JP2018121511A - 電池残量調整装置、電池残量調整方法及び制御プログラム - Google Patents

電池残量調整装置、電池残量調整方法及び制御プログラム Download PDF

Info

Publication number
JP2018121511A
JP2018121511A JP2017134038A JP2017134038A JP2018121511A JP 2018121511 A JP2018121511 A JP 2018121511A JP 2017134038 A JP2017134038 A JP 2017134038A JP 2017134038 A JP2017134038 A JP 2017134038A JP 2018121511 A JP2018121511 A JP 2018121511A
Authority
JP
Japan
Prior art keywords
storage battery
switch
circuit
battery
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017134038A
Other languages
English (en)
Inventor
洋平 山口
Yohei Yamaguchi
洋平 山口
裕章 武智
Hiroaki Takechi
裕章 武智
智美 片岡
Tomomi Kataoka
智美 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of JP2018121511A publication Critical patent/JP2018121511A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】コイル等の大型部品を用いること無く昇圧を行うことができ、第1蓄電池及び第2蓄電池の残量を調整することができる電池残量調整装置を提供する。【解決手段】残量調整装置は、第1蓄電池1の電圧を昇圧し、昇圧された電力を第2蓄電池2へ供給する昇圧回路4を備え、第1蓄電池1及び第2蓄電池2の残量を調整する。昇圧回路4は、第1蓄電池1の電力を蓄える第1コンデンサを含む蓄電回路と、蓄電回路の一端部及び他端部が第1蓄電池1の正極及び負極にそれぞれ接続される経路と、一端部が第2蓄電池2の正極に接続され、他端部が第1蓄電池1の正極に接続される経路とを切り替える経路切替スイッチ41aと、各経路が交互に繰り返し切り替えられるように、経路切替スイッチの動作を制御する制御部とを備える。【選択図】図2

Description

本発明は、電池残量調整装置、電池残量調整方法及び制御プログラムに関する。
近年、2種類の蓄電池を車両に搭載し、用途に応じて使い分けるシステムが実用化されている。例えば、HEV(Hybrid Electric Vehicle:ハイブリッド自動車)等の車両は、リチウムイオン電池及び鉛蓄電池を搭載しており、回生電力の受け入れをリチウムイオン電池が行い、鉛蓄電池の電力でエンジンの始動を行う等、電池の特性に応じて、使い分けがなされ、燃費の向上が図られている。
ところで、HEV車においては、電力回生時にリチウムイオン電池が満充電状態にあると、回生電力を蓄えることができない。また、鉛蓄電池も不規則的に発生する回生電力を効率的に蓄電することができない。そこで、リチウムイオン電池及び鉛蓄電池を並列に接続し、各蓄電池を充放電させることによって、電池残量を調整する技術が知られている。
また、放電側の蓄電池の電圧が充電側の蓄電池の電圧よりも高いとは限らないため、電池残量を調整することができない場合がある。この問題を解決するために、DC/DCコンバータを介してリチウムイオン電池及び鉛蓄電池を並列接続する技術がある(例えば、特許文献1)。
国際公開第2004/066472号
しかしながら、DC/DCコンバータはコイル等の大型部品を備えており、装置の大型化が問題となる。
本発明は、斯かる事情に鑑みてなされたものであり、その目的は、コイル等の大型部品を用いること無く昇圧を行うことができ、第1蓄電池及び第2蓄電池の残量を調整することができる電池残量調整装置、電池残量調整方法及び制御プログラムを提供することにある。
本態様に係る電池残量調整装置は、第1蓄電池の電圧を昇圧し、昇圧された電力を第2蓄電池へ供給する昇圧回路を備え、前記第1蓄電池及び前記第2蓄電池の残量を調整する電池残量調整装置であって、前記昇圧回路は、前記第1蓄電池の電力を蓄えるコンデンサを含む蓄電回路と、該蓄電回路の一端部及び他端部が前記第1蓄電池の正極及び負極にそれぞれ接続される経路と、前記一端部が前記第2蓄電池の正極に接続され、前記他端部が前記第1蓄電池の正極に接続される経路とを切り替える経路切替スイッチと、各経路が交互に繰り返し切り替えられるように、前記経路切替スイッチの動作を制御する制御部とを備える。
本態様に係る電池残量調整方法は、第1蓄電池の電圧を昇圧し、昇圧された電力を第2蓄電池へ供給することにより、前記第1蓄電池及び前記第2蓄電池の残量を調整する電池残量調整方法であって、コンデンサを含む蓄電回路の一端部及び他端部を前記第1蓄電池の正極及び負極にそれぞれ接続するステップと、前記蓄電回路の前記一端部及び他端部をそれぞれ前記第2蓄電池の正極及び前記第1蓄電池の正極に接続するステップとを有し、各ステップを交互に繰り返し実行する。
本態様に係る制御プログラムは、第1蓄電池の電圧を昇圧して第2蓄電池へ供給するために、前記第1蓄電池の電力を蓄えるコンデンサを含む蓄電回路と、該蓄電回路の一端部及び他端部が前記第1蓄電池の正極及び負極にそれぞれ接続される経路と、前記一端部が前記第2蓄電池の正極に接続され、前記他端部が前記第1蓄電池の正極に接続される経路とを切り替える経路切替スイッチとを有する昇圧回路を備え、前記第1蓄電池及び前記第2蓄電池の残量を調整する電池残量調整装置の動作をコンピュータに制御させるための制御プログラムであって、前記コンピュータに、前記蓄電回路の一端部及び他端部が前記第1蓄電池の正極及び負極にそれぞれ接続されるように前記経路切替スイッチの動作を制御するステップと、前記蓄電回路の前記一端部及び他端部がそれぞれ前記第2蓄電池の正極及び前記第1蓄電池の正極に接続されるように前記経路切替スイッチの動作を制御するステップとを交互に繰り返し実行させる。
なお、本願は、このような特徴的な制御部を備える電池残量調整装置として実現することができるだけでなく、電池残量調整装置の一部又は全部を実現する半導体集積回路として実現したり、電池残量調整装置を含むその他のシステムとして実現したりすることができる。
上記によれば、コイル等の大型部品を用いること無く昇圧を行うことができ、第1蓄電池及び第2蓄電池の残量を調整することができる電池残量調整装置、電池残量調整方法及び制御プログラムを提供することが可能となる。
本発明の一態様にかかる電池残量調整装置を搭載した車両の要部の一構成例を示すブロック図である。 実施形態1に係る昇圧回路の一構成例を示す回路図である。 実施形態1に係る電池状態監視装置の一構成例を示す回路ブロック図である。 実施形態1に係る電池残量調整処理に係る制御部の処理手順を示すフローチャートである。 実施形態1に係る電池残量調整方法を概念的に示す回路図である。 実施形態1に係る電池残量調整方法を概念的に示す回路図である。 実施形態1に係る電池残量調整方法を示すタイミングチャートである。 実施形態1に係る電池残量調整処理に係る制御部の処理手順を示すフローチャートである。 実施形態1に係る電池残量調整方法を概念的に示す回路図である。 実施形態1に係る電池残量調整方法を概念的に示す回路図である。 実施形態1に係る電池残量調整方法を示すタイミングチャートである。 実施形態2に係る昇圧回路の一構成例を示す回路図である。 実施形態3に係る第2蓄電池の等価回路の一例を示す説明図である。 実施形態3に係る第2蓄電池のインピーダンススペクトルの一例を示す説明図である。 実施形態3に係る第2蓄電池の充電率を変化させた場合のインピーダンススペクトルの一例を示す説明図である。 実施形態3に係る第2蓄電池の温度を変化させた場合のインピーダンススペクトルの一例を示す説明図である。 実施形態3に係る第2蓄電池の新品及び劣化品のインピーダンススペクトルの一例を示す説明図である。 実施形態3に係る第2蓄電池の境界周波数域に対応する待機時間の一例を示す説明図である。 実施形態3に係る第2蓄電池の開放電圧と充電率との相関関係の一例を示す説明図である。 実施形態3に係る第2蓄電池の内部抵抗増加率と放電容量比との相関関係の一例を示す説明図である。 実施形態3に係る電池状態監視装置の処理手順の一例を示すフローチャートである。 実施形態3に係る電池残量調整方法を概念的に示す回路図である。 実施形態3に係る電池状態監視装置の内部抵抗算出処理の手順の一例を示すフローチャートである。 実施形態3に係る電池状態監視装置の待機時間特定処理の手順の一例を示すフローチャートである。 実施形態3に係る電池状態監視装置の充電率算出処理の手順の一例を示すフローチャートである。 実施形態3に係る電池状態監視装置の劣化度算出処理の手順の一例を示すフローチャートである。 実施形態4に係る昇圧回路の一構成例を示す回路図である。 実施形態5に係る昇圧回路の一構成例を示す回路図である。 実施形態5に係る電池残量調整処理に係る制御部の処理手順を示すフローチャートである。 実施形態5に係る電池残量調整方法を概念的に示す回路図である。 実施形態5に係る電池残量調整方法を概念的に示す回路図である。 実施形態5に係る電池残量調整方法を示すタイミングチャートである。 実施形態5に係る電池残量調整処理に係る制御部の処理手順を示すフローチャートである。 実施形態5に係る電池残量調整方法を概念的に示す回路図である。 実施形態5に係る電池残量調整方法を概念的に示す回路図である。 実施形態5に係る電池残量調整方法を示すタイミングチャートである。
[本発明の実施形態の説明]
最初に本発明の実施態様を列記して説明する。また、以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
(1)本態様に係る電池残量調整装置は、第1蓄電池の電圧を昇圧し、昇圧された電力を第2蓄電池へ供給する昇圧回路を備え、前記第1蓄電池及び前記第2蓄電池の残量を調整する電池残量調整装置であって、前記昇圧回路は、前記第1蓄電池の電力を蓄えるコンデンサを含む蓄電回路と、該蓄電回路の一端部及び他端部が前記第1蓄電池の正極及び負極にそれぞれ接続される経路と、前記一端部が前記第2蓄電池の正極に接続され、前記他端部が前記第1蓄電池の正極に接続される経路とを切り替える経路切替スイッチと、各経路が交互に繰り返し切り替えられるように、前記経路切替スイッチの動作を制御する制御部とを備える。
本態様にあっては、蓄電回路の一端部及び他端部を第1蓄電池の正極及び負極にそれぞれ接続することによって、第1蓄電池の電力を蓄電回路のコンデンサに蓄えることができる。コンデンサの両端電圧は第1蓄電池の電圧と等しくなる。次いで、蓄電回路の一端部を第2蓄電池の正極に接続し、他端部を第1蓄電池の正極に接続することによって、蓄電回路の一端部の電圧は、第1蓄電池の電圧の略2倍に昇圧される。第2蓄電池は、第1蓄電池の2倍の電圧で充電される。従って、第1蓄電池の電圧が第2蓄電池の電圧より低い場合であっても、第1蓄電池から第2蓄電池へ放電させ、第2蓄電池を充電することができる。
なお、蓄電回路には、コンデンサのみで構成される回路も含まれる。
(2)前記蓄電回路は、抵抗値が可変であり、前記コンデンサに流れる電流を制限する制限抵抗回路を備え、前記制限抵抗回路は、前記コンデンサの充電時は抵抗値が高く、前記コンデンサの放電時は抵抗値が低い構成が好ましい。
本態様にあっては、コンデンサを充電する場合、制限抵抗回路の抵抗値を高く設定することにより、第1蓄電池をコンデンサに接続した際に第1蓄電池からコンデンサへ大電流が流れることを防ぐことができる。また、コンデンサを放電させて第2蓄電池の充電を行う場合、制限抵抗回路の抵抗値を低く設定することにより、制限抵抗回路による損失を抑え、効率的に第2蓄電池を充電することができる。
(3)前記制限抵抗回路は、第1制限抵抗器を有する回路と、第2制限抵抗器及びスイッチを直列接続してなる直列回路とを備え、該直列回路は前記回路に並列接続されており、前記スイッチの開閉を切り替えることによって、抵抗値を変化させる構成が好ましい。
本態様にあっては、スイッチがオフ状態になった場合、制限抵抗回路の抵抗値は、第1制限抵抗器の抵抗値となり、スイッチがオン状態になった場合、制限抵抗回路の抵抗値は、第1抵抗器及び第2抵抗器を並列接続したときの抵抗値となる。つまり、制限抵抗回路のスイッチをオフ状態に切り替えることによって抵抗値を高く設定し、スイッチをオン状態に切り替えることによって抵抗値を低く設定することができる。このように、本態様によれば、簡単な回路構成及び制御で制限抵抗器の抵抗値を変化させることができる。
