JP2018160959A - 回転機制御装置 - Google Patents

回転機制御装置 Download PDF

Info

Publication number
JP2018160959A
JP2018160959A JP2017055468A JP2017055468A JP2018160959A JP 2018160959 A JP2018160959 A JP 2018160959A JP 2017055468 A JP2017055468 A JP 2017055468A JP 2017055468 A JP2017055468 A JP 2017055468A JP 2018160959 A JP2018160959 A JP 2018160959A
Authority
JP
Japan
Prior art keywords
phase
command
rotating machine
torque
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017055468A
Other languages
English (en)
Inventor
松山 哲也
Tetsuya Matsuyama
哲也 松山
淳貴 吉本
Junki Yoshimoto
淳貴 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017055468A priority Critical patent/JP2018160959A/ja
Publication of JP2018160959A publication Critical patent/JP2018160959A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】3相回転機に印加される電圧ベクトルの振幅が小さいときの3相回転機の制御に適した技術を提供する。
【解決手段】修正トルク特定部128は、電流ベクトルの振幅から電流制限値を差し引いた差分である電流偏差がゼロ以下の場合にはゼロであり、電流偏差がゼロよりも大きい場合には電流偏差が大きくなるにつれて大きくなる修正トルク成分を特定する。第1部分は、一次磁束ベクトルの位相が移動するべき制御周期毎の移動量であって、指令速度と制御サイクルの周期との積よりも小さいものであり、3相回転機102のトルクの振動成分が大きくなるにつれて小さくなるものであり、修正トルク成分が大きくなるにつれて小さくなるものであり、トルクの振動成分及び修正トルク成分の合計がゼロに近づくにつれて積に近づいていくものである移動量を特定する。
【選択図】図3A

