JP2018187775A - 高圧タンクの製造方法 - Google Patents

高圧タンクの製造方法 Download PDF

Info

Publication number
JP2018187775A
JP2018187775A JP2017089184A JP2017089184A JP2018187775A JP 2018187775 A JP2018187775 A JP 2018187775A JP 2017089184 A JP2017089184 A JP 2017089184A JP 2017089184 A JP2017089184 A JP 2017089184A JP 2018187775 A JP2018187775 A JP 2018187775A
Authority
JP
Japan
Prior art keywords
layer
resin
fiber
hoop
helical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017089184A
Other languages
English (en)
Other versions
JP6790997B2 (ja
Inventor
正佳 滝
Masayoshi Taki
正佳 滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017089184A priority Critical patent/JP6790997B2/ja
Publication of JP2018187775A publication Critical patent/JP2018187775A/ja
Application granted granted Critical
Publication of JP6790997B2 publication Critical patent/JP6790997B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/32Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/546Measures for feeding or distributing the matrix material in the reinforcing structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7154Barrels, drums, tuns, vats
    • B29L2031/7156Pressure vessels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pressure Vessels And Lids Thereof (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

【課題】繊維層の全体への樹脂の含浸性を向上させる。【解決手段】高圧タンクの製造方法は、繊維部材を巻回してライナの外周面に繊維層を形成する繊維層形成工程と、繊維層が形成されたライナを樹脂硬化用の型の内部に配置し樹脂を繊維層に含浸させる樹脂含浸工程と、樹脂含浸工程の後に樹脂を硬化させる樹脂硬化工程と、を備え、繊維層形成工程は、フープ巻きによりフープ層を形成するフープ層形成工程とヘリカル巻きによりヘリカル層を形成するヘリカル層形成工程とを有し、フープ層形成工程では、フープ層の各々において、繊維部材は繊維部材が巻回される空間の体積に対する繊維部材の体積の割合が50%以上98%以下となるように巻回され、ヘリカル層形成工程では、ヘリカル層の各々において、繊維部材は前記割合が50%以上98%以下となるように巻回され、フープ層における前記割合の平均値は、ヘリカル層における前記割合の平均値よりも高い。【選択図】図5

