JP2018195794A - 記憶装置 - Google Patents

記憶装置 Download PDF

Info

Publication number
JP2018195794A
JP2018195794A JP2017123179A JP2017123179A JP2018195794A JP 2018195794 A JP2018195794 A JP 2018195794A JP 2017123179 A JP2017123179 A JP 2017123179A JP 2017123179 A JP2017123179 A JP 2017123179A JP 2018195794 A JP2018195794 A JP 2018195794A
Authority
JP
Japan
Prior art keywords
oxide
conductor
insulator
transistor
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2017123179A
Other languages
English (en)
Other versions
JP2018195794A5 (ja
Inventor
山崎 舜平
Shunpei Yamazaki
舜平 山崎
加藤 清
Kiyoshi Kato
清 加藤
熱海 知昭
Tomoaki Atami
知昭 熱海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2018195794A publication Critical patent/JP2018195794A/ja
Publication of JP2018195794A5 publication Critical patent/JP2018195794A5/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】信頼性が高く記憶容量の大きい記憶装置を提供する。【解決手段】第1トランジスタと、第2トランジスタと、容量素子と、導電体と、を有する記憶装置である。第1トランジスタのソースまたはドレインの一方は導電体を介して第2トランジスタのゲートに電気的に接続される。第1トランジスタは酸化物半導体層を有し、酸化物半導体層は第1領域および第2領域を有する。第1領域は第1トランジスタのゲートと重畳する領域を有し、第2領域は導電体と接する。第2領域は第1領域よりも酸素濃度が小さく、第2領域は、導電体に含まれる金属のうち、少なくとも1つを含む。導電体は容量素子の電極として機能する。【選択図】図8