Description

本開示は、回転機制御装置に関するものである。
3相回転機の一次磁束ベクトルが指令磁束ベクトルに追従するように、インバータを用いて3相回転機に電圧ベクトルを印加する回転機制御装置が知られている。特許文献1には、そのような回転機制御装置の一例が記載されている。具体的には、特許文献1には、速度制御系を有しない回転機制御装置が記載されている。
特開2016−100994号公報
井上征則、森本茂雄、真田雅之、「永久磁石同期モータを駆動する直接トルク制御のためのトルクと磁束の指令値作成法とトルク制御器のワインドアップ対策(A reference value calculation scheme for torque and flux and an anti-windup implementation of torque controller for direct torque control of permanent magnet synchronous motor)」電気学会論文誌D,130巻,6号,p.777−784(2010年)
本発明者らの検討によれば、3相回転機に印加される電圧ベクトルの振幅が小さいときの3相回転機の制御に関し、特許文献1の技術には改善の余地がある。そこで、本開示は、3相回転機に印加される電圧ベクトルの振幅が小さいときの3相回転機の制御に適した技術を提供することを目的とする。
本開示は、
3相回転機の一次磁束ベクトルが指令磁束ベクトルに追従するように、インバータを用いて前記3相回転機に電圧ベクトルを印加する回転機制御装置であって、
前記3相回転機の電流ベクトルを用いて、前記電流ベクトルの振幅から電流制限値を差し引いた差分である電流偏差がゼロ以下の場合にはゼロであり、前記電流偏差がゼロよりも大きい場合には前記電流偏差が大きくなるにつれて大きくなる修正トルク成分を特定する修正トルク特定部と、
指令速度及び前記修正トルク成分を用いて、前記一次磁束ベクトルの位相が移動するべき制御周期毎の移動量であって、前記指令速度と制御サイクルの周期との積よりも小さいものであり、前記3相回転機のトルクの振動成分が大きくなるにつれて小さくなるものであり、前記修正トルク成分が大きくなるにつれて小さくなるものであり、前記トルクの振動成分及び前記修正トルク成分の合計がゼロに近づくにつれて前記積に近づいていくものである移動量を特定する第1部分と、
前記移動量を用いて前記指令磁束ベクトルの位相である指令位相を特定する第2部分と、
前記指令位相を用いて前記指令磁束ベクトルを特定する指令磁束特定部と、を備えた、回転機制御装置を提供する。
本開示に係る技術は、3相回転機に印加される電圧ベクトルの振幅が小さいときの3相回転機の制御に適している。
3相回転機、インバータ及び回転機制御装置のブロック図 dq座標系を説明するための図 αβ座標系を説明するための図 回転機制御部のブロック図 回転機制御部のブロック図 修正トルク特定部のブロック図 指令位相特定部のブロック図 指令位相特定部のブロック図 指令位相特定部のブロック図 PWMインバータの構成図 指令位相特定部のブロック図 指令位相特定部のブロック図 指令位相特定部のブロック図 指令位相特定部のブロック図 指令位相特定部のブロック図 指令位相特定部のブロック図 制御方法を示すフローチャート 制御方法を示すフローチャート
(本発明者らによる知見)
従来の回転機制御装置は、3相回転機の一次磁束ベクトルの位相が追従するべき指令位相を特定する。次に、この回転機制御装置は、指令位相を用いて、3相回転機の一次磁束ベクトルが追従するべき指令磁束ベクトルを特定する。次に、この回転機制御装置は、指令磁束ベクトルを用いて、3相回転機の電圧ベクトルが追従するべき指令電圧ベクトルを生成する。インバータは、指令電圧ベクトルに対応する電圧ベクトルがインバータから3相回転機に印加されるように制御される。具体的には、インバータにおけるスイッチング素子が制御される。
スイッチング素子における電圧降下により、指令電圧ベクトルの振幅と、実際に3相回転機に印加される電圧ベクトルの振幅との間に誤差が生じる。具体的には、前者の振幅に対する後者の振幅の比率は1よりも小さくなる。始動時等の3相回転機の電圧ベクトルの振幅が小さいときには、この比率の1からの乖離が大きくなり、3相回転機のトルク不足が発生し易い。
トルクが不足すると、3相回転機のすべり角速度が大きくなる。ここで、すべり角速度は、指令位相の回転速度と3相回転機の回転子速度の差である。すべり角速度が大きいと、3相回転機の電流べクトルにおけるトルクに寄与しない成分が大きくなり易い。
また、3相回転機のトルクには、振動成分が含まれている。この振動成分が大きい場合には、すべり角速度のピークが大きくなる。上述のとおり、すべり角速度が大きいと、3相回転機の電流べクトルにおけるトルクに寄与しない成分が大きくなり易い。
電流べクトルにおけるトルクに寄与しない成分が大きくなると、すべり角速度が大きくなり易くなる。上述のように、すべり角速度が大きくなると、トルクに寄与しない電流ベクトルが大きくなり易くなる。このような悪循環が発生すると、3相回転機の回転子を上手く回転させることが難しくなる。また、インバータにおいて過電流が発生し易くなる。
特許文献1には、指令位相を強制的に進めることが記載されている。具体的には、指令速度を用いて一次磁束ベクトルの位相が移動するべき制御周期毎の移動量を特定し、この移動量に基づいて指令位相を特定することが記載されている。本発明者らは、特許文献1の技術を、上述の悪循環を防止する観点から改良したいと考えた。そして、本発明者らは、3相回転機の電流ベクトルの振幅及びトルクの振動成分に応じて移動量を調節することを思いついた。本開示に係る技術は、このような検討に基づくものである。
本開示の第1態様は、
3相回転機の一次磁束ベクトルが指令磁束ベクトルに追従するように、インバータを用いて前記3相回転機に電圧ベクトルを印加する回転機制御装置であって、
前記3相回転機の電流ベクトルを用いて、前記電流ベクトルの振幅から電流制限値を差し引いた差分である電流偏差がゼロ以下の場合にはゼロであり、前記電流偏差がゼロよりも大きい場合には前記電流偏差が大きくなるにつれて大きくなる修正トルク成分を特定する修正トルク特定部と、
指令速度及び前記修正トルク成分を用いて、前記一次磁束ベクトルの位相が移動するべき制御周期毎の移動量であって、前記指令速度と制御サイクルの周期との積よりも小さいものであり、前記3相回転機のトルクの振動成分が大きくなるにつれて小さくなるものであり、前記修正トルク成分が大きくなるにつれて小さくなるものであり、前記トルクの振動成分及び前記修正トルク成分の合計がゼロに近づくにつれて前記積に近づいていくものである移動量を特定する第1部分と、
前記移動量を用いて前記指令磁束ベクトルの位相である指令位相を特定する第2部分と、
前記指令位相を用いて前記指令磁束ベクトルを特定する指令磁束特定部と、を備えた、回転機制御装置を提供する。
第1態様では、電流ベクトルの振幅から電流制限値を差し引いた差分である電流偏差に基づいて、修正トルク成分を特定する。具体的には、電流偏差がゼロよりも大きい場合には電流偏差が大きいときほど修正トルク成分を大きくする。第1態様では、修正トルク成分を用いて、一次磁束ベクトルの位相が移動するべき制御周期毎の移動量を特定する。具体的には、修正トルク成分が大きいときほど移動量を小さくする。このようにすれば、電流ベクトルの振幅が電流制限値よりも大きいほど、移動量が小さくなる。このようにすれば、すべり角速度が大きくなることを防止することができる。このため、すべり角速度が大きくなることでトルクに寄与しない電流ベクトルが大きくなり、トルクに寄与しない電流ベクトルが大きくなることですべり角速度が大きくなるという悪循環を断ち切ることができる。このように、第1態様によれば、修正トルク成分がトルクを補償するように作用し、同一電流ベクトルに対するトルクを増加させることができる。これにより、3相回転機の回転子を上手く回転させ易くなり、回転子の引き込みを安定して行うことができ、3相回転機の脱調が発生し難くなる。また、インバータにおいて過電流が発生し難くなる。インバータに過電流保護機能がある場合においては、インバータの保護機能が働きインバータが停止するという事態を回避し易くなる。
また、第1態様では、3相回転機のトルクの振動成分が大きいときほど移動量を小さくする。これにより、すべり角速度のピークが大きくなることを防止でき、トルクに寄与しない電流ベクトルが3相回転機に流れることを回避し易くなる。このことも、上記の悪循環を断ち切ることに寄与する。
本開示の第2態様は、第1態様に加え、
前記第2部分は、前記移動量及び推定された前記一次磁束ベクトルの位相を用いて前記指令位相を特定する、回転機制御装置を提供する。
電流脈動、負荷変動等が原因で、指令磁束ベクトルと実際に3相回転機に印加されている一次磁束ベクトルの不一致が生じる場合がある。そういった状況においても、第2態様のように一次磁束ベクトルの位相をフィードバックすることで、適切な指令磁束ベクトルを生成することが可能となる。具体的には、トルク角の値が実際に印加されている一次磁束ベクトルの位相を基準とした最適な値となるように、指令磁束ベクトルを生成することが可能となる。このような指令磁束ベクトルによれば、無駄な電流を流すことなく同一トルクを発生させることができる。
本開示の第3態様は、第1態様又は第2態様に加え、
前記第1部分は、前記修正トルク成分及び前記振動成分を用いて前記指令速度が小さくなるように前記指令速度を補正し、補正された前記指令速度を用いて前記移動量を特定する、回転機制御装置を提供する。
本開示の第4態様は、第1態様又は第2態様に加え、
前記第1部分は、前記修正トルク成分及び前記振動成分を用いて前記積を小さくすることによって前記移動量を特定する、回転機制御装置を提供する。
第3態様及び第4態様の第1部分によれば、適切に移動量を特定することができる。
本開示の第5態様は、第1〜第4態様に加え、
前記修正トルク特定部は、前記指令速度を用いて前記修正トルク成分を特定する、回転機制御装置を提供する。
修正トルク成分は、電流ベクトルの振幅が電流制限値よりも大きい状況を解消することに寄与する。修正トルク成分は、この状況を素早く解消する必要性と制御の安定性確保の必要性を考慮して特定されることが好ましい。指令速度は、上記状況の解消の素早さと制御の安定性確保のどちらを重視するかを判断する指標となりうる。第5態様では、指令速度を用いて修正トルク成分を特定する。このため、修正トルク成分を、上記状況を素早く解消する必要性と制御の安定性確保の必要性を考慮して特定することができる。過電流に対する応答性を適切に設定することが容易となる。
本開示の第6態様は、第1〜第5態様に加え、
前記回転機制御装置の始動運転において、前記修正トルク特定部が前記修正トルク成分を特定し、前記第1部分が前記指令速度及び前記修正トルク成分を用いて前記移動量を特定し、前記第2部分が前記移動量を用いて前記指令位相を特定し、
前記始動運転は、前記3相回転機の回転速度がゼロである状態において開始される、回転機制御装置を提供する。
回転速度がゼロである状態で始動運転が開始される場合には、3相回転機に印加される電圧ベクトルの振幅がゼロ又は非常に小さい状態で始動運転が開始されることになる。従来技術におけるこのような始動運転では、指令電圧ベクトルの振幅に対する実際に3相回転機に印加される電圧ベクトルの振幅の比率が小さくなり、上記悪循環が発生し易い。このことは、第6態様の始動運転では、上記悪循環を断ち切るという上記効果が好適に発揮され易いことを意味する。
本開示の第7態様は、第1〜第6態様に加え、
前記回転機制御装置の始動運転において、前記修正トルク特定部が前記修正トルク成分を特定し、前記第1部分が前記指令速度及び前記修正トルク成分を用いて前記移動量を特定し、前記第2部分が前記移動量を用いて前記指令位相を特定し、
前記始動運転において、前記指令速度は時間経過とともに増加していく、回転機制御装置を提供する。
従来技術では、始動運転において指令速度が時間経過とともに増加する場合には、時間経過とともにすべり角速度が大きくなり、上記悪循環が発生し易い。このことは、第7態様の始動運転では、上記悪循環を断ち切るという上記効果が好適に発揮され易いことを意味する。
本開示の第8態様は、第1〜第7態様に加え、
前記回転機制御装置の始動運転において、前記修正トルク特定部が前記修正トルク成分を特定し、前記第1部分が前記指令速度及び前記修正トルク成分を用いて前記移動量を特定し、前記第2部分が前記移動量を用いて前記指令位相を特定し、
前記始動運転において前記修正トルク成分がゼロよりも大きい場合には、前記始動運転の終了を禁止する、回転機制御装置を提供する。
修正トルク成分がゼロよりも大きい期間においては、上記悪循環を防止する観点から、始動運転を継続することが好ましい。第8態様によれば、そのような継続が可能となる。
本開示の第9態様は、第1〜第8態様に加え、
前記3相回転機は、誘導回転機である、回転機制御装置を提供する。
従来技術では、3相回転機が誘導回転機である場合には、すべり角速度が大きくなり、上記悪循環が発生し易い。このことは、3相回転機が誘導回転機である場合には、上記悪循環を断ち切るという上記効果が好適に発揮され易いことを意味する。
本開示の第10態様は、
インバータを用いて3相回転機に電圧ベクトルを印加する回転機制御装置であって、
前記3相回転機を流れる電流ベクトルの振幅から電流制限値を差し引いた差分である電流偏差がゼロ以下のとき、前記3相回転機のトルクの振動成分が大きいときほど前記3相回転機の加速度を小さくし、
前記電流偏差がゼロよりも大きいとき、前記電流偏差をゼロに近づけつつ、前記電流偏差が大きいときほど前記3相回転機の加速度を小さくしかつ前記トルクの振動成分が大きいときほど前記3相回転機の加速度を小さくする、回転機制御装置を提供する。
本開示の第11態様は、
3相回転機の一次磁束ベクトルが指令磁束ベクトルに追従するように、インバータを用いて前記3相回転機に電圧ベクトルを印加する回転機制御方法であって、
前記3相回転機の電流ベクトルを用いて、前記電流ベクトルの振幅から電流制限値を差し引いた差分である電流偏差がゼロ以下の場合にはゼロであり、前記電流偏差がゼロよりも大きい場合には前記電流偏差が大きくなるにつれて大きくなる修正トルク成分を特定するステップと、