Description

本発明は、高圧タンクの製造方法に関する。
高圧タンクとして、タンクの基材であるライナの外周面に繊維強化樹脂層を形成した高圧タンクが知られている。特許文献1には、繊維強化樹脂層の形成方法として、樹脂を含浸させた繊維をライナに巻き付けた後に硬化させる、フィラメントワインディング(Filament Winding)法(以下、「FW法」とも呼ぶ)に加えて、いわゆるRTM(Resin Transfer Molding)法が記載されている。RTM法を用いて高圧タンクを製造する場合、ライナの外周面に繊維を巻回して繊維層を形成した後、繊維層に樹脂を含浸させることにより、繊維強化樹脂層が形成される。
特開2015−059123号公報
高圧タンクの繊維強化樹脂層は、強度確保のために所定以上の厚みを有する必要がある。しかしながら、RTM法では、所定以上の厚みとなるようにライナに繊維を巻き付けて繊維層を形成すると、かかる厚い繊維層の全体に亘るように樹脂を含浸させることが困難であった。このため、繊維層の全体への樹脂の含浸性を向上させる技術が望まれていた。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。
本発明の一実施形態によれば、高圧タンクの製造方法が提供される。この高圧タンクの製造方法は、前記高圧タンクの基材であるライナに繊維部材を巻回して、前記ライナの外周面に繊維層を形成する繊維層形成工程と;前記繊維層が形成された前記ライナを、樹脂硬化用の型の内部に配置し、樹脂を前記繊維層に含浸させる樹脂含浸工程と;前記樹脂含浸工程の後、前記樹脂を硬化させる樹脂硬化工程と;を備え;前記繊維層形成工程は、フープ巻きにより単数または複数のフープ層を形成するフープ層形成工程と、ヘリカル巻きにより単数または複数のヘリカル層を形成するヘリカル層形成工程と、を有し;前記フープ層形成工程では、前記単数または複数のフープ層の各々において、前記繊維部材は、前記繊維部材が巻回される空間の体積に対する前記繊維部材の体積の割合が、50%以上98%以下となるように巻回され;前記ヘリカル層形成工程では、前記単数または複数のヘリカル層の各々において、前記繊維部材は、前記割合が50%以上98%以下となるように巻回され;前記単数または複数のフープ層における前記割合の平均値は、前記単数または複数のヘリカル層における前記割合の平均値よりも高い。この形態の高圧タンクの製造方法によれば、フープ層およびヘリカル層の各々の層において、繊維部材は、繊維部材が巻回される空間の体積に対する繊維部材の体積の割合が、50%以上98%以下となるように巻回される。このため、繊維層の内部に隙間が形成されるので、樹脂含浸工程において、かかる隙間に樹脂が入り込みやすい。したがって、繊維層の全体への樹脂の含浸性を向上できる。また、フープ層における前記割合の平均値は、ヘリカル層における前記割合の平均値よりも高いので、高圧タンクの強度に対する寄与率の高いフープ層を、ヘリカル層よりも密に構成することができ、高圧タンクの強度低下を抑制できる。
本発明は、種々の形態で実現することも可能である。例えば、高圧タンク、高圧タンクを搭載した燃料電池システム、上記製造方法を工程の一部に含む燃料電池車両の製造方法などの形態で実現することができる。
本発明の一実施形態としての高圧タンクの製造方法により製造される高圧タンクの構成を示す断面図である。 フープ層の構成を模式的に示す説明図である。 ヘリカル層の構成を模式的に示す説明図である。 高圧タンクの製造方法を示す工程図である。 繊維層形成工程の詳細手順を示す工程図である。 工程S115が実行された後の状態を説明するための断面模式図である。 樹脂を含浸可能な繊維層の厚みと、カバー率との関係の一例を示す説明図である。 樹脂の種類と硬化時間との関係の一例を示す説明図である。 各工法に対する、樹脂の含浸硬化コストの一例を示す説明図である。
A.実施形態:
A−1.高圧タンクの構成:
図1は、本発明の一実施形態としての高圧タンクの製造方法により製造される高圧タンクの構成を示す断面図である。高圧タンク10は、燃料電池システムにおいて、燃料ガスとしての水素ガスを貯蔵するために用いられる。なお、高圧タンク10は、水素ガス以外の高圧流体を貯蔵するために用いられてもよい。図1では、高圧タンク10の軸線CXを含む断面を表している。高圧タンク10は、ライナ20と、2つの口金90と、繊維強化樹脂層30とを備える。
ライナ20は、中空状の基材であり、本実施形態では、ポリエチレンにより形成される。なお、ポリエチレンに代えて、ポリアミド、エチレンビニルアルコール共重合体などの他の樹脂材料により形成されてもよく、樹脂に代えて、アルミニウムなどの金属材料により形成されてもよい。ライナ20は、円筒部21と、2つのドーム部22とを備える。円筒部21は、円筒状の外観形状を有する。2つのドーム部22は、円筒部21の両端に連なり、それぞれドーム状の外観形状を有する。なお、ライナ20の軸線は、高圧タンク10の軸線CXと一致する。
2つの口金90は、2つのドーム部22の頂部に、それぞれ取り付けられている。口金90は、略筒状の外観形状を有し、配管やバルブの取り付けのために用いられる。
繊維強化樹脂層30は、ライナ20の外表面全体を覆うように形成されている。繊維強化樹脂層30は、耐圧性を有し、ライナ20の強度を高める機能を有する。繊維強化樹脂層30は、繊維樹脂層40と、樹脂層80とを備える。
繊維樹脂層40は、後述する繊維層50に樹脂を含浸硬化させた構造を有する。繊維樹脂層40の形成方法については、後述する高圧タンク10の製造方法において、詳細に説明する。繊維層50は、炭素繊維が幾重にも巻き付けられ、かかる繊維からなる層が複数積層された構造を有する。本実施形態の繊維層50は、複数のフープ層60と複数のヘリカル層70とからなる。
図2は、フープ層60の構成を模式的に示す説明図である。フープ層60は、ライナ20の円筒部21の外周面を覆う。フープ層60は、フープ巻きにより巻き付けられた炭素繊維51からなる層が、複数積層されて形成されている。フープ巻きとは、炭素繊維51を軸線CXに略直交する巻角度で、所定の巻き付け張力にて円筒部21に巻き付けつつ、軸線CXと平行に巻き付け位置をずらしていく巻き付け方法を意味する。本実施形態において、フープ層60は、一定の隙間G1を設けながら炭素繊維51が巻き付けられて形成される。かかる隙間G1については、後述する高圧タンク10の製造方法において、詳細に説明する。
