、軸発散からの拡張を最小化する。回折パターンは、試料から240mmに位置する散乱位置検出素子(X'Celerator)及びData Collectorソフトウェアv. 2.2bを用いて収集する。データ取得パラメータは:Panalytical X-Pert Pro MPD PW3040 Pro、X線管:Cu(1.54059Å)、電圧:45 kV、電流:40 mA、スキャン範囲:1.00-39.99゜2θ、ステップサイズ:0.017゜2θ、収集時間:720 s、スキャン速度:3.2゜/min.、スリット:DS:1/2゜、SS:ゼロ、回転時間:1.0 s、モード:透過。
結晶形A及び少量の結晶形B生成物の混合物のXRPDパターンは図49に示す(合成は実施例17)。XRPDパターンはOptix long高精度焦点源を用いて生成されたCu線入射ビームを用いたPANalytical X'Pert PRO MPD回折計で収集する。楕円状段階的多層鏡を用いてCu Kα X線の焦点を試料に合わせ、検出器に向ける。分析前にシリコン試料(NIST SRM 640e)を分析し、Si 111ピークの観測位置がNIST認証位置と一致することを確認する。サンプル試料を3μm厚さのフィルム間に挟み、透過ジオメトリで分析する。ビームストップ、散乱防止短拡張子及び散乱防止ナイフエッジを用いて、空気により生成するバックグラウンドを最小化する。ソーラースリットを入射及び回折ビームに用いて、軸発散からの拡張を最小化する。回折パターンは、試料から240mmに位置する散乱位置検出素子(X'Celerator)及びData Collectorソフトウェアv. 2.2bを用いて収集する。データ取得パラメータは:Panalytical X-Pert Pro MPD PW3040 Pro、X線管:Cu(1.54059Å)、電圧:45 kV、電流:40 mA、スキャン範囲:1.00-39.99゜2θ、ステップサイズ:0.017゜2θ、収集時間:720 s、スキャン速度:3.2゜/min.、スリット:DS:1/2゜、SS:ゼロ、回転時間:1.0 s、モード:透過。
実施例14−結晶形A及びBの溶解熱量測定(SolCal)分析
各形態についての溶解熱量測定分析をメタノール中で3回測定し、データを第21表に概略する。各試験について二つの溶解熱が得られる−一つはサンプル分析前に較正して計算し、一つは較正して計算した後サンプル分析をする。二つの較正からの平均値も該表に示す。明らかな溶解が各試験後に観測される。
各形態についての溶解熱量測定分析をメタノール中で3回測定し、データを第21表に概略する。各試験について二つの溶解熱が得られる−一つはサンプル分析前に較正して計算し、一つは較正して計算した後サンプル分析をする。二つの較正からの平均値も該表に示す。明らかな溶解が各試験後に観測される。
結晶形A及びBのメタノールへの溶解はそれぞれ平均溶解熱が48.618及び64.567 J/gである吸熱事象である。各セットについての標準偏差はそれぞれ0.457及び0.344 J/gである。
結晶形Bは結晶形Aよりも溶解熱値が高く、これは結晶形Bが25℃ではAよりも安定であることを示す。SolCalデータから計算した結晶形Bから結晶形Aへの転移エンタルピーは約15.9 J/gである。DSCにおける結晶形Bの固体状態転移における融解熱の差は15.9 J/gであり(図8及び55参照)、SolCal結果とよく一致する。
溶解熱量測定は半断熱熱量計Thermometric 2225 Precision Solution Calorimeterを用いて行う。Solution Calorimeter System v.1.2ソフトウェアを用いる。サンプルはガラスクラッシングアンプルにて重量を量り、シリコンラバープラグ及び熱ろうを用いて封をする。メタノール100 mL中25℃にて実験を行う。サンプルの溶解熱の測定は内部ヒーターを用いて較正の前後に行う。較正モデルの動態を用いて溶解熱を計算する。
実施例15−実施例1の結晶形Aの高温顕微鏡(HSM)
高温顕微鏡はLeica DM LP顕微鏡にマウントしたLinkamホット・ステージ(モデルFTIR 600)を用いて行う。サンプルは20x対象(obj.)を用いて観測する。サンプルをカバースリップ上に置いた後、第二カバースリップを当該サンプル上に置く。ステージを加熱しながら、各サンプルを目視観測する。SPOTソフトウェアv. 4.5.9を備えたSPOT InsightTMカラーデジタルカメラを用いてイメージを捕捉する。ホット・ステージはUSP融点標準を用いて較正する。
高温顕微鏡はLeica DM LP顕微鏡にマウントしたLinkamホット・ステージ(モデルFTIR 600)を用いて行う。サンプルは20x対象(obj.)を用いて観測する。サンプルをカバースリップ上に置いた後、第二カバースリップを当該サンプル上に置く。ステージを加熱しながら、各サンプルを目視観測する。SPOTソフトウェアv. 4.5.9を備えたSPOT InsightTMカラーデジタルカメラを用いてイメージを捕捉する。ホット・ステージはUSP融点標準を用いて較正する。