指令速度及び前記修正トルク成分を用いて、前記一次磁束ベクトルの位相が移動するべき制御周期毎の移動量であって、前記指令速度と制御サイクルの周期との積よりも小さいものであり、前記3相回転機のトルクの振動成分が大きくなるにつれて小さくなるものであり、前記修正トルク成分が大きくなるにつれて小さくなるものであり、前記トルクの振動成分及び前記修正トルク成分の合計がゼロに近づくにつれて前記積に近づいていくものである移動量を特定するステップと、
前記移動量を用いて前記指令磁束ベクトルの位相である指令位相を特定するステップと、
前記指令位相を用いて前記指令磁束ベクトルを特定するステップと、を備えた、回転機制御方法を提供する。
第11態様によれば、第1態様の効果と同じ効果を得ることができる。
本開示の第12態様は、
インバータを用いて3相回転機に電圧ベクトルを印加する回転機制御方法であって、
前記3相回転機を流れる電流ベクトルの振幅から電流制限値を差し引いた差分である電流偏差がゼロ以下のとき、前記3相回転機のトルクの振動成分が大きいときほど前記3相回転機の加速度を小さくし、
前記電流偏差がゼロよりも大きいとき、前記電流偏差をゼロに近づけつつ、前記電流偏差が大きいときほど前記3相回転機の加速度を小さくしかつ前記トルクの振動成分が大きいときほど前記3相回転機の加速度を小さくする、回転機制御方法を提供する。
第12態様によれば、第10態様の効果と同じ効果を得ることができる。
回転機制御装置の技術は、回転機制御方法に適用できる。回転機制御方法の技術は、回転機制御装置に適用できる。
本開示の第13態様は、第11態様又は第12態様の回転機制御方法を実行するための命令を含む、コンピュータプログラムを提供する。
本開示の第14態様は、第13態様のコンピュータプログラムが格納された、コンピュータによる読み取りが可能なメモリを提供する。
本開示の第15態様は、第13態様のコンピュータプログラムを実行するプロセッサを提供する。
本開示の第16態様は、
第13態様のコンピュータプログラムが格納された、コンピュータによる読み取りが可能なメモリと、
前記コンピュータプログラムを実行するプロセッサと、を備えた制御システムを提供する。
以下、本開示の実施の形態を図面に基づいて詳細に説明する。
図1に示すように、本開示の回転機制御装置100(又は200)は、第1電流センサ105aと、第2電流センサ105bと、回転機制御部101(又は201)と、デューティ生成部103とを含んでいる。回転機制御装置100は、インバータ(電力変換回路)104及び3相回転機102に接続され得る。本実施形態では、インバータ104は、PWM方式で電力変換を行うPWMインバータである。
回転機制御部101は、3相回転機102が所望の指令速度での駆動を実現するための構成を有している。また、回転機制御部101は、3相回転機102の速度・位置センサレス運転を実行するように構成されている。速度・位置センサレス運転は、エンコーダ、レゾルバ等の位置センサを用いない運転である。磁束ベクトルは、3相回転機102に印加されている3相交流座標上の電機子鎖交磁束と、この電機子鎖交磁束を座標変換することにより得た磁束の両方を含む概念である。同様に、電流ベクトルは、3相回転機102を流れている3相交流座標上の電流ベクトルと、この電流ベクトルを座標変換することにより得た電流ベクトルの両方を含む概念である。同様に、電圧ベクトルは、3相回転機102に印加されている3相交流座標上の電圧ベクトルと、この電圧ベクトルを座標変換することにより得た電圧ベクトルの両方を含む概念である。本明細書では、「振幅」は、単に大きさ(絶対値)を指す場合がある。
回転機制御装置100の一部又は全部の要素は、DSP(Digital Signal Processor)又はマイクロコンピュータにおいて実行される制御アプリケーションによって提供され得る。DSP又はマイクロコンピュータは、コア、メモリ、A/D変換回路及び通信ポート等の周辺装置を含んでいてもよい。また、回転機制御装置100の一部又は全部の要素は、論理回路によって構成されていてもよい。
(回転機制御装置100を用いた制御の概要)
図1を参照しながら、回転機制御装置100を用いた制御の概要を説明する。電流センサ105a,105bによって、相電流iu,iwが検出される。相電流iu,iwは、U相電流iu及びW相電流iwをまとめて記載したものである。U相電流iu及びW相電流iwは、それぞれ検出された電流ベクトルiaのU相成分及びW相成分である。回転機制御部101によって、指令速度ωref *及び相電流iu,iwから、指令電圧ベクトルvu *,vv *,vw *が特定される。指令電圧ベクトルvu *,vv *,vw *の各成分は、それぞれ3相交流座標上のU相電圧、V相電圧及びW相電圧に対応する。デューティ生成部103によって、指令電圧ベクトルvu *,vv *,vw *から、デューティDu,Dv,Dwが生成される。PWMインバータ104によって、デューティDu,Dv,Dwから、3相回転機102に印加するべき電圧ベクトルvu,vv,vwが生成される。指令速度ωref *は、上位制御装置から回転機制御装置100に与えられる。指令速度ωref *は、3相回転機102が追従するべき回転速度(単位:rad/秒)を表す。このような制御により、3相回転機102は、速度が指令速度ωref *に追従するように制御される。
指令電圧ベクトルvu *,vv *,vw *は、逐次更新される。本明細書では、指令電圧ベクトルvu *,vv *,vw *が更新されてから次に更新されるまでのサイクルを「制御サイクル」と称する。本実施の形態では、制御サイクル毎に、指令電圧ベクトルvu *,vv *,vw *が特定される。特定された指令電圧ベクトルvu *,vv *,vw *は、次の制御サイクルにおいて3相回転機102に印加される電圧ベクトルvu,vv,vwを規定する。本実施の形態の各制御サイクルは、周期Tsを有する。
図2Aに示すdq座標系は、回転座標系である。d軸及びq軸は、回転子磁束ベクトル(二次磁束ベクトル)の回転速度(角速度)と同じ速度で回転する。反時計回り方向が、位相の進み方向である。d軸は、回転子磁束ベクトル(二次磁束ベクトル)の方向に延びる軸として設定されている。q軸は、d軸を進み方向に90度回転させた軸として設定されている。U軸は、U相巻線に対応する。V軸は、V相巻線に対応する。W軸は、W相巻線に対応する。U軸、V軸及びW軸は、回転子が回転しても、回転しない。つまり、U軸、V軸及びW軸は、固定軸である。
回転子速度ω2nは、回転子の速度を表す(図示しない)。二次磁束回転速度ω2fは、二次磁束ベクトルの回転速度を表す。誘導機のような非同期機の場合は回転子速度(回転子の速度)ω2nと二次磁束の回転速度ω2fの間には差があり、この差はすべり角速度ωsと呼ばれる。本明細書では、特に断りが無い限り、角度は電気角を意味する。d軸とq軸との間の角度、角度θ、回転子角速度ω2n及び二次磁束回転速度ω2fは、電気角に基づいた値である。回転子速度ω2n及び二次磁束回転速度ω2fの単位はrad/秒である。なお、上記の説明に係る誘導機では、一次磁束ベクトルの回転速度と二次磁束回転速度ω2fは一致するものとしている。典型的な誘導機では、これらは一致すると考えることができる。
図2Bに示すαβ座標系は、固定座標系である。α軸及びβ軸は、固定軸である。反時計回り方向が、位相の進み方向である。α軸は、U軸と同一方向に延びる軸として設定されている。β軸は、α軸を進み方向に90度回転させた軸として設定されている。
(実施の形態1A)
(回転機制御部101について)
図3Aに示すように、回転機制御部101は、u,w/α,β変換部(3相2相座標変換部)106、指令電圧特定部107、磁束推定部108、トルク推定部109、指令振幅特定部122、修正トルク特定部128、指令位相特定部127a、指令磁束特定部112、α軸磁束偏差特定部113a、β軸磁束偏差特定部113b及びα,β/u,v,w変換部(2相3相座標変換部)114を含んでいる。
本実施の形態では、回転機制御部101は、始動運転において、以下のように動作する。ただし、回転機制御部101は、始動運転以外の運転において、以下のように動作するものであってもよい。
u,w/α,β変換部106によって、相電流iu,iwが、軸電流iα,iβに変換される。軸電流iα,iβは、3相回転機102のα−β座標上におけるα軸電流iα及びβ軸電流iβをまとめて記載したものである。相電流iu,iw及び軸電流iα,iβは電流ベクトルであるので、相電流iu,iw及び軸電流iα,iβをそれぞれ電流ベクトルiu,iw及び電流ベクトルiα,iβと称することができる。磁束推定部108によって、指令軸電圧vα *,vβ *及び軸電流iα,iβから、3相回転機102の磁束ベクトルが推定される(推定一次磁束ψsが特定される)。推定一次磁束ψsのα軸成分及びβ軸成分をそれぞれ推定一次磁束ψα及び推定一次磁束ψβと記載する。推定一次磁束ψsの振幅を|ψs|と記載する。軸指令電圧vα *,vβ *は、次の制御サイクルにおいて回転機に印加される電圧ベクトルを規定するものである。トルク推定部109によって、推定一次磁束ψα,ψβ及び軸電流iα,iβから、3相回転機102のトルクが推定される(推定トルクTeが特定される)。指令振幅特定部122によって、指令振幅|ψs *|が特定される。修正トルク特定部128によって、軸電流iα,iβから、修正トルク成分ΔTが特定される。指令位相特定部127aによって、指令速度ωref *、推定トルクTe及び修正トルク成分ΔTから、指令位相θs *が特定される。指令磁束特定部112によって、指令位相θs *及び指令振幅|ψs *|から、指令磁束ベクトルψs *が特定される。指令磁束ベクトルψs *のα軸成分及びβ軸成分を、それぞれα軸指令磁束ψα *及びβ軸指令磁束ψβ *と記載する。α軸磁束偏差特定部113aによって、α軸指令磁束ψα *と推定一次磁束ψαとの偏差(磁束偏差Δψα=ψα *−ψα)が求められる。β軸磁束偏差特定部113bによって、β軸指令磁束ψβ *と推定一次磁束ψβとの偏差(磁束偏差Δψβ=ψβ *−ψβ)が求められる。指令電圧特定部107によって、磁束偏差Δψα,Δψβ及び軸電流iα,iβから、指令軸電圧vα *,vβ *が特定される。指令軸電圧vα *,vβ *は、3相回転機102のα−β座標上におけるα軸指令電圧vα *及びβ軸指令電圧vβ *をまとめて記載したものである。指令軸電圧vα *,vβ *は電圧ベクトルであるので、指令軸電圧vα *,vβ *を指令電圧ベクトルvα *,vβ *と称することができる。α,β/u,v,w変換部114によって、指令軸電圧vα *,vβ *が、指令電圧ベクトルvu *,vv *,vw *に変換される。
このような制御(フィードバック制御)により、3相回転機102の磁束ベクトルが指令磁束ベクトルψs *に追従する(3相回転機102の一次磁束ベクトルの振幅が指令振幅|ψs *|に追従する)ように、PWMインバータ104を介して3相回転機102に電圧ベクトルが印加される。
本明細書では、軸電流iα,iβは、実際に3相回転機102を流れる電流ではなく、情報として伝達される電流値を意味する。指令軸電圧vα *,vβ *、推定一次磁束ψs(磁束ψα,ψβ)、推定トルクTe、修正トルク成分ΔT、指令速度ωref *、指令位相θs *、指令振幅|ψs *|、指令磁束ベクトルψs *、指令電圧ベクトルvu *,vv *,vw *等も同様である。
本実施の形態の制御に関する各構成要素について、以下で説明する。以下で説明する各構成要素の動作は、始動運転における動作である。ただし、各構成要素は、始動運転以外において、以下で説明するように動作するものであってもよい。
(第1電流センサ105a、第2電流センサ105b)
第1電流センサ105a及び第2電流センサ105bは、3相回転機102の相電流(電流ベクトル)iu,iwを検出する。図1に示す第1電流センサ105a及び第2電流センサ105bとして、公知の電流センサを用いることができる。本実施の形態では、第1電流センサ105aは、u相を流れる相電流iuを測定するように設けられている。第2電流センサ105bは、w相を流れる相電流iwを測定するように設けられている。ただし、第1電流センサ105a及び第2電流センサ105bは、u相及びw相の2相以外の組み合わせの2相の電流を測定するように設けられていてもよい。以下では、第1電流センサ105a及び第2電流センサ105bの組み合わせを電流検出部と称することがある。電流検出部は、電流ベクトルを検出する。
(u,w/α,β変換部106)
図3Aに示すu,w/α,β変換部106は、相電流iu,iwを軸電流iα,iβに変換する。具体的に、u,w/α,β変換部106は、式(1−1)及び(1−2)により、相電流iu,iwを軸電流iα,iβに変換して、軸電流iα,iβを出力する。
Figure 2018160959
Figure 2018160959
(磁束推定部108)
磁束推定部108は、前の制御サイクルにおいて特定された指令軸電圧(指令電圧ベクトル)vα *,vβ *を用いて、現在の制御サイクルにおける3相回転機102の一次磁束ベクトルを推定する(推定一次磁束ψsを特定する)。具体的には、磁束推定部108は、軸電流iα,iβ及び指令軸電圧vα *,vβ *から、推定一次磁束ψs(推定一次磁束ψα,ψβ)を求める。より具体的には、磁束推定部108は、式(1−3)、(1−4)及び(1−5)を用いて、推定一次磁束ψα,ψβ、及び推定一次磁束ψsの振幅|ψs|を求める。式(1−3)及び(1−4)におけるψα|t=0、ψβ|t=0は、それぞれ推定一次磁束ψα,ψβの初期値である。式(1−3)及び(1−4)におけるRaは、3相回転機102の固定子抵抗である。本実施の形態では、式(1−3)及び(1−4)における演算のために必要となる積分器は離散系で構成されている。
Figure 2018160959
Figure 2018160959
Figure 2018160959