Description

本発明の一形態は、記憶装置、半導体装置またはこれらを用いた電子機器に関する。
また、本発明の一形態は、物、方法、または、製造方法に関する。または、本発明の一形態は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関する。
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。表示装置、電気光学装置、蓄電装置、半導体回路及び電子機器は、半導体装置を有する場合がある。
近年、チャネル形成領域に酸化物半導体または金属酸化物を用いたトランジスタ(Oxide Semiconductorトランジスタ、以下、OSトランジスタと呼ぶ)が注目されている(特許文献1)。
OSトランジスタはオフ電流が非常に小さい。そのことを利用して、特許文献2および3には、OSトランジスタを用いた不揮発性メモリが開示されている。OSトランジスタを用いた不揮発性メモリは、データの書き換え可能回数に制限がなく、さらにデータを書き換えるときの消費電力も少ない。また、特許文献3には、OSトランジスタのみで不揮発性メモリのメモリセルを構成した例が開示されている。
なお、本明細書においてOSトランジスタを用いた不揮発性メモリをNOSRAM(登録商標)と呼ぶ場合がある。NOSRAMとは「Nonvolatile Oxide Semiconductor RAM」の略称であり、ゲインセル型(2T型、3T型)のメモリセルを有するRAMを指す。
特開2007−123861号公報 特開2011−151383号公報 特開2016−115387号公報
本発明の一形態は、信頼性の高い記憶装置を提供することを課題の一とする。また、本発明の一形態は、記憶容量の大きい記憶装置を提供することを課題の一とする。また、本発明の一形態は、製造コストの低い記憶装置を提供することを課題の一とする。また、本発明の一形態は、信頼性の高い半導体装置を提供することを課題の一とする。また、本発明の一形態は、製造コストの低い半導体装置を提供することを課題の一とする。また、本発明の一形態は、新規な半導体装置を提供することを課題の一とする。
なお本発明の一態様の課題は、上記列挙した課題に限定されない。上記列挙した課題は、他の課題の存在を妨げるものではない。なお他の課題は、以下の記載で述べる、本項目で言及していない課題である。本項目で言及していない課題は、当業者であれば明細書又は図面等の記載から導き出せるものであり、これらの記載から適宜抽出することができる。なお、本発明の一態様は、上記列挙した記載、及び他の課題のうち、少なくとも一つの課題を解決するものである。なお、本発明の一態様は、上記列挙した記載、及び他の課題について、全ての課題を解決する必要はない。
本発明の一形態は、第1トランジスタと、第2トランジスタと、導電体と、を有する半導体装置である。第1トランジスタのソースまたはドレインの一方は、導電体を介して、第2トランジスタのゲートに電気的に接続される。第1トランジスタは酸化物半導体層を有し、酸化物半導体層は第1領域および第2領域を有する。第1領域は第1トランジスタのゲートと重畳する領域を有する。第2領域は導電体と接する。第2領域は第1領域よりも酸素濃度が小さい。第2領域は、導電体に含まれる金属のうち、少なくとも1つを含む。
上記形態において、金属はアルミニウム、ルテニウム、チタン、タンタル、クロムまたはタングステンを用いることが好ましい。
上記形態において、容量素子を有し、導電体は容量素子の電極として機能することが好ましい。
本発明の一形態は、第1トランジスタと、第2トランジスタと、導電体と、絶縁体と、を有する半導体装置である。第1トランジスタのソースまたはドレインの一方は、導電体を介して、第2トランジスタのゲートに電気的に接続される。第1トランジスタは酸化物半導体層を有し、酸化物半導体層は第1領域、第2領域および第3領域を有する。第1領域は第1トランジスタのゲートと重畳する領域を有する。第2領域は導電体と接する。第3領域は、絶縁体を介して、導電体と重畳する領域を有する。第2領域は第1領域よりも酸素濃度が小さく、第3領域は第1領域よりも酸素濃度が小さい。第2領域および第3領域は、絶縁体に含まれる金属のうち、少なくとも1つを含む。
上記形態において、金属はアルミニウム、ルテニウム、チタン、タンタル、クロムまたはタングステンを用いることが好ましい。
上記形態において、容量素子を有し、導電体は容量素子の電極として機能することが好ましい。
本発明の一形態は、上記形態に記載の半導体装置を含む記憶装置である。
本発明の一形態により、信頼性の高い記憶装置を提供することができる。また、本発明の一形態により、記憶容量の大きい記憶装置を提供することができる。また、本発明の一形態により、製造コストの低い記憶装置を提供することができる。また、本発明の一形態により、信頼性の高い半導体装置を提供することができる。また、本発明の一形態により、製造コストの低い半導体装置を提供することができる。また、本発明の一形態により、新規な半導体装置を提供することができる。
なお本発明の一態様の効果は、上記列挙した効果に限定されない。上記列挙した効果は、他の効果の存在を妨げるものではない。なお他の効果は、以下の記載で述べる、本項目で言及していない効果である。本項目で言及していない効果は、当業者であれば明細書又は図面等の記載から導き出せるものであり、これらの記載から適宜抽出することができる。なお、本発明の一態様は、上記列挙した効果、及び他の効果のうち、少なくとも一つの効果を有するものである。従って本発明の一態様は、場合によっては、上記列挙した効果を有さない場合もある。
メモリセルの構成例を示す回路図。 メモリセルの動作例を示すタイミングチャート。 メモリセルの動作例を示すタイミングチャート。 メモリセルの構成例を示す回路図。 メモリセルアレイの構成例を示す回路図。 メモリセルアレイの構成例を示すブロック図。 記憶装置の構成例を示すブロック図。 記憶装置を説明する上面図および断面図。 記憶装置を説明する断面図。 記憶装置を説明する断面図。 記憶装置を説明する断面図。 記憶装置を説明する上面図および断面図。 記憶装置を説明する断面図。 記憶装置を説明する断面図。 記憶装置を説明する上面図および断面図。 記憶装置を説明する断面図。 記憶装置を説明する上面図および断面図。 記憶装置を説明する断面図。 電子部品の例を示す模式図。 電子機器の例を示す模式図。 電子機器の例を示す模式図。 電子機器の例を示す模式図。
以下、実施の形態について図面を参照しながら説明する。但し、実施の形態は多くの異なる形態で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
また、図面において、大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお図面は、理想的な例を模式的に示したものであり、図面に示す形状または値などに限定されない。
また、本明細書は、以下の実施の形態を適宜組み合わせることが可能である。また、1つの実施の形態の中に、複数の構成例が示される場合は、互い構成例を適宜組み合わせることが可能である。
また、本明細書中において、高電源電圧をHレベル(又はVDD)、低電源電圧をLレベル(又はGND)と呼ぶ場合がある。
また、特に上面図(「平面図」ともいう。)や斜視図などにおいて、発明の理解を容易とするため、一部の構成要素の記載を省略する場合がある。また、一部の隠れ線などの記載を省略する場合がある。
また、本明細書などにおいて、第1、第2等として付される序数詞は便宜上用いるものであり、工程順又は積層順を示すものではない。そのため、例えば、「第1の」を「第2の」又は「第3の」などと適宜置き換えて説明することができる。また、本明細書等に記載されている序数詞と、本発明の一態様を特定するために用いられる序数詞は一致しない場合がある。
また、本明細書において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。従って、明細書で説明した語句に限定されず、状況に応じて適切に言い換えることができる。
なお、チャネル長とは、例えば、トランジスタの上面図において、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが互いに重なる領域、またはチャネルが形成される領域における、ソース(ソース領域またはソース電極)とドレイン(ドレイン領域またはドレイン電極)との間の距離をいう。なお、一つのトランジスタにおいて、チャネル長が全ての領域で同じ値をとるとは限らない。即ち、一つのトランジスタのチャネル長は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル長は、チャネルの形成される領域における、いずれか一の値、最大値、最小値または平均値とする。
チャネル幅とは、例えば、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが互いに重なる領域、またはチャネルが形成される領域における、ソースとドレインとが向かい合っている部分の長さをいう。なお、一つのトランジスタにおいて、チャネル幅がすべての領域で同じ値をとるとは限らない。即ち、一つのトランジスタのチャネル幅は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル幅は、チャネルの形成される領域における、いずれか一の値、最大値、最小値または平均値とする。
なお、トランジスタの構造によっては、実際にチャネルの形成される領域におけるチャネル幅(以下、「実効的なチャネル幅」ともいう。)と、トランジスタの上面図において示されるチャネル幅(以下、「見かけ上のチャネル幅」ともいう。)と、が異なる場合がある。例えば、ゲート電極が半導体の側面を覆う場合、実効的なチャネル幅が、見かけ上のチャネル幅よりも大きくなり、その影響が無視できなくなる場合がある。例えば、微細かつゲート電極が半導体の側面を覆うトランジスタでは、半導体の側面に形成されるチャネル形成領域の割合が大きくなる場合がある。その場合は、見かけ上のチャネル幅よりも、実効的なチャネル幅の方が大きくなる。
なお、本明細書等において、酸化窒化シリコン膜とは、その組成として、窒素よりも酸素の含有量が多いものである。例えば、好ましくは酸素が55原子%以上65原子%以下、窒素が1原子%以上20原子%以下、シリコンが25原子%以上35原子%以下、水素が0.1原子%以上10原子%以下の濃度範囲で含まれるものをいう。また、窒化酸化シリコン膜とは、その組成として、酸素よりも窒素の含有量が多いものでる。例えば、好ましくは窒素が55原子%以上65原子%以下、酸素が1原子%以上20原子%以下、シリコンが25原子%以上35原子%以下、水素が0.1原子%以上10原子%以下の濃度範囲で含まれるものをいう。
また、本明細書等において、「膜」という用語と、「層」という用語とは、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。
また、本明細書等において、「絶縁体」という用語を、絶縁膜または絶縁層と言い換えることができる。また、「導電体」という用語を、導電膜または導電層と言い換えることができる。また、「半導体」という用語を、半導体膜または半導体層と言い換えることができる。
(実施の形態1)
本実施の形態では、OSトランジスタを用いた記憶装置について説明を行う。
<メモリセル>
初めに、記憶装置の基本構成となるメモリセルの一例について説明する。
<<メモリセルの構成例>>
図1に、メモリセルMCを示す。メモリセルMCは、トランジスタM1と、トランジスタM2と、容量素子C1と、を有する。また、メモリセルMCは、配線CLと、配線WLと、配線RBLと、配線SLと、配線WBLと、に電気的に接続されている。
以降では、トランジスタM1、M2をnチャネル型トランジスタとして説明を行う。
トランジスタM1、M2はそれぞれ第1ゲートおよび第2ゲートを有する。第1ゲートと第2ゲートとは、半導体層を間に介して、互いに重なる領域を有することが好ましい。なお、本明細書では第1ゲートを「フロントゲート」または単に「ゲート」と呼ぶ場合がある。また、第2ゲートを「バックゲート」と呼ぶ場合がある。
トランジスタM1のフロントゲートは、配線WLと電気的に接続され、トランジスタM1のソース又はドレインの一方は、配線WBLと電気的に接続され、トランジスタM1のソース又はドレインの他方は、トランジスタM2のフロントゲートと電気的に接続される。
トランジスタM2のソース又はドレインの一方は、配線RBLと電気的に接続され、トランジスタM2のソース又はドレインの他方は、配線SLと電気的に接続される。
容量素子C1の第1端子はトランジスタM2のフロントゲートに電気的に接続され、容量素子C1の第2端子は配線CLと電気的に接続される。
なお、トランジスタM2のフロントゲートと、トランジスタM1のソースまたはドレインの他方との結節点をノードFNと呼称する。
トランジスタM1、M2のバックゲートには、それぞれ電位VBGが与えられる。トランジスタM1、M2のバックゲートにVBGを与えることで、トランジスタM1、M2のしきい値電圧を制御することができる。
トランジスタM1にはOSトランジスタを用いることが好ましい。OSトランジスタはオフ電流が小さい。そのため、トランジスタM1にOSトランジスタを用いることで、トランジスタM1をオフにしたときに、ノードFNに書き込まれた電荷を長期間保持することができる。なお、ここでオフ電流が小さいとは、トランジスタのオフ電流が、好ましくは10−18A/μm以下、さらに好ましくは10−21A/μm以下、さらに好ましくは10−24A/μm以下のことを言う。
また、トランジスタM2にもOSトランジスタを用いることが好ましい。トランジスタM1、M2にOSトランジスタを用いることで、トランジスタM1、M2を同じ製造工程で作製することができる。その結果、メモリセルMCの製造工程を簡略化することができる。
なお、OSトランジスタの詳細については、後述する実施の形態2で説明を行う。
また、トランジスタM1のソースまたはドレインの他方と、トランジスタM2のゲートは、プラグを介さずに電気的に接続されることが好ましい。詳細は、後述する実施の形態2で説明を行うが、OSトランジスタは、水素などの不純物の影響により、トランジスタ特性が劣化することが知られている。水素は、OSトランジスタの上下からプラグなどを経由して、侵入することが考えられる。そのため、OSトランジスタの周辺にはなるべくプラグなどを設けない方が好ましい。プラグを経由せずにトランジスタM1とトランジスタM2を電気的に接続することで、信頼性の高い記憶装置を提供することができる。
<<メモリセルの動作例>>
続いて、メモリセルMCの書き込み動作及び読み出し動作について説明する。以降では、メモリセルMCに1ビットのデータを書き込む、また、メモリセルMCから1ビットのデータを読み込む場合について説明する。
図2(A)に、メモリセルMCにVを書き込む動作のタイミングチャートを示す。時刻T0から時刻T1までの間は、配線WL、配線CL、ノードFN、配線SL及び配線RBLの電位はLレベルであり、配線WBL及びノードFNの電位はVであるとする。
時刻T1において、配線WLの電位をHレベルとしたとき、トランジスタM1がオン状態となるので、ノードFNは、配線WBLの電位が与えられる。つまり、時刻T1から時刻T2までの間において、配線WBLの電位をVとした場合、ノードFNの電位もVとなる。このとき、ノードFNと配線CLとの間の電位差は容量素子C1に保持される。
なお、配線WLに与えられる電圧は、VとトランジスタM1のしきい値電圧(Vth)を足し合わせた電圧(V+Vth)以上にすることが好ましい。そうすることで、ノードFNにVを正確に伝えることができる。
時刻T2において、配線WLの電位をLレベルとしたとき、トランジスタM1がオフ状態となる。時刻T2から時刻T3までの間において、配線WBLの電位をLレベルとしても、容量素子C1によりノードFNの電位はVで保持される。
図2(B)に、Vを書き込んだメモリセルMCの読み出し動作のタイミングチャートを示す。なお、図2(B)において、時刻T4以降の動作は、図2(A)の時刻T3以降の動作を表すものとする。
時刻T5から時刻T6までの間において、配線SLにHレベルの電位が印加されたとき、ノードFNの電位はVなので、トランジスタM2はオン状態となり、配線RBLにHレベルの電位が印加される。このとき、読み出し回路で配線RBLの電位を読み出すことで、ノードFNの電位(V)を読み出すことができる。
読み出し動作を終了するときは、時刻T6において、配線SLにLレベルの電位を印加する。トランジスタM2はオン状態を維持しているため、配線RBLはLレベルとなる。
図3(A)に、メモリセルMCにVを書き込む動作のタイミングチャートを示す。なお、図3(A)において、時刻T8以降の動作は、図2(B)の時刻T7以降の動作を表すものとする。
時刻T9において、配線WLの電位をHレベルとしたとき、トランジスタM1がオン状態となるので、ノードFNは、配線WBLの電位が与えられる。つまり、時刻T9から時刻T10までの間において、配線WBLの電位をVの電位とした場合、ノードFNの電位もVとなる。このとき、ノードFNと配線CLとの間の電位差は容量素子C1に保持される。
時刻T10において、配線WLの電位をLレベルとしたとき、トランジスタM1がオフ状態となる。時刻T10から時刻T11までの間において、配線WBLの電位をLレベルとしても、容量素子C1によりノードFNの電位はVの電位で保持される。
図3(B)に、Vを書き込んだメモリセルMCの読み出し動作のタイミングチャートを示す。なお、図3(B)において、時刻T12以降の動作は、図3(A)の時刻T11以降の動作を表すものとする。
時刻T13から時刻T14までの間において、配線SLにHレベルの電位が印加されたとき、ノードFNはVの電位なので、トランジスタM2はオフ状態となり、配線RBLはLレベルの電位を維持する。このとき、読み出し回路で配線RBLの電位を読み出すことで、ノードFNの電位(V)を読み出すことができる。
読み出し動作を終了するときは、時刻T14において、配線SLにLレベルの電位が印加する。トランジスタM2はオフ状態を維持しているため、配線RBLもLレベルの電位を維持する。
以上の動作により、メモリセルMCはデータの書き込みと読み出しを行うことができる。
なお、メモリセルMCにおいて、配線CLをHレベルとした場合、ノードFNの電位に関わらず、トランジスタM2はオン状態となる。すなわち、配線CLをHレベルとすることで、強制的にトランジスタM2をオン状態にすることができる。
メモリセルMCは、フラッシュメモリなどの他の不揮発性メモリと比べて、データを書き込む際の消費電力が小さい。また、メモリセルMCはフラッシュメモリやReRAMのようにデータを書き込む際に素子が劣化することもなく、データの書き込み可能回数に制限が無い。そのため、メモリセルMCを用いることで信頼性の高い記憶装置を提供することができる。
トランジスタM1のバックゲートとトランジスタM2のバックゲートに、それぞれ異なる電位を与えても良い。そうすることで、トランジスタM1とトランジスタM2のしきい値電圧を個別に制御することができる。例えば、トランジスタM1のバックゲートにはトランジスタM2のバックゲートよりも大きな電圧を与えることが好ましい。そうすることで、トランジスタM1はしきい値電圧を大きくし、オフ電流をより小さくすることができる。また、トランジスタM2はしきい値電圧を小さくし、オン電流をより大きくすることができる。
メモリセルMCが扱うデータは、1ビット(2値)のデータに限定されない。2ビット(2=4値)、3ビット(2=8値)など、nビット(nは1以上の整数)のデータを扱うことができる。
<<メモリセルのその他の構成例>>
トランジスタM1、M2が有するバックゲートは、それぞれのフロントゲートと電気的に接続してもよい。その場合の回路図を図4(A)に示す。そうすることで、トランジスタM1、M2はオン電流を向上させることができる。
また、トランジスタM1、M2のバックゲートは、場合によっては省略してもよい。そうすることで、トランジスタの製造工程を短縮することができる。
図4(B)に示すように、メモリセルMCは、トランジスタM2と配線RBLとの間にトランジスタM3を設けてもよい。トランジスタM3のオン・オフは配線RLの電位で制御することができる。トランジスタM3は、トランジスタM1、M2と同様にOSトランジスタを用いることが好ましい。メモリセルMCはトランジスタM3を設けることで、配線SLの電位に影響されず、任意のタイミングでデータの読み出しを行うことができる。なお、トランジスタM3は、トランジスタM2と配線SLの間に設けても良い。
<<メモリセルアレイの構成例>>
次に、複数のメモリセルMCを配置した、メモリセルアレイの構成例について、図5および図6を用いて説明を行う。
図5はメモリセルMCを左右対称に2つ並べた場合の回路図を示している。2つのメモリセルを、メモリセルMC1、MC2とそれぞれ区別することにする。また、配線WLは、メモリセルMC1に電気的に接続されたものを配線WL1とし、メモリセルMC2に電気的に接続されたものを配線WL2として区別する。また、配線CLは、メモリセルMC1に電気的に接続されたものを配線CL1し、メモリセルMC2に電気的に接続されたものを配線CL2として区別する。
メモリセルMC1、MC2は、1つの配線WBLに電気的に接続されている。すなわち、メモリセルMC1、MC2は配線WBLを共有している。また、配線RBLは、メモリセルMC1およびメモリセルMC2を間に介して、配線SLと電気的に接続される。
メモリセルMC1にデータを書き込む場合は、配線WL1をHレベルとし、配線WL2をLレベルとすればよい。同様に、メモリセルMC2にデータを書き込む場合は、配線WL2をHレベルとし、配線WL1をLレベルとすればよい。
メモリセルMC1のデータを読み出す場合は、配線CL1をLレベルにし、配線CL2をHレベルにすればよい。そうすることで、メモリセルMC2が有するトランジスタM2を強制的にオン状態にすることができる。その結果、配線RBLの電位は、メモリセルMC2が保持するデータに影響されず、メモリセルMC1が保持するデータのみに影響される。すなわち、メモリセルMC1のデータを読み出すことができる。逆に、メモリセルMC2のデータを読み出す場合は、配線CL1をHレベルにし、配線CL2をLレベルにすればよい。
図6は、メモリセルMCを3次元で配置した場合のブロック図を示している。なお、図6において、配線WLおよび配線CLは1本の配線で表現されている。また、VBGを与える配線は省略されている。
図6において、配線WBLは基板(substrate)に対して上下方向に延伸し、配線WBLと直交するように配線WLおよび配線CLが延伸している。また、図5と同様に、隣り合う2つのメモリセルMCが1つの配線WBLを共有している。図6に示すようにメモリセルMCを配置することで、メモリセルMCを高集積に配置することが可能になり、大容量の記憶装置を実現することができる。
<記憶装置>
次に、上記メモリセルMCを用いた記憶装置の構成例について、図7を用いて説明を行う。
図7に記憶装置の構成の一例を示す。記憶装置10は、周辺回路11、およびメモリセルアレイ12(図中には、Memory Cell Arrayと表記)を有する。周辺回路11は、ローデコーダ21(図中には、Row Decoderと表記)、ワード線ドライバ回路22(図中には、Word Line Driver Cir.と略記)、ビット線ドライバ回路30(図中には、Bit Line Driver Cir.と略記)、出力回路40(図中には、Output Cir.と略記)、コントロールロジック回路60(図中には、Control Logic Cir.と略記)を有する。
メモリセルアレイ12は、上述のメモリセルMCを複数有する。メモリセルアレイ12は、メモリセルMCを2次元、または図6に示すように3次元で配置することができる。
ビット線ドライバ回路30は、カラムデコーダ31(図中には、Column Decoderと表記)、プリチャージ回路32(図中には、Precharge Cir.と略記)、センスアンプ33(図中には、Sense Amp.と略記)、および書き込み回路34(図中には、Write Cir.と略記)を有する。プリチャージ回路32は、配線SLおよび配線CLなどをプリチャージする機能を有する。センスアンプ33は、配線RBLから読み出されたデータ信号を増幅する機能を有する。増幅されたデータ信号は、出力回路40を介して、デジタルのデータ信号RDATAとして記憶装置10の外部に出力される。
記憶装置10には、外部から電源電圧として低電源電圧(VSS)、周辺回路11用の高電源電圧(VDD)、メモリセルアレイ12用の高電源電圧(VIL)が供給される。
また、記憶装置10には、制御信号(CE、WE、RE)、アドレス信号ADDR、データ信号WDATAが外部から入力される。ADDRは、ローデコーダ21およびカラムデコーダ31に入力され、WDATAは書き込み回路34に入力される。
コントロールロジック回路60は、外部からの入力信号(CE、WE、RE)を処理して、ローデコーダ21、カラムデコーダ31の制御信号を生成する。CEは、チップイネーブル信号であり、WEは、書き込みイネーブル信号であり、REは、読み出しイネーブル信号である。コントロールロジック回路60が処理する信号は、これに限定されるものではなく、必要に応じて、他の制御信号を入力すればよい。
なお、上述の各回路あるいは各信号は、必要に応じて、適宜、取捨することができる。
メモリセルアレイ12だけでなく、周辺回路11もOSトランジスタで構成することが好ましい。そうすることで、周辺回路11とメモリセルアレイ12を、同一の製造工程で作製することが可能になり、記憶装置10の製造コストを低く押させることができる。
以上、本実施の形態に示す記憶装置により、信頼性の高い記憶装置を提供することができる。また、記憶容量の大きい記憶装置を提供することができる。また、製造コストの低い記憶装置を提供することができる。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態2)
以下では、上記実施の形態に示す記憶装置の構成の一例について、図8乃至図18を用いて説明する。
<記憶装置の構成例>
図8(A)、図8(B)、図9(A)、図9(B)、図10(A)、および図10(B)は、本発明の一態様に係るトランジスタ200、トランジスタ500、および容量素子100を有するメモリセル600の上面図および断面図である。
図8(A)は、メモリセル600を有する記憶装置の上面図である。また、図8(B)、図9(A)、図9(B)、図10(A)、および図10(B)は当該記憶装置の断面図である。ここで、図8(B)は、図8(A)にA1−A2の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル長方向、およびトランジスタ500のチャネル幅方向の断面図でもある。また、図9(A)は、図8(A)にA3−A4の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。また、図9(B)は、図8(A)にA5−A6の一点鎖線で示す部位の断面図であり、トランジスタ500のチャネル長方向の断面図でもある。また、図10(A)は、図8(A)にA7−A8の一点鎖線で示す部位の断面図であり、トランジスタ200のソース領域またはドレイン領域の一方の断面図でもある。また、図10(B)は、図8(A)にA9−A10の一点鎖線で示す部位の断面図であり、トランジスタ200のソース領域またはドレイン領域の他方の断面図でもある。なお、図8(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
ここで、メモリセル600はメモリセルMCと対応し、トランジスタ200はトランジスタM1と対応し、トランジスタ500はトランジスタM2と対応し、容量素子100は容量素子C1と対応する。
本発明の一態様の記憶装置は、トランジスタ200と、トランジスタ500と、容量素子100と、層間膜として機能する絶縁体210、絶縁体212、絶縁体273、絶縁体274、絶縁体280を有する。また、トランジスタ200と電気的に接続し、配線として機能する導電体203、およびプラグとして機能する導電体240(導電体240a、導電体240b)とを有する。また、トランジスタ500と電気的に接続し、配線として機能する導電体503、およびプラグとして機能する導電体540aとを有する。また、容量素子100と電気的に接続し、プラグとして機能する導電体540bとを有する。なお、以下において導電体540aおよび導電体540bをまとめて導電体540とする場合がある。ここで、導電体503は導電体203と、導電体540は導電体240と、同じ層に形成され、同様の構成を有する。よって、導電体503は導電体203の、導電体540は導電体240の、記載を参酌することができる。
なお、導電体203は、絶縁体212の開口の内壁に接して導電体203の第1の導電体が形成され、さらに内側に導電体203の第2の導電体が形成されている。ここで、導電体203の上面の高さと、絶縁体212の上面の高さは同程度にできる。なお、本実施の形態では、導電体203の第1の導電体および導電体203の第2の導電体を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体203を単層、または3層以上の積層構造として設ける構成にしてもよい。また、構造体が積層構造を有する場合、形成順に序数を付与し、区別する場合がある。なお、導電体503も導電体203と同様の構成を有する。
絶縁体273は、トランジスタ200、トランジスタ500、および容量素子100の上に配置される。絶縁体274は絶縁体273上に配置される。絶縁体280は絶縁体274上に配置される。
また、導電体240は、絶縁体273、絶縁体274、および絶縁体280の開口の内壁に接して形成されている。ここで、導電体240の上面の高さと、絶縁体280の上面の高さは同程度にできる。なお、本実施の形態では、導電体240が2層の積層構造である構成について示しているが、本発明はこれに限られるものではない。例えば、導電体240は、単層、又は3層以上の積層構造でもよい。なお、導電体540も導電体240と同様の構成を有する。
図8、図9(A)に示すように、トランジスタ200は、基板(図示せず。)の上に配置された絶縁体214および絶縁体216と、絶縁体214および絶縁体216に埋め込まれるように配置された導電体205と、絶縁体216と導電体205の上に配置された絶縁体220と、絶縁体220の上に配置された絶縁体222と、絶縁体222の上に配置された絶縁体224と、絶縁体224の上に配置された酸化物230(酸化物230a、酸化物230b、および酸化物230c)と、酸化物230の上に配置された絶縁体250と、絶縁体250上に配置された金属酸化物252と、金属酸化物252の上に配置された導電体260(導電体260a、および導電体260b)と、導電体260の上に配置された絶縁体270と、絶縁体270上に配置された絶縁体271と、少なくとも酸化物230c、絶縁体250、金属酸化物252、および導電体260の側面と接して配置された絶縁体275と、酸化物230上に形成された層242と、を有する。また、層242の一方に接して導電体240aが配置される。