結晶形Aの182〜239℃のHSMにより、最小粒子が蒸発して得られた蒸気はより大きな結晶に再結晶する。凝縮及び融解は239〜247℃で観測され、針状物が最後に融解したようであり、DSCにより観測される複数の吸熱と一致する。二つの調製物を分析に用いる。一つ目は、融解後に変色(分解)が観測される。二つ目は急速な冷却により融解物の再結晶が起こる。
工程1及び2
2-ナフチルアセトニトリル(50 Kg)をTHF(250 L)に溶解し、(S)-(+)-エピクロロヒドリン32 kgを加え、溶液を-10℃に冷却する。次いで、内部温度を-10℃未満に保ちながら、2.0 Mナトリウムヘキサメチルジシラザン/THF(299 L)を加える。この添加は完了まで14時間14分を要する。次いで、反応混合物を約-10℃にてさらに4時間撹拌した後、反応混合物のサンプルをHPLCで分析する。内部温度を0℃未満に保ちながら、ボランジメチルスルフィド(71 kg)を4時間33分かけて加える。ボラン添加完了後、反応混合物を60℃までゆっくりと加熱し、ニトリルをアミンに還元する。この加熱中、発熱が見られ、45℃を示す。60℃にて14時間46分加熱した後、反応混合物のサンプルをHPLCで分析する。
2-ナフチルアセトニトリル(50 Kg)をTHF(250 L)に溶解し、(S)-(+)-エピクロロヒドリン32 kgを加え、溶液を-10℃に冷却する。次いで、内部温度を-10℃未満に保ちながら、2.0 Mナトリウムヘキサメチルジシラザン/THF(299 L)を加える。この添加は完了まで14時間14分を要する。次いで、反応混合物を約-10℃にてさらに4時間撹拌した後、反応混合物のサンプルをHPLCで分析する。内部温度を0℃未満に保ちながら、ボランジメチルスルフィド(71 kg)を4時間33分かけて加える。ボラン添加完了後、反応混合物を60℃までゆっくりと加熱し、ニトリルをアミンに還元する。この加熱中、発熱が見られ、45℃を示す。60℃にて14時間46分加熱した後、反応混合物のサンプルをHPLCで分析する。
次いで、反応混合物を24℃に冷却し、2時間28分かけて2M HClの溶液に移し、反応容器をTHF(22.3 Kg)ですすぎ、反応混合物を含むHClに移す。二相混合物を45℃〜55℃に加熱し、この温度で1時間48分撹拌した後、30℃に冷却する。反応停止させた反応混合物のpHを測定し、1と分かる。反応停止処理をIPAcの添加、撹拌及び層分離して行う。1M HCl溶液を有機層に加え、撹拌し、層を分離し、有機層を廃棄する。アンモニア水を合わせた水層に加え、pHを測定したところ、pH9を示す。次いで水層をIPAcで二回抽出することにより反応停止処理を行う。次いで合わせた有機抽出物を5%塩化ナトリウム溶液で洗浄する。得られた有機層を一部濃縮し、塩化メチレンで4回共沸乾燥及び共エバポレーションし、次いで塩化メチレンで希釈し、反応混合物をインライン・フィルターによりきれいな乾燥反応容器に移し、IPAcで希釈する。次いでp-トルエンスルホン酸水和物(54 Kg)を少しずつ加え、所望の生成物をpTsOH塩として析出させ、反応懸濁物を10℃〜15℃にて3時間かけて撹拌し、生成物をろ過により単離する。フィルターケーキを2-メチルテトラヒドロフラン、次いでIPAcで洗浄した後、2時間にわたり吸引乾燥する。粗生成物を10℃〜15℃にて11時間36分にわたり2-メチルテトラヒドロフランと撹拌することにより精製し、生成物をろ過により単離する。ろ過した固体を2-メチルテトラヒドロフランで洗浄した後、一定重量に乾燥し、所望の生成物73.8 Kgを白色固体として得る。収率=73.8 Kg(62%)。HPLC=96.8%。
工程3及び4
工程3及び4
上記工程2で得られたアミン-pTsOH塩(73.8 Kg)を2-メチルテトラヒドロフラン(738 L)中にて懸濁化し、スラリーを得る。次いで塩化チオニル(26.4 kg)を3時間かけて加える。塩化チオニルの添加が完了して、反応混合物をさらに3時間撹拌する。水酸化ナトリウム水溶液(5M, 10 mol当量)を3時間にわたり加えた後、さらに2時間撹拌する。層を静置させ、水層のpHを確認したところ9である。水(2 mL/g, SM)を加え、反応混合物を室温にてさらに15分撹拌し、層を分離し、有機層を水で二回洗浄する。水層を合わせ、2-メチルテトラヒドロフランで逆抽出し、最初の有機層と逆抽出物とを合わせる。これらの合わせた有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥し、一部濃縮する。濃縮後、塩化水素/IPA(1.0 mol当量のHCl/IPA)を加え、2時間撹拌し、粗製の塩を形成させ、これをろ過により単離し、2-メチルテトラヒドロフラン、次いでIPAcで洗浄した後、真空下2時間吸引乾燥する。
上記で得られた粗生成物(82.6 Kg)を14容積の熱エタノール(70℃)に溶解した後、カプセルカーボンフィルターによりろ過し、色を改善する。次いで溶解容器及びカプセルカーボンフィルター及び移送ラインをさらに熱エタノール(70℃)ですすぎ、洗浄液をろ液と合わせる。合わせたろ液及び洗浄液を一部減圧濃縮して全約5容積(投入した粗生成物に対して)とした後、0℃にて2時間撹拌する。得られた固体をろ過により単離し、ろ過ケーキを冷(0℃〜5℃)エタノール、次いでIPAcで洗浄した後、洗浄固体を乾燥し、灰白色がかった固体として生成物(33.6 Kg)を得る。収率=33.6 Kg(73%収率)。アキラルHPLC=98%。