推定一次磁束ψsの特定の際に、指令電圧ベクトル(指令軸電圧vαβ *)に代えて、検出された3相回転機102の電圧ベクトル(2相電圧vαβ)を用いることもできる。すなわち、式(1−3)の「vα *」を「vα」に置き換え、式(1−4)の「vβ *」を「vβ」に置き換えることができる。具体的には、磁束推定部108は、3相回転機102に印加されている電圧ベクトルの検出値を3相2相変換させて得た2相電圧(2相電圧vαβ)を用いて推定一次磁束ψsを特定するものであってもよい。
(トルク推定部109)
トルク推定部109は、検出された電流ベクトルia(軸電流iα,iβ)と、現在の制御サイクルにおいて推定された一次磁束ベクトルである推定一次磁束ψα,ψβとから、現在の制御サイクルにおけるトルクを推定する(推定トルクTeを特定する)。具体的には、トルク推定部109は、式(1−6)を用いて、推定トルクTeを求める。式(1−6)におけるNpは、3相回転機102の極対数である。
Figure 2018160959
(指令振幅特定部122)
指令振幅特定部122は、指令振幅|ψs *|を特定する。指令振幅|ψs *|は、指令磁束ベクトルψs *の振幅である。具体的には、3相回転機102が同期機の場合、指令振幅特定部122は、式(1−7A)に示すように、磁束パラメータψaに任意の磁束Δψを加算して、指令振幅|ψs *|を求める。磁束パラメータψaは、3相回転機102における永久磁石が作る磁石磁束の振幅として与えられた定数(モータパラメータ)である。磁束Δψは、正の値、負の値又はゼロである。磁束Δψは、定数であってもよく、変数であってもよい。また、3相回転機102が誘導機の場合、式(1−7B)に示すように、指令振幅|ψs *|を、電圧Va_ratedを回転速度ωratedで割った値としてもよい。電圧Va_ratedは、定格運転時における3相回転機102の電圧ベクトルの振幅である。回転速度ωratedは、定格運転時における3相回転機102の回転速度である。
Figure 2018160959
(修正トルク特定部128)
図3A及び図4に示すように、修正トルク特定部128は、軸電流iα,iβから、修正トルク成分ΔTを特定する。本実施の形態では、修正トルク特定部128は、振幅演算部131、偏差特定部132、制限値出力部133、PI補償器134及び修正トルクリミッタ135を有している。
振幅演算部131は、式(1−8)を用いて、軸電流iα,iβから電流ベクトルの振幅Iaを求める。
Figure 2018160959
制限値出力部133は、電流制限値Ia_LIMITを出力する。電流制限値Ia_LIMITは、任意の値である。本実施の形態では、電流制限値Ia_LIMITは、3相回転機102の始動運転が行われる前に予め格納されている。電流制限値Ia_LIMITは、始動運転の開始時に上位制御装置から制限値出力部133に与えられるものであってもよい。
本実施の形態では、インバータ104は、自身から出力される電流ベクトルの振幅が所定値に達したときに運転を停止するという保護機能を有している。電流制限値Ia_LIMITは、その所定値よりも小さい値に設定することができる。
偏差特定部132は、振幅Iaから電流制限値Ia_LIMITを差し引くことによって電流偏差Δe(=Ia−Ia_LIMIT)を特定する。
PI補償器134は、電流偏差Δeがゼロになるように、式(1−9)を用いて、リミッタ前修正トルク成分ΔT0を特定する。式(1−9)におけるKiPは比例ゲインである。KiIは積分ゲインである。本実施の形態では、式(1−9)における演算のために必要となる積分器は、離散系で構成されている。
Figure 2018160959
修正トルクリミッタ135は、式(1−10)に示すように、リミッタ前修正トルク成分ΔT0を用いて修正トルク成分ΔTを特定する。リミッタ前修正トルク成分ΔT0がゼロ以上である場合、修正トルクリミッタ135は、修正トルク成分ΔTとして、リミッタ前修正トルク成分ΔT0と同じ値を出力する。リミッタ前修正トルク成分ΔT0がゼロ未満である場合、修正トルクリミッタ135は、修正トルク成分ΔTとして、ゼロを出力する。このようにして、修正トルクリミッタ135は、修正トルク成分ΔTをゼロ以上の値に制限する。
Figure 2018160959
(指令位相特定部127a)
指令位相特定部127aは、指令速度ωref *、推定トルクTe及び修正トルク成分ΔTから、指令磁束ベクトルψs *の位相θs *を特定する。図5Aに示すように、指令位相特定部127aは、ハイパスフィルタ161と、トルク加算部162と、ゲイン乗算部163と、速度偏差演算部164と、速度偏差積分器165と、を有している。指令位相特定部127aは、離散系で構成されている。本明細書では、指令磁束ベクトルψs *の位相θs *を、指令位相θs *と称することがある。
(ハイパスフィルタ161)
ハイパスフィルタ161は、推定トルクTeの振動成分(トルク振動成分)THのみを特定(抽出)する。
(トルク加算部162)
トルク加算部162は、トルク振動成分THに修正トルク成分ΔTを加算して、合計TH+ΔTを特定する。
(ゲイン乗算部163)
ゲイン乗算部163は、合計TH+ΔTにゲインK1を乗じて、速度振動成分K1(TH+ΔT)を特定する。
ハイパスフィルタ161、トルク加算部162及びゲイン乗算部163の動作は、式(1−11)によって表現される。gはカットオフ周波数であり、単位は[rad/s]である。sはラプラス演算子である。
Figure 2018160959
(速度偏差演算部164)
速度偏差演算部164は、指令速度ωref *と速度振動成分K1(TH+ΔT)の速度偏差ωref *−K1(TH+ΔT)を演算する。ωref *−K1(TH+ΔT)は、補正された指令速度と考えることができる。
(速度偏差積分器165)
速度偏差積分器165は、速度偏差ωref *−K1(TH+ΔT)を積分する。これにより、指令磁束ベクトルψs *の位相θs *を得る。本実施の形態の速度偏差積分器165は離散系で構成されている。従って、速度偏差積分器165は、速度偏差(補正された指令速度)ωref *−K1(TH+ΔT)を用いて回転機磁束ψsの位相θが移動するべき制御周期毎の移動量を特定し、特定された移動量を用いて(具体的には積算して)指令磁束ベクトルψs *の位相(指令位相)θs *を特定すると言える。
速度偏差演算部164及び速度偏差積分器165の動作は、式(1−12)によって表現される。
Figure 2018160959
以下では、指令位相特定部127aのうち、移動量を特定するまでの部分を第1部分と称することがある。また、指令位相特定部127aのうち、移動量を用いて指令位相θs *を特定する部分を第2部分と称することがある。図5Aの例では、ハイパスフィルタ161と、トルク加算部162と、ゲイン乗算部163と、速度偏差演算部164と、速度偏差積分器165の一部と、の組み合わせが、第1部分に対応する。速度偏差積分器165の残部が、第2部分に対応する。
本実施の形態では、トルク推定部109は、推定された回転機磁束(推定一次磁束ψs)と、軸電流iα,iβと、を用いて3相回転機102のトルクを推定する(推定トルクTeを求める)。修正トルク特定部128は、軸電流iα,iβから、修正トルク成分ΔTを特定する。指令位相特定部127aは、ハイパスフィルタ161によって、推定トルクTeから、3相回転機102のトルクの振動成分(トルク振動成分)THを推定(特定)する。指令位相特定部127aは、推定されたトルク振動成分TH及び修正トルク成分ΔTを用いて指令速度ωref *を補正し、補正された指令速度ωref *−K1(TH+ΔT)を用いて移動量を特定し、特定された移動量を用いて(具体的には、積算して)指令磁束ベクトルψs *の位相θs *を特定している。
なお、指令位相特定部127aに多少の変更を加えても本実施の形態の効果と同様の効果を得ることができる。例えば、トルク加算部162とゲイン乗算部163との間にトルク振動成分TH及び修正トルク成分ΔTに−1を乗ずる符号反転部を設けるとともに、速度偏差演算部164を加算部に置き換えてもよい。このような変更を加え、トルク振動成分TH及び修正トルク成分ΔTに代えてこれらに−1を乗じたもの(−TH−ΔT)を用いても、同じ効果を得ることができる。
(指令磁束特定部112)
指令磁束特定部112は、制御サイクル毎に、指令位相θs *及び指令振幅|ψs *|を用いて、指令磁束ベクトルψs *を特定する。特定された指令磁束ベクトルψs *は、次の制御サイクルにおいて3相回転機102に印加される磁束ベクトルを規定する。具体的に、指令磁束特定部112は、式(1−13)及び(1−14)を用いて、指令磁束ベクトルψα *,ψβ *を求める。指令磁束ψα *は、指令磁束ベクトルψα *,ψβ *のα軸成分である。指令磁束ψβ *は、指令磁束ベクトルψα *,ψβ *のβ軸成分である。
Figure 2018160959
Figure 2018160959
なお、指令振幅特定部122、指令位相特定部127a及び指令磁束特定部112は、1つのまとまった演算部を構成していてもよい。
(α軸磁束偏差特定部113a、β軸磁束偏差特定部113b)
α軸磁束偏差特定部113aは、指令磁束ψα *と推定一次磁束ψαを取得し、これらの偏差(磁束偏差Δψα:ψα *−ψα)を求める。β軸磁束偏差特定部113bは、指令磁束ψβ *と推定一次磁束ψβを取得し、これらの偏差(磁束偏差Δψβ:ψβ *−ψβ)を求める。磁束偏差特定部113a,113bとしては、公知の演算子を用いることができる。
(指令電圧特定部107)
指令電圧特定部107は、制御サイクル毎に、指令軸電圧(指令電圧ベクトル)vα *,vβ *を特定する。特定された指令軸電圧vα *,vβ *は、次の制御サイクルにおいて3相回転機102に印加される電圧ベクトルを規定する。具体的には、指令電圧特定部107は、磁束偏差Δψα,Δψβ及び軸電流iα,iβから、指令軸電圧vα *,vβ *を求める。より具体的には、指令電圧特定部107は、式(1−15)を用いてα軸指令電圧vα *を求め、式(1−16)を用いてβ軸指令電圧vβ *を求める。
Figure 2018160959
Figure 2018160959
(α,β/u,v,w変換部114)
α,β/u,v,w変換部114は、指令軸電圧vα *,vβ *を、指令電圧ベクトルvu *,vv *,vw *に変換する。具体的に、α,β/u,v,w変換部114は、式(1−17)により、指令軸電圧vα *,vβ *を指令電圧ベクトルvu *,vv *,vw *に変換して、指令電圧ベクトルvu *,vv *,vw *を出力する。
Figure 2018160959
(デューティ生成部103)
図1に示すデューティ生成部103は、指令電圧ベクトルvu *,vv *,vw *から、デューティDu,Dv,Dwを生成する。本実施の形態では、デューティ生成部103は、指令電圧ベクトルvu *,vv *,vw *の各成分を、各相のデューティDu,Dv,Dwに変換する。デューティDu,Dv,Dwの生成方法としては、一般的な電圧形PWMインバータに用いられる方法を用いることができる。例えば、デューティDu,Dv,Dwは、指令電圧ベクトルvu *,vv *,vw *を、直流電源118(図6)の電圧値Vdcの半分の値で除すことにより求めてもよい。この場合、デューティDuは、2×vu */Vdcである。デューティDvは、2×vv */Vdcである。デューティDwは、2×vw */Vdcである。デューティ生成部103は、デューティDu,Dv,Dwを出力する。
(PWMインバータ104)
図1及び図6に示すように、PWMインバータ104は、スイッチング素子119a,119b,119c,119d,119e,119f及び還流ダイオード120a,120b,120c,120d,120e,120fが対になった変換回路、ベースドライバ116、平滑コンデンサ117及び直流電源118を含む。直流電源118は、ダイオードブリッジ等によって整流された出力を表す。
PWMインバータ104は、PWM制御によって3相回転機102に電圧ベクトルを印加する。具体的には、3相回転機102への給電は、スイッチング素子119a〜119fを介して、直流電源118から行われる。より具体的には、まず、デューティDu,Dv,Dwがベースドライバ116に入力される。次に、デューティDu,Dv,Dwがスイッチング素子119a〜119fを電気的に駆動するためのドライブ信号に変換される。次に、ドライブ信号に従って各スイッチング素子119a〜119fが動作する。
本実施の形態では、PWMインバータ104は、スイッチング素子119a〜119fを用いた3相スイッチング回路である。スイッチング素子119a〜119fとしては、例えば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)及びIGBT(Insulated Gate Bipolar Transistor)が挙げられる。
本実施の形態の回転機制御装置100は、PMWインバータ104を用いて、電圧ベクトルを3相回転機102に印加する。具体的には、回転機制御装置100は、PMWインバータ104を用いて、前の制御サイクルにおいて特定された現在の制御サイクル用の指令電圧ベクトルを平均値とする電圧ベクトルを3相回転機102に印加する。
(3相回転機102)
図1に示す3相回転機102は、回転機制御装置100の制御対象である。3相回転機102は、電動機であってもよく発電機であってもよい。3相回転機102には、PWMインバータ104によって、電圧ベクトルが印加される。「3相回転機102に電圧ベクトルが印加される」とは、3相回転機102における3相交流座標上の3相(U相、V相、W相)の各々に電圧が印加されることを指す。本実施の形態では、3相(U相、V相、W相)の各々が、相対的に高電圧を有する高電圧相と、相対的に低電圧を有する低電圧相との2種類から選択されるいずれかとなるように、3相回転機102が制御される。