(4)前記経路切替スイッチは、前記蓄電回路の前記一端部を前記第2蓄電池の正極に接続する経路を開閉する第1スイッチと、前記蓄電回路の前記一端部を前記第1蓄電池の正極に接続する経路を開閉する第2スイッチと、前記蓄電回路の前記他端部を前記第1蓄電池の正極に接続する経路を開閉する第3スイッチと、前記蓄電回路の前記他端部を前記第1蓄電池の負極に接続する経路を開閉する第4スイッチとを備え、前記制御部は、第2スイッチ及び第4スイッチがオン状態、第1スイッチ及び第3スイッチがオフ状態になる第1通電状態と、第1スイッチ及び第3スイッチがオン状態、第2スイッチ及び第4スイッチがオフ状態になる第2通電状態とが繰り返し切り替えられるように、第1乃至第4スイッチの開閉を制御する構成が好ましい。
本態様にあっては、制御部は、第2スイッチ及び第4スイッチがオン状態、第1スイッチ及び第3スイッチがオフ状態になるように第1乃至第4スイッチの開閉を制御することによって、第1蓄電池の電力をコンデンサに蓄えることができる。次いで、制御部は、第1スイッチ及び第3スイッチがオン状態、第2スイッチ及び第4スイッチがオフ状態になるように第1乃至第4スイッチの開閉を制御することによって、コンデンサの電圧を第1蓄電池の略2倍に昇圧し、第2蓄電池を充電することができる。
(5)前記蓄電回路を迂回して、前記第1蓄電池及び前記第2蓄電池の正極同士を接続する迂回経路と、該迂回経路を開閉する迂回スイッチとを備える構成が好ましい。
本態様にあっては、昇圧が不要な場合、迂回スイッチをオン状態に制御することによって、第1蓄電池及び第2蓄電池の正極同士を接続し、第1蓄電池及び第2蓄電池を充放電させ、電池残量を調整することができる。コンデンサを介さずに接続され、経路の切り替え制御も不要であるため、低損失で第1蓄電池及び第2蓄電池の電池残量を調整することができる。
(6)前記昇圧回路は、第2蓄電池の電力を蓄える第2のコンデンサを含む第2の蓄電回路と、該第2の蓄電回路の一端部及び他端部が前記第2蓄電池の正極及び負極にそれぞれ接続される経路と、前記第2の蓄電回路の前記一端部が前記第1蓄電池の正極に接続され、前記他端部が前記第2蓄電池の正極に接続される経路とを切り替える第2の経路切替スイッチとを備える構成が好ましい。
本態様にあっては、態様(1)と同様にして、第2蓄電池の電圧が第1蓄電池の電圧より低い場合であっても、第2蓄電池から第1蓄電池へ放電させ、第1蓄電池を充電することができる。
(7)前記経路切替スイッチは、更に、前記蓄電回路の一端部及び他端部が前記第2蓄電池の正極及び負極にそれぞれ接続される経路と、前記蓄電回路の前記一端部が前記第1蓄電池の正極に接続され、前記他端部が前記第2蓄電池の正極に接続される経路とを切り替えるようにしてあり、前記制御部は、前記第1蓄電池から前記第2蓄電池へ放電する場合、前記蓄電回路の一端部及び他端部が前記第1蓄電池の正極及び負極にそれぞれ接続される経路と、前記蓄電回路の前記一端部が前記第2蓄電池の正極に接続され、前記他端部が前記第1蓄電池の正極に接続される経路とが交互に繰り返し切り替えられるように、前記経路切替スイッチの動作を制御し、前記第2蓄電池から前記第1蓄電池へ放電する場合、前記蓄電回路の一端部及び他端部が前記第2蓄電池の正極及び負極にそれぞれ接続される経路と、前記蓄電回路の前記一端部が前記第1蓄電池の正極に接続され、前記他端部が前記第2蓄電池の正極に接続される経路とが交互に繰り返し切り替えられるように、前記経路切替スイッチの動作を制御する構成が好ましい。
本態様によれば、態様(1)と同様、第2蓄電池の電圧が第1蓄電池の電圧より低い場合であっても、第2蓄電池を昇圧し、第2蓄電池から第1蓄電池へ放電させ、第1蓄電池を充電することができる。
(8)前記経路切替スイッチは、前記蓄電回路の前記一端部を前記第1蓄電池の正極に接続する経路を開閉する第1スイッチと、前記蓄電回路の前記他端部を前記第1蓄電池の正極に接続する経路を開閉する第2スイッチと、前記蓄電回路の前記他端部を前記第1蓄電池及び前記第2蓄電池の負極に接続する経路を開閉する第3スイッチと、前記蓄電回路の前記一端部を前記第2蓄電池の正極に接続する経路を開閉する第4スイッチと、前記蓄電回路の前記他端部を前記第2蓄電池の正極に接続する経路を開閉する第5スイッチとを備え、前記制御部は、前記第1蓄電池から前記第2蓄電池へ放電する場合、第1スイッチ及び第3スイッチがオン状態、第2スイッチ、第4スイッチ及び第5スイッチがオフ状態になる第1通電状態と、第2スイッチ及び第4スイッチがオン状態、第1スイッチ、第3スイッチ及び第5スイッチがオフ状態になる第2通電状態とが繰り返し切り替えられるように、第1乃至第5スイッチの開閉を制御し、前記第2蓄電池から前記第1蓄電池へ放電する場合、第3スイッチ及び第4スイッチがオン状態、第1スイッチ、第2スイッチ及び第5スイッチがオフ状態になる第1通電状態と、第1スイッチ及び第5スイッチがオン状態、第2スイッチ、第3スイッチ及び第4スイッチがオフ状態になる第2通電状態とが繰り返し切り替えられるように、第1乃至第5スイッチの開閉を制御する構成が好ましい。
本態様によれば、第1及び第2蓄電池を昇圧して充放電させる昇圧回路を5つのスイッチで構成することができる。
制御部は、第1スイッチないし第5スイッチの開閉を制御することによって、態様(1)のように、第1蓄電池を昇圧し、第2蓄電池を充電することができる。また、制御部は、第1スイッチないし第5スイッチの開閉を制御することによって、第2蓄電池を昇圧し、第1蓄電池を充電することができる。このように、同一の昇圧回路を用いて、第1蓄電池及び第2蓄電池を双方向に充放電させることができる。
(9)前記制御部は、各蓄電回路の一端部及び他端部がそれぞれ前記第1蓄電池及び前記第2蓄電池の正極及び負極に接続されるように各経路切替スイッチの動作を制御する蓄電制御部と、該蓄電制御部による制御を終えた後、前記蓄電回路の前記一端部が前記第2蓄電池の正極に接続され、前記他端部が前記第1蓄電池の正極に接続される状態と、前記第2の蓄電回路の前記一端部が前記第1蓄電池の正極に接続され、前記他端部が前記第2蓄電池の正極に接続される状態とを切り替える切替制御部と、前記第2蓄電池の電圧を取得する電圧取得部と、前記第2蓄電池の電流を取得する電流取得部と、前記第2蓄電池のインピーダンススペクトルにて、所定のイオンの拡散過程に起因する拡散インピーダンスが前記第2蓄電池のインピーダンスに寄与する境界周波数域に基づいて待機時間を特定する特定部と、前記切替制御部にて充放電が切り替えられた場合、前記特定部で特定した待機時間後に前記電圧取得部で取得した電圧及び前記電流取得部で取得した電流に基づいて前記第2蓄電池の内部抵抗を算出する抵抗算出部とを備える構成が好ましい。
制御部の蓄電制御部は、各蓄電回路の一端部及び他端部がそれぞれ第1蓄電池及び第2蓄電池の正極及び負極に接続されるように各経路切替スイッチの動作を制御することによって、各蓄電池回路のコンデンサを充電することができる。
そして、切替制御部は、各蓄電池回路のコンデンサを充電した後、各経路切替スイッチの動作を制御することによって、第2蓄電池の充放電状態を切り替えることができる。例えば、第2蓄電池が充電を行っている状態から、第2蓄電池が放電を行ってる状態に切り替えることができる。また、第2蓄電池が放電を行っている状態から、第2蓄電池が充電を行っている状態に切り替えることができる。両コンデンサを充電しているため、第1蓄電池及び第2蓄電池の電圧が異なる場合であっても、第2蓄電池の充放電状態を切り替えることができる。
電圧取得部は第2蓄電池の電圧を取得し、電流取得部は第2蓄電池の電流(充電電流又は放電電流)を取得する。
特定部は、第2蓄電池のインピーダンススペクトルにて、所定のイオンの拡散過程に起因する拡散インピーダンスが第2蓄電池のインピーダンスに寄与する境界周波数域に基づいて待機時間を特定する。インピーダンススペクトルは、コールコール(Cole-Cole)プロット又はナイキストプロットとも称し、交流インピーダンス法を用いて第2蓄電池のインピーダンスを複数の周波数で測定した値をプロットしたものである。
第2蓄電池は、電解液バルクの抵抗Rs、界面電荷移動抵抗Rc、電気二重層キャパシタンスC、拡散インピーダンスZwで構成される等価回路で表すことができる(図13参照)。そして、第2蓄電池の内部抵抗は、電解液バルクの抵抗Rs及び界面電荷移動抵抗Rcが主要部分を占める。一方、交流インピーダンス法での周波数を高周波数から低周波数へ変化させた場合、ある周波数域(境界周波数域と称する)で、拡散インピーダンスZwが増加し、第2蓄電池のインピーダンスが増加する(第2蓄電池のインピーダンスに寄与する)。そこで、拡散インピーダンスZwが増加する前の境界周波数域でのインピーダンスが第2蓄電池の内部抵抗を表すということができる。交流インピーダンス法での周波数fと、直流を通電してから測定するまでの待機時間Tとの間には、T=1/(2×f)という関係、すなわち待機時間Tは、例えば、周波数fの2倍の逆数という関係から特定することができる。例えば、周波数fが5Hzの場合、待機時間Tは0.1秒となる。なお、待機時間Tを周波数fの2倍の逆数とするのは一例であって、例えば、待機時間Tを周波数fの4倍の逆数としてもよい。
抵抗算出部は、第2蓄電池の充放電状態が切り替えられた場合、特定部で特定した待機時間後に電圧取得部で取得した電圧及び電流取得部で取得した電流に基づいて第2蓄電池の内部抵抗を算出する。充電から放電、あるいは放電から充電に切り替わると、第2蓄電池の内部抵抗のうち、例えば、拡散抵抗(拡散インピーダンス)及び電荷移動抵抗は一旦リセットされ、通電時間に応じて内部抵抗が増加し始める。そこで、第2蓄電池の充放電状態が切り替えられた場合、待機時間T後の電圧Vc、電流Icを取得することにより、第2蓄電池の内部抵抗を算出することができる。これにより、充放電の切り替え後、短時間(例えば、0.1秒程度)で内部抵抗を求めることができるので、充放電が頻繁に繰り返される場合でも充電又は放電の切り替わり後、比較的短時間で第2蓄電池の内部抵抗を精度よく算出することができる。
(10)前記制御部は、前記第1蓄電池から前記第2蓄電池へ放電させた後、前記蓄電回路の前記一端部が前記第1蓄電池の正極に接続され、前記他端部が前記第2蓄電池の正極に接続される状態、若しくは前記第2蓄電池の正極が前記第1蓄電池の正極に直接的又は間接的に接続される状態に切り替え、前記第2蓄電池から前記第1蓄電池へ放電させた後、前記蓄電回路の前記一端部が前記第2蓄電池の正極に接続され、前記他端部が前記第1蓄電池の正極に接続される状態、若しくは前記第1蓄電池の正極が前記第2蓄電池の正極に直接的又は間接的に接続される状態に切り替える切替制御部と、前記第2蓄電池の電圧を取得する電圧取得部と、前記第2蓄電池の電流を取得する電流取得部と、前記第2蓄電池のインピーダンススペクトルにて、所定のイオンの拡散過程に起因する拡散インピーダンスが前記第2蓄電池のインピーダンスに寄与する境界周波数域に基づいて待機時間を特定する特定部と、前記切替制御部にて充放電が切り替えられた場合、前記特定部で特定した待機時間後に前記電圧取得部で取得した電圧及び前記電流取得部で取得した電流に基づいて前記第2蓄電池の内部抵抗を算出する抵抗算出部とを備える構成が好ましい。
本態様にあっては、制御部は、第1蓄電池から第2蓄電池へ放電が行われた場合、第2蓄電池の充電後、経路切替スイッチの動作を制御することによって、第2蓄電池の充放電状態を切り替えることができる。例えば、制御部は、蓄電回路の一端部が第1蓄電池の正極に接続され、他端部が第2蓄電池の正極に接続される状態に切り替えることによって、第2蓄電池が充電を行っている状態から、第2蓄電池が放電を行っている状態に切り替えることができる。また、第2蓄電池の方が第1蓄電池に比べ出力電圧が高い場合、制御部は、第2蓄電池の正極が第1蓄電池の正極に接続される状態に切り替えることによって、第2蓄電池が充電を行っている状態から、第2蓄電池が放電を行っている状態に切り替えることができる。従って、態様(9)と同様にして、充電又は放電の切り替わり後、比較的短時間で第2蓄電池の内部抵抗を精度よく算出することができる。
また、制御部は、第2蓄電池から第1蓄電池へ放電が行われた場合、第2蓄電池の放電後、経路切替スイッチの動作を制御することによって、第2蓄電池の充放電状態を切り替えることができる。例えば、制御部は、蓄電回路の一端部が第2蓄電池の正極に接続され、他端部が第1蓄電池の正極に接続される状態に切り替えることによって、第2蓄電池が放電を行っている状態から、第2蓄電池が充電を行っている状態に切り替えることができる。また、制御部は、第2蓄電池の方が第1蓄電池に比べ出力電圧が低い場合、第2蓄電池の正極が第1蓄電池の正極に接続される状態に切り替えることによって、第2蓄電池が放電を行っている状態から、第2蓄電池が充電を行っている状態に切り替えることができる。従って、態様(9)と同様にして、充電又は放電の切り替わり後、比較的短時間で第2蓄電池の内部抵抗を精度よく算出することができる。
なお、第1蓄電池及び第2蓄電池の正極を接続する場合、正極同士を直接的に接続しても良いし、制限抵抗等、他の回路を介して間接的に接続しても良い。