図3は、ヘリカル層70の構成を模式的に示す説明図である。ヘリカル層70は、ライナ20の円筒部21の外周面と、ドーム部22の外周面とを覆う。ヘリカル層70は、ヘリカル巻きにより巻き付けられた炭素繊維51からなる層が、複数積層されて形成されている。ヘリカル巻きとは、0°よりも大きく90°よりも小さい巻角度で、軸線CXに沿った巻き付け方向でライナ20全体に螺旋状に巻き付けつつ、ドーム部22において巻き付け方向を折り返し、再び0°よりも大きく90°よりも小さい巻角度で螺旋状にライナ20全体に巻き付ける方法を意味する。本実施形態において、ヘリカル層70は、一定の隙間G2を設けながら炭素繊維51が巻き付けられて形成される。かかる隙間G2については、後述する高圧タンク10の製造方法において、詳細に説明する。
炭素繊維51は、直径が数μm(マイクロメートル)程度の単繊維を多数束ねて構成されている。本実施形態では、炭素繊維51として、ポリアクリロニトリル(PAN)系炭素繊維を用いる。なお、PAN系炭素繊維に代えて、レーヨン系炭素繊維やピッチ系炭素繊維など、他の任意の炭素繊維51を用いてもよい。
本実施形態において、高圧タンク10の厚み方向における繊維層50の厚みは、20mmに設定されている。なお、一般に、繊維層50において、高圧タンク10の強度に対する寄与率は、ヘリカル層70よりもフープ層60の方が高い。
図1に示す樹脂層80は、熱硬化性樹脂で構成され、繊維樹脂層40の外表面全体を覆っている。本実施形態の樹脂層80は、エポキシ樹脂により構成されている。なお、エポキシ樹脂に代えて、ポリエステル樹脂や、ポリアミド樹脂など、熱硬化性を有する他の任意の樹脂により構成されてもよい。
本実施形態において、炭素繊維51は、課題を解決するための手段における繊維部材の下位概念に相当する。
A−2.高圧タンクの製造方法:
図4は、高圧タンク10の製造方法を示す工程図である。本実施形態の高圧タンク10は、RTM法により製造される。まず、ライナ20および炭素繊維51が準備される(工程S105)。なお、ライナ20には、予め2つの口金90が取り付けられている。工程S105の後に、繊維層形成工程が実行される(工程S110)。
図5は、繊維層形成工程の詳細手順を示す工程図である。上述のように、本実施形態の繊維層50は、複数のフープ層60と複数のヘリカル層70とからなる。このため、繊維層形成工程では、フープ層60とヘリカル層70とが、それぞれ複数形成される。フープ層60およびヘリカル層70は、所定のカバー率となるように炭素繊維51が巻回されることにより形成される。
カバー率とは、炭素繊維51が巻回される空間の体積に対する、炭素繊維51の体積の割合を意味する。例えば、隙間なく炭素繊維51が巻かれた場合のカバー率は、100%である。本実施形態において、カバー率は、軸線CXを含む断面であって炭素繊維51の積層方向に複数の層を含む断面における、炭素繊維51の占める割合から算出される。なお、かかる断面としては、図1に示すドーム部22における断面ではなく、円筒部21における断面を用いる。この理由は、炭素繊維51の並び方が、円筒部21の方がドーム部22よりも単純であるため、カバー率を算出しやすいからである。かかる断面において、巻回された炭素繊維51の幅をWとし、隣り合う炭素繊維51間の幅(隙間G1,G2の幅)をWGとすると、カバー率は、例えば、以下の式(1)で表すことができる。
カバー率(%)=100×W/(W+WG)・・・(1)
カバー率の調整は、例えば、隙間G1の幅および隙間G2の幅を変更することにより実現できる。各フープ層60および各ヘリカル層70におけるカバー率の値は、予め設定されている。
繊維層形成工程では、最初に、カバー率が50%以上98%以下となるように炭素繊維51がヘリカル巻きされることにより、ヘリカル層70が形成される(工程S205)。
図3に示すように、ヘリカル層70は、ライナ20の外周面に、一定の隙間G2を設けながら炭素繊維51が巻回されることにより形成される。本実施形態において、繊維層形成工程で最初に形成されるヘリカル層70では、炭素繊維51の幅と同じ大きさの隙間G1を設けながら炭素繊維51が巻回されている。換言すると、最内層のヘリカル層70は、カバー率が50%となるように形成されている。
図5に示す工程S205が実行された後、カバー率が50%以上98%以下となるように炭素繊維51がフープ巻きされることにより、フープ層60が形成される(工程S210)。
図2に示すように、フープ層60は、ライナ20の円筒部21の外周面に、一定の隙間G1を設けながら炭素繊維51が巻回されることにより形成される。本実施形態において、フープ層60は、カバー率が95%となるように、炭素繊維51が巻回されて形成される。
図5に示す工程S210が実行された後、所定層数のヘリカル層70およびフープ層60が形成されたか否かが判定される(工程S215)。所定層数のヘリカル層70およびフープ層60が形成されていないと判定された場合(工程S215:NO)、上述の工程S205に戻る。したがって、その後、前回の工程S205および工程S210により形成されたヘリカル層70およびフープ層60の上に、さらにヘリカル層70およびフープ層60が積層される。これにより、複数のヘリカル層70と複数のフープ層60とを有する繊維層50が形成される。本実施形態において、最内層以外の各ヘリカル層70は、それぞれカバー率が90%となるように、炭素繊維51が巻回されて形成される。
工程S215において、所定層数のヘリカル層70およびフープ層60が形成されたと判定された場合(工程S215:YES)、繊維層形成工程が完了する。
本実施形態の繊維層形成工程において、繊維層50は、フープ層60におけるカバー率の平均値が、ヘリカル層70におけるカバー率の平均値よりも高くなるように形成される。フープ層60におけるカバー率の平均値は、各フープ層60のカバー率の総和を、フープ層60の層数で割ることにより算出される。同様に、ヘリカル層70におけるカバー率の平均値は、各ヘリカル層70のカバー率の総和を、ヘリカル層70の層数で割ることにより算出される。
図4に示すように、繊維層形成工程(工程S110)の完了後、繊維層50が形成されたライナ20が、RTM型300の内部に配置される(工程S115)。
図6は、工程S115が実行された後の状態を説明するための断面模式図である。図6では、図1と同様に、高圧タンク10とライナ20との軸線CXを含む断面を表している。図6では、RTM型300のうち、高圧タンク10と隣接する部分の断面のみを図示している。