3相回転機102は、例えば、永久磁石同期モータである。永久磁石同期モータとしては、IPMSM(Interior Permanent Magnet Synchronous Motor)及びSPMSM(Surface Permanent Magnet Synchronous Motor)が挙げられる。IPMSMは、d軸インダクタンスLdとq軸インダクタンスLqとが相違する突極性(一般には、Lq>Ldの逆突極性)を有し、マグネットトルクに加えてリラクタンストルクも利用できる。このため、IPMSMの駆動効率は極めて高い。3相回転機102としては、誘導機、シンクロリラクタンスモータを用いることもできる。3相回転機102として用いられる誘導機としては、三相かご形誘導電動機が例示される。一般的には三相かご形誘導電動機では始動電流が大きくなる傾向にあるが、本実施の形態によれば始動電流を抑えることができる。もちろん、始動電流を抑える効果は、他の種類の回転機においても発揮される。
(本実施の形態の効果)
図4及び図5Aを用いた説明により理解されるように、本実施の形態によれば、修正トルク特定部128において、電流ベクトルの振幅Iaが電流制限値Ia_LIMITを超えることを防止するのに適した修正トルク成分ΔTが特定される。指令位相特定部127aにおいて、速度振動成分K1(TH+ΔT)の分だけ指令速度ωref *を小さくする補正が行われる。これにより、この補正を行わない場合に比べ、指令位相θs *の回転速度を、速度振動成分K1(TH+ΔT)の分だけ強制的に小さくすることができる。これにより、すべり角速度が大きくなることを防止できる。すべり角速度が大きくなることでトルクに寄与しない電流ベクトルが大きくなり、トルクに寄与しない電流ベクトルが大きくなることですべり角速度が大きくなるという悪循環を断ち切ることができる。本実施の形態によれば、修正トルク成分ΔT及びトルク振動成分THによりトルクが補償され、同一電流ベクトルに対するトルクが増加する。これにより、回転子の引き込みを安定して行うことができるようになり、3相回転機102の脱調が発生し難くなる。また、インバータ104において過電流が発生し難くなり、インバータ104の保護機能が働きインバータ104が停止するという事態を回避し易くなる。なお、修正トルク成分ΔTはトルクの直流成分を補償し、トルク振動成分THはトルクの振動成分を補償する。
(実施の形態1B)
以下、実施の形態1Bの回転機制御装置200について説明する。なお、実施の形態1Bでは、実施の形態1Aと同様の部分については同一符号を付し、説明を省略することがある。
図3Bに示すように、実施の形態1Bの回転機制御部201は、指令位相特定部127aに代えて、指令位相特定部127bを有している。また、回転機制御部201は、位相推定部240を有している。
(位相推定部240)
位相推定部240は、推定一次磁束ψs(推定一次磁束ψα,ψβ)から推定一次磁束ψsの位相θsを特定する。具体的に、位相推定部240は、式(2−1)により、推定一次磁束ψsの位相θsを求める。
Figure 2018160959
(指令位相特定部127b)
指令位相特定部127bは、指令速度ωref *と、推定トルクTeと、修正トルク成分ΔTと、推定一次磁束ψsの位相θsとから、指令磁束ベクトルψs *の位相θs *を特定する。図5Bに示すように、指令位相特定部127bは、ハイパスフィルタ161と、トルク加算部162と、ゲイン乗算部163と、速度偏差演算部164と、乗算部266と、位相加算演算部267とを有している。
(乗算部266)
乗算部266は、速度偏差演算部164により生成された速度偏差ωref *−K1(TH+ΔT)に制御周期TSを乗ずることによって移動量Δθを求める。
(位相加算演算部267)
位相加算演算部267は、推定一次磁束ψsの位相θsに乗算部266により生成された移動量Δθを加算することによって、指令磁束ベクトルψs *の位相θs *を求める。
以下では、指令位相特定部127bのうち、移動量を特定するまでの部分を第1部分と称することがある。また、指令位相特定部127bのうち、移動量を用いて指令位相θs *を特定する部分を第2部分と称することがある。図5Bの例では、ハイパスフィルタ161と、トルク加算部162と、ゲイン乗算部163と、速度偏差演算部164と、乗算部266と、の組み合わせが、第1部分に対応する。位相加算演算部267が、第2部分に対応する。
本実施の形態の指令位相特定部127bは、推定されたトルク振動成分THと修正トルク成分ΔTを用いて指令速度ωref *を補正し、補正された指令速度ωref *−K1(TH+ΔT)を用いて移動量Δθを特定し、特定された移動量Δθを用いて(具体的には、位相推定部240で推定された回転機磁束ψsの位相θsと移動量Δθとを足し合わせて)指令磁束ベクトルψs *の位相θs *を特定する。
電流脈動、負荷変動等が原因で、指令磁束ベクトルψs *と実際に3相回転機に印加されている一次磁束ベクトルの不一致が生じる場合がある。そういった状況においても、本実施の形態のように一次磁束ベクトルの位相をフィードバックすることで、適切な指令磁束ベクトルψs *を生成することが可能となる。具体的には、トルク角の値が実際に印加されている一次磁束ベクトルの位相を基準とした最適な値となるように、指令磁束ベクトルψs *を生成することが可能となる。このような指令磁束ベクトルψs *によれば、無駄な電流を流すことなく同一トルクを発生させることができる。
(実施の形態1C)
以下、実施の形態1Cの回転機制御装置について説明する。なお、実施の形態1Cでは、実施の形態1Bと同様の部分については同一符号を付し、説明を省略することがある。
実施の形態1Cの回転機制御部は、実施の形態1Bの位相特定部127bに代えて、図5Cに示す指令位相特定部127cを有している。
(指令位相特定部127c)
指令位相特定部127cは、指令速度ωref *と、推定トルクTeと、修正トルク成分ΔTと、推定一次磁束ψsの位相θsとから、指令磁束ベクトルψs *の位相θs *を特定する。図5Cに示すように、指令位相特定部127cは、ハイパスフィルタ161と、トルク加算部162と、符号反転部268と、PI補償器269、乗算部266と、加算部270と、位相加算演算部267とを有している。
(符号反転部268)
符号反転部268は、トルク振動成分THと修正トルク成分ΔTに−1を乗ずることによってトルクの補正成分−TH−ΔTを求める。
(PI補償部269)
PI補償部269は、補正成分−TH−ΔTを取得し、これがゼロとなるように補正量Δωref *Sを特定する。具体的には、式(2−2)に示すように、トルク補正成分−TH−ΔTを入力とした比例・積分演算を実施することにより補正量Δωref *Sを求める。
Figure 2018160959
(加算部270)
加算部270は、補正量Δωref *Sを用いて移動量ωref *Sを補正する。具体的には、移動量ωref *Sに補正量Δωref *Sを加算することによって、移動量Δθを求める。
実施の形態1Cでは、指令位相特定部127cにおいて、補正成分−TH−ΔTを推定する。指令位相特定部127cにおいて、指令速度ωref *を用いて移動量ωref *Sを特定し、特定された移動量ωref *Sを推定された補正成分−TH−ΔTを用いて補正し、補正された移動量Δθを用いて(具体的には、位相推定部240で推定された回転機磁束ψsの位相θsと、補正された移動量Δθとを足し合わせて)指令磁束ベクトルψs *の位相θs *を特定する。
以下では、指令位相特定部127cのうち、移動量を特定するまでの部分を第1部分と称することがある。また、指令位相特定部127cのうち、移動量を用いて指令位相θs *を特定する部分を第2部分と称することがある。図5Cの例では、ハイパスフィルタ161と、トルク加算部162と、符号反転部268と、PI補償器269、乗算部266と、加算部270と、の組み合わせが、第1部分に対応する。位相加算演算部267が、第2部分に対応する。
図5B及び図5Cから理解されるように、実施の形態1Bの指令位相特定部127bの動作と実施の形態1Cの指令位相特定部127cの動作とはよく似ている。ゲイン乗算部163でトルク振動成分THと修正トルク成分ΔTにゲインK1を乗じ、速度偏差演算部164で−1を乗じ、乗算部266で制御周期TSを乗じて得られる演算結果(図5B)と、符号反転部268でトルク振動成分THと修正トルク成分ΔTに−1を乗じ、PI補償部269においてその機能一部として比例制御を行って得られる演算結果(図5C)と、は対応するためである。ただし、実施の形態1Cではトルク補正成分−TH−ΔTを入力とした積分制御(PI補償部269の機能の一部)を行う点が、実施の形態1Bと相違する。指令位相特定部127cは、積分制御を行うため、指令位相特定部127bよりも、精度よく指令磁束ベクトルψs *の位相θs *を特定することができる。また、PI補償部269に代えてP補償部を用いたりI補償部を用いたりすることもできる。
(実施の形態2A)
以下、実施の形態2Aの回転機制御装置について説明する。なお、実施の形態2Aでは、実施の形態1Aと同様の部分については同一符号を付し、説明を省略することがある。
実施の形態2Aの回転機制御部は、実施の形態1Aの指令位相特定部127aに代えて、図7Aに示す指令位相特定部227aを有している。
(指令位相特定部227a)
指令位相特定部227aは、指令速度ωref *と、推定トルクTeと、修正トルク成分ΔTとから、指令磁束ベクトルψs *の位相θs *を特定する。図7Aに示すように、指令位相特定部227aは、ローパスフィルタ271と、トルク減算部262と、減算部272と、ゲイン乗算部163と、速度偏差演算部164と、速度偏差積分器165と、を有している。指令位相特定部227aは、離散系で構成されている。
(ローパスフィルタ271)
ローパスフィルタ271は、推定トルクTeから定常成分TLを抽出する。
(トルク減算部262)
トルク減算部262は、定常成分TLから修正トルク成分ΔTを減算して、差分TL−ΔTを特定する。
(減算部272)
減算部272は、差分TL−ΔTから推定トルクTe(=TL+TH)を減じることにより、トルク補正成分−TH−ΔTを求める。
以下では、指令位相特定部227aのうち、移動量を特定するまでの部分を第1部分と称することがある。また、指令位相特定部227aのうち、移動量を用いて指令位相θs *を特定する部分を第2部分と称することがある。図7Aの例では、ローパスフィルタ271と、トルク減算部262と、減算部272と、ゲイン乗算部163と、速度偏差演算部164と、速度偏差積分器165の一部と、の組み合わせが、第1部分に対応する。速度偏差積分器165の残部が、第2部分に対応する。
実施の形態2Aでは、トルク補正成分−TH−ΔTが、ゲイン乗算部163に入力される。この入力は、図5Aのゲイン乗算部163への入力と同じである。従って、実施の形態2Aによれば、実施の形態1Aと同じ効果が得られる。
(実施の形態2B)
図7Bに、実施の形態2Bの指令位相特定部227bを示す。指令位相特定部227bは、指令速度ωref *と、推定トルクTeと、修正トルク成分ΔTと、推定一次磁束ψsの位相θsとから、指令磁束ベクトルψs *の位相θs *を特定する。指令位相特定部227bは、実施の形態1Bの指令位相特定部127bにおけるハイパスフィルタ161及びトルク加算部162に代えて、実施の形態2Aで説明したローパスフィルタ271、トルク減算部262及び減算部272を有している。実施の形態2Bによれば、実施の形態1Bと同じ効果が得られる。
以下では、指令位相特定部227bのうち、移動量を特定するまでの部分を第1部分と称することがある。また、指令位相特定部227bのうち、移動量を用いて指令位相θs *を特定する部分を第2部分と称することがある。図7Bの例では、ローパスフィルタ271と、トルク減算部262と、減算部272と、ゲイン乗算部163と、速度偏差演算部164と、乗算部266と、の組み合わせが、第1部分に対応する。位相加算演算部267が、第2部分に対応する。
(実施の形態2C)
図7Cに、実施の形態2Cの指令位相特定部227cを示す。指令位相特定部227cは、指令速度ωref *と、推定トルクTeと、修正トルク成分ΔTと、推定一次磁束ψsの位相θsとから、指令磁束ベクトルψs *の位相θs *を特定する。指令位相特定部227cは、実施の形態1Cの指令位相特定部127cにおけるハイパスフィルタ161及びトルク加算部162に代えて、実施の形態2Aで説明したローパスフィルタ271、トルク減算部262及び減算部272を有している。実施の形態2Cによれば、実施の形態1Cと同じ効果が得られる。
以下では、指令位相特定部227cのうち、移動量を特定するまでの部分を第1部分と称することがある。また、指令位相特定部227cのうち、移動量を用いて指令位相θs *を特定する部分を第2部分と称することがある。図7Cの例では、ローパスフィルタ271と、トルク減算部262と、減算部272と、PI補償器269と、乗算部266と、加算部270と、の組み合わせが、第1部分に対応する。位相加算演算部267が、第2部分に対応する。
(実施の形態3A)
以下、実施の形態3Aの回転機制御装置について説明する。なお、実施の形態3Aでは、実施の形態2Aと同様の部分については同一符号を付し、説明を省略することがある。
実施の形態3Aの回転機制御部は、実施の形態2Aの指令位相特定部227aに代えて、図8Aに示す指令位相特定部327aを有している。
(指令位相特定部327a)
指令位相特定部327aは、指令速度ωref *と、推定トルクTeと、修正トルク成分ΔTとから、指令磁束ベクトルψs *の位相θs *を特定する。図8Aに示すように、指令位相特定部327aは、トルク減算部262と減算部272との間にトルクリミッタ273が設けられている点で、指令位相特定部227aとは相違する。
(トルクリミッタ273)
トルクリミッタ273は、差分TL−ΔTから、トルク制限値Tlimを特定する。具体的に、トルクリミッタ273は、式(2−3)及び(2−4)を用いて、トルク制限値Tlimを求める。差分TL−ΔTがトルク制限値Tlim以下である場合、トルクリミッタ273は、差分TL−ΔTを減算部272に与える。この場合、指令位相特定部327aで特定される指令位相θs *は、指令位相特定部227aで特定される指令位相θs *と同じとなる。一方、差分TL−ΔTがトルク制限値Tlimよりも大きい場合、トルクリミッタ273は、トルク制限値Tlimを減算部272に与える。なお、Iamは電流制限値を意味する。本実施形態では、電流制限値Iamは、固定値である。電流制限値Iam及びトルク制限値Tlimの詳細については、非特許文献1を参照されたい。