(11)前記抵抗算出部は、充放電の切り替え前に前記電圧取得部で取得した電圧及び前記電流取得部で取得した電流、並びに前記特定部で特定した待機時間後に前記電圧取得部で取得した電圧及び前記電流取得部で取得した電流に基づいて前記第2蓄電池の内部抵抗を算出する構成が好ましい。
抵抗算出部は、充放電の切り替え前に電圧取得部で取得した電圧Vb及び電流取得部で取得した電流Ib、並びに特定部で特定した待機時間T後に電圧取得部で取得した電圧Vc及び電流取得部で取得した電流Icに基づいて第2蓄電池の内部抵抗Rを算出する。2点間の電圧、電流から求められる直線の傾きの絶対値が、第2蓄電池の内部抵抗を示す。そこで、内部抵抗Rは、R=(Vc−Vb)/(Ic−Ib)で算出することができる。これにより、充放電の切り替え後、短時間(例えば、0.1秒程度)で内部抵抗を求めることができるので、充放電が頻繁に繰り返される場合でも第2蓄電池の内部抵抗を精度よく算出することができる。
(12)前記抵抗算出部は、前記特定部で特定した待機時間後に前記電流取得部で取得した電流が所定の閾値より大きい場合、前記第2蓄電池の内部抵抗を算出する構成が好ましい。
抵抗算出部は、特定部で特定した待機時間T後に電流取得部で取得した電流が所定の閾値より大きい場合、第2蓄電池の内部抵抗を算出する。内部抵抗を算出するために待機時間Tが経過した後に取得した電流が小さい場合には、内部抵抗を精度よく算出することができないので、電流が所定の閾値より大きい場合という条件を加えることで、内部抵抗の算出精度を上げることができる。
(13)前記特定部は、さらに、前記第2蓄電池の充電率に基づいて待機時間を特定する構成が好ましい。
特定部は、さらに、第2蓄電池の充電率(SOC)に基づいて待機時間を特定する。充電率(SOC)が小さいほど、境界周波数域は小さくなり、境界周波数域での周波数fに逆比例する待機時間Tは大きくなる。そこで、例えば、充電率に応じた補正係数K1を定めておき、第2蓄電池の充電率に応じて待機時間を補正して最終的な待機時間を特定する。これにより、第2蓄電池の充電率に関わらず内部抵抗を精度よく算出することができる。
(14)前記第2蓄電池の温度を取得する温度取得部を備え、前記特定部は、さらに、前記温度取得部で取得した温度に基づいて待機時間を特定する構成が好ましい。
温度取得部は、第2蓄電池の温度を取得する。特定部は、さらに、温度取得部で取得した温度に基づいて待機時間を特定する。第2蓄電池の温度が低いほど、境界周波数域は小さくなり、境界周波数域での周波数fに逆比例する待機時間Tは大きくなる。そこで、例えば、第2蓄電池の温度に応じた補正係数K2を定めておき、第2蓄電池の温度に応じて待機時間を補正して最終的な待機時間を特定する。これにより、第2蓄電池の温度に関わらず内部抵抗を精度よく算出することができる。
(15)前記抵抗算出部で算出した内部抵抗、前記電圧取得部で取得した電圧及び前記電流取得部で取得した電流に基づいて、前記第2蓄電池の開放電圧を算出する開放電圧算出部と、該開放電圧算出部で算出した開放電圧に基づいて前記第2蓄電池の充電率を算出する充電率算出部とを備える構成が好ましい。
開放電圧算出部は、抵抗算出部で算出した内部抵抗R、電圧取得部で取得した電圧V及び電流取得部で取得した電流Iに基づいて、第2蓄電池の開放電圧を算出する。第2蓄電池の開放電圧をOCVとすると、OCV=V−Voで算出することができる。ここで、Voは過電圧であり、内部抵抗R×電流Iで表される電圧に分極電圧を加えた電圧である。
充電率算出部は、開放電圧算出部で算出した開放電圧に基づいて第2蓄電池の充電率を算出する。例えば、第2蓄電池の開放電圧OCVと充電率(SOC)との相関関係を予め定めておくことにより、算出した開放電圧に基づいて第2蓄電池の充電率を算出することができる。
(16)前記第2蓄電池の内部抵抗の初期値に対する前記抵抗算出部で算出した内部抵抗の割合に基づいて前記第2蓄電池の劣化度を算出する劣化度算出部を備える構成が好ましい。
劣化度算出部は、第2蓄電池の内部抵抗の初期値R0に対する抵抗算出部で算出した内部抵抗Rの割合に基づいて第2蓄電池の劣化度(SOH)を算出する。内部抵抗の増加率と放電容量比(劣化度)との相関関係を予め定めておき、内部抵抗の割合R/R0に対応する放電容量比を特定することにより、劣化度(SOH)を算出することができる。
(17)本態様に係る電池残量調整方法は、第1蓄電池の電圧を昇圧し、昇圧された電力を第2蓄電池へ供給することにより、前記第1蓄電池及び前記第2蓄電池の残量を調整する電池残量調整方法であって、コンデンサを含む蓄電回路の一端部及び他端部を前記第1蓄電池の正極及び負極にそれぞれ接続するステップと、前記蓄電回路の前記一端部及び他端部をそれぞれ前記第2蓄電池の正極及び前記第1蓄電池の正極に接続するステップとを有し、各ステップを交互に繰り返し実行する。
本態様によれば、態様(1)と同様、第1蓄電池の電圧が第2蓄電池の電圧より低い場合であっても、第1蓄電池から第2蓄電池へ放電させ、第2蓄電池を充電することができる。
(18)本態様に係る制御プログラムは、第1蓄電池の電圧を昇圧して第2蓄電池へ供給するために、前記第1蓄電池の電力を蓄えるコンデンサを含む蓄電回路と、該蓄電回路の一端部及び他端部が前記第1蓄電池の正極及び負極にそれぞれ接続される経路と、前記一端部が前記第2蓄電池の正極に接続され、前記他端部が前記第1蓄電池の正極に接続される経路とを切り替える経路切替スイッチとを有する昇圧回路を備え、前記第1蓄電池及び前記第2蓄電池の残量を調整する電池残量調整装置の動作をコンピュータに制御させるための制御プログラムであって、前記コンピュータに、前記蓄電回路の一端部及び他端部が前記第1蓄電池の正極及び負極にそれぞれ接続されるように前記経路切替スイッチの動作を制御するステップと、前記蓄電回路の前記一端部及び他端部がそれぞれ前記第2蓄電池の正極及び前記第1蓄電池の正極に接続されるように前記経路切替スイッチの動作を制御するステップとを交互に繰り返し実行させる。
本態様によれば、態様(1)と同様、第1蓄電池の電圧が第2蓄電池の電圧より低い場合であっても、第1蓄電池から第2蓄電池へ放電させ、第2蓄電池を充電する制御をコンピュータに実行させることができる。
[本発明の実施形態の詳細]
本発明の実施形態に係る電池残量調整装置、電池残量調整方法及び制御プログラムの具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
(実施形態1)
図1は、本発明の一態様にかかる電池残量調整装置3を搭載した車両の要部の一構成例を示すブロック図である。図1に示すように、車両には、第1蓄電池1、第2蓄電池2、電池残量調整装置3、電装品負荷6、負荷7、始動モータ8及び発電機9が搭載されている。電池残量調整装置3は、第1蓄電池1及び第2蓄電池2間に設けられ、第1蓄電池1及び第2蓄電池2の電圧を昇圧する昇圧回路4と、第1蓄電池1及び第2蓄電池2の状態を監視すると共に、昇圧回路4の動作を制御する電池状態監視装置5とを備える。
第1蓄電池1は、車両に搭載された車内灯、パワーウィンド等の電装品負荷6に接続されており、電装品負荷6は第1蓄電池1の電力によって駆動する。第1蓄電池1には、始動リレーr1を介して始動モータ8に接続されている。始動リレーr1がオン状態になると、始動モータ8は第1蓄電池1の電力によって駆動し、ガソリンエンジンが始動する。
第2蓄電池2は、例えば複数の単電池を直列接続してなるリチウムイオン電池、ニッケル水素電池等である。なお、リチウムイオン、ニッケル水素電池は第2蓄電池2の一例であり、その種類、出力電圧は特に限定されるものでは無い。また、単一の電池で第2蓄電池2を構成しても良い。更に、第1蓄電池1及び第2蓄電池2の種類は同一でも良いし、異なる種類であっても良い。第1蓄電池1及び第2蓄電池2の特性の異同も特に限定されるものでは無い。
第2蓄電池2の正極には、負荷リレーr2を介して負荷7に接続されている。負荷7は、例えば車両に搭載されたエアコン等である。負荷7は、第1蓄電池1に接続される電装品負荷6よりも高負荷で駆動する電装品である。また、第2蓄電池2の正極には、充電リレーr3を介して発電機9に接続されている。発電機9は、例えばガソリンエンジンによって動作し、発電するオルタネータであり、内部に設けられた整流回路により直流の電力を、第1蓄電池1及び第2蓄電池2へ出力する。
負荷リレーr2及び充電リレーr3がオン状態で、ガソリンエンジンが駆動している場合、発電機9から第2蓄電池2に電力が供給され、第2蓄電池2の充電が行われる。負荷リレーr2がオン状態、充電リレーr3がオフ状態にある場合、第2蓄電池2から負荷7へ給電される。
電池状態監視装置5は、第1蓄電池1及び第2蓄電池2の電圧、電流、温度等を検出し、第1蓄電池1及び第2蓄電池2の状態を監視している。例えば、電池状態監視装置5は、第1蓄電池1及び第2蓄電池2の内部抵抗を算出し、電池の残量、劣化度等を監視している。また、電池状態監視装置5は、負荷リレーr2及び充電リレーr3の開閉を制御している。電池状態監視装置5の構成及び制御内容の詳細は後述する。
図2は、実施形態1に係る昇圧回路4の一構成例を示す回路図である。昇圧回路4は、第1蓄電池1の電圧を昇圧し、昇圧された電力を第2蓄電池2へ供給するための第1蓄電回路41を備える。第1蓄電回路41は、第1蓄電池1の電力を蓄える第1コンデンサC1を有し、第1コンデンサC1には第1抵抗器R1が直列接続されている。昇圧回路4は、第1コンデンサC1及び第1抵抗器R1からなる直列回路である第1蓄電回路41の一端部及び他端部が第1蓄電池1の正極及び負極にそれぞれ接続される経路と、上記一端部が第2蓄電池2の正極に接続され、上記他端部が第1蓄電池1の正極に接続される経路とを切り替える第1経路切替スイッチ41aを備える。
具体的には、第1経路切替スイッチ41aは、直列接続された第1スイッチSW1、第2スイッチSW2、第3スイッチSW3及び第4スイッチSW4を有する。
第1スイッチSW1の一端部は第2蓄電池2の正極に接続され、第1スイッチSW1の他端部は、第2スイッチSW2の一端部と、第1コンデンサC1の正極端とに接続されている。第1コンデンサC1の負極は、第1抵抗器R1の一端部に接続されている。
第2スイッチSW2の他端部は、第1蓄電池1の正極と、第3スイッチSW3の一端部に接続されている。第3スイッチSW3の他端部は、第4スイッチSW4の一端部と、第1抵抗器R1の他端部とに接続されている。第4スイッチSW4の他端部は第1蓄電池1の負極に接続されている。
また、昇圧回路4は、第2蓄電池2の電圧を昇圧し、昇圧された電力を第1蓄電池1へ供給するための第2蓄電回路42を備える。第2蓄電回路42は、第2蓄電池2の電力を蓄える第2コンデンサC2を有し、第2コンデンサC2には第2抵抗器R2が直列接続されている。昇圧回路4は、第2コンデンサC2及び第2抵抗器R2からなる直列回路である第2蓄電回路42の一端部及び他端部が第2蓄電池2の正極及び負極にそれぞれ接続される経路と、上記一端部が第1蓄電池1の正極に接続され、上記他端部が第2蓄電池2の正極に接続される経路とを切り替える第2経路切替スイッチ42aを備える。
具体的には、第2経路切替スイッチ42aは、直列接続された第5スイッチSW5、第6スイッチSW6、第7スイッチSW7及び第8スイッチSW8を有する。
第5スイッチSW5の一端部は第1蓄電池1の正極に接続され、第5スイッチSW5の他端部は、第6スイッチSW6の一端部と、第2コンデンサC2の正極端とに接続されている。第2コンデンサC2の負極は、第2抵抗器R2の一端部に接続されている。
第6スイッチSW6の他端部は、第2蓄電池2の正極と、第7スイッチSW7の一端部に接続されている。第7スイッチSW7の他端部は、第8スイッチSW8の一端部と、第2抵抗器R2の他端部とに接続されている。第8スイッチSW8の他端部は第2蓄電池2の負極に接続されている。
図3は、実施形態1に係る電池状態監視装置5の一構成例を示す回路ブロック図である。電池状態監視装置5は、負荷リレーr2及び充電リレーr3の開閉を制御すると共に、第1蓄電池1及び第2蓄電池2の電圧、電流、温度等を検出し、第1蓄電池1及び第2蓄電池2の状態を監視している。例えば、電池状態監視装置5は、第1蓄電池1及び第2蓄電池2の残量を算出する。そして、電池状態監視装置5は、第1蓄電池1及び第2蓄電池2の残量に応じて、昇圧回路4の動作を制御し、第1蓄電池1及び第2蓄電池2を充放電させ、各電池の残量を調整している。
電池状態監視装置5は、自装置全体の動作を制御する制御部51、記憶部52、第1温度検出部53、第1電圧検出部54、第1電流検出部55、第2温度検出部56、第2電圧検出部57、第2電流検出部58及び信号出力部59を備える。
第1温度検出部53は、例えば、サーミスタ53aを備える。第1温度検出部53のサーミスタ53aは、第1蓄電池1の所定箇所に配されている。第1温度検出部53は、サーミスタ53aの両端電圧を検出し、検出された両端電圧を温度に換算し、温度を示す情報を制御部51へ出力する。なお、サーミスタ53aを備える構成は第1温度検出部53の一例であり、測温抵抗体、半導体温度センサ、熱電対等を用いて温度を検出する等、公知の温度センサを用いることができる。