RTM型300は、図示しない上型と下型とを備え、樹脂注入口320が形成されている。かかる上型と下型とが組み合わされることにより、RTM型300の内部には、空隙のキャビティ310が形成されている。キャビティ310は、繊維層50が形成されたライナ20を収容できる形状および大きさに設計されている。本実施形態において、キャビティ310は、繊維層50が形成されたライナ20よりも、僅かに大きく形成されている。より具体的には、繊維層50が形成されたライナ20がキャビティ310に配置される場合に、RTM型300と、繊維層50が形成されたライナ20との間の全体に亘って、1mmの隙間G3が空くように形成されている。
図4に示す工程S115の後、RTM型300が昇温され、図示しない真空吸引口から真空引きされる(工程S120)。かかる昇温の際の温度は、後の工程で使用する樹脂の硬化温度、例えば約160℃を満たすように設定される。
工程S120の後に、樹脂注入口320からキャビティ310に樹脂が注入され、繊維層50に樹脂が含浸される(工程S125)。より具体的には、樹脂注入口320から注入された樹脂は、図6に示す隙間G3を通って、繊維層50の外表面全体を覆うように流動する。さらに、隙間G3を通った樹脂は、フープ層60の隙間G1およびヘリカル層70の隙間G2を通って、高圧タンク10の厚み方向に流動することにより、繊維層50に含浸される。
工程S125の後に、樹脂が硬化される(工程S130)。樹脂の硬化時間は、使用する熱硬化性樹脂の硬化時間(ポットライフ)に基づいて設定される。本実施形態において、樹脂の硬化時間は、5分に設定される。工程S130では、繊維層50に含浸された樹脂が硬化して、繊維樹脂層40が形成される。これと共に、隙間G3に満たされた樹脂が硬化して、樹脂層80が形成される。したがって、繊維樹脂層40と樹脂層80とを含む繊維強化樹脂層30が、ライナ20の外周面に形成される。
工程S130の後に、RTM型300の真空引きを解除すると共に温度を低下させ、RTM型300の上型と下型とが分かれることにより、高圧タンク10がRTM型300から取り外される(工程S135)。以上により、高圧タンク10の製造が終了する。
本実施形態において、カバー率は、課題を解決するための手段における繊維部材が巻回される空間の体積に対する繊維部材の体積の割合の下位概念に相当する。また、工程S115と工程S125とは、課題を解決するための手段における樹脂含浸工程の下位概念に、工程S130は、課題を解決するための手段における樹脂硬化工程の下位概念に、工程S205は、課題を解決するための手段におけるヘリカル層形成工程の下位概念に、工程S210は、課題を解決するための手段におけるフープ層形成工程の下位概念に、それぞれ相当する。また、RTM型300は、課題を解決するための手段における樹脂硬化用の型の下位概念に相当し、キャビティ310は、課題を解決するための手段における型の内部の下位概念に相当する。
図7は、樹脂を含浸可能な繊維層の厚みと、カバー率との関係の一例を示す説明図である。図7において、縦軸は、樹脂を含浸可能な繊維層の厚み(mm)を示している。図7の棒グラフにおいて、左側の無地のバーは、比較例の繊維層を示しており、右側のハッチングを施したバーは、本実施形態の繊維層50を示している。
比較例の繊維層は、各フープ層のカバー率がそれぞれ100%であり、かつ、各ヘリカル層のカバー率がそれぞれ100%である構成を有する。比較例の繊維層では、隙間なく炭素繊維が巻回されているために樹脂の含浸性が悪く、樹脂が4mm程度しか含浸されない。ここで、一般に、高圧タンクの繊維強化樹脂層は、強度確保のために所定以上の厚みを有する必要がある。かかる厚みが例えば20mmの場合、比較例の繊維層を用いてRTM法により高圧タンクを製造すると、繊維強化樹脂層において、16mmの厚さに相当する部分が、樹脂の含浸されない樹脂未到達部分として発生する。
これに対し、本実施形態の繊維層50は、各フープ層60のカバー率がそれぞれ95%であり、かつ、各ヘリカル層70のカバー率がそれぞれ90%(最内層のヘリカル層70のカバー率は50%)である構成を有する。このため、繊維層50の内部に隙間G1,G2が形成されるので、かかる隙間G1、G2に樹脂が入り込みやすく、高圧タンク10の厚み方向への樹脂の含浸性が向上され、樹脂が25mm程度まで含浸される。それゆえ、高圧タンク10の強度を確保できる厚み、例えば上述の20mm以上の厚みを備える繊維強化樹脂層30を構成できる。
以上説明した本実施形態の高圧タンク10の製造方法によれば、繊維層50は、フープ層60およびヘリカル層70の各々の層において、カバー率が50%以上98%以下となるように形成される。このため、繊維層50には、フープ層60の隙間G1およびヘリカル層70の隙間G2が形成される。それゆえ、繊維層50に樹脂が含浸される工程(工程S125)において、かかる隙間G1,G2に樹脂が入り込みやすく、繊維層のカバー率が100%である構成と比較して、繊維層50の全体への樹脂の含浸性を向上できる。
また、本実施形態の高圧タンク10の製造方法によれば、フープ層60におけるカバー率の平均値は、ヘリカル層70におけるカバー率の平均値よりも高い。このため、高圧タンク10の強度に対する寄与率の高いフープ層60が、ヘリカル層70よりも密に構成されるので、高圧タンク10の強度低下を抑制できる。
繊維層50は、最内層のヘリカル層70におけるカバー率が50%なので、最内層の隙間G2が大きい構成を有する。これにより、樹脂含浸工程において、ライナ20の外表面における樹脂の流動性を向上でき、含浸性を向上でき、樹脂の含浸されない樹脂未到達部分が発生することを抑制できる。加えて、最内層のヘリカル層70は、高圧タンク10の強度に対する寄与率が低いので、カバー率が50%と比較的低くても、高圧タンク10の強度低下を抑制できる。
本実施形態で用いるRTM型300のキャビティ310は、繊維層50が形成されたライナ20がキャビティ310に配置される場合に、RTM型300と、繊維層50が形成されたライナ20との間の全体に亘って、1mmの隙間G3が空くように形成されている。このため、注入された樹脂が、隙間G3を通ることによって繊維層50の外表面全体に亘って流動でき、含浸性を向上できる。
また、RTM型300を用いて高圧タンク10を製造するので、高圧タンク10の外周面における面粗度の低下を抑制でき、高圧タンク10の外径の寸法精度を向上できる。それゆえ、高圧タンク10の外周面へのラベル類の貼付性を向上でき、燃料電池車両などへの高圧タンク10の搭載性を向上できる。