Figure 2018160959
以下では、指令位相特定部327aのうち、移動量を特定するまでの部分を第1部分と称することがある。また、指令位相特定部327aのうち、移動量を用いて指令位相θs *を特定する部分を第2部分と称することがある。図8Aの例では、ローパスフィルタ271と、トルク減算部262と、トルクリミッタ273と、減算部272と、ゲイン乗算部163と、速度偏差演算部164と、速度偏差積分器165の一部と、の組み合わせが、第1部分に対応する。速度偏差積分器165の残部が、第2部分に対応する。
(実施の形態3B)
図8Bに、実施の形態3Bの指令位相特定部327bを示す。指令位相特定部327bは、指令速度ωref *と、推定トルクTeと、修正トルク成分ΔTと、推定一次磁束ψsの位相θsとから、指令磁束ベクトルψs *の位相θs *を特定する。指令位相特定部327bは、トルク減算部262と減算部272との間に、実施の形態3Aで説明したトルクリミッタ273が設けられている点で、指令位相特定部227bとは相違する。
以下では、指令位相特定部327bのうち、移動量を特定するまでの部分を第1部分と称することがある。また、指令位相特定部327bのうち、移動量を用いて指令位相θs *を特定する部分を第2部分と称することがある。図8Bの例では、ローパスフィルタ271と、トルク減算部262と、トルクリミッタ273と、減算部272と、ゲイン乗算部163と、速度偏差演算部164と、乗算部266と、の組み合わせが、第1部分に対応する。位相加算演算部267が、第2部分に対応する。
(実施の形態3C)
図8Cに、実施の形態3Cの指令位相特定部327cを示す。指令位相特定部327cは、指令速度ωref *と、推定トルクTeと、修正トルク成分ΔTと、推定一次磁束ψsの位相θsとから、指令磁束ベクトルψs *の位相θs *を特定する。指令位相特定部327cは、トルク減算部262と減算部272との間に、実施の形態3Aで説明したトルクリミッタ273が設けられている点で、指令位相特定部227cとは相違する。
以下では、指令位相特定部327cのうち、移動量を特定するまでの部分を第1部分と称することがある。また、指令位相特定部327cのうち、移動量を用いて指令位相θs *を特定する部分を第2部分と称することがある。図8Cの例では、ローパスフィルタ271と、トルク減算部262と、トルクリミッタ273と、減算部272と、PI補償器269と、乗算部266と、加算部270と、の組み合わせが、第1部分に対応する。位相加算演算部267が、第2部分に対応する。
実施の形態3A〜3Cによれば、3相回転機102の電流ベクトルの振幅が電流制限値Iamを超えることを防止できる。このため、3相回転機102の始動電流を抑えることができる。また、負荷変動が生じた場合においても、電流ベクトルの振幅が電流制限値Iamを超えない状態で3相回転機102を動作させることが可能となる。
以上の説明から理解されるように、実施の形態1A〜3Cの回転機制御装置は、3相回転機102の一次磁束ベクトルが指令磁束ベクトルに追従するように、インバータ104を用いて3相回転機102に電圧ベクトルを印加する。回転機制御装置は、修正トルク特定部128と、第1部分と、第2部分と、指令磁束特定部112と、を備えている。修正トルク特定部128は、3相回転機102の電流ベクトルを用いて、電流ベクトルの振幅Iaから電流制限値Ia_LIMITを差し引いた差分である電流偏差Δeがゼロ以下の場合にはゼロであり、電流偏差Δeがゼロよりも大きい場合には電流偏差Δeが大きくなるにつれて大きくなる修正トルク成分ΔTを特定する。第1部分は、指令位相特定部の一部である。第1部分は、指令速度ωref *及び修正トルク成分ΔTを用いて、一次磁束ベクトルの位相が移動するべき制御周期毎の移動量Δθであって、指令速度ωref *と制御サイクルの周期TSとの積よりも小さいものであり、3相回転機102のトルクの振動成分THが大きくなるにつれて小さくなるものであり、修正トルク成分ΔTが大きくなるにつれて小さくなるものであり、トルクの振動成分TH及び修正トルク成分ΔTの合計がゼロに近づくにつれて積ωref *Sに近づいていくものである移動量Δθを特定する。第2部分は、指令位相特定部の一部である。第2部分は、移動量Δθを用いて指令磁束ベクトルの位相である指令位相θs *を特定する。指令磁束特定部112は、指令位相θs *を用いて指令磁束ベクトルψs *を特定する。
実施の形態1A〜3Cでは、図9に示すステップS11〜S14が順に実施されると捉えることもできる。ステップS11は、修正トルク成分ΔTを特定するステップである。ステップS12は、移動量Δθを特定するステップである。ステップS13は、指令位相θs *を特定するステップである。ステップS14は、指令磁束ベクトルψs *を特定するステップである。
実施の形態1A〜3Cでは、電流ベクトルの振幅Iaから電流制限値Ia_LIMITを差し引いた差分である電流偏差Δeに基づいて、修正トルク成分ΔTを特定する。具体的には、電流偏差Δeがゼロよりも大きい場合には電流偏差Δeが大きいときほど修正トルク成分ΔTを大きくする。実施の形態1A〜3Cでは、修正トルク成分ΔTを用いて、一次磁束ベクトルの位相が移動するべき制御周期毎の移動量Δθを特定する。具体的には、修正トルク成分ΔTが大きいときほど移動量Δθを小さくする。このようにすれば、電流ベクトルの振幅Iaが電流制限値Ia_LIMITよりも大きいほど、移動量Δθが小さくなる。このようにすれば、すべり角速度が大きくなることを防止することができる。このため、すべり角速度が大きくなることでトルクに寄与しない電流ベクトルが大きくなり、トルクに寄与しない電流ベクトルが大きくなることですべり角速度が大きくなるという悪循環を断ち切ることができる。このように、実施の形態1A〜3Cによれば、修正トルク成分ΔTがトルクを補償するように作用し、同一電流ベクトルに対するトルクを増加させることができる。これにより、3相回転機102の回転子を上手く回転させ易くなり、回転子の引き込みを安定して行うことができ、3相回転機102の脱調が発生し難くなる。また、インバータ104において過電流が発生し難くなる。インバータ104に過電流保護機能がある場合においては、インバータ104の保護機能が働きインバータ104が停止するという事態を回避し易くなる。
また、実施の形態1A〜3Cでは、3相回転機102のトルクの振動成分THが大きいときほど移動量Δθを小さくする。これにより、すべり角速度のピークが大きくなることを防止でき、トルクに寄与しない電流ベクトルが3相回転機102に流れることを回避し易くなる。このことも、上記の悪循環を断ち切ることに寄与する。
実施の形態1A〜3Cの回転機制御装置を、以下のように説明することもできる。すなわち、実施の形態1A〜3Cの回転機制御装置は、インバータ104を用いて3相回転機102に電圧ベクトルを印加するものである。回転機制御装置は、3相回転機102を流れる電流ベクトルの振幅Iaから電流制限値Ia_LIMITを差し引いた差分である電流偏差Δeがゼロ以下のとき、3相回転機102のトルクの振動成分THが大きいときほど3相回転機102の加速度を小さくする。電流偏差Δeがゼロよりも大きいとき、電流偏差Δeをゼロに近づけつつ、電流偏差Δeが大きいときほど3相回転機102の加速度を小さくしかつトルクの振動成分THが大きいときほど3相回転機102の加速度を小さくする。
実施の形態1A〜3Cでは、図10に示すステップS21〜S23が実施されると捉えることもできる。ステップS21は、電流偏差Δeがゼロよりも大きいか否かを判断するステップである。電流偏差Δeがゼロよりも大きい場合、ステップS22に進む。電流偏差Δeがゼロ以下である場合、ステップS23に進む。ステップS22は、電流偏差Δeをゼロに近づけるステップである。また、ステップS22は、電流偏差Δeが大きいときほど3相回転機102の加速度を小さくするステップである。また、ステップS22は、振動成分THが大きいときほど3相回転機102の加速度を小さくするステップである。ステップS23は、振動成分THが大きいときほど3相回転機102の加速度を小さくするステップである。
実施の形態1B、1C、2B、2C、3B及び3Cでは、第2部分は、移動量Δθ及び推定された一次磁束ベクトルの位相θsを用いて指令位相θs *を特定する。電流脈動、負荷変動等が原因で、指令磁束ベクトルと実際に3相回転機に印加されている一次磁束ベクトルの不一致が生じる場合がある。そういった状況においても、実施の形態1B、1C、2B、2C、3B及び3Cのように一次磁束ベクトルの位相をフィードバックすることで、適切な指令磁束ベクトルを生成することが可能となる。具体的には、トルク角の値が実際に印加されている一次磁束ベクトルの位相を基準とした最適な値となるように、指令磁束ベクトルを生成することが可能となる。このような指令磁束ベクトルによれば、無駄な電流を流すことなく同一トルクを発生させることができる。
実施の形態1A、1B、2A、2B、3A及び3Bでは、第1部分は、修正トルク成分ΔT及び振動成分THを用いて指令速度が小さくなるように指令速度ωref *を補正し、補正された指令速度ωref *−K1(TH+ΔT)を用いて移動量Δθを特定する。実施の形態1C、2C及び3Cでは、第1部分は、修正トルク成分ΔT及び振動成分THを用いて積ωref *Sを小さくすることによって移動量Δθを特定する。どちらの手法でも、適切に移動量Δθを特定することができる。
修正トルク特定部128は、指令速度ωref *を用いて修正トルク成分ΔTを特定するものであってもよい。修正トルク成分ΔTは、電流ベクトルの振幅Iaが電流制限値Ia_LIMITよりも大きい状況を解消することに寄与する。修正トルク成分ΔTは、この状況を素早く解消する必要性と制御の安定性確保の必要性を考慮して特定されることが好ましい。指令速度ωref *は、上記状況の解消の素早さと制御の安定性確保のどちらを重視するかを判断する指標となりうる。指令速度ωref *を用いて修正トルク成分ΔTを特定することにより、修正トルク成分ΔTを、上記状況を素早く解消する必要性と制御の安定性確保の必要性を考慮して特定することができる。過電流に対する応答性を適切に設定することが容易となる。具体的には、指令速度ωref *が小さいほど修正トルク成分ΔTを大きくすることができる。より具体的には、指令速度ωref *が小さいほど、式(1−9)の比例ゲインKiP及び積分ゲインKiIの少なくとも一方を大きくすることができる。
実施の形態1A〜3Cは、回転機制御装置の始動運転に適用されうる。この場合、回転機制御装置の始動運転において、修正トルク特定部128が修正トルク成分ΔTを特定し、第1部分が指令速度ωref *及び修正トルク成分ΔTを用いて移動量Δθを特定し、第2部分が移動量を用いて指令位相θs *を特定することになる。典型例では、始動運転は、3相回転機102の回転速度がゼロである状態において開始される。回転速度がゼロである状態で始動運転が開始される場合には、3相回転機102に印加される電圧ベクトルの振幅がゼロ又は非常に小さい状態で始動運転が開始されることになる。従来技術におけるこのような始動運転では、指令電圧ベクトルの振幅に対する実際に3相回転機に印加される電圧ベクトルの振幅の比率が小さくなり、上記悪循環が発生し易い。このことは、実施の形態1A〜3Cが適用された始動運転では、上記悪循環を断ち切るという上記効果が好適に発揮され易いことを意味する。
始動運転は、指令速度ωref *が時間経過とともに増加するものであってもよい。従来技術では、始動運転において指令速度が時間経過とともに増加する場合には、時間経過とともにすべり角速度が大きくなり、上記悪循環が発生し易い。このことは、実施の形態1A〜3Cが適用された始動運転では、上記悪循環を断ち切るという上記効果が好適に発揮され易いことを意味する。
始動運転において修正トルク成分がゼロよりも大きい場合には、始動運転の終了を禁止するようにしてもよい。修正トルク成分がゼロよりも大きい期間においては、上記悪循環を防止する観点から、始動運転を継続することが好ましい。始動運転において修正トルク成分ΔTがゼロよりも大きい場合に始動運転の終了を禁止すれば、そのような継続が可能となる。
一例では、3相回転機102は、誘導回転機である。従来技術では、3相回転機が誘導回転機である場合には、すべり角速度が大きくなり、上記悪循環が発生し易い。このことは、3相回転機102が誘導回転機である場合には、上記悪循環を断ち切るという上記効果が好適に発揮され易いことを意味する。
本開示に係る技術は、かご型誘導機や同期機のような3相回転機に適用できる。それらの3相回転機は、冷暖房装置又は給湯機に使用されたヒートポンプ式冷凍装置やファン、ブロアの制御装置に適している。
100,200 回転機制御装置
101,201 回転機制御部
102 3相回転機
103 デューティ生成部
104 インバータ
105a 第1電流センサ
105b 第2電流センサ
106 u,w/α,β変換部
107 指令電圧特定部
108 磁束推定部
109 トルク推定部
112 指令磁束特定部
113a α軸磁束偏差特定部
113b β軸磁束偏差特定部
114 α,β/u,v,w変換部
116 ベースドライバ
117 平滑コンデンサ
118 直流電源
119a〜119f スイッチング素子
120a〜120f 還流ダイオード
122 指令振幅特定部
127a,127b,127c,227a,227b,227c,327a,327b,327c 指令位相特定部
128 修正トルク特定部
131 振幅演算部
132 偏差特定部
133 制限値出力部
134,269 PI補償器
135 修正トルクリミッタ
161 ハイパスフィルタ(HPF)
162 トルク加算部
163 ゲイン乗算部
164 速度偏差演算部
165 速度偏差積分器
240 位相推定部
262 トルク減算部
266 乗算部
267 位相加算演算部
268 符号反転部
270 加算部
271 ローパスフィルタ
272 減算部
273 トルクリミッタ