第1電圧検出部54は、例えば、第1蓄電池1の両端電圧を検出し、第1蓄電池1の電圧を示す情報を制御部51へ出力する。
第1電流検出部55は、例えば、第1蓄電池1の電流を検出するためのシャント抵抗55aを備える。シャント抵抗55aは、第1蓄電池1に直列接続されている。第1電流検出部55は、シャント抵抗55aの両端電圧を検出し、検出された両端電圧を電流に換算し、第1蓄電池1の電流を示す情報を制御部51へ出力する。なお、シャント抵抗55aを備える構成は第1電流検出部55の一例であり、ホール素子を用いて電流を検出する等、公知の電流センサを用いることができる。
第2温度検出部56は、例えば、サーミスタ56aを備える。第2温度検出部56の構成は、第1温度検出部53と同様であり、第2蓄電池2の温度を示す情報を制御部51へ出力する。
第2電圧検出部57は、例えば、第2蓄電池2を構成する各単電池の両端電圧を検出し、各単電池の電圧を示す情報を制御部51へ出力する。
第2電流検出部58は、例えば、第2蓄電池2の電流を検出するためのシャント抵抗58aを備える。シャント抵抗58aは、第2蓄電池2に直列接続されている。第2電流検出部58は、シャント抵抗58aの両端電圧を検出し、検出された両端電圧を電流に換算し、第2蓄電池2の電流を示す情報を制御部51へ出力する。
信号出力部59は、制御部51の制御に従って、昇圧回路4の各スイッチの開閉を制御するための開閉信号を出力する。
制御部51は、例えばCPU51a(Central Processing Unit)、内部記憶部51b、タイマ51c、インタフェース51d等を有するコンピュータである。内部記憶部51bは、ROM(Read Only Memory)、RAM(Random Access Memory)等のメモリである。CPU51aはインタフェース51dを介して第1温度検出部53、第1電圧検出部54、第1電流検出部55、第2温度検出部56、第2電圧検出部57、第2電流検出部58、信号出力部59に接続している。制御部51は記憶部52に記憶されている後述の制御プログラム52aを実行することにより、第1蓄電池1及び第2蓄電池2の残量を算出する。そして、制御部51は、第1蓄電池1及び第2蓄電池2の残量に応じて開閉信号を信号出力部59から出力して昇圧回路4を動作させ、第1蓄電池1及び第2蓄電池2の残量調整に係る処理を実行する。
なお、ここではマイコンである制御部51がソフトウェア的に電池状態監視装置5の動作を制御する例を説明するが、制御部51が実行する処理の一部を専用LSI(Large-Scale Integration)、FPGA(Field-Programmable Gate Array)等を用いて実行するように構成しても良い。
記憶部52は、EEPROM(Electrically Erasable Programmable ROM)、フラッシュメモリ等の不揮発性メモリである。記憶部52は、昇圧回路4の各スイッチの開閉を制御することにより、第1蓄電池1及び第2蓄電池2の残量を調整する処理を実行するための制御プログラム52aを記憶している。なお、制御プログラム52aは、記録媒体にコンピュータ読み取り可能に記録されている態様でも良い。記憶部52は、図示しない読出装置によって記録媒体から読み出された制御プログラム52aを記憶する。記録媒体はCD(Compact Disc)−ROM、DVD(Digital Versatile Disc)−ROM、BD(Blu-ray(登録商標) Disc)等の光ディスク、フレキシブルディスク、ハードディスク等の磁気ディスク、磁気光ディスク、半導体メモリ等である。また、図示しない通信網に接続されている図示しない外部コンピュータから実施形態1に係る制御プログラム52aをダウンロードし、記憶部52に記憶させても良い。
<第1蓄電池1から第2蓄電池2への放電処理>
以下、第1蓄電池1の電圧が第2蓄電池2の電圧よりも低い場合において、第1蓄電池1の電力にて第2蓄電池2の充電を行う例を説明する。
図4は、実施形態1に係る電池残量調整処理に係る制御部51の処理手順を示すフローチャート、図5及び図6は、実施形態1に係る電池残量調整方法を概念的に示す回路図、図7は、実施形態1に係る電池残量調整方法を示すタイミングチャートである。図5及び図6中、破線矢印は電流の流れを示している。図7中、横軸は時間、縦軸は、第1蓄電池1、第2蓄電池2及び第1コンデンサC1の両端電圧を示している。
制御部51は、第2蓄電池2の電圧及び電流に基づいて第2蓄電池2の残量を算出し、第2蓄電池2の残量が所定の下限閾値未満であるか否かを判定する(ステップS11)。例えば、制御部51は、第2蓄電池2の温度、電圧及び電流を、第2温度検出部56、第2電圧検出部57及び第2電流検出部58から取得し、取得した温度、電圧及び電流に基づいて、第2蓄電池2の開放電圧を算出する。内部記憶部51bは、開放電圧と、第2蓄電池2の残量との関係を示す情報を記憶しており、制御部51は当該情報に基づいて、第2蓄電池2の残量を算出することができる。なお、制御部51は、開放電圧を、所定の閾値と比較することによって、ステップS11の処理を実行するようにしても良い。
第2蓄電池2の残量が下限閾値未満であると判定した場合(ステップS11:YES)、制御部51は、第1蓄電池1の電圧及び電流に基づいて第1蓄電池1の残量を算出し、第1蓄電池1が放電可能な状態であるか否かを判定する(ステップS12)。放電の可否は、例えば第1蓄電池1の残量に基づいて判断する。第1蓄電池1の残量は、ステップS11と同様、第1蓄電池1の温度、電圧及び電流に基づいて算出すれば良い。第1蓄電池1が放電可能な状態で無いと判定した場合(ステップS12:NO)、制御部51は、残量調整に係る処理を終える。
一方、ステップS11で第2蓄電池2の残量が下限閾値以上であると判定した場合(ステップS11:NO)、制御部51は、第1蓄電池1の電圧及び電流に基づいて第1蓄電池1の残量を算出し、第1蓄電池1の残量が上限閾値以上であるか否かを判定する(ステップS13)。第1蓄電池1の残量算出方法は、第2蓄電池2の残量算出方法と同様である。第1蓄電池1の残量が上限閾値未満であると判定した場合(ステップS13:NO)、制御部51は残量調整に係る処理を終える。なお、ステップS13の判定処理で用いる上限閾値と、ステップS11の判定処理で用いる下限閾値とは、異なる値であっても良いし、同じ値であっても良い。上限閾値及び下限閾値の大小は、第1蓄電池1及び第2蓄電池2の容量に応じて、適宜決定すれば良い。
第1蓄電池1の残量が上限閾値以上であると判定した場合(ステップS13:YES)、制御部51は第2蓄電池2が充電可能な状態であるか否かを判定する(ステップS14)。充電の可否は、例えば第1蓄電池1の残量に基づいて判断する。第1蓄電池1の残量は、ステップS11と同様、第1蓄電池1の温度、電圧及び電流に基づいて算出すれば良い。第2蓄電池2が充電可能な状態に無いと判定した場合(ステップS14:NO)、制御部51は残量調整に係る処理を終える。
ステップS12で第1蓄電池1が放電可能であると判定した場合(ステップS12:YES)、又はステップS14で第2蓄電池2が充電可能であると判定した場合(ステップS14:YES)、制御部51は、信号出力部59から開閉信号を出力することによって、図5に示すように、第2スイッチSW2及び第4スイッチSW4をオン状態、第1スイッチSW1及び第3スイッチSW3をオフ状態に制御する(ステップS15)。ステップS15の処理によって、第1蓄電回路41の両端部は、第1蓄電池1の正極及び負極に接続される。
次いで、制御部51は、第2スイッチSW2及び第4スイッチSW4をオン状態に切り替えた後、所定時間が経過したか否かを判定する(ステップS16)。所定時間が経過していないと判定した場合(ステップS16:NO)、制御部51は処理をステップS16へ戻し、待機する。この間に、第1コンデンサC1は第1蓄電池1により充電され、第1コンデンサC1の両端電圧は第1蓄電池1の電圧に達するまで上昇する。
所定時間が経過したと判定した場合(ステップS16:YES)、制御部51は、信号出力部59から開閉信号を出力することによって、図6に示すように、第2及び第4スイッチSW2、SW4をオフ状態に制御し(ステップS17)、次いで、第1及び第3スイッチSW1、SW3をオン状態に制御する(ステップS18)。ステップS17及びステップS18の処理によって、第1蓄電回路41の一端部は第2蓄電池2の正極に接続され、第1蓄電回路41の他端部は第1蓄電池1の正極端に接続される。従って、第1蓄電回路41の一端部の電圧は、第1蓄電池1の電圧の略2倍になる。
次いで、制御部51は、第1スイッチSW1及び第3スイッチSW3をオン状態に切り替えた後、所定時間が経過したか否かを判定する(ステップS19)。所定時間が経過していないと判定した場合(ステップS19:NO)、制御部51は処理をステップS19へ戻し、待機する。この間に、第1コンデンサC1に蓄えられた電力によって第2蓄電池2の充電が行われる。第1コンデンサC1によって第2蓄電池2に印加される電圧は、第1蓄電池1の2倍に昇圧されているため、第1蓄電池1の電圧が第2蓄電池2の電圧よりも低くても、第1蓄電池1を放電させ、第2蓄電池2を充電することができる。
所定時間が経過したと判定した場合(ステップS19:YES)、制御部51は、信号出力部59から開閉信号を出力することによって、第1スイッチSW1及び第3スイッチSW3をオフ状態に制御する(ステップS20)。次いで、制御部51は、第2蓄電池2の電圧及び電流に基づいて第2蓄電池2の残量を算出し、第2蓄電池2の残量が所定の下限閾値以上であるか否かを判定する(ステップS21)。第2蓄電池2の残量が下限閾値未満であると判定した場合(ステップS21:NO)、制御部51は、処理をステップS11へ戻し、第1蓄電池1の放電及び第2蓄電池2の充電を継続する。
第2蓄電池2の残量が下限閾値以上であると判定した場合(ステップS21:YES)、制御部51は、第1蓄電池1の電圧及び電流に基づいて第1蓄電池1の残量が上限閾値未満であるか否かを判定する(ステップS22)。第1蓄電池1の残量が上限閾値以上であると判定した場合(ステップS22:NO)、制御部51は、処理をステップS11へ戻し、第1蓄電池1の放電及び第2蓄電池2の充電を継続する。
第1蓄電池1の残量が上限閾値未満であると判定した場合(ステップS22:YES)、制御部51は、残量調整に係る処理を終える。
以上の通り、第1蓄電池1の残量が上限値未満、第2蓄電池2の残量が下限閾値以上になるまで、ステップS15〜ステップS20の処理が繰り返し実行される。当該処理を繰り返し実行することによって、図7に示すように、第2蓄電池2の電圧が、第1蓄電池1の略2倍になるまで、第2蓄電池2を第1蓄電池1にて充電することができる。なお、図7では、第1経路切替スイッチ41aによる1周期の経路切り替えによって、第2蓄電池2の電圧が、第1蓄電池1の略2倍の電圧に到達しているが、必ずしも1周期の切り替え処理で充電が完了する訳では無く、通常、第1経路切替スイッチ41aによる経路の切り替えは複数回実行される。
<第2蓄電池2から第1蓄電池1への放電処理>
以下、第2蓄電池2の電圧が第1蓄電池1の電圧よりも高い場合において、第2蓄電池2の電力にて第1蓄電池1の充電を行う例を説明する。
図8は、実施形態1に係る電池残量調整処理に係る制御部51の処理手順を示すフローチャート、図9及び図10は、実施形態1に係る電池残量調整方法を概念的に示す回路図、図11は、実施形態1に係る電池残量調整方法を示すタイミングチャートである。図9及び図10中、破線矢印は電流の流れを示している。図11中、横軸は時間、縦軸は、第1蓄電池1、第2蓄電池2及び第2コンデンサC2の両端電圧を示している。
制御部51は、第1蓄電池1の電圧及び電流に基づいて第1蓄電池1の残量を算出し、第1蓄電池1の残量が所定の下限閾値未満であるか否かを判定する(ステップS31)。例えば、制御部51は、第1蓄電池1の温度、電圧及び電流を、第1温度検出部53、第1電圧検出部54及び第1電流検出部55から取得し、取得した温度、電圧及び電流に基づいて、第1蓄電池1の開放電圧を算出する。内部記憶部51bは、開放電圧と、第1蓄電池1の残量との関係を示す情報を記憶しており、制御部51は当該情報に基づいて、第1蓄電池1の残量を算出することができる。なお、制御部51は、開放電圧を、所定の閾値と比較することによって、ステップS31の処理を実行するようにしても良い。なお、当該下限閾値は、ステップS31で用いた下限閾値と同一の値であっても良いし、異なる値であっても良い。
第1蓄電池1の残量が下限閾値未満であると判定した場合(ステップS31:YES)、制御部51は、第2蓄電池2の電圧及び電流に基づいて第2蓄電池2の残量を算出し、第2蓄電池2が放電可能な状態であるか否かを判定する(ステップS32)。第2蓄電池2が放電可能な状態で無いと判定した場合(ステップS32:NO)、制御部51は、残量調整に係る処理を終える。