トランジスタ200において、層242の一方がソース及びドレインの一方として機能し、層242の他方がソース及びドレインの他方として機能し、導電体260がフロントゲートとして機能し、導電体205がバックゲートとして機能する。また、導電体240aは、配線WBLに相当する導電体に電気的に接続される。また、導電体260は配線WLに相当する導電体に電気的に接続される。
また、図8、図9(B)に示すように、トランジスタ500は、基板(図示せず。)の上に配置された絶縁体214および絶縁体216と、絶縁体214および絶縁体216に埋め込まれるように配置された導電体505と、絶縁体216と導電体505の上に配置された絶縁体220と、絶縁体220の上に配置された絶縁体222と、絶縁体222の上に配置された絶縁体524と、絶縁体524の上に配置された酸化物530(酸化物530a、酸化物530b、および酸化物530c)と、酸化物530の上に配置された絶縁体550と、絶縁体550上に配置された金属酸化物552と、金属酸化物552の上に配置された導電体560(導電体560a、および導電体560b)と、導電体560の上に配置された絶縁体570と、絶縁体570上に配置された絶縁体571と、少なくとも酸化物530c、絶縁体550、金属酸化物552、および導電体560の側面と接して配置された絶縁体575と、酸化物530上に形成された層542と、を有する。また、層542の一方に接して導電体540aが配置され、層542の他方に接して導電体540bが配置される。
トランジスタ500において、層542の一方がソース及びドレインの一方として機能し、層542の他方がソース及びドレインの他方として機能し、導電体560がフロントゲートとして機能し、導電体505がバックゲートとして機能する。また、導電体540aは、配線RBLに相当する導電体に電気的に接続される。また、導電体540bは、配線SLに相当する導電体に電気的に接続される。
ここで、トランジスタ500は、トランジスタ200と同じ層に形成され、同様の構成を有する。よって、酸化物530は、酸化物230と同様の構成を有し、酸化物230の記載を参酌することができる。導電体505は、導電体205と同様の構成を有し、導電体205の記載を参酌することができる。絶縁体524は、絶縁体224と同様の構成を有し、絶縁体224の記載を参酌することができる。絶縁体550は、絶縁体250と同様の構成を有し、絶縁体250の記載を参酌することができる。金属酸化物552は、金属酸化物252と同様の構成を有し、金属酸化物252の記載を参酌することができる。導電体560は、導電体260と同様の構成を有し、導電体260の記載を参酌することができる。絶縁体570は、絶縁体270と同様の構成を有し、絶縁体270の記載を参酌することができる。絶縁体571は、絶縁体271と同様の構成を有し、絶縁体271の記載を参酌することができる。絶縁体575は、絶縁体275と同様の構成を有し、絶縁体275の記載を参酌することができる。以下に、おいて、特段の記載がない限り、上記のようにトランジスタ500の構成は、トランジスタ200の構成の記載を参酌することができる。
なお、トランジスタ200では、酸化物230a、酸化物230b、および酸化物230cの3層を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、酸化物230bの単層、酸化物230bと酸化物230aの2層構造、酸化物230bと酸化物230cの2層構造、または4層以上の積層構造を設ける構成にしてもよい。また、トランジスタ500の酸化物530についても同様である。また、トランジスタ200では、導電体260aおよび導電体260bを積層する構成について示しているが、本発明はこれに限られるものではない。また、トランジスタ500の導電体560についても同様である。
容量素子100は、導電体110と、導電体110上に絶縁体130、絶縁体130上に導電体120を有する。導電体120は、絶縁体130を介して、少なくとも一部が導電体110と重なるように、配置されることが好ましい。また、導電体120の上に接して導電体240bが配置される。導電体110は、トランジスタ200のソース及びドレインの一方として機能する層242と接し、且つ絶縁体570および絶縁体571の開口を介して導電体560と接する。
容量素子100において、導電体110は電極の一方として機能し、導電体120は電極の他方として機能する。また、絶縁体130は容量素子100の誘電体として機能する。導電体240bは、配線CLに相当する導電体に電気的に接続される。ここで、導電体110は、トランジスタ200のソースおよびドレインの一方、およびトランジスタ500のゲートと、接続されており、ノードFNとして機能する。
図8(A)に示すように、容量素子100の一部が、トランジスタ200またはトランジスタ500と重畳するように形成される。これにより、トランジスタ200、トランジスタ500、および容量素子100の投影面積の合計を小さくし、メモリセル600の占有面積を低減することができる。よって、上記記憶装置の微細化および高集積化が容易になる。また、トランジスタ200、トランジスタ500、および容量素子100を同じ工程で形成することができるので、工程を短縮し、生産性を向上させることができる。
なお、メモリセル600において、トランジスタ200のチャネル長方向とトランジスタ500のチャネル長方向が直交するように、トランジスタ200、トランジスタ500および容量素子100を設けているが、本実施の形態に示す記憶装置はこれに限られるものではない。図1等に示すメモリセル600は、記憶装置の構成の一例であり、回路構成や駆動方法に応じて、適切な構造のトランジスタを、適宜配置すればよい。
次に、トランジスタ200に用いる酸化物230に係る詳細の説明を行う。以下において、特段の記載を行わない場合、トランジスタ500の酸化物530についても酸化物230の記載を参酌するものとする。トランジスタ200は、チャネルが形成される領域(以下、チャネル形成領域ともいう。)を含む酸化物230(酸化物230a、酸化物230b、および酸化物230c)に、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう。)を用いることが好ましい。
チャネル形成領域に酸化物半導体を用いたトランジスタ200は、非導通状態において極めてリーク電流が小さいため、低消費電力の記憶装置を提供できる。また、酸化物半導体は、スパッタリング法などを用いて成膜できるため、高集積型の記憶装置を構成するトランジスタ200に用いることができる。
例えば、酸化物230として、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種)等の金属酸化物を用いるとよい。また、酸化物230として、In−Ga酸化物、In−Zn酸化物を用いてもよい。
ここで、酸化物半導体は、酸化物半導体を構成する元素の他に、アルミニウム、ルテニウム、チタン、タンタル、クロム、タングステン、などの金属元素が添加されることで、金属化合物を形成し、低抵抗化する。なお、好ましくは、アルミニウム、チタン、タンタル、タングステンなどを用いることが好ましい。
酸化物半導体に、金属元素を添加するには、例えば、酸化物半導体上に、当該金属元素を含む金属膜、金属元素を有する窒化膜、または金属元素を有する酸化膜を設けるとよい。また、当該膜を設けることで、当該膜と酸化物半導体との界面、または当該界面近傍に位置する酸化物半導体中の一部の酸素が該膜などに吸収され、酸素欠損を形成し、当該界面近傍が低抵抗化する場合がある。
また、酸化物半導体上に、金属膜、金属元素を有する窒化膜、または金属元素を有する酸化膜を設けた後、窒素を含む雰囲気下で、熱処理を行うとよい。窒素を含む雰囲気下での熱処理により、金属膜、金属元素を有する窒化膜、または金属元素を有する酸化膜から、当該膜の成分である金属元素が酸化物半導体へ、または酸化物半導体の成分である金属元素が当該膜へと、拡散し、酸化物半導体と、当該膜とが金属化合物を形成し、低抵抗化することができる。酸化物半導体に添加された金属元素は、酸化物半導体と金属元素と、金属化合物を形成することで、比較的安定な状態となるため、信頼性の高い記憶装置を提供することができる。
また、金属膜、金属元素を有する窒化膜、または金属元素を有する酸化膜と、酸化物半導体との界面に、化合物層(以下、異層ともいう。)が形成されていてもよい。なお、化合物層(異層)とは、金属膜、金属元素を有する窒化膜、または金属元素を有する酸化膜の成分と、酸化物半導体の成分とを含む金属化合物を有する層とする。例えば、化合物層として、酸化物半導体の金属元素と、添加された金属元素とが、合金化した層が形成されていてもよい。当該合金化した層は、比較的安定な状態であり、信頼性の高い記憶装置を提供することができる。
また、酸化物半導体に存在する水素は、酸化物半導体の低抵抗化した領域に拡散し、低抵抗化した領域に存在する酸素欠損の中に入った場合、比較的安定な状態となる。また、酸化物半導体に存在する酸素欠損中の水素は、250℃以上の熱処理によって、酸素欠損から抜け出し、酸化物半導体の低抵抗化した領域に拡散し、低抵抗化した領域に存在する酸素欠損の中に入り、比較的安定な状態となることがわかっている。従って、熱処理によって、酸化物半導体の低抵抗化した領域、または金属化合物が形成された領域は、より低抵抗化し、低抵抗化していない酸化物半導体は、高純度化(水、水素などの不純物の低減)し、より高抵抗化する傾向がある。
また、酸化物半導体は、水素、または窒素などの不純物元素が存在すると、キャリア密度が増加する。酸化物半導体中の水素は、金属原子と結合する酸素と反応して水になり、酸素欠損を形成する場合がある。当該酸素欠損に水素が入ると、キャリア密度は増加する。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。つまり、窒素、または水素を有する酸化物半導体は、低抵抗化される。
従って、酸化物半導体に、金属元素、並びに、水素、および窒素などの不純物元素を、選択的に添加することで、酸化物半導体に高抵抗領域、および低抵抗領域を設けることができる。つまり、酸化物230を選択的に低抵抗化することで、島状に加工した酸化物230に、キャリア密度が低い半導体として機能する領域と、ソース領域、またはドレイン領域として機能する低抵抗化した領域を設けることができる。
ここで、図8(B)において破線で囲む、選択的に低抵抗化した酸化物230bを含む領域239の拡大図を図11に示す。
図11に示すように、酸化物230は、トランジスタのチャネル形成領域として機能する領域234と、ソース領域またはドレイン領域として機能する領域231(領域231a、および領域231b)と、領域234と領域231との間に設けられる、領域232(領域232a、および領域232b)と、を有する。
ソース領域またはドレイン領域として機能する領域231は、酸素濃度が低く、低抵抗化した領域である。また、チャネル形成領域として機能する領域234は、ソース領域またはドレイン領域として機能する領域231よりも、酸素濃度が高く、キャリア密度が低い高抵抗領域である。また、領域232は、ソース領域またはドレイン領域として機能する領域231よりも、酸素濃度が高く、キャリア密度が低い、かつ、チャネル形成領域として機能する領域234よりも、酸素濃度が低く、キャリア密度が高い領域である。
なお、領域231は、金属元素、並びに水素、および窒素などの不純物元素、の少なくとも一の濃度が領域232、および領域234よりも高いことが好ましい。
例えば、領域231は、酸化物230の他に、アルミニウム、ルテニウム、チタン、タンタル、タングステン、クロムなどの金属元素の中から選ばれるいずれか一つまたは複数の金属元素を有することが好ましい。
領域231を形成するために、例えば、酸化物230の領域231に接して、金属元素を有する膜を設ければよい。当該金属元素を有する膜は、領域231の形成後に、島状にパターニングして導電体110となる。なお、当該金属元素を有する膜として、金属膜、金属元素を有する酸化膜、または金属元素を有する窒化膜を用いることができる。その際、当該金属元素を有する膜と、酸化物230との界面に、層242が形成されていてもよい。例えば層242は、酸化物230の上面および側面に形成される場合がある。なお、層242は、当該金属元素を有する膜の成分と、酸化物230の成分とを含む金属化合物を有する層とし、化合物層と呼ぶこともできる。例えば、層242として、酸化物230中の金属元素と、添加された金属元素とが、合金化した層が形成されていてもよい。
酸化物230に、金属元素が添加されることで、酸化物230中に、金属化合物が形成され、領域231を低抵抗化することができる。なお、当該金属化合物は、必ずしも、酸化物230中に形成されていなくともよい。例えば、上記金属元素を有する膜(導電体110)に、金属化合物が形成されていてもよい。また、例えば、酸化物230の表面、導電体110の表面、または導電体110と酸化物230との界面に形成された層242に設けられていてもよい。
従って、領域231は、層242の低抵抗化領域も含む場合がある。よって、層242の少なくとも一部がトランジスタ200のソース領域またはドレイン領域として機能する場合がある。
領域232は、絶縁体275と重畳する領域を有する。領域232は、アルミニウム、ルテニウム、チタン、タンタル、タングステン、クロムなどの金属元素、並びに水素、および窒素などの不純物元素、の少なくとも一の濃度が領域234よりも高いことが好ましい。例えば、酸化物230の領域231に接して、上記金属元素を有する膜を設けることで、上記金属元素を有する膜中の成分と、酸化物半導体の成分とが、金属化合物を形成する場合がある。当該金属化合物は、酸化物230に含まれる水素を引き寄せる場合がある。従って、領域231の近傍である領域232の水素の濃度が高くなる場合がある。
なお、領域232a、および領域232bのいずれか一方または双方は、導電体260と重畳する領域を有する構成としてもよい。当該構成とすることで、導電体260と、領域232aおよび領域232bとを、オーバーラップさせることが可能となる。
また、図11では、領域234、領域231、および領域232が、酸化物230bに形成されているが、これに限られない。例えば、これらの領域は層242、層242と酸化物230との間に形成された化合物層、酸化物230a、および酸化物230cにも、形成されていてもよい。また、図11では、各領域の境界を、酸化物230の上面に対して略垂直に表示しているが、本実施の形態はこれに限られるものではない。例えば、領域232が酸化物230bの表面近傍では導電体260側に張り出し、酸化物230aの下面近傍では、導電体240a側または導電体240b側に後退する形状になる場合がある。
また、酸化物230において、各領域の境界は明確に検出することが困難な場合がある。各領域内で検出される金属元素、並びに水素、および窒素などの不純物元素の濃度は、領域ごとの段階的な変化に限らず、各領域内でも連続的に変化(グラデーションともいう。)していてもよい。つまり、チャネル形成領域に近い領域であるほど、金属元素、並びに水素、および窒素などの不純物元素の濃度が減少していればよい。
酸化物230を、選択的に低抵抗化するには、例えば、アルミニウム、ルテニウム、チタン、タンタル、タングステン、クロムなどの導電性を高める金属元素、および不純物の少なくとも一を、所望の領域に添加すればよい。なお、不純物としては、酸素欠損を形成する元素、または酸素欠損に捕獲される元素などを用いればよい。例えば、当該元素として、水素、ホウ素、炭素、窒素、フッ素、リン、硫黄、塩素、希ガス等が挙げられる。また、希ガス元素の代表例としては、ヘリウム、ネオン、アルゴン、クリプトン、およびキセノン等がある。
領域231は、上述の導電性を高める金属元素、酸素欠損を形成する元素、または酸素欠損に捕獲される元素の含有率を高くすることで、キャリア密度を高くし、低抵抗化を図ることができる。
領域231を低抵抗化するために、例えば、酸化物230の領域231に接して、上記金属元素を有する膜を成膜するとよい。当該金属元素を有する膜としては、金属膜、金属元素を有する酸化膜、または金属元素を有する窒化膜などを用いることができる。当該金属元素を有する膜は、少なくとも、絶縁体250、金属酸化物252、導電体260、絶縁体270、絶縁体271、および絶縁体275を介して、酸化物230上に設けることが好ましい。なお、上記金属元素を有する膜は、10nm以上200nm以下の膜厚にするとよい。上記金属元素を有する膜は、例えば、アルミニウム、ルテニウム、チタン、タンタル、タングステン、クロムなどの金属元素を含む膜とする。なお、上記金属元素を有する膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。
酸化物230と上記金属元素を有する膜とが接することにより、当該金属元素を有する膜の成分と、酸化物230の成分とが、金属化合物を形成し、領域231となり、低抵抗化する。また、酸化物230と当該金属元素を有する膜との界面、または当該界面近傍に位置する酸化物230中の酸素の一部が層242に吸収され、酸化物230に酸素欠損を形成し、低抵抗化し、領域231を形成する場合がある。
また、酸化物230と、上記金属元素を有する膜とが、接した状態で、窒素を含む雰囲気下において熱処理を行うとよい。当該熱処理により、当該金属元素を有する膜から、当該金属元素を有する膜の成分である金属元素が酸化物230へ、または酸化物230の成分である金属元素が当該金属元素を有する膜へと、拡散し、酸化物230と、当該金属元素を有する膜とが金属化合物を形成し、低抵抗化する。このようにして、酸化物230と当該金属元素を有する膜との間に層242が形成される。なお、その際、酸化物230の金属元素と、当該金属元素を有する膜の金属元素とが、合金化してもよい。従って、層242は合金を含む場合がある。当該合金は、比較的安定な状態であり、信頼性の高い記憶装置を提供することができる。
上記熱処理は、例えば、250℃以上650℃以下、好ましくは300℃以上500℃以下、さらに好ましくは320℃以上450℃以下で行えばよい。なお、熱処理は、窒素または不活性ガス雰囲気で行う。また、熱処理は減圧状態で行ってもよい。また、窒素または不活性ガス雰囲気で加熱処理した後に、酸化性ガスを含む雰囲気で加熱処理を行ってもよい。
また、酸化物230中の水素は、領域231に拡散し、領域231に存在する酸素欠損の中に入った場合、比較的安定な状態となる。また、領域234に存在する酸素欠損中の水素は、250℃以上の熱処理によって、酸素欠損から抜け出し、領域231に拡散し、領域231に存在する酸素欠損の中に入り、比較的安定な状態となる。従って、熱処理によって、領域231は、より低抵抗化し、領域234は、高純度化(水、水素などの不純物の低減)し、より高抵抗化する。
一方、酸化物230の導電体260、および絶縁体275と重畳する領域(領域234、および領域232)は、導電体260、および絶縁体275を介しているため、金属元素の添加が抑制される。また、酸化物230の領域234、および領域232において、酸化物230中の酸素原子が、上述した上記金属元素を有する膜へ吸収されることが抑制される。
また、上記金属元素を有する膜に、酸化物230の領域231、および領域231に近接する領域232の酸素が吸収されることで、領域231、および領域232に酸素欠損が生じる場合がある。酸化物230中の水素が、当該酸素欠損に入ることで、領域231、および領域232のキャリア密度は増加する。従って、酸化物230の領域231、および領域232は、低抵抗化される。
ここで、上記金属元素を有する膜が、水素を吸収する特性を有する場合、酸化物230中の水素は、当該膜へと吸収される。従って、酸化物230中の不純物である水素を低減することができる。上記金属元素を有する膜は、後に導電体110にパターニングされるので、酸化物230から吸収した水素の大部分は除去される。
層242を形成した後で、上記金属元素を有する膜の一部を除去して、島状の導電体110を形成する。当該金属元素を有する膜の膜厚を十分厚く、例えば10nm以上200nm以下程度にしておくことで、導電体110に十分な導電性を与えることができる。よって、導電体110も、上記金属元素を有する膜と同様に、膜厚は10nm以上200nm以下が好ましく、例えば、アルミニウム、ルテニウム、チタン、タンタル、タングステン、クロムなどの金属元素を含むことが好ましい。また、導電体110は、金属元素を有する酸化膜、または金属元素を有する窒化膜としてもよい。
導電体110と酸化物230の間には、層242が形成される。層242は、上記金属元素を有する膜の金属元素と、酸化物230の金属元素とが、合金化している場合があり、導電体110と領域231bの間の抵抗が低減される場合がある。
図8(B)に示すように、導電体110は、絶縁体570および絶縁体571の開口を介して、トランジスタ500のゲートとして機能する導電体560に接する。このように十分な導電性を有する導電体110を用いることにより、トランジスタ200とトランジスタ500の間の導電性を良好にし、ノードFNにデータに対応する電荷を正確に保持することができる。さらに、このようにトランジスタ200とトランジスタ500を同じ層に形成し、導電体110で接続することで、余計なプラグを形成して、上層または下層でトランジスタ200とトランジスタ500を接続しなくてもよい。よって、トランジスタ200及びトランジスタ500を形成する層に、形成するプラグの数を減らすことができるので、当該プラグを通じて、トランジスタ200及びトランジスタ500に水素などの不純物が拡散することを抑制することができる。
ここで、酸化物半導体を用いたトランジスタは、酸化物半導体中のチャネルが形成される領域に不純物及び酸素欠損が存在すると、電気特性が変動しやすく、信頼性が悪くなる場合がある。また、酸化物半導体中のチャネルが形成される領域に酸素欠損が含まれていると、トランジスタはノーマリーオン特性となりやすい。従って、チャネルが形成される領域234中の酸素欠損はできる限り低減されていることが好ましい。
そこで、図11に示すように、絶縁体250、酸化物230bの領域232、および酸化物230cに接して、化学量論的組成を満たす酸素よりも多くの酸素(過剰酸素ともいう。)を含む絶縁体275を設けることが好ましい。つまり、絶縁体275が有する過剰酸素が、酸化物230の領域234へと拡散することで、酸化物230の領域234における酸素欠損を低減することができる。
また、絶縁体275に過剰酸素領域を設けるには、絶縁体275に接する絶縁体273として、酸化物を、スパッタリング法により成膜するとよい。酸化物の成膜にスパッタリング法を用いることにより、水または水素などの不純物の少ない絶縁体を成膜することができる。スパッタリング法を用いる場合は、例えば、対向ターゲット型のスパッタリング装置を用いて成膜することが好ましい。対向ターゲット型のスパッタリング装置は、対向するターゲット間の高電界領域に被成膜面が晒されることなく成膜できるので、被成膜面がプラズマによる損傷を受けにくく成膜することができるので、絶縁体273となる絶縁体の成膜時に酸化物230への成膜ダメージを小さくすることができるので好ましい。対向ターゲット型のスパッタリング装置を用いた成膜法を、VDSP(Vapor Deposition SP)(登録商標)と呼ぶことができる。
スパッタリング法による成膜時には、ターゲットと基板との間には、イオンとスパッタされた粒子とが存在する。例えば、ターゲットは、電源が接続されており、電位E0が与えられる。また、基板は、接地電位などの電位E1が与えられる。ただし、基板が電気的に浮いていてもよい。また、ターゲットと基板の間には電位E2となる領域が存在する。各電位の大小関係は、E2>E1>E0である。
プラズマ内のイオンが、電位差E2−E0によって加速され、ターゲットに衝突することにより、ターゲットからスパッタされた粒子がはじき出される。このスパッタされた粒子が成膜表面に付着し、堆積することにより成膜が行われる。また、一部のイオンはターゲットによって反跳し、反跳イオンとして形成された膜を介して、形成された膜を通過し、被成膜面と接する絶縁体275に取り込まれる場合がある。また、プラズマ内のイオンは、電位差E2−E1によって加速され、成膜表面を衝撃する。この際、一部のイオンは、絶縁体275内部まで到達する。イオンが絶縁体275に取り込まれることにより、イオンが取り込まれた領域が絶縁体275に形成される。つまり、イオンが酸素を含むイオンであった場合において、絶縁体275に過剰酸素領域が形成される。
絶縁体275に過剰な酸素を導入することで、絶縁体275中に過剰酸素領域を形成することができる。絶縁体275の過剰な酸素は、酸化物230の領域234に供給され、酸化物230の酸素欠損を補償することができる。
なお、絶縁体275は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、空孔を有する酸化シリコンを用いることが好ましい。酸化窒化シリコンなどの材料は、過剰酸素領域を形成されやすい傾向がある。一方、上述の酸化窒化シリコンなどの材料と比較して、酸化物230は、スパッタリング法を用いた酸化膜を、酸化物230上に形成したとしても、過剰酸素領域が形成しにくい傾向がある。従って、過剰酸素領域を有する絶縁体275を、酸化物230の領域234の周辺に設けることで、酸化物230の領域234へ、絶縁体275の過剰酸素を効果的に供給することができる。
また、絶縁体273は、酸化アルミニウムを用いることが好ましい。酸化アルミニウムは、酸化物230と近接した状態で、熱処理を行うことで、酸化物230中の水素を引き抜く場合がある。なお、酸化物230と、酸化アルミニウムとの間に層242が設けられている場合、層242中の水素を酸化アルミニウムが吸収し、水素が低減された層242は、酸化物230中の水素を吸収する場合がある。従って、酸化物230中の水素濃度を低減することができる。また、絶縁体273と、酸化物230とを近接した状態で熱処理を行うことで、絶縁体273から酸化物230、絶縁体224、または絶縁体222に酸素を供給できる場合がある。
上記構成、または上記工程を組み合わせることで、酸化物230の選択的な低抵抗化を行うことができる。
つまり、酸化物230に低抵抗領域を形成する際に、ゲート電極として機能する導電体260、および絶縁体275をマスクとすることで、自己整合的に酸化物230は低抵抗化する。そのため、複数のトランジスタ200を同時に形成する場合、トランジスタ間の電気特性バラつきを小さくすることができる。また、トランジスタ200のチャネル長は、導電体260の幅、または絶縁体275の成膜膜厚により決定され、導電体260の幅を最小加工寸法とすることにより、トランジスタ200の微細化が可能となる。
以上より、各領域の範囲を適宜選択することにより、回路設計に合わせて、要求に見合う電気特性を有するトランジスタを容易に提供することができる。
また、酸化物半導体は、スパッタリング法などを用いて成膜できるため、高集積型の記憶装置を構成するトランジスタに用いることができる。また、チャネル形成領域に酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流(オフ電流)が小さいため、低消費電力の記憶装置を提供できる。また、トランジスタ200は、オフ電流が小さいため、これを記憶装置に用いることにより長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ動作を必要としない、あるいは、リフレッシュ動作の頻度が極めて少ないため、記憶装置の消費電力を十分に低減することができる。
以上より、オン電流が大きいトランジスタを有する記憶装置を提供することができる。または、オフ電流が小さいトランジスタを有する記憶装置を提供することができる。または、電気特性の変動を抑制し、安定した電気特性を有すると共に、信頼性を向上させた記憶装置を提供することができる。
以下では、本発明の一態様に係るメモリセル600を有する記憶装置の詳細な構成について説明する。以下において、特段の記載を行わない場合、トランジスタ500の詳細な構成についてもトランジスタ200の詳細な構成の記載を参酌するものとする。
導電体203は、図8(A)、および図9(A)に示すように、チャネル幅方向に延伸されており、導電体205に電位を印加する配線として機能する。なお、導電体203は、絶縁体212に埋め込まれて設けることが好ましい。
導電体205は、酸化物230、および導電体260と、重なるように配置する。また、導電体205は、導電体203の上に接して設けるとよい。また、導電体205は、絶縁体214および絶縁体216に埋め込まれて設けることが好ましい。
ここで、導電体260は、第1のゲート(フロントゲートともいう。)電極として機能する場合がある。また、導電体205は、第2のゲート(バックゲートともいう。)電極として機能する場合がある。その場合、導電体205に印加する電位を、導電体260に印加する電位と、連動させず、独立して変化させることで、トランジスタ200の閾値電圧を制御することができる。特に、導電体205に負の電位を印加することにより、トランジスタ200の閾値電圧を0Vより大きくし、オフ電流を低減することが可能となる。したがって、導電体205に負の電位を印加したほうが、印加しない場合よりも、導電体260に印加する電位が0Vのときのドレイン電流を小さくすることができる。
また、導電体203上に導電体205を設けることで、第1のゲート電極、および配線としての機能を有する導電体260と、導電体203との距離を適宜設計することが可能となる。つまり、導電体203と導電体260の間に絶縁体214および絶縁体216などが設けられることで、導電体203と導電体260の間の寄生容量を低減し、導電体203と導電体260の間の絶縁耐圧を高めることができる。
また、導電体203と導電体260の間の寄生容量を低減することで、トランジスタ200のスイッチング速度を向上させ、高い周波数特性を有するトランジスタにすることができる。また、導電体203と導電体260の間の絶縁耐圧を高めることで、トランジスタ200の信頼性を向上させることができる。よって、絶縁体214および絶縁体216の膜厚を厚くすることが好ましい。なお、導電体203の延伸方向はこれに限られず、例えば、トランジスタ200のチャネル長方向に延伸されてもよい。
なお、導電体205は、図8(A)に示すように、酸化物230、および導電体260と重なるように配置する。また、導電体205は、酸化物230における領域234よりも、大きく設けるとよい。特に、図9(A)に示すように、導電体205は、酸化物230の領域234のチャネル幅方向と交わる端部よりも外側の領域においても、延伸していることが好ましい。つまり、酸化物230のチャネル幅方向における側面において、導電体205と、導電体260とは、絶縁体を介して重畳していることが好ましい。
上記構成を有することで、導電体260、および導電体205に電位を印加した場合、導電体260から生じる電界と、導電体205から生じる電界と、がつながり、酸化物230に形成されるチャネル形成領域を覆うことができる。
つまり、第1のゲート電極としての機能を有する導電体260の電界と、第2のゲート電極としての機能を有する導電体205の電界によって、領域234のチャネル形成領域を電気的に取り囲むことができる。本明細書において、第1のゲート電極、および第2のゲート電極の電界によって、チャネル形成領域を電気的に取り囲むトランジスタの構造を、surrounded channel(S−channel)構造とよぶ。