次いで物質をコーン・ドライにより乾燥する。乾燥後、物質を篩にかける。
次いで当該物質の一部(14 Kg)を15容積の熱エタノール(70℃)に溶解し、カプセルカーボンフィルターによりろ過し、色を改善する。次いで溶解容器及びカプセルカーボンフィルター及び移送ラインをさらに熱エタノール(70℃)ですすぎ、洗浄液をろ液と合わせる。合わせたろ液及び洗浄液を一部減圧濃縮して全約8容積(始めに投入した(1R,5S)-1-(ナフタレン-2-イル)-3-アザビシクロ[3.1.0]ヘキサン塩酸塩14 Kgに対して)とした後、18℃にて2時間撹拌する。得られた固体をろ過により単離し、ろ過ケーキを冷(5℃〜10℃)エタノール、次いでIPAcで洗浄した後、洗浄固体を乾燥し、(1R,5S)-1-(ナフタレン-2-イル)-3-アザビシクロ[3.1.0]ヘキサン塩酸塩(9.4 Kg、収率67.1%)を白色固体として得る。アキラルHPLC=98%。
生成物のXRPDは図56に示される。XRPDは、結晶形Bに起因する18.9゜、19.2゜、23.6゜、23.8゜、28.2゜及び28.7゜2θに低強度のピークの痕跡を示すが、結晶形Aと一致する。XRPDパターンはOptix long高精度焦点源を用いて生成されたCu線入射ビームを用いたPANalytical X'Pert PRO MPD回折計で収集する。楕円状段階的多層鏡を用いてCu Kα X線の焦点を試料に合わせ、検出器に向ける。分析前にシリコン試料(NIST SRM 640e)を分析し、Si 111ピークの観測位置がNIST認証位置と一致することを確認する。サンプル試料を3μm厚さのフィルム間に挟み、透過ジオメトリで分析する。ビームストップ、散乱防止短拡張子及び散乱防止ナイフエッジを用いて、空気により生成するバックグラウンドを最小化する。ソーラースリットを入射及び回折ビームに用いて、軸発散からの拡張を最小化する。回折パターンは、試料から240mmに位置する散乱位置検出素子(X'Celerator)及びData Collectorソフトウェアv. 2.2bを用いて収集する。
XRPDデータ取得パラメータは:Panalytical X-Pert Pro MPD PW3040 Pro、X線管:Cu(1.54059Å)、電圧:45 kV、電流:40 mA、スキャン範囲:1.00-39.99゜2θ、ステップサイズ:0.017゜2θ、収集時間:721 s、スキャン速度:3.2゜/min.、スリット:DS:1/2゜、SS:ゼロ、回転時間:1.0 s、モード:透過。
実施例17−結晶形A及びBの混合物の調製
メカニカル・スターラー、還流冷却器、窒素注入口、熱電対及び加熱マントルを備えた2 L三ツ口丸底フラスコに、上記実施例16の生成物50 g及びEtOH特別工業用(750 mL, 15容積)を加える。混合物を加熱還流する(77℃)。固体を72℃にて溶解し透明溶液を形成させる。粘り気のない濃灰色スラリーを加え(5 g, 0.1 eq/100 mL EtOH)、混合物を1時間撹拌する。熱EtOH(150 mL)でろ過し、すすぐ。ろ液を二つの等分量に分ける。
メカニカル・スターラー、還流冷却器、窒素注入口、熱電対及び加熱マントルを備えた2 L三ツ口丸底フラスコに、上記実施例16の生成物50 g及びEtOH特別工業用(750 mL, 15容積)を加える。混合物を加熱還流する(77℃)。固体を72℃にて溶解し透明溶液を形成させる。粘り気のない濃灰色スラリーを加え(5 g, 0.1 eq/100 mL EtOH)、混合物を1時間撹拌する。熱EtOH(150 mL)でろ過し、すすぐ。ろ液を二つの等分量に分ける。
分量1
50℃にて10容積(250 mL)に濃縮する。少量の固体が濃縮中に析出し始める。メカニカル・スターラーを備えた500 mL三ツ口丸底フラスコに移し、室温に冷却する。室温にて2時間撹拌する。懸濁液が形成される。ろ過し、EtOH(50 mL, 2容積)、次いでIPAc(50 mL)ですすぐ。フィルター上で吸引乾燥する。収率=20.5 g(82%)。
50℃にて10容積(250 mL)に濃縮する。少量の固体が濃縮中に析出し始める。メカニカル・スターラーを備えた500 mL三ツ口丸底フラスコに移し、室温に冷却する。室温にて2時間撹拌する。懸濁液が形成される。ろ過し、EtOH(50 mL, 2容積)、次いでIPAc(50 mL)ですすぐ。フィルター上で吸引乾燥する。収率=20.5 g(82%)。
分量2
50℃にて7容積(175 mL)に濃縮する。少量の固体が濃縮中に析出し始める。メカニカル・スターラーを備えた500 mL三ツ口丸底フラスコに移し、室温に冷却する。室温にて2時間撹拌する。懸濁液が形成される。ろ過し、EtOH(50 mL, 2容積)、次いでIPAc(50 mL)ですすぐ。フィルター上で吸引乾燥する。収率=19.8 g(79.2%)。
50℃にて7容積(175 mL)に濃縮する。少量の固体が濃縮中に析出し始める。メカニカル・スターラーを備えた500 mL三ツ口丸底フラスコに移し、室温に冷却する。室温にて2時間撹拌する。懸濁液が形成される。ろ過し、EtOH(50 mL, 2容積)、次いでIPAc(50 mL)ですすぐ。フィルター上で吸引乾燥する。収率=19.8 g(79.2%)。