一方、ステップS31で第1蓄電池1の残量が下限閾値以上であると判定した場合(ステップS31:NO)、制御部51は、第2蓄電池2の電圧及び電流に基づいて第2蓄電池2の残量を算出し、第2蓄電池2の残量が上限閾値以上であるか否かを判定する(ステップS33)。なお、ステップS33の判定処理で用いる上限閾値と、ステップS31の判定処理で用いる下限閾値とは、異なる値であっても良いし、同じ値であっても良い。上限閾値及び下限閾値の大小は、第1蓄電池1及び第2蓄電池2の容量に応じて、適宜決定すれば良い。第2蓄電池2の残量が上限閾値未満であると判定した(ステップS33:NO)、制御部51は残量調整に係る処理を終える。第2蓄電池2の残量が上限閾値以上であると判定した場合(ステップS33:YES)、制御部51は第1蓄電池1が充電可能な状態であるか否かを判定する(ステップS34)。第1蓄電池1が充電可能な状態に無いと判定した場合(ステップS34:NO)、制御部51は残量調整に係る処理を終える。
ステップS32で第2蓄電池2が放電可能であると判定した場合(ステップS32:YES)、又はステップS34で第1蓄電池1が充電可能であると判定した場合(ステップS34:YES)、制御部51は、信号出力部59から開閉信号を出力することによって、図9に示すように、第6スイッチSW6及び第8スイッチSW8をオン状態、第5スイッチSW5及び第7スイッチSW7をオフ状態に制御する(ステップS35)。ステップS35の処理によって、第2蓄電回路42の両端部は、第2蓄電池2の正極及び負極に接続される。
次いで、制御部51は、第6スイッチSW6及び第8スイッチSW8をオン状態に切り替えた後、所定時間が経過したか否かを判定する(ステップS36)。所定時間が経過していないと判定した場合(ステップS36:NO)、制御部51は処理をステップS36へ戻し、待機する。この間に、第2コンデンサC2は第2蓄電池2により充電され、第2コンデンサC2の両端電圧は第2蓄電池2の電圧に達するまで上昇する。
所定時間が経過したと判定した場合(ステップS36:YES)、制御部51は、信号出力部59から開閉信号を出力することによって、図10に示すように、第6及び第8スイッチSW6、SW8をオフ状態に制御し(ステップS37)、次いで、第5及び第7スイッチSW5、SW7をオン状態に制御する(ステップS38)。ステップS37及びステップS38の処理によって、第2蓄電回路42の一端部は第1蓄電池1の正極に接続され、第2蓄電回路42の他端部は第2蓄電池2の正極端に接続される。従って、第2蓄電回路42の一端部の電圧は、第2蓄電池2の電圧の略2倍になる。
次いで、制御部51は、第5スイッチSW5及び第7スイッチSW7をオン状態に切り替えた後、所定時間が経過したか否かを判定する(ステップS39)。所定時間が経過していないと判定した場合(ステップS39:NO)、制御部51は処理をステップS39へ戻し、待機する。この間に、第2コンデンサC2に蓄えられた電力によって第1蓄電池1の充電が行われる。
所定時間が経過したと判定した場合(ステップS39:YES)、制御部51は、信号出力部59から開閉信号を出力することによって、第5スイッチSW5及び第7スイッチSW7をオフ状態に制御する(ステップS40)。次いで、制御部51は、第1蓄電池1の電圧及び電流に基づいて第1蓄電池1の残量を算出し、第1蓄電池1の残量が所定の下限閾値以上であるか否かを判定する(ステップS41)。第1蓄電池1の残量が下限閾値未満であると判定した場合(ステップS41:NO)、制御部51は、処理をステップS31へ戻し、第2蓄電池2の放電及び第1蓄電池1の充電を継続する。
第1蓄電池1の残量が下限閾値以上であると判定した場合(ステップS41:YES)、制御部51は、第2蓄電池2の電圧及び電流に基づいて第2蓄電池2の残量が上限閾値未満であるか否かを判定する(ステップS42)。第2蓄電池2の残量が上限閾値以上であると判定した場合(ステップS42:NO)、制御部51は、処理をステップS31へ戻し、第2蓄電池2の放電及び第1蓄電池1の充電を継続する。
第2蓄電池2の残量が上限閾値未満であると判定した場合(ステップS42:YES)、制御部51は、残量調整に係る処理を終える。
以上の通り、第2蓄電池2の残量が上限値未満、第1蓄電池1の残量が下限閾値以上になるまで、ステップS35〜ステップS40の処理が繰り返し実行される。当該処理を繰り返し実行することによって、図11に示すように、第1蓄電池1及び第2蓄電池2の電圧が略同一になるまで、第1蓄電池1を第2蓄電池2にて充電することができる。なお、図11では、第2経路切替スイッチ42aによる1周期の経路切り替えによって、第1蓄電池1及び第2蓄電池2の電圧が略同一になっているが、必ずしも1周期の切り替え処理で充電が完了する訳では無く、通常、第2経路切替スイッチ42aによる経路の切り替えは複数回実行される。
このように構成された実施形態1に係る電池残量調整装置によれば、第1蓄電池1の電圧が第2蓄電池2の電圧よりも低い場合であっても、昇圧回路4によって第1蓄電池1の電圧を第1コンデンサC1によって昇圧し、昇圧された第1蓄電池1の電力にて第2蓄電池2を充電することができる。同様に、第2蓄電池2の電圧が第1蓄電池1の電圧よりも低い場合であっても、昇圧回路4によって第2蓄電池2の電圧を第2コンデンサC2によって昇圧し、昇圧された第2蓄電池2の電力にて第1蓄電池1を充電することができる。従って、第1蓄電池1及び第2蓄電池2の電圧の高低に拘わらず、第1蓄電池1及び第2蓄電池2の残量を調整することができる。
また、本実施形態1に係る昇圧回路4は、第1コンデンサC1、第2コンデンサC2並びに第1乃至第8スイッチSW1、…、SW8にて構成されているため、コイル等の大型部品を用いた昇圧回路に比べて、当該昇圧回路4を小型かつ低コストで構成することができる。
なお、本実施形態1では、第1蓄電池1及び第2蓄電池2のいずれの電圧も昇圧できる構成を例示したが、第1蓄電池1及び第2蓄電池2のいずれか一方の電圧のみを昇圧するように構成しても良い。具体的には、第2コンデンサC2、第2抵抗器R2、第5スイッチSW5乃至第8スイッチSW8を廃し、基本的構成として第1コンデンサC1、第1抵抗器R1、第1スイッチSW1乃至第4スイッチSW4を備えるように昇圧回路4を構成しても良い。
(実施形態2)
図12は、実施形態2に係る昇圧回路204の一構成例を示す回路図である。実施形態2に係る電池残量調整装置3は昇圧回路204の構成が実施形態1と異なるため、以下では主に上記相違点を説明する。その他の構成及び作用効果は実施形態1と同様であるため、対応する箇所には同様の符号を付して詳細な説明を省略する。
実施形態2に係る昇圧回路204は、実施形態1と同様の構成であり、更に、第1コンデンサC1及び第2コンデンサC2を迂回して、第1蓄電池1の正極と、第2蓄電池2の正極とを直接的に接続する迂回経路を有する。迂回経路には、迂回経路を開閉させる迂回スイッチSW9と、迂回経路を流れる電流を制限する制限抵抗器R3とを直列接続した直列回路が設けられている。
電流状態監視装置の制御部51は、第1蓄電池1を放電させ、第2蓄電池2を充電する場合、第1蓄電池1の電圧が第2蓄電池2の電圧よりも高いとき、迂回スイッチSW9をオン状態に制御する。当該制御によって、第1蓄電池1を放電させ、第2蓄電池2を充電することができる。
同様に、第2蓄電池2を放電させ、第1蓄電池1を充電する場合、第2蓄電池2の電圧が第1蓄電池1の電圧よりも高いとき、制御部51は迂回スイッチSW9をオン状態に制御する。当該制御によって、第2蓄電池2を放電させ、第1蓄電池1を充電することができる。
このように構成された実施形態2によれば、第1蓄電池1及び第2蓄電池2の残量を効率的に調整することができる。
(実施形態3)
実施形態3に係る電池残量調整装置3は、第1蓄電池1及び第2蓄電池2の充放電処理に加え、第2蓄電池2の内部抵抗、充電率、劣化度等を算出するものである。以下では主に上記相違点を説明する。その他の構成及び作用効果は実施形態1と同様であるため、対応する箇所には同様の符号を付して詳細な説明を省略する。
本実施形態3に係る制御部51は、蓄電制御部、充放電制御部、電圧取得部、電流取得部、温度取得部、待機時間特定部、抵抗算出部、開放電圧算出部、充電率算出部、劣化度算出部として機能する。
蓄電制御部は、第1経路切替スイッチ41a及び第2経路切替スイッチ42aの動作を制御することによって、第1蓄電回路41の両端部を第1蓄電池1の正極及び負極に接続し、第2蓄電回路42の両端部を第2蓄電池2の正極及び負極に接続し、第1コンデンサC1及び第2コンデンサC2を充電する。任意のタイミングで第2蓄電池2の充放電状態を切り替えるための処理である。
充放電制御部は、第1経路切替スイッチ41a及び第2経路切替スイッチ42aの動作を制御することによって、第2蓄電池2が充電を行っている状態から、放電を行っている状態に切り替える。また、充放電制御部は、第1経路切替スイッチ41a及び第2経路切替スイッチ42aの動作を制御することによって、第2蓄電池2が放電を行っている状態から、充電を行っている状態に切り替えることもできる。
電圧取得部は、第2蓄電池2の電圧(第2蓄電池2の両端電圧)を取得する。また、電流取得部は、第2蓄電池2の電流(充電電流及び放電電流)を取得する。なお、電圧、電流の取得頻度、取得するサンプリング周期は、制御部51が制御することができる。
待機時間特定部は、特定部としての機能を有し、第2蓄電池2のインピーダンススペクトルにて、所定のイオンの拡散過程に起因する拡散インピーダンスが第2蓄電池2のインピーダンスに寄与する境界周波数域に基づいて待機時間を特定する。インピーダンススペクトルは、コールコール(Cole−Cole)プロット又はナイキストプロットとも称し、交流インピーダンス法を用いて第2蓄電池2のインピーダンスを複数の周波数で測定した値をプロットしたものである。また、所定のイオンは、リチウム(Li)イオンである。境界周波数域とは、周波数に所要の幅を持たせることを意味するものであり、一点の周波数に限定されないことを意味する。
図13は実施形態3に係る第2蓄電池2の等価回路の一例を示す説明図である。第2蓄電池2は、電解液バルクの抵抗Rs、界面電荷移動抵抗Rc、電気二重層キャパシタンスC、拡散インピーダンスZwで構成される等価回路で表すことができる。より具体的には、第2蓄電池2のインピーダンスは、界面電荷移動抵抗Rcと拡散インピーダンスZwとの直列回路に電気二重層キャパシタンスCを並列接続した回路にさらに電解液バルクの抵抗Rsを直列に接続した回路で等価的に表すことができる。
電解液バルクの抵抗Rsは、電解液中でのリチウム(Li)イオンの伝導抵抗、正極及び負極での電子抵抗などを含む。界面電荷移動抵抗Rcは、活物質表面における電荷移動抵抗及び被膜抵抗などを含む。拡散インピーダンスZwは、活物質粒子内部へのリチウム(Li)イオンの拡散過程に起因するインピーダンスである。
図14は実施形態3に係る第2蓄電池2のインピーダンススペクトルの一例を示す説明図である。図14において、横軸はインピーダンスZの実数成分Zrを示し、縦軸はインピーダンスZの虚数成分Ziを示す。第2蓄電池2の内部抵抗は、電解液バルクの抵抗Rs及び界面電荷移動抵抗Rcが主要部分を占める。一方、交流インピーダンス法での周波数を高周波数から低周波数へ(例えば、100kHzから0.01mHz、あるいは1MHzから10μHzなど)変化させた場合、図14に示すように、ある周波数域(境界周波数域と称する:図14の符号Aで示す付近)で、拡散インピーダンスZwが増加し、第2蓄電池2のインピーダンスが増加する(第2蓄電池2のインピーダンスに寄与する)。すなわち、第2蓄電池2のインピーダンススペクトルにて、所定のイオンの拡散過程に起因する拡散インピーダンスが第2蓄電池2のインピーダンスに寄与するとは、周波数(又は角周波数)が高周波数から低周波数に向かって小さくなる場合に、拡散インピーダンスZwが増加し、第2蓄電池2のインピーダンスが増加することを意味する。つまり、境界周波数域は、第2蓄電池2のインピーダンスが、電解液バルクの抵抗Rsと界面電荷移動抵抗Rcとの合計値で表すことができ、拡散インピーダンスZwによる影響(寄与)が少ない又は無視することができる程度となる周波数域を意味する。なお、交流インピーダンス法は、第2蓄電池2の等価回路の各要素を特定するために周波数を変化させた交流電圧を第2蓄電池2に印加し、第2蓄電池2から得られる電流信号及び電圧信号を離散フーリエ変換で周波数領域に変換することにより、インピーダンスを求めるものである。
交流電圧の周波数をfとすると、第2蓄電池2のインピーダンスZは、式(1)で表すことができる。ここで、wは角周波数、σは拡散条件に関する定数である。
Figure 2018121511