また、RTM法により高圧タンク10を製造すると、可使時間の短い樹脂を材料として使用できるため、樹脂を硬化させる工程に要する時間を大幅に短縮できる。以下、この効果について説明する。
図8は、樹脂の種類と硬化時間との関係の一例を示す説明図である。図8において、縦軸は、樹脂の硬化に要する時間(分)を示している。図8の棒グラフにおいて、左側の無地のバーは、比較例のトウプリプレグ(以下、「TPP」とも呼ぶ)用のエポキシ樹脂を示しており、右側のハッチングを施したバーは、本実施形態で用いるRTM法用のエポキシ樹脂を示している。TPP用エポキシ樹脂は、予め樹脂を含浸させた炭素繊維をライナに巻き付ける、FW法において用いられるエポキシ樹脂である。
TPP用エポキシ樹脂は、炭素繊維をライナに巻き付ける間は硬化せず、炭素繊維の巻き付け完了後に硬化するように、可使時間(ポットライフ)が長い。このため、例えば、TPP用エポキシ樹脂(252Bエポキシ樹脂)の硬化には、約160分という長い時間を要する。
これに対し、本実施形態で用いるRTM法用のエポキシ樹脂(ナガセケムテックス社製)は、可使時間が短い(約5分)。これは、炭素繊維51の巻き付け完了後に樹脂を含浸させるため、樹脂の可使時間として、炭素繊維51をライナ20に巻き付ける時間を考慮しなくてもよいためである。
また、本実施形態で用いるRTM法では、樹脂の含浸と硬化とに要するコストを大幅に低下できる。以下、この効果について説明する。
図9は、各工法に対する、樹脂の含浸硬化コストの一例を示す説明図である。図9において、縦軸は、樹脂の含浸と硬化とに要するコストを示している。図9の棒グラフにおいて、左側の無地のバーは、比較例として、予め樹脂を含浸させた炭素繊維をプリプレグとして製作し、炭素繊維をライナに巻き付けた後に樹脂を硬化させる工法を示している。また、右側のハッチングを施したバーは、本実施形態で用いるRTM法を示している。
比較例の工法では、プリプレグを製作する工程が必要であり、かつ、上述のように可使時間の長い樹脂を使用するので樹脂の硬化に長い時間を要する。このため、樹脂の含浸と硬化とに要するコストが高い。これに対し、本実施形態で用いるRTM法では、プリプレグを製作する工程を省略でき、高圧タンク10の製造工程を簡素化できる。また、上述のように可使時間の短い樹脂を用いてもよいので、樹脂を硬化させる工程に要する時間を短縮できる。加えて、上述のような繊維層50の構成により、樹脂の含浸性を向上できるので、樹脂を含浸させる工程に要する時間を短縮できる。
B.変形例:
B−1.変形例1:
上記実施形態における繊維層50の構成は、あくまで一例であり、種々変更可能である。例えば、繊維層50は、各フープ層60のカバー率がそれぞれ95%であり、最内層以外の各ヘリカル層70のカバー率がそれぞれ90%となるように構成されていたが、フープ層60および最内層も含めたヘリカル層70のカバー率は、それぞれ50%以上98%以下の任意の値であってもよい。なお、高圧タンク10の強度低下を抑制する観点から、各フープ層60のカバー率は、90%以上であることが好ましく、最内層以外の各ヘリカル層70のカバー率は、80%以上であることが好ましい。また、最内層のヘリカル層70のカバー率は、ライナ20の外表面における樹脂の含浸性の低下を抑制する観点から、80%以下であることが好ましく、60%以下であることがより好ましい。また、複数のフープ層60のうち、各フープ層60のカバー率は、それぞれ異なる値であってもよく、複数のヘリカル層70のうち、各ヘリカル層70のカバー率は、それぞれ異なる値であってもよい。また、上記実施形態において、繊維層50は、複数のフープ層60と複数のヘリカル層70とを有していたが、フープ層60およびヘリカル層70の層数は、それぞれ単数であってもよい。また、繊維層50のうち最も外側の層は、フープ層60に限らずヘリカル層70であってもよい。また、高圧タンク10の強度を低下させない範囲内において、カバー率が50%未満の他のフープ層およびヘリカル層を有していてもよく、樹脂の含浸性を低下させない範囲内において、カバー率が98%を超える他のフープ層およびヘリカル層を有していてもよい。以上のような構成によっても、フープ層60のカバー率の平均値がヘリカル層70のカバー率の平均値よりも高いことを前提として、実施形態の高圧タンク10と同様の効果を奏する。
B−2.変形例2:
上記実施形態において、カバー率は、上記式(1)に基づいて算出されていたが、本発明はこれに限定されるものではない。例えば、単位体積に巻回された炭素繊維51の巻回前の状態の体積と、単位体積とから算出されてもよく、他の任意の方法により、炭素繊維51が巻回される空間の体積に対する炭素繊維51の割合が算出されてもよい。
B−3.変形例3:
上記実施形態において、フープ層60は、単繊維を多数束ねて構成された炭素繊維51を、ライナ20の円筒部21に巻き付けることにより形成されていたが、これに代えて、所定のカバー率を有する、炭素繊維からなるシート状の部材を巻き付けることにより、フープ層60が形成されてもよい。また、繊維層50は、炭素繊維51により形成されていたが、炭素繊維51に代えて、ガラス繊維などの他の任意の繊維部材により形成されてもよい。このような構成によっても、実施形態の高圧タンク10と同様の効果を奏する。
B−4.変形例4:
上記実施形態における高圧タンク10は、繊維強化樹脂層30として繊維樹脂層40と樹脂層80とを備えていたが、樹脂層80を省略してもよい。また、樹脂層80の厚みは、1mmに限らず、例えば2mm以内の任意の値であってもよい。また、繊維強化樹脂層30の外表面に、ガラス繊維強化樹脂からなる保護層をさらに備えていてもよい。このような構成によっても、実施形態の高圧タンク10と同様の効果を奏する。
本発明は、上述の実施形態および変形例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、変形例中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
10…高圧タンク
20…ライナ
21…円筒部
22…ドーム部
30…繊維強化樹脂層
40…繊維樹脂層
50…繊維層
51…炭素繊維
60…フープ層
70…ヘリカル層
80…樹脂層
90…口金
300…RTM型
310…キャビティ
320…樹脂注入口
CX…軸線
G1…隙間
G2…隙間
G3…隙間