また、導電体205は、絶縁体214および絶縁体216の開口の内壁に接して第1の導電体が形成され、さらに内側に第2の導電体が形成されている。ここで、第1の導電体および第2の導電体の上面の高さと、絶縁体216の上面の高さは同程度にできる。なお、トランジスタ200では、導電体205の第1の導電体および導電体205の第2の導電体を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体205は、単層、または3層以上の積層構造として設ける構成にしてもよい。
ここで、導電体205、または導電体203の第1の導電体は、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい。)導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子など)の少なくとも一の拡散を抑制する機能を有する(上記酸素が透過しにくい。)導電性材料を用いることが好ましい。なお、本明細書において、不純物、または酸素の拡散を抑制する機能とは、上記不純物、または上記酸素のいずれか一または、すべての拡散を抑制する機能とする。
導電体205、または導電体203の第1の導電体が酸素の拡散を抑制する機能を持つことにより、導電体205、または導電体203の第2の導電体が酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウムまたは酸化ルテニウムなどを用いることが好ましい。したがって、導電体205、または導電体203の第1の導電体としては、上記導電性材料を単層または積層とすればよい。これにより、絶縁体210より基板側から、水素、水などの不純物が、導電体203、および導電体205を通じて、トランジスタ200側に拡散するのを抑制することができる。
また、導電体205の第2の導電体は、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。なお、導電体205の第2の導電体を単層で図示したが、積層構造としてもよく、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。
また、導電体203の第2の導電体は、配線として機能するため、導電体205の第2の導電体より導電性が高い導電体を用いることが好ましい。例えば、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体203の第2の導電体は積層構造としてもよく、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。
特に、導電体203に、銅を用いることが好ましい。銅は抵抗が小さいため、配線等に用いることが好ましい。一方、銅は拡散しやすいため、酸化物230に拡散することで、トランジスタ200の電気特性を低下させる場合がある。そこで、例えば、絶縁体214には、銅の透過性が低い酸化アルミニウム、または酸化ハフニウムなどの材料を用いることで、銅の拡散を抑えることができる。
なお、導電体205、絶縁体214、および絶縁体216は必ずしも設けなくともよい。その場合、導電体203の一部が第2のゲート電極として機能することができる。
絶縁体210、および絶縁体214は、水または水素などの不純物が、基板側からトランジスタ200に混入するのを抑制するバリア絶縁膜として機能することが好ましい。したがって、絶縁体210、および絶縁体214は、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい。)絶縁性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子など)の少なくとも一の拡散を抑制する機能を有する(上記酸素が透過しにくい。)絶縁性材料を用いることが好ましい。また、絶縁体280の上に、絶縁体210または絶縁体214と同様のバリア絶縁膜として機能する絶縁体を設けてもよい。これにより、絶縁体280の上から、水または水素などの不純物が、トランジスタ200に混入するのを抑制することができる。
例えば、絶縁体210として酸化アルミニウムなどを用い、絶縁体214として窒化シリコンなどを用いることが好ましい。これにより、水素、水などの不純物が絶縁体210および絶縁体214よりも基板側からトランジスタ200側に拡散することを抑制することができる。または、絶縁体224などに含まれる酸素が、絶縁体210および絶縁体214よりも基板側に、拡散することを抑制することができる。
また、導電体203の上に導電体205を積層して設ける構成にすることにより、導電体203と導電体205の間に絶縁体214を設けることができる。ここで、導電体203の第2の導電体に銅など拡散しやすい金属を用いても、絶縁体214として窒化シリコンなどを設けることにより、当該金属が絶縁体214より上の層に拡散するのを抑制することができる。
また、層間膜として機能する絶縁体212、絶縁体216、および絶縁体280は、絶縁体210、または絶縁体214よりも誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。
例えば、絶縁体212、絶縁体216、および絶縁体280として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba,Sr)TiO(BST)などの絶縁体を単層または積層で用いることができる。またはこれらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
絶縁体220、絶縁体222、および絶縁体224は、ゲート絶縁体としての機能を有する。また、トランジスタ500に設けられる絶縁体524も、絶縁体224と同様にゲート絶縁体としての機能を有する。なお、本実施の形態では、絶縁体224と絶縁体524は分離されているが、絶縁体224と絶縁体524がつながっていてもよい。
ここで、酸化物230と接する絶縁体224は、化学量論的組成を満たす酸素よりも多くの酸素を含む絶縁体を用いることが好ましい。つまり、絶縁体224には、過剰酸素領域が形成されていることが好ましい。このような過剰酸素を含む絶縁体を酸化物230に接して設けることにより、酸化物230中の酸素欠損を低減し、トランジスタ200の信頼性を向上させることができる。
過剰酸素領域を有する絶縁体として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS(Thermal Desorption Spectroscopy)分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは1.0×1019atoms/cm以上、さらに好ましくは2.0×1019atoms/cm、または3.0×1020atoms/cm以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、または100℃以上400℃以下の範囲が好ましい。
また、絶縁体224が、過剰酸素領域を有する場合、絶縁体222は、酸素(例えば、酸素原子、酸素分子など)の少なくとも一の拡散を抑制する機能を有する(上記酸素が透過しにくい。)ことが好ましい。
絶縁体222が、酸素の拡散を抑制する機能を有することで、絶縁体224が有する過剰酸素領域の酸素は、絶縁体220側へ拡散することなく、効率よく酸化物230へ供給することができる。また、導電体205が、絶縁体224が有する過剰酸素領域の酸素と反応することを抑制することができる。
絶縁体222は、例えば、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba,Sr)TiO(BST)などのいわゆるhigh−k材料を含む絶縁体を単層または積層で用いることが好ましい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体にhigh−k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。
特に、不純物、および酸素などの拡散を抑制する機能を有する(上記酸素が透過しにくい。)絶縁性材料であるアルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を用いるとよい。アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。このような材料を用いて絶縁体222を形成した場合、絶縁体222は、酸化物230からの酸素の放出や、トランジスタ200の周辺部から酸化物230への水素等の不純物の混入を抑制する層として機能する。
または、これらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
また、絶縁体220は、熱的に安定していることが好ましい。例えば、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、high−k材料の絶縁体と絶縁体220とを組み合わせることで、熱的に安定かつ比誘電率の高い積層構造とすることができる。
なお、絶縁体220、絶縁体222、および絶縁体224が、2層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。
酸化物230は、酸化物230aと、酸化物230a上の酸化物230bと、酸化物230b上の酸化物230cと、を有する。酸化物230b下に酸化物230aを有することで、酸化物230aよりも下方に形成された構造物から、酸化物230bへの不純物の拡散を抑制することができる。また、酸化物230b上に酸化物230cを有することで、酸化物230cよりも上方に形成された構造物から、酸化物230bへの不純物の拡散を抑制することができる。
なお、酸化物230は、各金属原子の原子数比が異なる酸化物により、積層構造を有することが好ましい。具体的には、酸化物230aに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物230bに用いる金属酸化物における、構成元素中の元素Mの原子数比より、大きいことが好ましい。また、酸化物230aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物230bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物230bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物230aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。また、酸化物230cは、酸化物230aまたは酸化物230bに用いることができる金属酸化物を、用いることができる。
また、酸化物230aおよび酸化物230cの伝導帯下端のエネルギーが、酸化物230bの伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、酸化物230aおよび酸化物230cの電子親和力が、酸化物230bの電子親和力より小さいことが好ましい。
ここで、酸化物230a、酸化物230b、および酸化物230cの接合部において、伝導帯下端はなだらかに変化する。換言すると、酸化物230a、酸化物230b、および酸化物230cの接合部における伝導帯下端は、連続的に変化または連続接合するともいうことができる。このようにするためには、酸化物230aと酸化物230bとの界面、および酸化物230bと酸化物230cとの界面において形成される混合層の欠陥準位密度を低くするとよい。
具体的には、酸化物230aと酸化物230b、酸化物230bと酸化物230cが、酸素以外に共通の元素を有する(主成分とする。)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物230bがIn−Ga−Zn酸化物の場合、酸化物230aおよび酸化物230cとして、In−Ga−Zn酸化物、Ga−Zn酸化物、酸化ガリウムなどを用いるとよい。
このとき、キャリアの主たる経路は酸化物230bとなる。酸化物230a、酸化物230cを上述の構成とすることで、酸化物230aと酸化物230bとの界面、および酸化物230bと酸化物230cとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ200は高いオン電流を得られる。
また、酸化物230は、領域231、領域232、および領域234を有する。なお、領域231の少なくとも一部は、絶縁体273と近接する領域を有する。また、領域232は、少なくとも、絶縁体275と重畳する領域を有する。
なお、トランジスタ200をオンさせると、領域231a、または領域231bは、ソース領域、またはドレイン領域として機能する。一方、領域234の少なくとも一部は、チャネルが形成される領域として機能する。領域231と、領域234の間に領域232を有することで、トランジスタ200において、オン電流を大きくし、かつ、非導通時のリーク電流(オフ電流)を小さくすることができる。
トランジスタ200において、領域232を設けることで、ソース領域およびドレイン領域として機能する領域231と、チャネルが形成される領域234との間に高抵抗領域が形成されないため、トランジスタのオン電流、および移動度を大きくすることができる。また、領域232を有することで、チャネル長方向において、ソース領域およびドレイン領域と、第1のゲート電極(導電体260)とが重ならないため、両者の間で不要な容量が形成されることを抑制できる。また、領域232を有することで、非導通時のリーク電流を小さくすることができる。
つまり、各領域の範囲を適宜選択することにより、回路設計に合わせて、要求に見合う電気特性を有するトランジスタを容易に提供することができる。例えば、トランジスタ200をオフ電流が小さくなる構成とし、トランジスタ500をオン電流が大きくなる構成にすることができる。
酸化物230は、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう。)を用いることが好ましい。例えば、領域234となる金属酸化物としては、バンドギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、バンドギャップの大きい金属酸化物を用いることで、トランジスタのオフ電流を低減することができる。
酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さいため、低消費電力の記憶装置を提供できる。また、酸化物半導体は、スパッタリング法などを用いて成膜できるため、高集積型の記憶装置を構成するトランジスタに用いることができる。
絶縁体250は、ゲート絶縁体として機能する。絶縁体250は、酸化物230cの上面に接して配置することが好ましい。絶縁体250は、加熱により酸素が放出される絶縁体を用いて形成することが好ましい。例えば、昇温脱離ガス分光法分析(TDS分析)にて、酸素分子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは1.0×1019atoms/cm以上、さらに好ましくは2.0×1019atoms/cm、または3.0×1020atoms/cmである酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下の範囲が好ましい。
具体的には、過剰酸素を有する酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンを用いることができる。特に、酸化シリコン、および酸化窒化シリコンは熱に対し安定であるため好ましい。
加熱により酸素が放出される絶縁体を、絶縁体250として、酸化物230cの上面に接して設けることにより、絶縁体250から、酸化物230bの領域234に効果的に酸素を供給することができる。また、絶縁体224と同様に、絶縁体250中の水または水素などの不純物濃度が低減されていることが好ましい。絶縁体250の膜厚は、1nm以上20nm以下とするのが好ましい。
また、絶縁体250が有する過剰酸素を、効率的に酸化物230へ供給するために、金属酸化物252を設けてもよい。従って、金属酸化物252は、絶縁体250からの酸素拡散を抑制することが好ましい。酸素の拡散を抑制する金属酸化物252を設けることで、絶縁体250から導電体260への過剰酸素の拡散が抑制される。つまり、酸化物230へ供給する過剰酸素量の減少を抑制することができる。また、過剰酸素による導電体260の酸化を抑制することができる。
なお、金属酸化物252は、第1のゲートの一部としての機能を有してもよい。例えば、酸化物230として用いることができる酸化物半導体を、金属酸化物252として用いることができる。その場合、導電体260をスパッタリング法で成膜することで、金属酸化物252の電気抵抗値を低下させて導電体とすることができる。これをOC(Oxide Conductor)電極と呼ぶことができる。
また、金属酸化物252は、ゲート絶縁体の一部としての機能を有する場合がある。したがって、絶縁体250に酸化シリコンや酸化窒化シリコンなどを用いる場合、金属酸化物252は、比誘電率が高いhigh−k材料である金属酸化物を用いることが好ましい。当該積層構造とすることで、熱に対して安定、かつ比誘電率の高い積層構造とすることができる。したがって、物理膜厚を保持したまま、トランジスタ動作時に印加するゲート電位の低減化が可能となる。また、ゲート絶縁体として機能する絶縁体の等価酸化膜厚(EOT)の薄膜化が可能となる。
トランジスタ200において、金属酸化物252を単層で示したが、2層以上の積層構造としてもよい。例えば、ゲート電極の一部として機能する金属酸化物と、ゲート絶縁体の一部として機能する金属酸化物とを積層して設けてもよい。
金属酸化物252を有することで、ゲート電極として機能する場合は、導電体260からの電界の影響を弱めることなく、トランジスタ200のオン電流の向上を図ることができる。または、ゲート絶縁体として機能する場合は、絶縁体250と、金属酸化物252との物理的な厚みにより、導電体260と、酸化物230との間の距離を保つことで、導電体260と酸化物230との間のリーク電流を抑制することができる。従って、絶縁体250、および金属酸化物252との積層構造を設けることで、導電体260と酸化物230との間の物理的な距離、および導電体260から酸化物230へかかる電界強度を、容易に適宜調整することができる。
具体的には、金属酸化物252として、酸化物230に用いることができる酸化物半導体を低抵抗化することで、金属酸化物252として用いることができる。または、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、または、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。
特に、アルミニウム、またはハフニウムの一方または双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。特に、ハフニウムアルミネートは、酸化ハフニウム膜よりも、耐熱性が高い。そのため、後の工程での熱履歴において、結晶化しにくいため好ましい。なお、金属酸化物252は、必須の構成ではない。求めるトランジスタ特性により、適宜設計すればよい。
第1のゲート電極として機能する導電体260は、導電体260a、および導電体260a上の導電体260bを有する。導電体260aは、導電体205の第1の導電体と同様に、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(NO、NO、NOなど)、銅原子などの不純物の拡散を抑制する機能を有する導電性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子など)の少なくとも一の拡散を抑制する機能を有する導電性材料を用いることが好ましい。
導電体260aが酸素の拡散を抑制する機能を持つことにより、絶縁体250、および金属酸化物252が有する過剰酸素により、導電体260bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウムまたは酸化ルテニウムなどを用いることが好ましい。
また、導電体260bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体260は、配線として機能するため、導電性が高い導電体を用いることが好ましい。例えば、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体260bは積層構造としてもよく、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。
また、図9(A)に示すように、導電体205が、酸化物230のチャネル幅方向と交わる端部よりも外側の領域において、延伸している場合、導電体260は、当該領域において、絶縁体250を介して、重畳していることが好ましい。つまり、酸化物230の側面の外側において、導電体205と、絶縁体250と、導電体260とは、積層構造を形成することが好ましい。
上記構成を有することで、導電体260、および導電体205に電位を印加した場合、導電体260から生じる電界と、導電体205から生じる電界と、がつながり、酸化物230に形成されるチャネル形成領域を覆うことができる。
つまり、第1のゲート電極としての機能を有する導電体260の電界と、第2のゲート電極としての機能を有する導電体205の電界によって、領域234のチャネル形成領域を電気的に取り囲むことができる。
また、導電体260bの上に、バリア膜として機能する絶縁体270を配置してもよい。絶縁体270は、水または水素などの不純物、および酸素の透過を抑制する機能を有する絶縁性材料を用いるとよい。例えば、酸化アルミニウムまたは酸化ハフニウムなどを用いることが好ましい。これにより、絶縁体270よりも上方からの酸素で導電体260が酸化するのを抑制することができる。また、絶縁体270よりも上方からの水または水素などの不純物が、導電体260および絶縁体250を介して、酸化物230に混入することを抑制することができる。
また、絶縁体270上に、ハードマスクとして機能する絶縁体271を配置することが好ましい。絶縁体271を設けることで、導電体260の加工の際、導電体260の側面が概略垂直、具体的には、導電体260の側面と基板表面のなす角を、75度以上100度以下、好ましくは80度以上95度以下とすることができる。導電体260をこのような形状に加工することで、次に形成する絶縁体275を所望の形状に形成することができる。
なお、絶縁体271に、水または水素などの不純物、および酸素の透過を抑制する機能を有する絶縁性材料を用いることで、バリア膜としての機能を兼ねさせてもよい。その場合、絶縁体270は設けなくともよい。
バッファ層として機能する絶縁体275は、酸化物230cの側面、絶縁体250の側面、金属酸化物252の側面、導電体260の側面、および絶縁体270の側面に接して設ける。
例えば、絶縁体275として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンまたは樹脂などを有することが好ましい。特に、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、空孔を有する酸化シリコンは、後の工程で、容易に過剰酸素領域を形成することができるため好ましい。
また、絶縁体275は、過剰酸素領域を有することが好ましい。加熱により酸素が放出される絶縁体を、絶縁体275として、酸化物230c、および絶縁体250と接して設けることで、絶縁体250から、酸化物230bの領域234に効果的に酸素を供給することができる。また、絶縁体275中の水または水素などの不純物濃度が低減されていることが好ましい。
絶縁体130は、比誘電率の大きい絶縁体を用いることが好ましく、絶縁体222などに用いることができる絶縁体を用いればよい。例えば、アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体を用いることができる。アルミニウム及びハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。また、絶縁体130は、単層構造であってもよいし、積層構造であってもよい。絶縁体130は、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などから、2層以上を選び積層構造としても良い。例えば、ALD法によって、酸化ハフニウム、酸化アルミニウムおよび酸化ハフニウムを順に成膜し、積層構造とすることが好ましい。酸化ハフニウムおよび酸化アルミニウムの膜厚は、それぞれ、0.5nm以上5nm以下とする。このような積層構造とすることで、容量値が大きく、かつ、リーク電流の小さな容量素子100とすることができる。
図8(A)に示すように、上面視において、絶縁体130の側面は、導電体110および導電体120の側面と一致しているが、これに限られるものではない。例えば、絶縁体130をパターン形成せずに、絶縁体130がトランジスタ200およびトランジスタ500を覆う構成にしてもよい。
導電体120は、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、図示しないが、導電体120は積層構造としても良く、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。
また、図10(B)に示すように、導電体110、絶縁体130および導電体120は、酸化物230の側面まで覆って設けられることが好ましい。このような構成にすることで、酸化物230の側面方向でも容量素子100を形成することができるので、容量素子100の単位面積当たりの電気容量を大きくすることができる。
絶縁体273は、少なくとも層242、絶縁体275、層542、絶縁体575、および導電体120上に設けられる。絶縁体273をスパッタリング法で成膜することで、絶縁体275および絶縁体575へ過剰酸素領域を設けることができる。これにより、当該過剰酸素領域から、酸化物230および酸化物530中に酸素を供給することができる。また、絶縁体273を、酸化物230の層242、および酸化物530の層542上に設けることで、酸化物230および酸化物530中の水素を、絶縁体273へと引き抜くことができる。
例えば、絶縁体273として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、または、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。
特に、酸化アルミニウムはバリア性が高く、0.5nm以上3.0nm以下の薄膜であっても、水素、および窒素の拡散を抑制することができる。
また、絶縁体273の上に、絶縁体274を設ける。絶縁体274は、バリア性を有し、水素濃度が低減された膜を用いることが好ましい。例えば、絶縁体274としては、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコンなどを用いるとよい。バリア性を有する絶縁体273と、バリア性を有する絶縁体274を設けることで、層間膜など、他の構造体から不純物がトランジスタ200へ拡散することを抑制することができる。
また、絶縁体274の上に、層間膜として機能する絶縁体280を設けることが好ましい。絶縁体280は、絶縁体224などと同様に、膜中の水または水素などの不純物濃度が低減されていることが好ましい。なお、絶縁体280の上に絶縁体210と同様の絶縁体を設けてもよい。当該絶縁体をスパッタリング法で成膜することで、絶縁体280の不純物を低減することができる。
また、絶縁体280、絶縁体274、および絶縁体273に形成された開口に、導電体240a、導電体240b、導電体540a、および導電体540bを配置する。導電体240aおよび導電体240bは、導電体260を挟んで対向して設ける。導電体540aおよび導電体540bは、導電体560を挟んで対向して設ける。なお、導電体240a、導電体240b、導電体540a、および導電体540bの上面の高さは、絶縁体280の上面と、同一平面上としてもよい。
なお、絶縁体280、絶縁体274、および絶縁体273の開口の内壁に接して導電体240aが形成されている。当該開口の底部の少なくとも一部には酸化物230の領域231aが位置しており、導電体240aが領域231aと接する。導電体540a、導電体540bについても同様である。
ここで、図10(A)に示すように、導電体240aは、酸化物230の側面と重畳することが好ましい。特に、導電体240aは、酸化物230のチャネル幅方向と交わる側面において、A7側の側面、およびA8側の側面の双方または一方と重畳することが好ましい。また、導電体240aが、酸化物230のチャネル長方向と交わる側面において、A1側(A2側)の側面と重畳する構成にしてもよい。このように、導電体240aが、ソース領域またはドレイン領域となる領域231、および酸化物230の側面と重畳する構成とすることで、導電体240aとトランジスタ200のコンタクト部の投影面積を増やすことなく、コンタクト部の接触面積を増加させ、導電体240aとトランジスタ200の接触抵抗を低減することができる。これにより、トランジスタのソース電極およびドレイン電極の微細化を図りつつ、オン電流を大きくすることができる。また、酸化物230のソース領域またはドレイン領域となる領域231と接する導電体110も同様に酸化物230および層242と接することが好ましい。また、導電体540a、導電体540bについても同様である。
導電体240a、導電体240b、導電体540a、および導電体540bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体240a、導電体240b、導電体540a、および導電体540bは積層構造としてもよい。
ここで、例えば、絶縁体280、絶縁体274、および絶縁体273に開口を形成する際に、酸化物230において、領域231の低抵抗化した領域が除去され、低抵抗化していない酸化物230が露出する場合がある。その場合、導電体240の酸化物230と接する導電体(以下、導電体240の第1の導電体ともいう。)に用いる導電体として、金属膜、金属元素を有する窒化膜、または金属元素を有する酸化膜を用いるとよい。つまり、低抵抗化していない酸化物230と導電体240の第1の導電体とが接することで、金属化合物、または酸化物230に酸素欠損が形成され、酸化物230の領域231が、低抵抗化する。従って、導電体240の第1の導電体と接する酸化物230を低抵抗化することで、酸化物230と導電体240とのコンタクト抵抗を低減することができる。従って、導電体240の第1の導電体は、例えば、アルミニウム、ルテニウム、チタン、タンタル、タングステン、などの金属元素を含むことが好ましい。導電体540も同様の構造にすればよい。
また、導電体240および導電体540を積層構造とする場合、絶縁体280、絶縁体274、および絶縁体273と接する導電体には、導電体205の第1の導電体などと同様に、水または水素などの不純物の透過を抑制する機能を有する導電性材料を用いることが好ましい。例えば、タンタル、窒化タンタル、チタン、窒化チタン、ルテニウムまたは酸化ルテニウムなどを用いることが好ましい。また、水または水素などの不純物の透過を抑制する機能を有する導電性材料は、単層または積層で用いてもよい。当該導電性材料を用いることで、絶縁体280より上層から水素、水などの不純物が、導電体240および導電体540を通じて酸化物230および酸化物530に混入するのを抑制することができる。