Claims (9)

  1. 3相回転機の一次磁束ベクトルが指令磁束ベクトルに追従するように、インバータを用いて前記3相回転機に電圧ベクトルを印加する回転機制御装置であって、
    前記3相回転機の電流ベクトルを用いて、前記電流ベクトルの振幅から電流制限値を差し引いた差分である電流偏差がゼロ以下の場合にはゼロであり、前記電流偏差がゼロよりも大きい場合には前記電流偏差が大きくなるにつれて大きくなる修正トルク成分を特定する修正トルク特定部と、
    指令速度及び前記修正トルク成分を用いて、前記一次磁束ベクトルの位相が移動するべき制御周期毎の移動量であって、前記指令速度と制御サイクルの周期との積よりも小さいものであり、前記3相回転機のトルクの振動成分が大きくなるにつれて小さくなるものであり、前記修正トルク成分が大きくなるにつれて小さくなるものであり、前記トルクの振動成分及び前記修正トルク成分の合計がゼロに近づくにつれて前記積に近づいていくものである移動量を特定する第1部分と、
    前記移動量を用いて前記指令磁束ベクトルの位相である指令位相を特定する第2部分と、
    前記指令位相を用いて前記指令磁束ベクトルを特定する指令磁束特定部と、を備えた、回転機制御装置。
  2. 前記第2部分は、前記移動量及び推定された前記一次磁束ベクトルの位相を用いて前記指令位相を特定する、請求項1に記載の回転機制御装置。
  3. 前記第1部分は、前記修正トルク成分及び前記振動成分を用いて前記指令速度が小さくなるように前記指令速度を補正し、補正された前記指令速度を用いて前記移動量を特定する、請求項1又は2に記載の回転機制御装置。
  4. 前記第1部分は、前記修正トルク成分及び前記振動成分を用いて前記積を小さくすることによって前記移動量を特定する、請求項1又は2に記載の回転機制御装置。
  5. 前記修正トルク特定部は、前記指令速度を用いて前記修正トルク成分を特定する、請求項1〜4のいずれか一項に記載の回転機制御装置。
  6. 前記回転機制御装置の始動運転において、前記修正トルク特定部が前記修正トルク成分を特定し、前記第1部分が前記指令速度及び前記修正トルク成分を用いて前記移動量を特定し、前記第2部分が前記移動量を用いて前記指令位相を特定し、
    前記始動運転は、前記3相回転機の回転速度がゼロである状態において開始される、請求項1〜5のいずれか一項に記載の回転機制御装置。
  7. 前記回転機制御装置の始動運転において、前記修正トルク特定部が前記修正トルク成分を特定し、前記第1部分が前記指令速度及び前記修正トルク成分を用いて前記移動量を特定し、前記第2部分が前記移動量を用いて前記指令位相を特定し、
    前記始動運転において、前記指令速度は時間経過とともに増加していく、請求項1〜6のいずれか一項に記載の回転機制御装置。
  8. 前記回転機制御装置の始動運転において、前記修正トルク特定部が前記修正トルク成分を特定し、前記第1部分が前記指令速度及び前記修正トルク成分を用いて前記移動量を特定し、前記第2部分が前記移動量を用いて前記指令位相を特定し、
    前記始動運転において前記修正トルク成分がゼロよりも大きい場合には、前記始動運転の終了を禁止する、請求項1〜7のいずれか一項に記載の回転機制御装置。
  9. 前記3相回転機は、誘導回転機である、請求項1〜8のいずれか一項に記載の回転機制御装置。
JP2017055468A 2017-03-22 2017-03-22 回転機制御装置 Pending JP2018160959A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017055468A JP2018160959A (ja) 2017-03-22 2017-03-22 回転機制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017055468A JP2018160959A (ja) 2017-03-22 2017-03-22 回転機制御装置