二つの分量からの生成物を合わせ、合わせた分量のXRPDパターンは図49(実施例13)に示される。
Claims (29)
- P212121空間群に属し、以下の単位格子パラメータ:
a=5.7779(2)Å、b=8.6633(2)Å、c=25.7280(8)Å、α=β=γ=90゜
を有する、(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩の結晶形A。 - Cu Kα線の入射ビームを用いて測定した粉末X線回折(XRPD)パターンにおいて、図1に示されるピークから選択される5つのピークを含むXRPDパターンを有する、請求項1に記載の結晶形A。
- Cu Kα線の入射ビームを用いて測定した粉末X線回折(XRPD)パターンにおいて、実質的に図1に示されるXRPDパターンを有する、請求項1又は2のいずれかに記載の結晶形A。
- Cu Kα線の入射ビームを用いて測定した粉末X線回折(XRPD)パターンにおいて、図1に示されるXRPDパターンを有する、請求項1〜3のいずれか一項に記載の結晶形A。
- 6.9±0.2、12.3±0.2、13.8±0.2、14.5±0.2、15.4±0.2、16.6±0.2、17.2±0.2、18.2±0.2、18.5±0.2、19.5±0.2、20.1±0.2、20.5±0.2、20.7±0.2、21.0±0.2、21.5±0.2、22.9±0.2、24.7±0.2、25.2±0.2、25.4±0.2、25.7±0.2、26.4±0.2、27.5±0.2及び27.8±0.2からなる群から選択される少なくとも5つの2θ(゜)値を含むXRPDパターン(ここで、XRPDはCu Kα線の入射ビームを用いて測定される)を示す、(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩の結晶形A。
- 12.9±0.374、7.2±0.2、6.4±0.2、6.1±0.2、5.7±0.2、5.4±0.2、5.2±0.2、4.9±0.2、4.8±0.2、4.6±0.2、4.4±0.2、4.3±0.2、4.1±0.2、3.9±0.2、3.6±0.2、3.5±0.2、3.4±0.2及び3.2±0.2からなる群から選択される少なくとも5つのd間隔(Å)値を含むXRPDパターン(ここで、XRPDはCu Kα線の入射ビームを用いて測定される)を示す、(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩の結晶形A。
- 245℃〜249℃の間に吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを有する、(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩の結晶形A。
- 200℃以下で0.4%の重量減少を含む熱重量分析(TGA)サーモグラム、又は276℃にて分解開始温度を含むTGAサーモグラムを有する、(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩の結晶形A。
- 239℃〜247℃の融点を有する、(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩の結晶形A。
- 結晶形Aが、実質的に図35、37及び47のいずれかのXRPDパターン(ここで、XRPDは波長1.54059Åの照射を用いて測定される)を示す、請求項1〜13のいずれか一項に記載の結晶形A。
- 結晶形Aが(1R,5S)-1-(ナフタレン-2-イル)-3-アザビシクロ[3.1.0]ヘキサン塩酸塩の他のいずれかの結晶形を5重量%未満含む、請求項1〜14のいずれか一項に記載の結晶形A。
- P212121空間群に属し、以下の単位格子パラメータ:
a=5.9055(2)Å、b=7.4645(3)Å、c=29.1139(13)Å、α=β=γ=90゜
を有する、(1R,5S)-1-(ナフタレン-2-イル)-3-アザビシクロ[3.1.0]ヘキサン塩酸塩の結晶形B。 - 6.0±0.2、12.1±0.2、13.2±0.2、14.9±0.2、15.1±0.2、16.0±0.2、16.9±0.2、17.4±0.2、18.2±0.2、18.9±0.2、19.2±0.2、19.9±0.2、21.1±0.2、21.3±0.2、21.7±0.2、22.6±0.2、23.6±0.2、23.8±0.2、24.4±0.2、25.3±0.2、26.1±0.2、26.6±0.2、27.2±0.2、28.2±0.2、28.7±0.2及び29.5±0.2からなる群から選択される少なくとも5つの2θ(゜)値を含むXRPDパターン(ここで、XRPDはCu Kα線の入射ビームを用いて測定される)を示す、(1R,5S)-1-(ナフタレン-2-イル)-3-アザビシクロ[3.1.0]ヘキサン塩酸塩の結晶形B。