Claims (1)

  1. 高圧タンクの製造方法であって、
    前記高圧タンクの基材であるライナに繊維部材を巻回して、前記ライナの外周面に繊維層を形成する繊維層形成工程と、
    前記繊維層が形成された前記ライナを、樹脂硬化用の型の内部に配置し、樹脂を前記繊維層に含浸させる樹脂含浸工程と、
    前記樹脂含浸工程の後、前記樹脂を硬化させる樹脂硬化工程と、
    を備え、
    前記繊維層形成工程は、フープ巻きにより単数または複数のフープ層を形成するフープ層形成工程と、ヘリカル巻きにより単数または複数のヘリカル層を形成するヘリカル層形成工程と、を有し、
    前記フープ層形成工程では、前記単数または複数のフープ層の各々において、前記繊維部材は、前記繊維部材が巻回される空間の体積に対する前記繊維部材の体積の割合が、50%以上98%以下となるように巻回され、
    前記ヘリカル層形成工程では、前記単数または複数のヘリカル層の各々において、前記繊維部材は、前記割合が50%以上98%以下となるように巻回され、
    前記単数または複数のフープ層における前記割合の平均値は、前記単数または複数のヘリカル層における前記割合の平均値よりも高い、
    高圧タンクの製造方法。
JP2017089184A 2017-04-28 2017-04-28 高圧タンクの製造方法 Active JP6790997B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017089184A JP6790997B2 (ja) 2017-04-28 2017-04-28 高圧タンクの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017089184A JP6790997B2 (ja) 2017-04-28 2017-04-28 高圧タンクの製造方法