Publications (1)

Publication Number Publication Date
JP2018160959A true JP2018160959A (ja) 2018-10-11

Family

ID=63796881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017055468A Pending JP2018160959A (ja) 2017-03-22 2017-03-22 回転機制御装置

Country Status (1)

Country Link
JP (1) JP2018160959A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196472A1 (ja) * 2019-03-27 2020-10-01 ダイキン工業株式会社 モータ駆動装置および冷却装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196472A1 (ja) * 2019-03-27 2020-10-01 ダイキン工業株式会社 モータ駆動装置および冷却装置
CN113424436A (zh) * 2019-03-27 2021-09-21 大金工业株式会社 电动机驱动装置以及冷却装置
JPWO2020196472A1 (ja) * 2019-03-27 2021-11-18 ダイキン工業株式会社 モータ駆動装置および冷却装置
JP7260814B2 (ja) 2019-03-27 2023-04-19 ダイキン工業株式会社 モータ駆動装置および冷却装置
US11824472B2 (en) 2019-03-27 2023-11-21 Daikin Industries, Ltd. Motor drive apparatus and cooling apparatus

Similar Documents

Publication Publication Date Title
JP5644820B2 (ja) モータ制御装置
US9531313B2 (en) Apparatus for controlling controlled variable of rotary machine to command value
JP5130031B2 (ja) 永久磁石モータの位置センサレス制御装置
JP4989075B2 (ja) 電動機駆動制御装置及び電動機駆動システム
JP4067949B2 (ja) モータ制御装置
JP6580899B2 (ja) ドライブシステムおよびインバータ装置
JP5870591B2 (ja) 同期電動機の制御装置及び制御方法
JP6414771B2 (ja) モータ制御装置及びモータ制御方法
WO2016121237A1 (ja) インバータ制御装置及びモータ駆動システム
JP6166601B2 (ja) モータ制御装置及び発電機制御装置
JP6199776B2 (ja) 電動機の駆動装置
JP2004032907A (ja) 永久磁石式同期モータの制御装置
JP2019097341A (ja) モータ制御装置およびモータシステム
JP6473992B2 (ja) モータ制御装置及び発電機制御装置
JP6030511B2 (ja) モータ制御装置、発電機制御装置及びモータ制御方法
JP2013187931A (ja) モータ制御装置
JP2017123753A (ja) モータ制御装置及び発電機制御装置
JP2016220364A (ja) 永久磁石同期電動機の制御装置
JP2018160959A (ja) 回転機制御装置
JP7251424B2 (ja) インバータ装置及びインバータ装置の制御方法
WO2020196719A1 (ja) 回転電機制御システム
CN107482965B (zh) 同步电动机的控制装置
JP2015192463A (ja) モータ制御装置及び発電機制御装置
JP2018121394A (ja) 回転機制御装置及び回転機制御方法
JP2019146399A (ja) 誘導機制御装置及び誘導機制御方法