式(1)で表されるインピーダンスを周波数毎にプロットしたものが、図14に示すインピーダンススペクトルである。式(1)のインピーダンスZの実数成分Zrは、式(2)で表すことができ、虚数成分Ziは、式(3)で表すことができる。低周波数領域での軌跡を求めるため、w=0を式(2)、式(3)に代入すると、式(4)及び式(5)が得られる。ここで、式(4)及び式(5)からwを消去すると、式(6)が得られる。一方、高周波数領域では、式(1)においてw=∞とすると、式(7)が得られる。
図14において、w=∞の場合に、軌跡が横軸と交差する点でのインピーダンスZは、Z=Zr=Rsとなる。また、半円状の軌跡の中心(横軸と交差する点)でのインピーダンスZは、Z=Zr=Rs+Rc/2となる。また、図14中、符号Aで示す境界周波数域よりもwが小さくなると、インピーダンスZの軌跡は直線状に増加していくことが分かる。かかる直線を延長した延長線が横軸と交差する点でのインピーダンスZは、Z=Zr=Rs+R−2σ2 Cとなる。符号Aで示す境界周波数域よりも小さい周波数領域は、リチウムイオンの拡散過程に起因する領域となり、周波数が小さくなるに応じて拡散インピーダンスZwが増加する。
前述のとおり、第2蓄電池2の内部抵抗Rは、電解液バルクの抵抗Rs及び界面電荷移動抵抗Rcが主要部分を占める。また、交流インピーダンス法での周波数を高周波数から低周波数へ変化させた場合、境界周波数域で、拡散インピーダンスZwが増加し、第2蓄電池2のインピーダンスが増加する(第2蓄電池2のインピーダンスに寄与する)。そこで、拡散インピーダンスZwが増加する前の境界周波数域でのインピーダンスZが第2蓄電池2の内部抵抗Rを表すということができる。
また、交流インピーダンス法での周波数fと、直流を通電してから測定するまでの待機時間Tとの間には、T=1/(2×f)という関係がある。すなわち、待機時間Tは、例えば、周波数fの2倍の逆数という関係から特定することができる。例えば、周波数fが5Hzの場合、待機時間Tは0.1秒となる。なお、待機時間Tを周波数fの2倍の逆数とするのは一例であって、例えば、待機時間Tを周波数fの4倍の逆数としてもよい。
抵抗算出部は、切替判定部で充放電の切り替え有りと判定した場合、待機時間特定部で特定した待機時間T後に電圧取得部で取得した電圧及び電流取得部で取得した電流に基づいて第2蓄電池2の内部抵抗Rを算出する。
充電から放電、あるいは放電から充電に切り替わると、第2蓄電池2の内部抵抗Rのうち、例えば、拡散抵抗(拡散インピーダンス)及び電荷移動抵抗は一旦リセットされ、通電時間に応じて内部抵抗Rが増加し始める。そこで、充放電の切り替えありと判定した場合、待機時間T後の電圧Vc、電流Icを取得することにより、第2蓄電池2の内部抵抗Rを算出することができる。これにより、充放電の切り替え後、短時間(例えば、0.1秒程度)で内部抵抗Rを求めることができるので、充放電が頻繁に繰り返される場合でも充電又は放電の切り替わり後、比較的短時間で第2蓄電池2の内部抵抗Rを精度よく算出することができる。
より具体的には、抵抗算出部は、切替判定部で充放電の切り替えありと判定する前に電圧取得部で取得した電圧Vb及び電流取得部で取得した電流Ib、並びに待機時間特定部で特定した待機時間T後に電圧取得部で取得した電圧Vc及び電流取得部で取得した電流Icに基づいて第2蓄電池2の内部抵抗Rを算出する。
2点間の電圧、電流から求められる直線の傾きの絶対値が、第2蓄電池2の内部抵抗Rを示す。そこで、内部抵抗Rは、R=(Vc−Vb)/(Ic−Ib)で算出することができる。これにより、充放電の切り替え後、短時間(例えば、0.1秒程度)で内部抵抗を求めることができるので、充放電が頻繁に繰り返される場合でも充電又は放電の切り替わり後、比較的短時間で第2蓄電池2の内部抵抗を精度よく算出することができる。
また、抵抗算出部は、待機時間特定部で特定した待機時間T後に電流取得部で取得した電流が所定の閾値より大きい場合、第2蓄電池2の内部抵抗Rを算出する。
待機時間Tが経過した後に取得した電流が小さい場合には、内部抵抗Rを精度よく算出することができないので、電流が所定の閾値より大きい場合という条件を加えることで、内部抵抗Rの算出精度を上げることができる。
図15は実施形態3に係る第2蓄電池2の充電率を変化させた場合のインピーダンススペクトルの一例を示す説明図である。図15の例は、25℃において、充電率(SOC:State of Charge)を20%、50%、80%と変化させた場合のインピーダンススペクトルを示す。充電率を20%、50%、80%と変化させた場合、例えば、境界周波数域は、2.5Hz、4.0Hz、6.3Hzと変化している。充電率が小さくなるほど第2蓄電池2のインピーダンスが大きくなることが分かる。また、境界周波数域2.5Hz、4.0Hz、6.3Hzそれぞれに対応する待機時間Tは、0.2秒、0.125秒、0.079秒となる。
図16は実施形態3に係る第2蓄電池2の温度を変化させた場合のインピーダンススペクトルの一例を示す説明図である。図16の例は、充電率を一定として、第2蓄電池2の温度を10℃、25℃、45℃と変化させた場合のインピーダンススペクトルを示す。第2蓄電池2の温度を10℃、25℃、45℃と変化させた場合、例えば、境界周波数域は、2Hz、7.9Hz、32Hzと変化している。第2蓄電池2の温度が低くなるほど第2蓄電池2のインピーダンスが大きくなることが分かる。また、境界周波数域2Hz、7.9Hz、32Hzそれぞれに対応する待機時間Tは、0.25秒、0.063秒、0.015秒となる。
図17は実施形態3に係る第2蓄電池2の新品及び劣化品のインピーダンススペクトルの一例を示す説明図である。第2蓄電池2が新品の場合、例えば、境界周波数域は7.94Hzとなり、劣化品の場合、境界周波数域は3.98Hzとなる。第2蓄電池2が劣化するほど第2蓄電池2のインピーダンスが大きくなることが分かる。また、境界周波数域3.98Hz、7.94Hzそれぞれに対応する待機時間Tは、0.126秒、0.063秒となる。
図18は実施形態3に係る第2蓄電池2の境界周波数域に対応する待機時間の一例を示す説明図である。境界周波数域は、前述の図14等で例示したように、角周波数w(周波数f)が無限大から0に向かって減少する場合に、第2蓄電池2のインピーダンスZが、拡散インピーダンスZwの増加に伴って増加し始める領域の周波数である。境界周波数域は、基準の周波数に対して、例えば、±50%の幅を有する周波数域とすることができる。例えば、境界周波数域が4Hzとは、基準の周波数4Hzの±50%の周波数域を含むものとすることができる。境界周波数域を待機時間Tで換算すると、境界周波数域4Hzは、待機時間0.125秒となり、0.125秒を中心として±50%の時間を、境界周波数域に対応する待機時間Tとすることができる。この場合、待機時間0.125秒とは、0.0625秒〜0.187秒の範囲を含むものとすることができる。また、図18の例から、待機時間に±50%の幅を持たせることにより、充電率(SOC)範囲をカバーすることもできる。
待機時間特定部は、第2蓄電池2の充電率(SOC)に基づいて待機時間を特定する。図15で例示したように、充電率(SOC)が小さいほど、境界周波数域は小さくなり、境界周波数域での周波数fに逆比例する待機時間Tは大きくなる。
そこで、例えば、充電率に応じた補正係数K0を定めておき、充電率が50%の場合の待機時間をT0とすると、最終的な待機時間Tは、T=K0×T0という式で算出する。これにより、第2蓄電池2の充電率に応じて待機時間を補正して最終的な待機時間Tを特定することができるので、第2蓄電池2の充電率に関わらず内部抵抗Rを精度よく算出することができる。なお、充電率に応じた補正係数K0は、記憶部52に記憶してもよく、あるいは演算回路で算出するようにしてもよい。
温度取得部は、第2蓄電池2の温度を取得する。待機時間特定部は、温度取得部で取得した温度に基づいて待機時間Tを特定する。図16で例示したように、第2蓄電池2の温度が低いほど、境界周波数域は小さくなり、境界周波数域での周波数fに逆比例する待機時間Tは大きくなる。
そこで、例えば、第2蓄電池2の温度に応じた補正係数K1を定めておき、温度が25℃の場合の待機時間をT0とすると、最終的な待機時間Tは、T=K1×T0という式で算出する。これにより、第2蓄電池2の温度に応じて待機時間を補正して最終的な待機時間Tを特定することができるので、第2蓄電池2の温度に関わらず内部抵抗Rを精度よく算出することができる。なお、温度に応じた補正係数K1は、記憶部52に記憶してもよく、あるいは演算回路で算出するようにしてもよい。
また、待機時間特定部は、第2蓄電池2の劣化度に基づいて待機時間Tを特定することができる。図17で例示したように、第2蓄電池2の劣化が進むにつれて、境界周波数域は小さくなり、境界周波数域での周波数fに逆比例する待機時間Tは大きくなる。
そこで、例えば、第2蓄電池2の劣化の進行に応じた補正係数K2を定めておき、新品の場合の待機時間をT0とすると、劣化品の待機時間Tは、T=K2×T0という式で算出する。これにより、第2蓄電池2の劣化に応じて待機時間を補正して最終的な待機時間Tを特定することができるので、第2蓄電池2の劣化に関わらず内部抵抗Rを精度よく算出することができる。なお、劣化に応じた補正係数K2は、記憶部52に記憶してもよく、あるいは演算回路で算出するようにしてもよい。
開放電圧算出部は、抵抗算出部で算出した内部抵抗R、電圧取得部で取得した電圧V及び電流取得部で取得した電流Iに基づいて、第2蓄電池2の開放電圧を算出する。第2蓄電池2の開放電圧をOCVとすると、OCV=V−Voで算出することができる。ここで、Voは過電圧であり、内部抵抗R×電流Iで表される電圧に分極電圧を加えた電圧である。
図19は実施形態3に係る第2蓄電池2の開放電圧と充電率との相関関係の一例を示す説明図である。図19において、横軸は開放電圧(OCV)を示し、縦軸は充電率(SOC)を示す。図19に示すように、第2蓄電池2の開放電圧が大きいほど充電率が増加する。なお、図19に例示する開放電圧と充電率との相関関係は、記憶部52に記憶してもよく、あるいは演算回路で演算するようにしてもよい。
充電率算出部は、開放電圧算出部で算出した開放電圧に基づいて第2蓄電池2の充電率を算出する。前述のように、第2蓄電池2の開放電圧OCVと充電率(SOC)との相関関係を予め定めておくことにより、算出した開放電圧に基づいて第2蓄電池2の充電率を算出することができる。
劣化度算出部は、第2蓄電池2の内部抵抗の初期値R0に対する抵抗算出部で算出した内部抵抗Rの割合に基づいて第2蓄電池2の劣化度(SOH)を算出する。
図20は実施形態3に係る第2蓄電池2の内部抵抗増加率と放電容量比との相関関係の一例を示す説明図である。図20において、横軸は内部抵抗増加率を示し、縦軸は放電容量比を示す。また、温度は25℃、充電率は50%である。第2蓄電池2の容量低下は劣化とも相関関係があり、放電容量比が1の場合、劣化度は0とすることができ、放電容量比が減少すると劣化度は大きくなる。図20に示すように、第2蓄電池2の内部抵抗増加率が大きいほど放電容量比が減少し、劣化度(SOH)が大きくなる。なお、図20に例示する内部抵抗増加率と放電容量比との相関関係は、記憶部52に記憶してもよく、あるいは演算回路で演算するようにしてもよい。
前述のように、内部抵抗Rの増加率と放電容量比(劣化度)との相関関係を予め定めておき、内部抵抗の割合R/R0に対応する放電容量比を特定することにより、劣化度(SOH)を算出することができる。
次に、実施形態3に係る電池状態監視装置5の動作について説明する。
図21は実施形態3に係る電池状態監視装置5の処理手順の一例を示すフローチャート、図22は、実施形態3に係る電池残量調整方法を概念的に示す回路図である。以下では便宜上、処理の主体を制御部51として説明する。制御部51は、第1蓄電池1及び第2蓄電池2の電池残量が所定範囲内であるか否かを判定する(ステップS211)。ステップS211の処理は、実施形態1のステップS11〜ステップS14と同様の処理である。
第1蓄電池1及び第2蓄電池2の電池残量が所定範囲内で無いと判定した場合(ステップS211:NO)、制御部51は処理を終える。第1蓄電池1及び第2蓄電池2の電池残量が所定範囲内であると判定した場合(ステップS211:YES)、制御部51は、信号出力部59から開閉信号を出力することによって、図22に示すように、第2スイッチSW2、第4スイッチSW4、第6スイッチSW6及び第8スイッチSW8をオン状態、第1スイッチSW1、第3スイッチSW3、第5スイッチSW5及び第7スイッチSW7をオフ状態に制御する(ステップS212)。ステップS212の処理によって、第1蓄電回路41の両端部は、第1蓄電池1の正極及び負極に接続され、第2蓄電回路42の両端部は、第2蓄電池2の正極及び負極に接続される。