Publications (2)

Publication Number Publication Date
JP2018187775A true JP2018187775A (ja) 2018-11-29
JP6790997B2 JP6790997B2 (ja) 2020-11-25

Family

ID=64479160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017089184A Active JP6790997B2 (ja) 2017-04-28 2017-04-28 高圧タンクの製造方法

Country Status (1)

Country Link
JP (1) JP6790997B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020118288A (ja) * 2019-01-28 2020-08-06 トヨタ自動車株式会社 水素タンク
WO2020166265A1 (ja) * 2019-02-13 2020-08-20 株式会社豊田自動織機 圧力容器の製造方法及び圧力容器の製造装置
CN115027077A (zh) * 2021-03-03 2022-09-09 丰田自动车株式会社 高压罐制造装置及高压罐制造方法
CN115279576A (zh) * 2020-03-26 2022-11-01 东丽株式会社
JP7447851B2 (ja) 2021-03-16 2024-03-12 トヨタ自動車株式会社 高圧タンクの製造方法、高圧タンク製造装置、及びコンピュータプログラム
JP7501471B2 (ja) 2021-08-26 2024-06-18 トヨタ自動車株式会社 タンクの製造方法および製造装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760859A (ja) * 1993-08-25 1995-03-07 Nitto Denko Corp 容器の成形方法
JP4236478B2 (ja) * 2003-02-18 2009-03-11 日鉄コンポジット株式会社 強化繊維シート
JP2017056737A (ja) * 2016-12-13 2017-03-23 新日鉄住金マテリアルズ株式会社 VaRTM用強化繊維シート