なお、導電体240および導電体540を設ける開口において、当該開口の内壁を、酸素や水素に対してバリア性のある絶縁体が覆っている構成にしてもよい。ここで、酸素や水素に対してバリア性のある絶縁体としては、絶縁体214と同様の絶縁体を用いればよく、例えば、酸化アルミニウムなどを用いることが好ましい。これにより、絶縁体280などから水素、水などの不純物が、導電体240および導電体540を通じて酸化物230および酸化物530に混入するのを抑制することができる。また、当該絶縁体は、例えばALD法またはCVD法などを用いて成膜することで被覆性良く成膜することができる。
また、図示しないが、導電体240および導電体540の上面に接して配線として機能する導電体を配置してもよい。配線として機能する導電体は、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、当該導電体は、積層構造としてもよく、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。なお、当該導電体は、導電体203などと同様に、絶縁体に設けられた開口に埋め込むように形成してもよい。
<記憶装置の構成材料>
以下では、記憶装置に用いることができる構成材料について説明する。以下において、特段の記載を行わない場合、トランジスタ200に用いることができる構成材料は、トランジスタ500に用いることができるものとする。
以下に示す構成材料の成膜は、スパッタリング法、化学気相成長(CVD:Chemical Vapor Deposition)法、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法、パルスレーザ堆積(PLD:Pulsed Laser Deposition)法、または原子層堆積(ALD:Atomic Layer Deposition)法などを用いて行うことができる。
なお、CVD法は、プラズマを利用するプラズマCVD(PECVD:Plasma Enhanced CVD)法、熱を利用する熱CVD(TCVD:Thermal CVD)法、光を利用する光CVD(Photo CVD)法などに分類できる。さらに用いる原料ガスによって金属CVD(MCVD:Metal CVD)法、有機金属CVD(MOCVD:Metal Organic CVD)法に分けることができる。
プラズマCVD法は、比較的低温で高品質の膜が得られる。また、熱CVD法は、プラズマを用いないため、被処理物へのプラズマダメージを抑制することが可能な成膜方法である。例えば、記憶装置に含まれる配線、電極、素子(トランジスタ、容量素子など)などは、プラズマから電荷を受け取ることでチャージアップする場合がある。このとき、蓄積した電荷によって、記憶装置に含まれる配線、電極、素子などが破壊される場合がある。一方、プラズマを用いない熱CVD法の場合、こういったプラズマダメージが生じないため、記憶装置の歩留まりを高くすることができる。また、熱CVD法では、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。
また、ALD法も、被処理物へのプラズマダメージを抑制することが可能な成膜方法である。よって、欠陥の少ない膜が得られる。なお、ALD法で用いるプリカーサには炭素などの不純物を含むものがある。このため、ALD法により設けられた膜は、他の成膜法により設けられた膜と比較して、炭素などの不純物を多く含む場合がある。なお、不純物の定量は、X線光電子分光法(XPS:X−ray Photoelectron Spectroscopy)を用いて行うことができる。
CVD法およびALD法は、ターゲットなどから放出される粒子が堆積する成膜方法とは異なり、被処理物の表面における反応により膜が形成される成膜方法である。したがって、被処理物の形状の影響を受けにくく、良好な段差被覆性を有する成膜方法である。特に、ALD法は、優れた段差被覆性と、優れた厚さの均一性を有するため、アスペクト比の高い開口部の表面を被覆する場合などに好適である。ただし、ALD法は、比較的成膜速度が遅いため、成膜速度の速いCVD法などの他の成膜方法と組み合わせて用いることが好ましい場合もある。
CVD法およびALD法は、原料ガスの流量比によって、得られる膜の組成を制御することができる。例えば、CVD法およびALD法では、原料ガスの流量比によって、任意の組成の膜を成膜することができる。また、例えば、CVD法およびALD法では、成膜しながら原料ガスの流量比を変化させることによって、組成が連続的に変化した膜を成膜することができる。原料ガスの流量比を変化させながら成膜する場合、複数の成膜室を用いて成膜する場合と比べて、搬送や圧力調整に掛かる時間を要さない分、成膜に掛かる時間を短くすることができる。したがって、記憶装置の生産性を高めることができる場合がある。
また、当該構成材料の加工はリソグラフィー法を用いて行えばよい。また、当該加工はドライエッチング法やウエットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。
リソグラフィー法では、まず、マスクを介してレジストを露光する。次に、露光された領域を、現像液を用いて除去または残存させてレジストマスクを形成する。次に、当該レジストマスクを介してエッチング処理することで導電体、半導体または絶縁体などを所望の形状に加工することができる。例えば、KrFエキシマレーザ光、ArFエキシマレーザ光、EUV(Extreme Ultraviolet)光などを用いて、レジストを露光することでレジストマスクを形成すればよい。また、基板と投影レンズとの間に液体(例えば水)を満たして露光する、液浸技術を用いてもよい。また、前述した光に代えて、電子ビームやイオンビームを用いてもよい。なお、電子ビームやイオンビームを用いる場合には、レジスト上に直接描画を行うため、上述のレジスト露光用のマスクは不要となる。なお、レジストマスクは、アッシングなどのドライエッチング処理を行う、ウエットエッチング処理を行う、ドライエッチング処理後にウエットエッチング処理を行う、またはウエットエッチング処理後にドライエッチング処理を行う、などで、除去することができる。
また、レジストマスクの代わりに絶縁体や導電体からなるハードマスクを用いてもよい。ハードマスクを用いる場合、当該構成材料上にハードマスク材料となる絶縁膜や導電膜を形成し、その上にレジストマスクを形成し、ハードマスク材料をエッチングすることで所望の形状のハードマスクを形成することができる。当該構成材料のエッチングは、レジストマスクを除去してから行ってもよいし、レジストマスクを残したまま行ってもよい。後者の場合、エッチング中にレジストマスクが消失することがある。当該構成材料のエッチング後にハードマスクをエッチングにより除去してもよい。一方、ハードマスクの材料が後工程に影響が無い、あるいは後工程で利用できる場合、必ずしもハードマスクを除去する必要は無い。
ドライエッチング装置としては、平行平板型電極を有する容量結合型プラズマ(CCP:Capacitively Coupled Plasma)エッチング装置を用いることができる。平行平板型電極を有する容量結合型プラズマエッチング装置は、平行平板型電極の一方の電極に高周波電源を印加する構成でもよい。または平行平板型電極の一方の電極に複数の異なった高周波電源を印加する構成でもよい。または平行平板型電極それぞれに同じ周波数の高周波電源を印加する構成でもよい。または平行平板型電極それぞれに周波数の異なる高周波電源を印加する構成でもよい。または高密度プラズマ源を有するドライエッチング装置を用いることができる。高密度プラズマ源を有するドライエッチング装置は、例えば、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)エッチング装置などを用いることができる。
<<基板>>
トランジスタ200およびトランジスタ500を形成する基板としては、例えば、絶縁体基板、半導体基板または導電体基板を用いればよい。絶縁体基板としては、例えば、ガラス基板、石英基板、サファイア基板、安定化ジルコニア基板(イットリア安定化ジルコニア基板など)、樹脂基板などがある。また、半導体基板としては、例えば、シリコン、ゲルマニウムなどの単体半導体基板、または炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、酸化ガリウムからなる化合物半導体基板などがある。さらには、前述の半導体基板内部に絶縁体領域を有する半導体基板、例えばSOI(Silicon On Insulator)基板などがある。導電体基板としては、黒鉛基板、金属基板、合金基板、導電性樹脂基板などがある。または、金属の窒化物を有する基板、金属の酸化物を有する基板などがある。さらには、絶縁体基板に導電体または半導体が設けられた基板、半導体基板に導電体または絶縁体が設けられた基板、導電体基板に半導体または絶縁体が設けられた基板などがある。または、これらの基板に素子が設けられたものを用いてもよい。基板に設けられる素子としては、容量素子、抵抗素子、スイッチ素子、発光素子、記憶素子などがある。
また、基板として、可撓性基板を用いてもよい。なお、可撓性基板上にトランジスタを設ける方法としては、非可撓性の基板上にトランジスタを作製した後、トランジスタを剥離し、可撓性基板である基板に転置する方法もある。その場合には、非可撓性基板とトランジスタとの間に剥離層を設けるとよい。また、基板が伸縮性を有してもよい。また、基板は、折り曲げや引っ張りをやめた際に、元の形状に戻る性質を有してもよい。または、元の形状に戻らない性質を有してもよい。基板は、例えば、5μm以上700μm以下、好ましくは10μm以上500μm以下、さらに好ましくは15μm以上300μm以下の厚さとなる領域を有する。基板を薄くすると、トランジスタを有する記憶装置を軽量化することができる。また、基板を薄くすることで、ガラスなどを用いた場合にも伸縮性を有する場合や、折り曲げや引っ張りをやめた際に、元の形状に戻る性質を有する場合がある。そのため、落下などによって基板上の記憶装置に加わる衝撃などを緩和することができる。すなわち、丈夫な記憶装置を提供することができる。
可撓性基板である基板としては、例えば、金属、合金、樹脂もしくはガラス、またはそれらの繊維などを用いることができる。また、基板として、繊維を編みこんだシート、フィルムまたは箔などを用いてもよい。可撓性基板である基板は、線膨張率が低いほど環境による変形が抑制されて好ましい。可撓性基板である基板としては、例えば、線膨張率が1×10−3/K以下、5×10−5/K以下、または1×10−5/K以下である材質を用いればよい。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネート、アクリルなどがある。特に、アラミドは、線膨張率が低いため、可撓性基板である基板として好適である。
<<絶縁体>>
絶縁体としては、絶縁性を有する酸化物、窒化物、酸化窒化物、窒化酸化物、金属酸化物、金属酸化窒化物、金属窒化酸化物などがある。
例えば、トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体に、high−k材料を用いることで物理膜厚を保ちながら、トランジスタ動作時の低電圧化が可能となる。一方、層間膜として機能する絶縁体には、比誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。したがって、絶縁体の機能に応じて、材料を選択するとよい。
また、比誘電率の高い絶縁体としては、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物またはシリコンおよびハフニウムを有する窒化物などがある。
また、比誘電率が低い絶縁体としては、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンまたは樹脂などがある。
また、特に、酸化シリコンおよび酸化窒化シリコンは、熱的に安定である。そのため、例えば、樹脂と組み合わせることで、熱的に安定かつ比誘電率の低い積層構造とすることができる。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネートまたはアクリルなどがある。また、例えば、酸化シリコン、および酸化窒化シリコンは、比誘電率の高い絶縁体と組み合わせることで、熱的に安定かつ比誘電率の高い積層構造とすることができる。
また、酸化物半導体を用いたトランジスタは、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体で囲うことによって、トランジスタの電気特性を安定にすることができる。
水素などの不純物および酸素の透過を抑制する機能を有する絶縁体としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、または積層で用いればよい。具体的には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体として、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウムまたは酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いることができる。
例えば、絶縁体273として、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、または、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。
特に、酸化アルミニウムはバリア性が高く、0.5nm以上3.0nm以下の薄膜であっても、水素、および窒素の拡散を抑制することができる。また、酸化ハフニウムは、酸化アルミニウムよりもバリア性が低いが、膜厚を厚くすることによりバリア性を高めることができる。したがって、酸化ハフニウムの膜厚を調整することで、水素、および窒素の適切な添加量を調整することができる。
例えば、ゲート絶縁体の一部として機能する絶縁体224および絶縁体250は、過剰酸素領域を有する絶縁体であることが好ましい。例えば、過剰酸素領域を有する酸化シリコンまたは酸化窒化シリコンを酸化物230と接する構造とすることで、酸化物230が有する酸素欠損を補償することができる。
また、例えば、ゲート絶縁体の一部として機能する絶縁体222において、アルミニウム、ハフニウム、およびガリウムの一種または複数種の酸化物を含む絶縁体を用いることができる。特に、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。
例えば、絶縁体220には、熱に対して安定である酸化シリコンまたは酸化窒化シリコンを用いることが好ましい。ゲート絶縁体として、熱に対して安定な膜と、比誘電率が高い積層構造とすることで、物理膜厚を保持したまま、ゲート絶縁体の等価酸化膜厚(EOT)の薄膜化が可能となる。
上記積層構造とすることで、ゲート電極からの電界の影響を弱めることなく、オン電流の向上を図ることができる。また、ゲート絶縁体の物理的な厚みにより、ゲート電極と、チャネルが形成される領域との間の距離を保つことで、ゲート電極とチャネル形成領域との間のリーク電流を抑制することができる。
絶縁体212、絶縁体216、絶縁体271、絶縁体275、および絶縁体280は、比誘電率の低い絶縁体を有することが好ましい。例えば、当該絶縁体は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンまたは樹脂などを有することが好ましい。または、当該絶縁体は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコンまたは空孔を有する酸化シリコンと、樹脂と、の積層構造を有することが好ましい。酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、樹脂と組み合わせることで、熱的に安定かつ比誘電率の低い積層構造とすることができる。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネートまたはアクリルなどがある。
絶縁体210、絶縁体214、絶縁体270、および絶縁体273としては、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体を用いればよい。絶縁体270および絶縁体273としては、例えば、酸化アルミニウム、酸化ハフニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジムまたは酸化タンタルなどの金属酸化物、窒化酸化シリコンまたは窒化シリコンなどを用いればよい。
<<導電体>>
導電体としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウムなどから選ばれた金属元素を1種以上含む材料を用いることができる。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
また、上記の材料で形成される導電層を複数積層して用いてもよい。例えば、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、酸素を含む導電性材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。
なお、トランジスタのチャネル形成領域に酸化物を用いる場合において、ゲート電極として機能する導電体には、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造を用いることが好ましい。この場合は、酸素を含む導電性材料をチャネル形成領域側に設けるとよい。酸素を含む導電性材料をチャネル形成領域側に設けることで、当該導電性材料から離脱した酸素がチャネル形成領域に供給されやすくなる。
特に、ゲート電極として機能する導電体として、チャネルが形成される金属酸化物に含まれる金属元素および酸素を含む導電性材料を用いることが好ましい。また、前述した金属元素および窒素を含む導電性材料を用いてもよい。例えば、窒化チタン、窒化タンタルなどの窒素を含む導電性材料を用いてもよい。また、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、シリコンを添加したインジウム錫酸化物を用いてもよい。また、窒素を含むインジウムガリウム亜鉛酸化物を用いてもよい。このような材料を用いることで、チャネルが形成される金属酸化物に含まれる水素を捕獲することができる場合がある。または、外方の絶縁体などから混入する水素を捕獲することができる場合がある。
導電体260、導電体203、導電体205、および導電体240としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウムなどから選ばれた金属元素を1種以上含む材料を用いることができる。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。
<<金属酸化物>>
酸化物230として、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう。)を用いることが好ましい。以下では、本発明に係る酸化物230に適用可能な金属酸化物について説明する。
金属酸化物は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウムまたはスズなどが含まれていることが好ましい。また、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。
ここでは、金属酸化物が、インジウム、元素Mおよび亜鉛を有するIn‐M‐Zn酸化物である場合を考える。なお、元素Mは、アルミニウム、ガリウム、イットリウムまたはスズなどとする。そのほかの元素Mに適用可能な元素としては、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウムなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。
なお、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。
[金属酸化物の構成]
以下では、本発明の一態様で開示されるトランジスタに用いることができるCAC(Cloud−Aligned Composite)−OSの構成について説明する。
なお、本明細書等において、CAAC(c−axis aligned crystal)、およびCAC(Cloud−Aligned Composite)と記載する場合がある。なお、CAACは結晶構造の一例を表し、CACは機能、または材料の構成の一例を表す。
CAC−OSまたはCAC−metal oxideとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。なお、CAC−OSまたはCAC−metal oxideを、トランジスタの活性層に用いる場合、導電性の機能は、キャリアとなる電子(または正孔)を流す機能であり、絶縁性の機能は、キャリアとなる電子を流さない機能である。導電性の機能と、絶縁性の機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(On/Offさせる機能)をCAC−OSまたはCAC−metal oxideに付与することができる。CAC−OSまたはCAC−metal oxideにおいて、それぞれの機能を分離させることで、双方の機能を最大限に高めることができる。
また、CAC−OSまたはCAC−metal oxideは、導電性領域、および絶縁性領域を有する。導電性領域は、上述の導電性の機能を有し、絶縁性領域は、上述の絶縁性の機能を有する。また、材料中において、導電性領域と、絶縁性領域とは、ナノ粒子レベルで分離している場合がある。また、導電性領域と、絶縁性領域とは、それぞれ材料中に偏在する場合がある。また、導電性領域は、周辺がぼけてクラウド状に連結して観察される場合がある。
また、CAC−OSまたはCAC−metal oxideにおいて、導電性領域と、絶縁性領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm以下のサイズで材料中に分散している場合がある。
また、CAC−OSまたはCAC−metal oxideは、異なるバンドギャップを有する成分により構成される。例えば、CAC−OSまたはCAC−metal oxideは、絶縁性領域に起因するワイドギャップを有する成分と、導電性領域に起因するナローギャップを有する成分と、により構成される。当該構成の場合、キャリアを流す際に、ナローギャップを有する成分において、主にキャリアが流れる。また、ナローギャップを有する成分が、ワイドギャップを有する成分に相補的に作用し、ナローギャップを有する成分に連動してワイドギャップを有する成分にもキャリアが流れる。このため、上記CAC−OSまたはCAC−metal oxideをトランジスタのチャネル形成領域に用いる場合、トランジスタのオン状態において高い電流駆動力、つまり大きなオン電流、および高い電界効果移動度を得ることができる。
すなわち、CAC−OSまたはCAC−metal oxideは、マトリックス複合材(matrix composite)、または金属マトリックス複合材(metal matrix composite)と呼称することもできる。
[金属酸化物の構造]
酸化物半導体(金属酸化物)は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、CAAC−OS(c−axis aligned crystalline oxide semiconductor)、多結晶酸化物半導体、nc−OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)および非晶質酸化物半導体などがある。
CAAC−OSは、c軸配向性を有し、かつa−b面方向において複数のナノ結晶が連結し、歪みを有した結晶構造となっている。なお、歪みとは、複数のナノ結晶が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。
ナノ結晶は、六角形を基本とするが、正六角形状とは限らず、非正六角形状である場合がある。また、歪みにおいて、五角形、および七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリーともいう。)を確認することは難しい。すなわち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためである。
また、CAAC−OSは、インジウム、および酸素を有する層(以下、In層)と、元素M、亜鉛、および酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能であり、(M,Zn)層の元素Mがインジウムと置換した場合、(In,M,Zn)層と表すこともできる。また、In層のインジウムが元素Mと置換した場合、(In,M)層と表すこともできる。
CAAC−OSは結晶性の高い金属酸化物である。一方、CAAC−OSは、明確な結晶粒界を確認することが難しいため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、金属酸化物の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損など)の少ない金属酸化物ともいえる。したがって、CAAC−OSを有する金属酸化物は、物理的性質が安定する。そのため、CAAC−OSを有する金属酸化物は熱に強く、信頼性が高い。
nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。
a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する金属酸化物である。a−like OSは、鬆または低密度領域を有する。すなわち、a−like OSは、nc−OSおよびCAAC−OSと比べて、結晶性が低い。
酸化物半導体(金属酸化物)は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
[金属酸化物を有するトランジスタ]
続いて、上記金属酸化物をトランジスタのチャネル形成領域に用いる場合について説明する。
なお、上記金属酸化物をトランジスタのチャネル形成領域に用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
また、トランジスタには、キャリア密度の低い金属酸化物を用いることが好ましい。金属酸化物膜のキャリア密度を低くする場合においては、金属酸化物膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性という。例えば、金属酸化物は、キャリア密度が8×1011/cm未満、好ましくは1×1011/cm未満、さらに好ましくは1×1010/cm未満であり、1×10−9/cm以上とすればよい。
また、高純度真性または実質的に高純度真性である金属酸化物膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
また、金属酸化物のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い金属酸化物をチャネル形成領域に有するトランジスタは、電気特性が不安定となる場合がある。
したがって、トランジスタの電気特性を安定にするためには、金属酸化物中の不純物濃度を低減することが有効である。また、金属酸化物中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
[不純物]
ここで、金属酸化物中における各不純物の影響について説明する。
金属酸化物において、第14族元素の一つであるシリコンや炭素が含まれると、金属酸化物において欠陥準位が形成される。このため、金属酸化物におけるシリコンや炭素の濃度と、金属酸化物との界面近傍のシリコンや炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
また、金属酸化物にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。したがって、アルカリ金属またはアルカリ土類金属が含まれている金属酸化物をチャネル形成領域に用いたトランジスタはノーマリーオン特性となりやすい。このため、金属酸化物中のアルカリ金属またはアルカリ土類金属の濃度を低減することが好ましい。具体的には、SIMSにより得られる金属酸化物中のアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
また、金属酸化物において、窒素が含まれると、キャリアである電子が生じ、キャリア密度が増加し、n型化しやすい。この結果、窒素が含まれている金属酸化物をチャネル形成領域に用いたトランジスタはノーマリーオン特性となりやすい。したがって、当該金属酸化物において、チャネル形成領域の窒素はできる限り低減されていることが好ましい。例えば、金属酸化物中の窒素濃度は、SIMSにおいて、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下とする。
また、金属酸化物に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。当該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。したがって、水素が含まれている金属酸化物をチャネル形成領域に用いたトランジスタはノーマリーオン特性となりやすい。このため、金属酸化物中の水素はできる限り低減されていることが好ましい。具体的には、金属酸化物において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満とする。
不純物が十分に低減された金属酸化物をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
<記憶装置の変形例>
以下では、図12乃至図18を用いて、本発明の一態様に係る記憶装置の一例について説明する。
図12、図13、および図14に示す記憶装置は、トランジスタ200において、絶縁体275ではなく絶縁体272が設けられている点において、図8乃至図11に示す記憶装置と異なる。なお、その他の構成の記載については、図8乃至図11に示す記憶装置に係る記載を参酌することができる。また、トランジスタ500も同様に絶縁体575ではなく、絶縁体572が設けられている。以下、絶縁体572は、絶縁体272の記載を参酌することができる。