- 14.6±0.484、7.3±0.2、6.7±0.2、6.0±0.2、5.9±0.2、5.5±0.2、5.2±0.2、5.1±0.2、4.9±0.2、4.7±0.2、4.6±0.2、4.5±0.2、4.2±0.2、4.1±0.2、3.9±0.2、3.8±0.2、3.7±0.2、3.6±0.2、3.5±0.2、3.4±0.2、3.3±0.2、3.2±0.2、3.1±0.2及び3.0±0.2からなる群から選択される少なくとも5つのd間隔(Å)値を含むXRPDパターンを示す、(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩の結晶形B。
- 247℃〜248℃の間に吸熱ピークを含む示差走査熱量測定(DSC)サーモグラムを有する、(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩の結晶形B。
- 200℃以下で0.2%の重量減少を含む熱重量分析(TGA)サーモグラム、又は281℃にて分解開始温度を含むTGAサーモグラムを有する、(1R,5S)−1−(ナフタレン−2−イル)−3−アザビシクロ[3.1.0]ヘキサン塩酸塩の結晶形B。
- 結晶形Bが、実質的に図5、7、40及び48のいずれかのXRPDパターン(ここで、XRPDは波長1.54059Åの照射を用いて測定される)を示す、請求項16〜24のいずれか一項に記載の結晶形B。
- 結晶形Bが(1R,5S)-1-(ナフタレン-2-イル)-3-アザビシクロ[3.1.0]ヘキサン塩酸塩の他のいずれかの結晶形を5重量%未満含む、請求項16〜25のいずれか一項に記載の結晶形B。
- 請求項1〜15のいずれか一項に記載の結晶形A又は請求項16〜26のいずれか一項に記載の結晶形B及び薬学的に許容される希釈剤又は担体を含む医薬組成物。
- 脆弱X症候群関連障害の患者において、注意欠陥多動性障害を予防又は治療するための請求項27に記載の医薬組成物。
- 脆弱X症候群関連障害、注意欠陥多動性障害と鬱の併存症、注意欠陥多動性障害と物質乱用の併存症、又は注意欠陥多動性障害と不安症の併存症の患者において、物質乱用障害、脆弱X症候群関連障害、又は自閉症スペクトラム障害を予防又は治療するための請求項27に記載の医薬組成物。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021096354A JP7244575B2 (ja) | 2015-06-17 | 2021-06-09 | 結晶性化合物 |
JP2023036730A JP2023071978A (ja) | 2015-06-17 | 2023-03-09 | 結晶性化合物 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562181174P | 2015-06-17 | 2015-06-17 | |
US62/181,174 | 2015-06-17 | ||
PCT/US2016/038256 WO2016205762A1 (en) | 2015-06-17 | 2016-06-17 | Crystalline compounds |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021096354A Division JP7244575B2 (ja) | 2015-06-17 | 2021-06-09 | 結晶性化合物 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2018517742A JP2018517742A (ja) | 2018-07-05 |
JP2018517742A5 true JP2018517742A5 (ja) | 2019-07-18 |
JP6896651B2 JP6896651B2 (ja) | 2021-06-30 |
Family
ID=57546597
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017565236A Active JP6896651B2 (ja) | 2015-06-17 | 2016-06-17 | 結晶性化合物 |
JP2021096354A Active JP7244575B2 (ja) | 2015-06-17 | 2021-06-09 | 結晶性化合物 |
JP2023036730A Pending JP2023071978A (ja) | 2015-06-17 | 2023-03-09 | 結晶性化合物 |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021096354A Active JP7244575B2 (ja) | 2015-06-17 | 2021-06-09 | 結晶性化合物 |
JP2023036730A Pending JP2023071978A (ja) | 2015-06-17 | 2023-03-09 | 結晶性化合物 |
Country Status (24)
Country | Link |
---|---|
US (5) | US9708261B2 (ja) |
EP (3) | EP3597189B1 (ja) |
JP (3) | JP6896651B2 (ja) |
KR (1) | KR102593783B1 (ja) |
CN (3) | CN107921021A (ja) |