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760859A (ja) * 1993-08-25 1995-03-07 Nitto Denko Corp 容器の成形方法
JP4236478B2 (ja) * 2003-02-18 2009-03-11 日鉄コンポジット株式会社 強化繊維シート
JP2017056737A (ja) * 2016-12-13 2017-03-23 新日鉄住金マテリアルズ株式会社 VaRTM用強化繊維シート

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020118288A (ja) * 2019-01-28 2020-08-06 トヨタ自動車株式会社 水素タンク
WO2020166265A1 (ja) * 2019-02-13 2020-08-20 株式会社豊田自動織機 圧力容器の製造方法及び圧力容器の製造装置
JP2020133666A (ja) * 2019-02-13 2020-08-31 株式会社豊田自動織機 圧力容器の製造方法及び圧力容器の製造装置
CN113423978A (zh) * 2019-02-13 2021-09-21 株式会社丰田自动织机 压力容器的制造方法以及压力容器的制造装置
EP3926217A4 (en) * 2019-02-13 2022-04-13 Kabushiki Kaisha Toyota Jidoshokki PRESSURE VESSEL PRODUCTION METHOD AND PRESSURE VESSEL PRODUCTION DEVICE
JP7059963B2 (ja) 2019-02-13 2022-04-26 株式会社豊田自動織機 圧力容器の製造方法及び圧力容器の製造装置
EP4130519A4 (en) * 2020-03-26 2024-06-05 Toray Industries, Inc. TANK
CN115279576A (zh) * 2020-03-26 2022-11-01 东丽株式会社
CN115027077A (zh) * 2021-03-03 2022-09-09 丰田自动车株式会社 高压罐制造装置及高压罐制造方法
JP7533287B2 (ja) 2021-03-03 2024-08-14 トヨタ自動車株式会社 高圧タンク製造装置及び高圧タンク製造方法
JP7447851B2 (ja) 2021-03-16 2024-03-12 トヨタ自動車株式会社 高圧タンクの製造方法、高圧タンク製造装置、及びコンピュータプログラム
JP7501471B2 (ja) 2021-08-26 2024-06-18 トヨタ自動車株式会社 タンクの製造方法および製造装置
US12036753B2 (en) 2021-08-26 2024-07-16 Toyota Jidosha Kabushiki Kaisha Method for manufacturing tank and manufacturing device thereof

Also Published As

Publication number Publication date
JP6790997B2 (ja) 2020-11-25

Similar Documents

Publication Publication Date Title
JP6790997B2 (ja) 高圧タンクの製造方法
US10385940B2 (en) Composite coil spring
CN104918760B (zh) 复合风扇罩的周向加劲肋
US7204903B2 (en) Pressure container manufacturing method
CN102648080B (zh) 编织预制件、复合材料、及其制造方法
CN105952981A (zh) 拉挤管材及其制备方法与制造设备
CN106696302A (zh) 罐制造方法和罐
KR102318066B1 (ko) 압력용기의 제조방법
US11890822B2 (en) Component of revolution made of composite material having improved resistance to delamination
JP5993342B2 (ja) 複合容器の製造方法、及び複合容器の製造システム
JP2020533494A (ja) ケーシングプリフォームを形成するための織繊維構造体
JP2018149737A (ja) 補強層の製造方法
JP6915564B2 (ja) 高圧タンクの製造方法
CN111503265B (zh) 高压罐及制造高压罐的方法
US20190351627A1 (en) Method for manufacturing multilayer fiber reinforced resin composite and molded product using the same
CN112780942A (zh) 压力容器及其制造方法
JP2010249147A (ja) Frpタンク及びその製造方法
JP5993343B2 (ja) 複合容器の製造方法、及び複合容器の製造システム
JP2008307726A (ja) 繊維強化複合材料成形方法及び繊維強化複合材料
JP2022014965A (ja) 高圧タンク
JP7533399B2 (ja) タンクおよびその製造方法
KR102452872B1 (ko) 필라멘트 와인딩 방법 및 이에 따라 제조된 압력용기
JP2020159474A (ja) ガスタンクの製造方法
KR20240086173A (ko) 사출성형을 이용한 직물강화 열가소성 복합소재 제조 방법
CN117396543A (zh) 纤维构造体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201019

R151 Written notification of patent or utility model registration

Ref document number: 6790997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151