図12(A)は、メモリセル600を有する記憶装置の上面図である。また、図12(B)、図13(A)、図13(B)は当該記憶装置の断面図である。ここで、図12(B)は、図8(A)にA1−A2の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル長方向、およびトランジスタ500のチャネル幅方向の断面図でもある。また、図13(A)は、図12(A)にA3−A4の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。また、図13(B)は、図12(A)にA5−A6の一点鎖線で示す部位の断面図であり、トランジスタ500のチャネル長方向の断面図でもある。なお、図12(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。また、図12(A)のA7−A8の一点鎖線で示す部位の断面は、図10(A)に示す構造と同じである。また、図12(A)のA9−A10の一点鎖線で示す部位の断面は、図10(B)に示す構造と同じである。また図12(B)において破線で囲む、選択的に低抵抗化した酸化物230bを含む領域239の拡大図を図14に示す。
絶縁体272は、酸化物230cの側面、絶縁体250の側面、金属酸化物252の側面、導電体260の側面、および絶縁体270の側面に接して設ける。ここで、絶縁体272は、バッファ層としての機能を有する。なお、絶縁体272は、水または水素などの不純物、および酸素の透過を抑制する機能を有する絶縁性材料を用いてもよい。その場合、絶縁体272はバリア層としての機能も有する。
例えば、絶縁体272として、ALD法を用いて成膜することが好ましい。ALD法を用いることで、緻密な薄膜を成膜することができる。絶縁体272は、例えば、酸化アルミニウム、または酸化ハフニウムなどを用いることが好ましい。絶縁体272として、ALD法を用いて酸化アルミニウムを設ける場合、絶縁体272の膜厚は、0.5nm以上3.0nm以下とすることが好ましい。
絶縁体272を設けることで、水または水素などの不純物、および酸素の透過を抑制する機能を有する絶縁体で、絶縁体250、金属酸化物252、および導電体260の側面を覆うことができる。従って、絶縁体250、および金属酸化物252の端部などから酸化物230に水素、水などの不純物が混入するのを抑制することができる。そのため、酸化物230と、絶縁体250との界面における酸素欠損の形成が抑制され、トランジスタ200の信頼性を向上させることができる。つまり、絶縁体272は、ゲート電極およびゲート絶縁体の側面を保護するサイドバリアとしての機能を有する。
図15、および図16に示す記憶装置は、トランジスタ200およびトランジスタ500の上に絶縁体135が設けられ、導電体120aによって、トランジスタ200とトランジスタ500が接続されている点において、図8乃至図11に示す記憶装置と異なる。なお、その他の構成の記載については、図8乃至図11に示す記憶装置に係る記載を参酌することができる。
図15(A)は、メモリセル600を有する記憶装置の上面図である。また、図15(B)、図16は当該記憶装置の断面図である。ここで、図15(B)は、図15(A)にA1−A2の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル長方向、およびトランジスタ500のチャネル幅方向の断面図でもある。また、図16は、図15(A)にA9−A10の一点鎖線で示す部位の断面図である。なお、図15(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。また、図15(A)の、A3−A4、A5−A6、およびA7−A8の一点鎖線で示す部位の断面は、図9、図10(A)に示す構造とほぼ同じなので省略する。
酸化物230の低抵抗化のために酸化物230に接して成膜された、金属元素を有する膜は、酸化物230から吸収した酸素により、酸化し、絶縁体となり、高抵抗化する場合がある。上記金属元素を有する膜を、絶縁体として残存させることで、層間膜として機能させることができる。当該絶縁体を絶縁体135とする。すなわち、絶縁体135は上記金属元素を有する膜と同じ金属元素を有する。
絶縁体135を形成する場合、上記金属元素を有する膜は、後工程で、絶縁化させることができる程度の膜厚で設ける。例えば、上記金属元素を有する膜は、0.5nm以上5nm以下、好ましくは1nm以上2nm以下の膜厚で設けるとよい。
また、絶縁体135を形成する場合、窒素を含む雰囲気下において一度熱処理を行ったあとに、酸化性雰囲気下で熱処理を行うと好適である。窒素を含む雰囲気下において、一度熱処理を行うことで、酸化物230中の酸素が上記金属元素を有する膜に拡散しやすくなる。
絶縁体135を形成する場合、図15および図16に示すように、トランジスタ200において、絶縁体135は、少なくとも、絶縁体250、金属酸化物252、導電体260、絶縁体270、絶縁体271、および絶縁体275を介して、酸化物230上に設けられる。絶縁体135と酸化物230の間に層242が形成される場合がある。これは、トランジスタ500についても同様である。
図15および図16に示すメモリセル600では、図8乃至図11に示すメモリセル600とは異なり、トランジスタ200およびトランジスタ500のコンタクト部と、容量素子100が重ならない。
トランジスタ200およびトランジスタ500のコンタクト部は、酸化物230の領域231b上の絶縁体135および絶縁体130aに形成された開口と、導電体560上の絶縁体135、絶縁体130a、絶縁体570、および絶縁体571に形成された開口を介して、導電体120aがトランジスタ200のソースおよびドレインの一方と、トランジスタ500のゲートを電気的に接続する。ここで、導電体120aは導電体120と、絶縁体130aは絶縁体130と同様の構造を有する。
容量素子100は、層242(酸化物230の領域231b)、層242上に絶縁体135、絶縁体135上に絶縁体130b、絶縁体130b上に導電体120bを有する。さらに、絶縁体130bの上に、少なくとも一部が酸化物230の領域231bと重なるように、導電体120bが配置されることが好ましい。また、導電体120bの上に接して導電体240cが配置されることが好ましい。ここで、導電体120bは導電体120と、絶縁体130bは絶縁体130と、導電体240cは導電体240bと同様の構造を有する。
酸化物230の領域231bは、容量素子100の電極の一方として機能し、導電体120bは容量素子100の電極の他方として機能する。絶縁体130bおよび絶縁体135は容量素子100の誘電体として機能する。酸化物230の領域231bは低抵抗化されており、導電性酸化物である。従って、容量素子100の電極の一方として機能することができる。
また、上記実施の形態において、図5に示すように2つのメモリセルを隣接して配置する場合、図17に示すように、2つのメモリセル600(メモリセル600a、メモリセル600b)を配置してもよい。メモリセル600aは、トランジスタ200a、トランジスタ500a、および容量素子100aを有する。また、メモリセル600bは、トランジスタ200b、トランジスタ500b、および容量素子100bを有する。
ここで、図17に示すメモリセル600aおよびメモリセル600bに含まれる、導電体260_aおよび導電体260_bは導電体260に対応し、絶縁体275_aおよび絶縁体275_bは絶縁体275に対応し、導電体203_aおよび導電体203_bは導電体203に対応し、導電体110_aおよび導電体110_bは導電体110に対応し、導電体120_aおよび導電体120_bは導電体120に対応し、導電体540a_aおよび導電体540a_bは導電体540aに対応し、導電体540b_aおよび導電体540b_bは導電体540bに対応する。
トランジスタ200aのソースおよびドレインの一方と、トランジスタ200bのソースおよびドレインの一方は、いずれも導電体240と電気的に接続している。また、導電体240の上に設けられた導電体112は、導電体240と接続している。このように、ソースおよびドレインの一方と電気的に接続する配線を共通化することで、メモリセルアレイの占有面積をさらに縮小することができる。なお、導電体540a_a、導電体540a_b、導電体540b_a、および導電体540b_bのいずれか一または複数の上に、導電体112と平行に延伸される導電体を設けてもよい。
導電体112は、絶縁体280上の絶縁体に形成された開口に設けられることが好ましい。導電体112には、モリブデン、チタン、タンタル、タングステン、アルミニウム、銅、クロム、ネオジム、スカンジウムから選ばれた元素を含む金属膜、または上述した元素を成分とする金属窒化物膜(窒化タンタル、窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)等を用いることができる。又は、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの導電性材料を適用することもできる。
図7に示すように、導電体112は2層以上の積層構造にすればよい。例えば、バリア性を有する導電体と導電性が高い導電体との間に、バリア性を有する導電体、および導電性が高い導電体に対して密着性が高い導電体を形成してもよい。なお、導電体112は、これに限定されず、例えば単層構造にしてもよい。
また、図17に示すように、トランジスタ200aのゲートの側面に絶縁体275_aを、トランジスタ200bのゲートの側面に絶縁体275_bを、設けておくことにより、共通する導電体240をトランジスタ200aおよびトランジスタ200bのゲートと短絡させずに、自己整合的に形成することができる。ここで、導電体240は、絶縁体275_aおよび絶縁体275_bの側面のいずれか一方または両方と接する領域を有することが好ましい。
導電体240を埋め込む開口を形成するには、絶縁体280、絶縁体274、絶縁体273の開口時に、絶縁体275のエッチング速度が、絶縁体273のエッチング速度に比べて著しく小さい開口条件とすることが好ましい。絶縁体275のエッチング速度を1とすると、絶縁体273のエッチング速度は5以上が好ましく、より好ましくは10以上である。ここで、絶縁体275として用いる絶縁性材料は、上記のエッチング速度を満たすように、エッチング条件および絶縁体273として用いる絶縁性材料に合わせて適宜選択することが好ましい。例えば、絶縁体275として用いる絶縁性材料として、上記の絶縁性材料だけでなく、絶縁体270に用いることができる絶縁性材料を用いてもよい。
このように導電体240を埋め込む開口を形成することで、当該開口の形成時に絶縁体275_aおよび絶縁体275_bがエッチングストッパーとして機能するので、当該開口が導電体260_a及び導電体260_bに達することを防ぐことができる。よって、導電体240、およびそれを埋め込む開口を、自己整合的に形成することができる。例えば、導電体240を形成する開口がA1側またはA2側にずれて形成されても、導電体240と導電体260_aまたは導電体260_bは接触しない。また、導電体240を形成する開口のトランジスタ200のチャネル長方向の幅を、絶縁体275_aと絶縁体275_bの距離より大きくすることで、当該開口の位置がずれて形成されても導電体240は層242と十分なコンタクトを取ることができる。
よって、トランジスタ200aおよびトランジスタ200bのコンタクト部と、トランジスタ200aのゲートと、トランジスタ200bのゲートと、の位置合わせのマージンを広くすることができ、これらの構成の間隔を小さく設計することができる。以上のようにして、上記半導体装置の微細化および高集積化を図ることができる。
また、図17に示すように、トランジスタ200aおよびトランジスタ200bの導電体240bに対応する導電体は必ずしも設けなくてもよい。例えば、図17に示すように、導電体120_aおよび導電体120_bを延伸させて配線としても機能させる場合は、トランジスタ200aおよびトランジスタ200bの導電体240bを設けなくてもよい。また、導電体120_aおよび導電体120_bと同様に、導電体260_a、導電体260_b、導電体203_a、および導電体203_bも配線として機能させてよく、その場合、トランジスタ200aまたはトランジスタ200bのチャネル幅方に延伸して設けてもよい。なお、図17では、配線として機能する導電体120_a、導電体120_b、導電体203_a、および導電体203_bを導電体260_aおよび導電体260_bと同じ方向に延伸させているが、本実施の形態に示す半導体装置はこれに限られるものではなく、メモリセルアレイの回路配置や駆動方法に合わせて適宜配置すればよい。
図17に示すメモリセル600aおよびメモリセル600bは、配線WLとして機能する導電体260_aおよび導電体260_bと、配線WBLとして機能する導電体112とが直交するように設ける構成とすることができる。
また、上記実施の形態において、図6に示すように、メモリセル600を平面に配置するのみでなく、積層して配置する場合、図18に示すように、メモリセル600aおよびメモリセル600bを含む層610を積層して配置してもよい。図18では、層610を第1層から第n+1層まで積層している。図18に示すように、複数のセルアレイを積層することにより、セルアレイの専有面積を増やすことなく、セルを集積して配置することができる。つまり、3Dセルアレイを構成することができる。
本発明の一態様により、良好な電気特性を有する記憶装置を提供することができる。または、本発明の一態様により、オフ電流の小さい記憶装置を提供することができる。または、本発明の一態様により、オン電流の大きい記憶装置を提供することができる。または、本発明の一態様により、信頼性の高い記憶装置を提供することができる。または、本発明の一態様により、微細化または高集積化が可能な記憶装置を提供することができる。または、本発明の一態様により、消費電力が低減された記憶装置を提供することができる。または、本発明の一態様により、生産性の高い記憶装置を提供することができる。
以上、本実施の形態に示す構成、構造、方法などは、他の実施の形態に示す構成、構造、方法などと適宜組み合わせて用いることができる。
(実施の形態3)
本実施の形態は、上記実施の形態に示す記憶装置が組み込まれた電子部品および電子機器の一例を示す。
<電子部品>
まず、記憶装置10が組み込まれた電子部品の例を、図19(A)、(B)を用いて説明を行う。
図19(A)に示す電子部品7000はICチップであり、リード及び回路部を有する。電子部品7000は、例えばプリント基板7002に実装される。このようなICチップが複数組み合わされて、それぞれがプリント基板7002上で電気的に接続されることで電子部品が実装された基板(実装基板7004)が完成する。
電子部品7000の回路部は、基板7031、層7032、層7033の積層でなる。
基板7031として、実施の形態2に示す基板201に用いることが可能な材料を適用すればよい。また、基板7031としてシリコンなどの半導体基板を用いた場合、基板7031に集積回路を形成し、その上にOSトランジスタを有する層7032を形成してもよい。
層7032は、上記実施の形態に示すOSトランジスタを有する。例えば、CPUなどの制御回路を層7032に設けることができる。
層7033はメモリを有する。当該メモリとして、例えば、NOSRAM、DOSRAM(登録商標)などのOSトランジスタを用いたメモリ(以下、OSメモリと呼ぶ)を用いることができる。また、NOSRAMとして上記実施の形態に示す記憶装置10を用いることができる。
OSメモリは、他の半導体素子に積層させて設けることができるため、電子部品7000を小型化することができる。また、OSメモリはデータを書き換える際の消費電力が小さく、電子部品7000の消費電力を低減させることができる。
なお、DOSRAMとは、「Dynamic Oxide Semiconductor RAM」の略称であり、1T(トランジスタ)1C(容量)型のメモリセルを有するRAMを指す。NOSRAMと同様に、DOSRAMはOSトランジスタのオフ電流が低いことを利用したOSメモリの一種である。
上記OSメモリは、層7033ではなく、層7032に設けてもよい。そうすることで、ICチップの製造工程を短縮することができる。
層7033はOSメモリ以外に、ReRAM(Resistive Random Access Memory)、MRAM(Magnetoresistive Random Access Memory)、PRAM(Phase change RAM)、FeRAM(Ferroelectric RAM)などのメモリを設けてもよい。
図19(A)では、電子部品7000のパッケージにQFP(Quad Flat Package)を適用しているが、パケージの態様はこれに限定されない。
図19(B)は、電子部品7400の模式図である。電子部品7400はカメラモジュールであり、イメージセンサチップ7451を内蔵している。電子部品7400は、イメージセンサチップ7451を固定するパッケージ基板7411、レンズカバー7421、およびレンズ7435等を有する。また、パッケージ基板7411およびイメージセンサチップ7451の間には撮像装置の駆動回路および信号変換回路などの機能を有するICチップ7490も設けられており、SiP(System in package)としての構成を有している。ランド7441は電極パッド7461と電気的に接続され、電極パッド7461はイメージセンサチップ7451またはICチップ7490とワイヤ7471によって電気的に接続されている。図19(B)は、電子部品7400の内部を示すために、レンズカバー7421およびレンズ7435の一部を省略して図示している。
イメージセンサチップ7451の回路部は、基板7031、層7032、層7033、層7034の積層でなる。
基板7031、層7032および層7033の詳細は、上述の電子部品7000の記載を参照すればよい。
層7034は受光素子を有する。当該受光素子として、例えば、セレン系材料を光電変換層としたpn接合型フォトダイオードなどを用いることができる。セレン系材料を用いた光電変換素子は、可視光に対する外部量子効率が高く、高感度の光センサを実現することができる。
セレン系材料はp型半導体として用いることができる。セレン系材料としては、単結晶セレンや多結晶セレンなどの結晶性セレン、非晶質セレン、銅、インジウム、セレンの化合物(CIS)、または、銅、インジウム、ガリウム、セレンの化合物(CIGS)などを用いることができる。
上記pn接合型フォトダイオードのn型半導体は、バンドギャップが広く、可視光に対して透光性を有する材料で形成することが好ましい。例えば、亜鉛酸化物、ガリウム酸化物、インジウム酸化物、錫酸化物、またはそれらが混在した酸化物などを用いることができる。
また、層7034が有する受光素子として、p型シリコン半導体とn型シリコン半導体の用いたpn接合型フォトダイオードを用いてもよい。また、p型シリコン半導体とn型シリコン半導体の間にi型シリコン半導体層を設けたpin接合型フォトダイオードであってもよい。
上記シリコンを用いたフォトダイオードは単結晶シリコンを用いて形成することができる。このとき、層7033と層7034とは、貼り合わせ工程を用いて電気的な接合を得ることが好ましい。また、上記シリコンを用いたフォトダイオードは、非晶質シリコン、微結晶シリコン、多結晶シリコンなどの薄膜を用いて形成することもできる。
<電子機器>
次に、上記電子部品を備えた電子機器の例について図20乃至図22を用いて説明を行う。
図20(A)に示すロボット2100は、演算装置2110、照度センサ2101、マイクロフォン2102、上部カメラ2103、スピーカ2104、ディスプレイ2105、下部カメラ2106および障害物センサ2107、移動機構2108を備える。
ロボット2100において、演算装置2110、照度センサ2101、上部カメラ2103、ディスプレイ2105、下部カメラ2106および障害物センサ2107等に、上記電子部品を使用することができる。
マイクロフォン2102は、使用者の話し声及び環境音等を検知する機能を有する。また、スピーカ2104は、音声を発する機能を有する。ロボット2100は、マイクロフォン2102およびスピーカ2104を用いて、使用者とコミュニケーションをとることが可能である。
ディスプレイ2105は、種々の情報の表示を行う機能を有する。ロボット2100は、使用者の望みの情報をディスプレイ2105に表示することが可能である。ディスプレイ2105は、タッチパネルを搭載していてもよい。
上部カメラ2103および下部カメラ2106は、ロボット2100の周囲を撮像する機能を有する。また、障害物センサ2107は、移動機構2108を用いてロボット2100が前進する際の進行方向における障害物の有無を察知することができる。ロボット2100は、上部カメラ2103、下部カメラ2106および障害物センサ2107を用いて、周囲の環境を認識し、安全に移動することが可能である。
図20(B)に示す飛行体2120は、演算装置2121と、プロペラ2123と、カメラ2122と、を有し、自立して飛行する機能を有する。
飛行体2120において、演算装置2121およびカメラ2122に上記電子部品を用いることができる。
図20(C)は、自動車の一例を示す外観図である。自動車2980は、カメラ2981等を有する。また、自動車2980は、赤外線レーダー、ミリ波レーダー、レーザーレーダーなど各種センサなどを備える。自動車2980は、カメラ2981が撮影した画像を解析し、歩行者の有無など、周囲の交通状況を判断し、自動運転を行うことができる。
自動車2980において、カメラ2981に上記電子部品を用いることができる。
図20(D)に、互いに別々の言語で話す複数の人間のコミュニケーションにおいて、携帯電子機器2130に同時通訳を行わせる状況を示す。
携帯電子機器2130は、マイクロフォンおよびスピーカ等を有し、使用者の話し声を認識してそれを話し相手の話す言語に翻訳する機能を有する。携帯電子機器2130の演算装置に、上記電子部品を使用することができる。
また、図20(D)において、使用者は携帯型マイクロフォン2131を有する。携帯型マイクロフォン2131は、無線通信機能を有し、検知した音声を携帯電子機器2130に送信する機能を有する。
図21(A)は、ペースメーカの一例を示す断面模式図である。
ペースメーカ本体5300は、バッテリー5301a、5301bと、レギュレータと、制御回路と、アンテナ5304と、右心房へのワイヤ5302、右心室へのワイヤ5303とを少なくとも有している。
ペースメーカ本体5300に上記電子部品を用いることができる。
ペースメーカ本体5300は手術により体内に設置され、二本のワイヤは、人体の鎖骨下静脈5305及び上大静脈5306を通過させて一方のワイヤ先端が右心室、もう一方のワイヤ先端が右心房に設置されるようにする。
また、アンテナ5304で電力が受信でき、その電力は複数のバッテリー5301a、5301bに充電され、ペースメーカの交換頻度を少なくすることができる。ペースメーカ本体5300は複数のバッテリーを有しているため、安全性が高く、一方が故障したとしてももう一方が機能させることができるため、補助電源としても機能する。
また、電力を受信できるアンテナ5304とは別に、生理信号を送信できるアンテナを有していてもよく、例えば、脈拍、呼吸数、心拍数、体温などの生理信号を外部のモニタ装置で確認できるような心臓活動を監視するシステムを構成してもよい。
図21(B)に示すセンサ5900は、接着パッド等を用いて人体に取り付けられる。センサ5900は、配線5932を介して人体に取り付けられた電極5931等に信号を与えて心拍数や心電図などの生体情報を取得する。取得された情報は無線信号として、読み取り器等の端末に送信される。
センサ5900に、上記電子部品を用いることができる。
図22は、掃除ロボットの一例を示す模式図である。
掃除ロボット5100は、上面に配置されたディスプレイ5101、側面に配置された複数のカメラ5102、ブラシ5103、操作ボタン5104を有する。また図示されていないが、掃除ロボット5100の下面には、タイヤ、吸い込み口等が備えられている。掃除ロボット5100は、その他に赤外線センサ、超音波センサ、加速度センサ、ピエゾセンサ、光センサ、ジャイロセンサなどの各種センサを備えている。また、掃除ロボット5100は、無線による通信手段を備えている。
カメラ5102に、上記電子部品を用いることができる。
掃除ロボット5100は自走し、ゴミ5120を検知し、下面に設けられた吸い込み口からゴミを吸引することができる。
また、掃除ロボット5100はカメラ5102が撮影した画像を解析し、壁、家具または段差などの障害物の有無を判断することができる。また、画像解析により、配線などブラシ5103に絡まりそうな物体を検知した場合は、ブラシ5103の回転を止めることができる。
ディスプレイ5101には、バッテリーの残量や、吸引したゴミの量などを表示することができる。また、掃除ロボット5100が走行した経路をディスプレイ5101に表示させてもよい。また、ディスプレイ5101をタッチパネルとし、操作ボタン5104をディスプレイ5101に設けてもよい。
掃除ロボット5100は、スマートフォンなどの携帯電子機器5140と通信することができる。カメラ5102が撮影した画像は、携帯電子機器5140に表示させることができる。そのため、掃除ロボット5100の持ち主は、外出先からでも、部屋の様子を知ることができる。
以上、本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができる。
なお、本明細書において、特に断りがない場合、オン電流とは、トランジスタがオン状態にあるときのドレイン電流をいう。オン状態(オンと略す場合もある)とは、特に断りがない場合、nチャネル型トランジスタでは、ゲートとソースの間の電圧(V)がしきい値電圧(Vth)以上の状態、pチャネル型トランジスタでは、VがVth以下の状態をいう。例えば、nチャネル型のトランジスタのオン電流とは、VがVth以上のときのドレイン電流を言う。また、トランジスタのオン電流は、ドレインとソースの間の電圧(V)に依存する場合がある。
また、本明細書において、特に断りがない場合、オフ電流とは、トランジスタがオフ状態にあるときのドレイン電流をいう。オフ状態(オフと略す場合もある)とは、特に断りがない場合、nチャネル型トランジスタでは、VがVthよりも低い状態、pチャネル型トランジスタでは、VがVthよりも高い状態をいう。例えば、nチャネル型のトランジスタのオフ電流とは、VがVthよりも低いときのドレイン電流を言う。トランジスタのオフ電流は、Vに依存する場合がある。従って、トランジスタのオフ電流が10−21A未満である、とは、トランジスタのオフ電流が10−21A未満となるVの値が存在することを言う場合がある。
また、トランジスタのオフ電流は、Vに依存する場合がある。本明細書において、オフ電流は、特に記載がない場合、Vの絶対値が0.1V、0.8V、1V、1.2V、1.8V、2.5V、3V、3.3V、10V、12V、16V、または20Vにおけるオフ電流を表す場合がある。または、当該トランジスタが含まれる半導体装置等において使用されるVにおけるオフ電流を表す場合がある。
本明細書等において、電圧と電位は、適宜言い換えることができる。電圧は、基準となる電位からの電位差のことであり、例えば基準となる電位をグラウンド電位(接地電位)とすると、電圧を電位に言い換えることができる。グラウンド電位は必ずしも0Vを意味するとは限らない。なお電位は相対的なものであり、基準となる電位によっては、配線等に与える電位を変化させる場合がある。
本明細書等において、XとYとが接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが直接接続されている場合とが、本明細書等に開示されているものとする。
ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
XとYとが直接的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)を介さずに、XとYとが、接続されている場合である。
XとYとが電気的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)が、XとYとの間に1個以上接続されることが可能である。なお、スイッチは、導通状態(オン状態)、または、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有している。または、スイッチは、電流を流す経路を選択して切り替える機能を有している。なお、XとYとが電気的に接続されている場合は、XとYとが直接的に接続されている場合を含むものとする。
10 記憶装置
11 周辺回路
12 メモリセルアレイ
21 ローデコーダ
22 ワード線ドライバ回路
30 ビット線ドライバ回路
31 カラムデコーダ
32 プリチャージ回路
33 センスアンプ
34 回路
40 出力回路
60 コントロールロジック回路
100 容量素子
100a 容量素子
100b 容量素子
110 導電体
112 導電体
120 導電体
120a 導電体
120b 導電体
130 絶縁体
130a 絶縁体
130b 絶縁体
135 絶縁体
200 トランジスタ
200a トランジスタ
200b トランジスタ
201 基板
203 導電体
205 導電体
210 絶縁体
212 絶縁体
214 絶縁体
216 絶縁体
220 絶縁体
222 絶縁体
224 絶縁体
230 酸化物
230a 酸化物
230b 酸化物
230c 酸化物
231 領域
231a 領域
231b 領域
232 領域
232a 領域
232b 領域
234 領域
239 領域
240 導電体
240a 導電体
240b 導電体
240c 導電体
242 層
250 絶縁体
252 金属酸化物
260 導電体
260a 導電体
260b 導電体
270 絶縁体
271 絶縁体
272 絶縁体
273 絶縁体
274 絶縁体
275 絶縁体
280 絶縁体
500 トランジスタ
500a トランジスタ
500b トランジスタ
503 導電体
505 導電体
524 絶縁体
530 酸化物
530a 酸化物
530b 酸化物
530c 酸化物
540 導電体
540a 導電体
540b 導電体
542 層
550 絶縁体
552 金属酸化物
560 導電体
560a 導電体
560b 導電体
570 絶縁体
571 絶縁体
572 絶縁体
575 絶縁体
600 メモリセル
600a メモリセル
600b メモリセル
610 層
2100 ロボット
2101 照度センサ
2102 マイクロフォン
2103 上部カメラ
2104 スピーカ
2105 ディスプレイ
2106 下部カメラ
2107 障害物センサ
2108 移動機構
2110 演算装置
2120 飛行体
2121 演算装置
2122 カメラ
2123 プロペラ
2130 携帯電子機器
2131 携帯型マイクロフォン
2980 自動車
2981 カメラ
5100 掃除ロボット
5101 ディスプレイ
5102 カメラ
5103 ブラシ
5104 操作ボタン
5120 ゴミ
5140 携帯電子機器
5300 ペースメーカ本体
5301a バッテリー
5301b バッテリー
5302 ワイヤ
5303 ワイヤ
5304 アンテナ
5305 鎖骨下静脈
5306 上大静脈
5900 センサ
5931 電極
5932 配線
7000 電子部品
7002 プリント基板
7004 実装基板
7031 基板
7032 層
7033 層
7034 層
7400 電子部品
7411 パッケージ基板
7421 レンズカバー
7435 レンズ
7441 ランド
7451 イメージセンサチップ
7461 電極パッド
7471 ワイヤ
7490 ICチップ