次いで、制御部51は、第2スイッチSW2、第4スイッチSW4、第6スイッチSW6及び第8スイッチSW8をオン状態に切り替えた後、所定時間が経過したか否かを判定する(ステップS213)。所定時間が経過していないと判定した場合(ステップS213:NO)、制御部51は処理をステップS213へ戻し、待機する。この間に、第1コンデンサC1は第1蓄電池1により充電され、第1コンデンサC1の両端電圧は第1蓄電池1の電圧に達するまで上昇する。同様に、第2コンデンサC2は第2蓄電池2により充電され、第2コンデンサC2の両端電圧は第2蓄電池2の電圧に達するまで上昇する。
所定時間が経過したと判定した場合(ステップS213:YES)、制御部51は、信号出力部59から開閉信号を出力することによって、第2スイッチSW2、第4スイッチSW4、第6スイッチSW6及び第8スイッチSW8をオフ状態に制御し(ステップS214)、次いで、第1及び第3スイッチSW1、SW3をオン状態に制御する(ステップS215)。ステップS214及びステップS215の処理によって、第1蓄電回路41の一端部は第2蓄電池2の正極に接続され、第1蓄電回路41の他端部は第1蓄電池1の正極端に接続される。従って、第1蓄電回路41の一端部の電圧は、第1蓄電池1の電圧の略2倍になる。
次いで、制御部51は、第1スイッチSW1及び第3スイッチSW3をオン状態に切り替えた後、所定時間が経過したか否かを判定する(ステップS216)。所定時間が経過していないと判定した場合(ステップS216:NO)、制御部51は処理をステップS216へ戻し、待機する。この間に、第1コンデンサC1に蓄えられた電力によって第2蓄電池2の充電が行われる。第1コンデンサC1によって第2蓄電池2に印加される電圧は、第1蓄電池1の2倍に昇圧されているため、第1蓄電池1の電圧が第2蓄電池2の電圧よりも低くても、第1蓄電池1を放電させ、第2蓄電池2を充電することができる。
所定時間が経過したと判定した場合(ステップS216:YES)、制御部51は、信号出力部59から開閉信号を出力することによって、第1スイッチSW1及び第3スイッチSW3をオフ状態に制御する(ステップS217)。次いで、制御部51は、第1蓄電池1及び第2蓄電池2の充放電を完了したか否かを判定する(ステップS218)。ステップS218の処理は実施形態1のステップS21及びステップS22と同様の処理である。充電を完了していないと判定した場合(ステップS218:NO)、制御部51は処理をステップS211へ戻す。
充電を完了したと判定した場合(ステップS218:YES)、制御部51は、第2蓄電池2の内部抵抗を算出する内部抵抗算出処理を行う(ステップS219)。また、制御部51は、ステップS219にて算出した第2蓄電池2の内部抵抗を用いて充電率算出処理を行い(ステップS220)、劣化度算出処理を行う(ステップS221)。なお、内部抵抗算出処理、充電率算出処理及び劣化度算出処理の詳細は後述する。
図23は実施形態3に係る電池状態監視装置5の内部抵抗算出処理の手順の一例を示すフローチャートである。
制御部51は、信号出力部59から開閉信号を出力することによって、第5スイッチSW5及び第7スイッチSW7をオン状態に制御する(ステップS231)。ステップS231の処理によって、図10に示すように、第2蓄電回路42の一端部は第1蓄電池1の正極に接続され、第2蓄電回路42の他端部は第2蓄電池2の正極端に接続される。つまり、第2蓄電池2は放電状態になる。
次いで、制御部51は、第5スイッチSW5及び第7スイッチSW7をオン状態に切り替えた後、所定時間が経過したか否かを判定する(ステップS232)。所定時間が経過していないと判定した場合(ステップS232:NO)、制御部51は処理をステップS232へ戻し、待機する。この間に、第2蓄電池2の放電が行われる。
所定時間が経過したと判定した場合(ステップS232:YES)、制御部51は、第2蓄電池2の電圧を取得し(ステップS233)、第2蓄電池2の電流を取得する(ステップS234)。そして、制御部51は、信号出力部59から開閉信号を出力することによって、第5スイッチSW5及び第7スイッチSW7をオフ状態に制御する(ステップS235)。
次いで、制御部51は、充放電切り替えの直前に取得した電圧Vb、電流Ibを記憶部52に保管する(ステップS236)。
制御部51は、待機時間特定処理を行う(ステップS237)。なお、待機時間特定処理の詳細は後述する。
制御部51は、計時を行う(ステップS238)。なお、計時の開始時点は、充放電の切り替えありと判定した時点(前述の今回の電圧、電流を取得した時点)でもよく、直近(前回)の電圧、電流を取得した時点でもよい。制御部51は、待機時間を経過したか否かを判定する(ステップS239)。待機時間を経過していない場合(ステップS239:NO)、制御部51は、処理をステップS239に戻して待機時間が経過するまで待機する。
待機時間を経過した場合(ステップS239:YES)、制御部51は、第2蓄電池2の電圧Vcを取得し(ステップS240)、第2蓄電池2の電流Icを取得する(ステップS241)。制御部51は、取得した電流Icが所定の閾値以上であるか否かを判定する(ステップS242)。閾値は、内部抵抗を精度よく算出するのに必要な程度の値とすることができる。
制御部51は、取得した電流Icが所定の閾値以上である場合(ステップS242:YES)、内部抵抗を算出し(ステップS243)、処理を終了する。内部抵抗Rは、例えば、R=(Vc−Vb)/(Ic−Ib)で算出することができる。取得した電流Icが所定の閾値以上でない場合(ステップS242:NO)、制御部51は、ステップS243の処理を行うことなく処理を終了する。
図24は実施形態3に係る電池状態監視装置5の待機時間特定処理の手順の一例を示すフローチャートである。制御部51は、第2蓄電池2の充電率に応じた待機時間を取得し(ステップS251)、第2蓄電池2の温度(セル温度)に応じた補正係数K1を取得し(ステップS252)、第2蓄電池2の劣化度に応じた補正係数K2を取得する(ステップS253)。
制御部51は、ステップS251で取得した、第2蓄電池2の充電率に応じた待機時間(例えば、待機時間初期値T0)に各補正係数を乗算して最終的な待機時間Tを特定し(ステップS254)、処理を終了する。待機時間Tは、T=K1×K2×T0で算出することができる。なお、補正係数K1、K2すべてを待機時間初期値T0に乗算する構成に代えて、補正係数K1、K2のいずれかの補正係数だけを待機時間初期値T0に乗算してもよい。
図25は実施形態3に係る電池状態監視装置5の充電率算出処理の手順の一例を示すフローチャートである。制御部51は、第2蓄電池2の電圧Vを取得し(ステップS271)、第2蓄電池2の電流Iを取得する(ステップS272)。
制御部51は、算出した内部抵抗Rを用いて開放電圧を算出する(ステップS273)。開放電圧をOCVとすると、OCV=V−Voで算出することができる。ここで、Voは過電圧であり、内部抵抗R×電流Iで表される電圧に分極電圧を加えた電圧である。制御部51は、算出した開放電圧に基づいて、充電率を算出し(ステップS274)、処理を終了する。
図26は実施形態3に係る電池状態監視装置5の劣化度算出処理の手順の一例を示すフローチャートである。制御部51は、算出した内部抵抗Rから内部抵抗補正値Rnを算出する(ステップS291)。内部抵抗補正値Rnは、算出した内部抵抗Rを、例えば、充電率が50%、第2蓄電池2の温度が25℃の場合の値に換算して得られる値である。
制御部51は、内部抵抗の増加率を算出する(ステップS292)。内部抵抗の増加率は、Rn/R0で算出することができる。制御部51は、算出した内部抵抗増加率に基づいて、劣化度を算出し(ステップS293)、処理を終了する。
このように構成された実施形態3によれば、第1蓄電池1及び第2蓄電池2の充放電が行われるタイミングで、第2蓄電池2の内部抵抗を算出することができる。
また、内部抵抗RをR=(Vc−Vb)/(Ic−Ib)にて算出することができ、充放電の切り替え後、短時間(例えば、0.1秒程度)で内部抵抗を求めることができるので、充放電が頻繁に繰り返される場合でも第2蓄電池2の内部抵抗を精度よく算出することができる。
更に、制御部51は、待機時間T後に取得した電流が所定の閾値より大きい場合に第2蓄電池2の内部抵抗を算出する構成であるため、内部抵抗の算出精度を上げることができる。
更にまた、制御部51は、第2蓄電池2の充電率に基づいて待機時間を特定する。充電率に応じた待機時間を設定することにより、第2蓄電池2の充電率に関わらず当該第2蓄電池2の内部抵抗を精度よく算出することができる。
更にまた、制御部51は、第2蓄電池2の温度に基づいて待機時間を特定する。第2蓄電池2の温度に応じた待機時間を設定することにより、第2蓄電池2の充電率に関わらず当該第2蓄電池2の内部抵抗を精度よく算出することができる。
更にまた、制御部51は、算出した第2蓄電池2の内部抵抗Rを用いて第2蓄電池2の開放電圧を算出し、開放電圧に基づいて第2蓄電池2の充電率を算出することができる。
更にまた、制御部51は、算出した第2蓄電池2の内部抵抗の初期値R0に対する抵抗算出部で算出した内部抵抗Rの割合に基づいて第2蓄電池2の劣化度を算出することができる。
なお、本実施形態3では、第2蓄電池2を充電状態から放電状態に切り替えて、当該第2蓄電池2の内部抵抗等を算出する構成を説明したが、第2蓄電池2を放電状態から充電状態に切り替えて、内部抵抗等を算出するように構成しても良い。具体的には、ステップS215の処理で第5及び第7スイッチSW5、SW7をオン状態に制御し、ステップS217の処理で第5及び第7スイッチSW5、SW7をオフ状態に制御する。そして、ステップS231の処理で第1及び第3スイッチSW1、SW3をオン状態に制御し、ステップS235の処理で第1及び第3スイッチSW1、SW3をオフ状態に制御する。このように制御することによって、第2蓄電池2を放電状態から充電状態に切り替えることができ、以下、同様の処理で内部抵抗等を算出することができる。
なお、実施形態3に係る電池状態監視装置5は、CPU(プロセッサ)、RAM(メモリ)などを備えた汎用コンピュータを用いて実現することもできる。すなわち、図21、図23〜図26に示すような、各処理の手順を定めたコンピュータプログラムをコンピュータに備えられたRAM(メモリ)にロードし、コンピュータプログラムをCPU(プロセッサ)で実行することにより、コンピュータ上で電池状態監視装置5を実現することができる。
また、本実施形態3では第2蓄電池2の内部抵抗、充電率、劣化度等を算出する例を説明したが、種類によっては第1蓄電池1及び第2蓄電池2双方の内部抵抗、充電率、劣化度等を算出するように構成しても良い。
更に、実施形態1と同様、第1蓄電池1及び第2蓄電池2の種類は同一でも良いし、異なる種類であっても良く、第1蓄電池1及び第2蓄電池2の特性の異同も特に限定されるものでは無い。従って、電池残量調整装置3を介して接続される2つの蓄電池の内、任意に選択される一方を第1蓄電池、他方を第2蓄電池と定義すれば良い。
更に、本実施形態1〜3では、第1蓄電池1及び第2蓄電池2の電池残量の一方が下限閾値未満で、他方が放電可能な場合、又は一方が上限閾値以上で、他方が充電可能な場合、第1蓄電池1及び第2蓄電池2の充放電を制御する例を説明したが、当該判定条件は一例である。例えば、第1蓄電池1及び第2蓄電池2を充放電させる条件として、更に、第1蓄電池1及び第2蓄電池2の電圧の差が所定値未満であるか否かを判定するように構成すると良い。つまり、第1蓄電池1及び第2蓄電池2の電圧の差が所定値以上である場合、第1蓄電池1及び第2蓄電池2の接続及び充放電制御を行わないようにする。電圧の差が所定値以上である第1蓄電池1及び第2蓄電池2を接続すると、大電流が流れる危険があるためである。
(実施形態4)
図27は、実施形態4に係る昇圧回路404の一構成例を示す回路図である。実施形態4に係る電池残量調整装置3は昇圧回路404、特に第1蓄電回路441及び第2蓄電回路442の構成が実施形態1と異なるため、以下では主に上記相違点を説明する。その他の構成及び作用効果は実施形態1と同様であるため、対応する箇所には同様の符号を付して詳細な説明を省略する。
昇圧回路404は、第1蓄電池1の電圧を昇圧し、昇圧された電力を第2蓄電池2へ供給するための第1蓄電回路441を備える。第1経路切替スイッチ41aの構成は、実施形態1と同様である。第1蓄電回路441は、第1蓄電池1の電力を蓄える第1コンデンサC1を有し、第1コンデンサC1には、抵抗値が可変であり、当該第1コンデンサC1に流れる電流を制限する第1制限抵抗回路441bが直列接続されている。第1制限抵抗回路441bは、第1制限抵抗器R11を有する回路と、第2制限抵抗器R12及び抵抗値切替スイッチSW11を直列接続してなる直列回路とを有し、第1制限抵抗器R11を有する回路に当該直列回路を並列接続してなる回路である。抵抗値切替スイッチSW11は、上記直列回路を開閉させるスイッチであり、抵抗値切替スイッチSW11の開閉は、制御部51によって制御される。制御部51は、抵抗値切替スイッチSW11をオフ状態に切り替えることによって、第1制限抵抗回路441bを抵抗値が高い状態に変化させ、抵抗値切替スイッチSW11をオン状態に切り替えることによって第1制限抵抗回路441bを抵抗値が低い状態に変化させる。具体的には、制御部51は、第1コンデンサC1の充電時は抵抗値が高く、第1コンデンサC1の放電時は抵抗値が低くなるように、抵抗値切替スイッチSW11の開閉を制御する。より具体的には、実施形態1で説明したステップS15の処理では抵抗値切替スイッチSW11をオフ状態に切り替え、ステップS18の処理で抵抗値切替スイッチSW11をオン状態に切り替え、ステップS20の処理で抵抗値切替スイッチSW11をオフ状態に切り替える。なお、抵抗値切替スイッチSW11の切り替えタイミングは一例である。第1コンデンサC1の充電時に抵抗値が高く、放電時に抵抗値が低くなっていれば十分であり、そのタイミングは特に限定されるものでは無い。