AU (2) | AU2016279075C1 (ja) |
CA (2) | CA2989431C (ja) |
DK (1) | DK3597189T3 (ja) |
ES (1) | ES2922158T3 (ja) |
HK (1) | HK1247125A1 (ja) |
HR (1) | HRP20220829T1 (ja) |
HU (1) | HUE059348T2 (ja) |
LT (1) | LT3597189T (ja) |
MX (2) | MX2017016430A (ja) |
MY (1) | MY194868A (ja) |
NZ (2) | NZ739044A (ja) |
PH (1) | PH12017502324A1 (ja) |
PL (1) | PL3597189T3 (ja) |
PT (1) | PT3597189T (ja) |
SA (1) | SA517390552B1 (ja) |
SG (1) | SG10201911417PA (ja) |
SI (1) | SI3597189T1 (ja) |
TW (1) | TWI751998B (ja) |
WO (1) | WO2016205762A1 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BRPI0613943B1 (pt) | 2005-07-27 | 2021-06-22 | Otsuka America Pharmaceutical, Inc | Composto, composição farmacêutica o compreendendo, usos de um composto e de uma composição farmacêutica, bem como composição neurobiologicamente ativa |
US20140206740A1 (en) | 2011-07-30 | 2014-07-24 | Neurovance, Inc. | Use Of (1R,5S)-(+)-(Napthalen-2-yl)-3-Azabicyclo[3.1.0]Hexane In The Treatment Of Conditions Affected By Monoamine Neurotransmitters |
US9839627B2 (en) | 2013-12-09 | 2017-12-12 | Neurovance, Inc. | Methods of treating fragile X associated disorders, ADHD, and autism spectrum disorder |
CA2989431C (en) | 2015-06-17 | 2023-08-29 | Franklin Bymaster | Crystalline compounds |
CN111417624B (zh) * | 2017-12-11 | 2022-03-25 | 苏州科睿思制药有限公司 | Eb-1020的晶型及其制备方法和用途 |
JPWO2021075494A1 (ja) | 2019-10-16 | 2021-04-22 | ||
EP4347564A1 (en) | 2021-05-31 | 2024-04-10 | Teva Pharmaceuticals International GmbH | Solid state form of centanafadine hcl and process for preparation thereof |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1562900A4 (en) | 2002-11-08 | 2006-07-12 | Dov Pharmaceutical Inc | POLYMORPH OF BICIFADINHYDROCHLORIDE |
HUE029459T2 (en) | 2004-04-19 | 2017-02-28 | Krka Tovarna Zdravil D D Novo Mesto | Methods for the Preparation of Polymorph Form I of Clopidogrel Hydrogen Sulphate |
KR20130108489A (ko) | 2004-08-18 | 2013-10-02 | 도브 파마슈티칼 인코포레이티드 | 아자비사이클로헥산의 신규한 다형체 |
US20070043100A1 (en) | 2005-08-16 | 2007-02-22 | Hagen Eric J | Novel polymorphs of azabicyclohexane |
US20070082939A1 (en) | 2005-07-26 | 2007-04-12 | Lippa Arnold S | Methods and compositions for the treatment of neuropathies and related disorders |