Claims (7)

  1. 第1トランジスタと、
    第2トランジスタと、
    導電体と、を有し、
    前記第1トランジスタのソースまたはドレインの一方は、前記導電体を介して、前記第2トランジスタのゲートに電気的に接続され、
    前記第1トランジスタは酸化物半導体層を有し、
    前記酸化物半導体層は第1領域および第2領域を有し、
    前記第1領域は前記第1トランジスタのゲートと重畳する領域を有し、
    前記第2領域は前記導電体と接し、
    前記第2領域は前記第1領域よりも酸素濃度が小さく、
    前記第2領域は、前記導電体に含まれる金属のうち、少なくとも1つを含むことを特徴とする半導体装置。
  2. 請求項1において、
    前記金属はアルミニウム、ルテニウム、チタン、タンタル、クロムまたはタングステンであることを特徴とする半導体装置。
  3. 請求項1または請求項2において、
    容量素子を有し、
    前記導電体は前記容量素子の電極として機能することを特徴とする半導体装置。
  4. 第1トランジスタと、
    第2トランジスタと、
    導電体と、
    絶縁体と、を有し、
    前記第1トランジスタのソースまたはドレインの一方は、前記導電体を介して、前記第2トランジスタのゲートに電気的に接続され、
    前記第1トランジスタは酸化物半導体層を有し、
    前記酸化物半導体層は第1領域、第2領域および第3領域を有し、
    前記第1領域は前記第1トランジスタのゲートと重畳する領域を有し、
    前記第2領域は前記導電体と接し、
    前記第3領域は、前記絶縁体を介して、前記導電体と重畳する領域を有し、
    前記第2領域は前記第1領域よりも酸素濃度が小さく、
    前記第3領域は前記第1領域よりも酸素濃度が小さく、
    前記第2領域および前記第3領域は、前記絶縁体に含まれる金属のうち、少なくとも1つを含むことを特徴とする半導体装置。
  5. 請求項4において、
    前記金属はアルミニウム、ルテニウム、チタン、タンタル、クロムまたはタングステンであることを特徴とする半導体装置。
  6. 請求項4または請求項5において、
    容量素子を有し、
    前記導電体は前記容量素子の電極として機能することを特徴とする半導体装置。
  7. 請求項1乃至請求項6の何れか一項に記載の半導体装置を含む記憶装置。
JP2017123179A 2017-05-19 2017-06-23 記憶装置 Withdrawn JP2018195794A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017100305 2017-05-19
JP2017100305 2017-05-19