BRPI0613943B1 (pt) * | 2005-07-27 | 2021-06-22 | Otsuka America Pharmaceutical, Inc | Composto, composição farmacêutica o compreendendo, usos de um composto e de uma composição farmacêutica, bem como composição neurobiologicamente ativa |
US7919598B2 (en) | 2006-06-28 | 2011-04-05 | Bristol-Myers Squibb Company | Crystal structures of SGLT2 inhibitors and processes for preparing same |
US20080058535A1 (en) * | 2006-07-25 | 2008-03-06 | Zhengming Chen | Methods and compositions for production, formulation and use of 1 aryl-3-azabicyclo[3.1.0]hexanes |
US8576985B2 (en) | 2009-09-01 | 2013-11-05 | Aptuit (West Lafayette) Llc | Methods for indexing solid forms of compounds |
CN103476770B (zh) * | 2010-11-25 | 2017-02-15 | 拉蒂欧制药有限责任公司 | 阿法替尼盐和多晶型物 |
US20140206740A1 (en) * | 2011-07-30 | 2014-07-24 | Neurovance, Inc. | Use Of (1R,5S)-(+)-(Napthalen-2-yl)-3-Azabicyclo[3.1.0]Hexane In The Treatment Of Conditions Affected By Monoamine Neurotransmitters |
EP2819516B1 (en) | 2011-07-30 | 2019-12-25 | Otsuka America Pharmaceutical, Inc. | Use of (1r,5s)-(+)-1-(naphthalen-2-yl)-3-azabicyclo{3.1.0}hexane in the treatment of conditions affected by monoamine neurotransmitters |
US20140228421A1 (en) | 2011-09-07 | 2014-08-14 | Anthony McKinney | Methods For Inhibiting Native And Promiscuous Uptake Of Monoamine Neurotransmitters |
US9839627B2 (en) | 2013-12-09 | 2017-12-12 | Neurovance, Inc. | Methods of treating fragile X associated disorders, ADHD, and autism spectrum disorder |
CA2989431C (en) | 2015-06-17 | 2023-08-29 | Franklin Bymaster | Crystalline compounds |
-
2016
- 2016-06-17 CA CA2989431A patent/CA2989431C/en active Active
- 2016-06-17 WO PCT/US2016/038256 patent/WO2016205762A1/en active Application Filing
- 2016-06-17 LT LTEP19196556.5T patent/LT3597189T/lt unknown
- 2016-06-17 HU HUE19196556A patent/HUE059348T2/hu unknown
- 2016-06-17 NZ NZ739044A patent/NZ739044A/en unknown
- 2016-06-17 CN CN201680035027.1A patent/CN107921021A/zh active Pending
- 2016-06-17 DK DK19196556.5T patent/DK3597189T3/da active
- 2016-06-17 EP EP19196556.5A patent/EP3597189B1/en active Active
- 2016-06-17 EP EP16812592.0A patent/EP3310352A4/en not_active Ceased
- 2016-06-17 CN CN202310843667.7A patent/CN117466800A/zh active Pending
- 2016-06-17 CA CA3200692A patent/CA3200692A1/en active Pending
- 2016-06-17 JP JP2017565236A patent/JP6896651B2/ja active Active