Publications (2)

Publication Number Publication Date
JP2018195794A true JP2018195794A (ja) 2018-12-06
JP2018195794A5 JP2018195794A5 (ja) 2020-07-30

Family

ID=64569014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017123179A Withdrawn JP2018195794A (ja) 2017-05-19 2017-06-23 記憶装置

Country Status (1)

Country Link
JP (1) JP2018195794A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020157553A1 (ja) * 2019-01-29 2020-08-06 株式会社半導体エネルギー研究所 記憶装置
JP7169120B2 (ja) 2017-08-24 2022-11-10 株式会社半導体エネルギー研究所 センスアンプ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016136622A (ja) * 2015-01-16 2016-07-28 株式会社半導体エネルギー研究所 記憶装置および電子機器
JP2017034258A (ja) * 2015-08-03 2017-02-09 株式会社半導体エネルギー研究所 半導体装置、半導体装置の作製方法、および電子機器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016136622A (ja) * 2015-01-16 2016-07-28 株式会社半導体エネルギー研究所 記憶装置および電子機器
JP2017034258A (ja) * 2015-08-03 2017-02-09 株式会社半導体エネルギー研究所 半導体装置、半導体装置の作製方法、および電子機器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7169120B2 (ja) 2017-08-24 2022-11-10 株式会社半導体エネルギー研究所 センスアンプ
WO2020157553A1 (ja) * 2019-01-29 2020-08-06 株式会社半導体エネルギー研究所 記憶装置
JP7361730B2 (ja) 2019-01-29 2023-10-16 株式会社半導体エネルギー研究所 記憶装置

Similar Documents

Publication Publication Date Title
JP7213803B2 (ja) 半導体装置及び半導体装置の駆動方法
JP7232764B2 (ja) 半導体装置
US20200227561A1 (en) Semiconductor device and method for manufacturing the same
KR20190118154A (ko) 반도체 장치 및 반도체 장치의 제작 방법
KR102496132B1 (ko) 기억 장치
JP2024020315A (ja) 半導体装置
JP2018195794A (ja) 記憶装置
KR20190116998A (ko) 반도체 장치 및 반도체 장치의 제작 방법
JP2018201003A (ja) 半導体装置及び電子機器
JP7258754B2 (ja) 半導体装置、および半導体装置の作製方法
WO2018220471A1 (ja) 記憶装置及びその動作方法
JP2018206828A (ja) 半導体装置、および半導体装置の作製方法
JP7200096B2 (ja) 半導体装置及び電子機器
WO2018220491A1 (ja) 半導体装置、電子部品及び電子機器

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200616

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210414

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211102

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20220120