- 2016-06-17 MY MYPI2017704811A patent/MY194868A/en unknown
- 2016-06-17 AU AU2016279075A patent/AU2016279075C1/en active Active
- 2016-06-17 CN CN202310848120.6A patent/CN117088802A/zh active Pending
- 2016-06-17 PT PT191965565T patent/PT3597189T/pt unknown
- 2016-06-17 ES ES19196556T patent/ES2922158T3/es active Active
- 2016-06-17 NZ NZ776973A patent/NZ776973A/en unknown
- 2016-06-17 PL PL19196556.5T patent/PL3597189T3/pl unknown
- 2016-06-17 US US15/186,415 patent/US9708261B2/en active Active
- 2016-06-17 SI SI201631552T patent/SI3597189T1/sl unknown
- 2016-06-17 MX MX2017016430A patent/MX2017016430A/es unknown
- 2016-06-17 KR KR1020187001083A patent/KR102593783B1/ko active IP Right Grant
- 2016-06-17 SG SG10201911417PA patent/SG10201911417PA/en unknown
- 2016-06-17 EP EP22164478.4A patent/EP4049997A1/en active Pending
- 2016-06-17 HR HRP20220829TT patent/HRP20220829T1/hr unknown
- 2016-12-21 TW TW105142467A patent/TWI751998B/zh active
-
2017
- 2017-06-01 US US15/611,580 patent/US9856217B2/en active Active
- 2017-11-21 US US15/820,241 patent/US10280141B2/en active Active
- 2017-12-14 SA SA517390552A patent/SA517390552B1/ar unknown
- 2017-12-15 PH PH12017502324A patent/PH12017502324A1/en unknown
- 2017-12-15 MX MX2020009949A patent/MX2020009949A/es unknown
-
2018
- 2018-05-25 HK HK18106861.3A patent/HK1247125A1/zh unknown
-
2019
- 2019-03-11 US US16/298,179 patent/US10800740B2/en active Active
-
2020
- 2020-08-14 US US16/993,648 patent/US11299458B2/en active Active
-
2021
- 2021-01-19 AU AU2021200314A patent/AU2021200314B2/en active Active
- 2021-06-09 JP JP2021096354A patent/JP7244575B2/ja active Active
-
2023
- 2023-03-09 JP JP2023036730A patent/JP2023071978A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7244575B2 (ja) | 結晶性化合物 | |
JP2018517742A5 (ja) | ||
US9814706B2 (en) | Hydrobromide salt of pridopidine | |
AU2012306386B2 (en) | Polymorphic form of pridopidine hydrochloride | |
US6242460B1 (en) | Zolpidem salt forms | |
WO2018119291A1 (en) | Synthetic methods | |
RU2789672C2 (ru) | Кристаллические соединения | |
WO2013130600A1 (en) | Solid forms comprising optically active pyrazolylaminoquinazoline, compositions thereof, and uses therewith | |
NZ623344B2 (en) | Polymorphic form of pridopidine hydrochloride |