また、昇圧回路404は、第2蓄電池2の電圧を昇圧し、昇圧された電力を第1蓄電池1へ供給するための第2蓄電回路442を備える。第2経路切替スイッチ42aの構成は、実施形態1と同様である。第2蓄電回路442は、第2蓄電池2の電力を蓄える第2コンデンサC2を有し、第2コンデンサC2には、抵抗値が可変であり、当該第2コンデンサC2に流れる電流を制限する第2制限抵抗回路442bが直列接続されている。第2制限抵抗回路442bは、第1制限抵抗回路441bと同様の構成であり、第1制限抵抗器R21を有する回路に、第2制限抵抗器R22及び抵抗値切替スイッチSW21の直列回路を並列接続してなる回路である。抵抗値切替スイッチSW21の開閉は、制御部51によって制御される。具体的には、制御部51は、第2コンデンサC2の充電時は抵抗値が高く、第2コンデンサC2の放電時は抵抗値が低くなるように、抵抗値切替スイッチSW21の開閉を制御する。より具体的には、実施形態1で説明したステップS35の処理では抵抗値切替スイッチSW21をオフ状態に切り替え、ステップS38の処理で抵抗値切替スイッチSW21をオン状態に切り替え、ステップS40の処理で抵抗値切替スイッチSW21をオフ状態に切り替える。なお、抵抗値切替スイッチSW21の切り替えタイミングは一例である。第2コンデンサC2の充電時に抵抗値が高く、放電時に抵抗値が低くなっていれば十分であり、そのタイミングは特に限定されるものでは無い。
このように構成された実施形態4によれば、第1及び第2コンデンサC1,C2を充電する場合、第1及び第2制限抵抗回路441b,442bの抵抗値を高く設定することにより、第1及び第2蓄電池1,2を第1及び第2コンデンサC1,C2に接続した際に、第1及び第2蓄電池1,2から第1及び第2コンデンサC1,C2へ大電流が流れることを防ぐことができる。また、第1及び第2コンデンサC1,C2を放電させる場合、第1及び第2制限抵抗回路441b,442bの抵抗値を低く設定することにより、第1及び第2制限抵抗回路441b,442bによる損失を抑え、効率的に第1蓄電池1及び第2蓄電池2を充電することができる。
また、簡単な回路構成及び制御で第1及び第2制限抵抗回路441b,442bの抵抗値を変化させることができる。
(実施形態5)
図28は、実施形態5に係る昇圧回路504の一構成例を示す回路図である。実施形態5に係る電池残量調整装置3は昇圧回路504の構成が実施形態1と異なるため、以下では主に上記相違点を説明する。その他の構成及び作用効果は実施形態1と同様であるため、対応する箇所には同様の符号を付して詳細な説明を省略する。
実施形態5に係る昇圧回路504は、第1蓄電池1から第2蓄電池2へ放電する場合、第1蓄電池1の電圧を昇圧し、昇圧された電力を第2蓄電池2へ供給すると共に、第2蓄電池2から第1蓄電池1へ放電する場合、第2蓄電池2の電圧を昇圧し、昇圧された電力を第1蓄電池1へ供給するための蓄電回路541を備える。蓄電回路541は、第1蓄電池1及び第2蓄電池2の電力を蓄えるコンデンサC11を有し、コンデンサC11には抵抗値が可変であり、当該コンデンサC11に流れる電流を制限する制限抵抗回路541bが直列接続されている。制限抵抗回路541bは、第1制限抵抗器R11を有する回路と、第2制限抵抗器R12及び抵抗値切替スイッチSW11を直列接続してなる直列回路とを有し、第1制限抵抗器R11を有する回路に当該直列回路を並列接続してなる回路である。より具体的には、コンデンサC11の負極端に第1制限抵抗器R11の一端部が接続されており、コンデンサC11の正極端及び第1制限抵抗器R11の他端部が蓄電回路541の一端部及び他端部に対応している。抵抗値切替スイッチSW11の一端部は、コンデンサC11の負極端及び第1制限抵抗器R11の一端部に接続されており、抵抗値切替スイッチSW11の他端部は、第2制限抵抗器R12の一端部に接続されている。第2制限抵抗器R12の他端部は第1制限抵抗器R11の他端部に接続されている。
抵抗値切替スイッチSW11は、上記直列回路を開閉させるスイッチであり、抵抗値切替スイッチSW11の開閉は、制御部51によって制御される。制御部51は、抵抗値切替スイッチSW11をオフ状態に切り替えることによって、制限抵抗回路541bを抵抗値が高い状態に変化させ、抵抗値切替スイッチSW11をオン状態に切り替えることによって制限抵抗回路541bを抵抗値が低い状態に変化させる。具体的には、制御部51は、コンデンサC11の充電時は抵抗値が高く、コンデンサC11の放電時は抵抗値が低くなるように、抵抗値切替スイッチSW11の開閉を制御する。
昇圧回路504は、コンデンサC11及び制限抵抗回路541bからなる蓄電回路541の一端部及び他端部と、第1蓄電池1及び第2蓄電池2の正極及び負極との接続経路を切り替える経路切替スイッチ541aを備える。実施形態5に係る経路切替スイッチ541aは、第1蓄電池1から第2蓄電池2へ放電する場合、蓄電回路541の一端部及び他端部が第1蓄電池1の正極及び負極にそれぞれ接続される経路と、蓄電回路541の一端部が第2蓄電池2の正極に接続され、他端部が第1蓄電池1の正極に接続される経路とを切り替えることができる。また、経路切替スイッチ541aは、第2蓄電池2から第1蓄電池1へ放電する場合、蓄電回路541の一端部及び他端部が第2蓄電池2の正極及び負極にそれぞれ接続される経路と、蓄電回路541の一端部が第1蓄電池1の正極に接続され、他端部が第2蓄電池2の正極に接続される経路とを切り替えることができる。
具体的には、経路切替スイッチ541aは、直列接続された第1スイッチSW1、第2スイッチSW2及び第3スイッチSW3を有する。第1スイッチSW1の一端部は、蓄電回路541の一端部に接続され、第1スイッチSW1の他端部は、第1蓄電池1の正極及び第2スイッチSW2の一端部に接続されている。第2スイッチSW2の他端部は、蓄電回路541の他端部、及び第3スイッチSW3の一端部に接続されている。第3スイッチSW3の他端部は、第1蓄電池1の負極及び第2蓄電池2の負極に接続されている。
このように構成された第1スイッチSW1は、蓄電回路541の一端部を第1蓄電池1の正極に接続する経路を開閉するスイッチであり、第2スイッチSW2は、蓄電回路541の他端部を第1蓄電池1の正極に接続する経路を開閉するスイッチである。第3スイッチSW3は、蓄電回路541の他端部を第1蓄電池1及び第2蓄電池2の負極に接続する経路を開閉するスイッチである。
また、経路切替スイッチ541aは、直列接続された第4スイッチSW4及び第5スイッチSW5を有する。第4スイッチSW4の一端部は、蓄電回路541の一端部に接続され、第4スイッチSW4の他端部は、第2蓄電池2の正極及び第5スイッチSW5の一端部に接続されている。第5スイッチSW5の他端部は、蓄電回路541の他端部及び第3スイッチSW3の一端部に接続されている。
このように構成された、第4スイッチSW4は、蓄電回路541の一端部を第2蓄電池2の正極に接続する経路を開閉するスイッチであり、第5スイッチSW5は、蓄電回路541の他端部を第2蓄電池2の正極に接続する経路を開閉するスイッチである。
<第1蓄電池1から第2蓄電池2への放電処理>
以下、第1蓄電池1の電圧が第2蓄電池2の電圧よりも低い場合において、第1蓄電池1の電力にて第2蓄電池2の充電を行う例を説明する。
図29は、実施形態5に係る電池残量調整処理に係る制御部51の処理手順を示すフローチャート、図30及び図31は、実施形態5に係る電池残量調整方法を概念的に示す回路図、図32は、実施形態5に係る電池残量調整方法を示すタイミングチャートである。図30及び図31中、破線矢印は電流の流れを示している。図32中、横軸は時間、縦軸は、第1蓄電池1、第2蓄電池2及びコンデンサC11の両端電圧を示している。
制御部51は、実施形態1のステップS11〜ステップS14と同様の処理をステップS511〜ステップS514で実行することにより、第1蓄電池1及び第2蓄電池2の残量と、第1蓄電池1から第2蓄電池2への放電の要否及び可否を判定する。第1蓄電池1から第2蓄電池2への放電を要し、当該放電が可能である場合、制御部51は、信号出力部59から開閉信号を出力することによって、図30に示すように、第1スイッチSW1及び第3スイッチSW3をオン状態、第2スイッチSW2、第4スイッチSW4及び第5スイッチSW5並びに抵抗値切替スイッチSW11をオフ状態に制御する(ステップS515)。ステップS515の処理によって、蓄電回路541の両端部は、第1蓄電池1の正極及び負極に接続される。
次いで、制御部51は、第1スイッチSW1及び第3スイッチSW3をオン状態に切り替えた後、所定時間が経過したか否かを判定する(ステップS516)。所定時間が経過していないと判定した場合(ステップS516:NO)、制御部51は処理をステップS516へ戻し、待機する。この間に、コンデンサC11は第1蓄電池1により充電され、コンデンサC11の両端電圧は第1蓄電池1の電圧に達するまで上昇する。
所定時間が経過したと判定した場合(ステップS516:YES)、制御部51は、信号出力部59から開閉信号を出力することによって、図31に示すように、第1及び第3スイッチSW1、SW3をオフ状態に制御し(ステップS517)、次いで、第2及び第4スイッチSW2、SW4並びに抵抗値切替スイッチSW11をオン状態に制御する(ステップS518)。ステップS517及びステップS518の処理によって、蓄電回路541の一端部は第2蓄電池2の正極に接続され、蓄電回路541の他端部は第1蓄電池1の正極端に接続される。従って、蓄電回路541の一端部の電圧は、第1蓄電池1の電圧の略2倍になる。また、抵抗値切替スイッチSW11をオン状態に切り替えることによって、制限抵抗回路541bは抵抗値が低い状態になる。
次いで、制御部51は、第2スイッチSW2及び第4スイッチSW4並びに抵抗値切替スイッチSW11をオン状態に切り替えた後、所定時間が経過したか否かを判定する(ステップS519)。所定時間が経過していないと判定した場合(ステップS519:NO)、制御部51は処理をステップS519へ戻し、待機する。この間に、コンデンサC11に蓄えられた電力によって第2蓄電池2の充電が行われる。コンデンサC11によって第2蓄電池2に印加される電圧は、第1蓄電池1の2倍に昇圧されているため、第1蓄電池1の電圧が第2蓄電池2の電圧よりも低くても、第1蓄電池1を放電させ、第2蓄電池2を充電することができる。
所定時間が経過したと判定した場合(ステップS519:YES)、制御部51は、信号出力部59から開閉信号を出力することによって、第2スイッチSW2及び第4スイッチSW4並びに抵抗値切替スイッチSW11をオフ状態に制御する(ステップS520)。次いで、制御部51は、第2蓄電池2の電圧及び電流に基づいて第2蓄電池2の残量を算出し、第2蓄電池2の残量が所定の下限閾値以上であるか否かを判定する(ステップS521)。第2蓄電池2の残量が下限閾値未満であると判定した場合(ステップS521:NO)、制御部51は、処理をステップS511へ戻し、第1蓄電池1の放電及び第2蓄電池2の充電を継続する。
第2蓄電池2の残量が下限閾値以上であると判定した場合(ステップS521:YES)、制御部51は、第1蓄電池1の電圧及び電流に基づいて第1蓄電池1の残量が上限閾値未満であるか否かを判定する(ステップS522)。第1蓄電池1の残量が上限閾値以上であると判定した場合(ステップS522:NO)、制御部51は、処理をステップS511へ戻し、第1蓄電池1の放電及び第2蓄電池2の充電を継続する。
第1蓄電池1の残量が上限閾値未満であると判定した場合(ステップS522:YES)、制御部51は、残量調整に係る処理を終える。
以上の通り、第1蓄電池1の残量が上限値未満、第2蓄電池2の残量が下限閾値以上になるまで、ステップS515〜ステップS520の処理が繰り返し実行される。当該処理を繰り返し実行することによって、図32に示すように、第2蓄電池2の電圧が、第1蓄電池1の略2倍になるまで、第2蓄電池2を第1蓄電池1にて充電することができる。
<第2蓄電池2から第1蓄電池1への放電処理>
以下、第2蓄電池2の電圧が第1蓄電池1の電圧よりも高い場合において、第2蓄電池2の電力にて第1蓄電池1の充電を行う例を説明する。
図33は、実施形態5に係る電池残量調整処理に係る制御部51の処理手順を示すフローチャート、図34及び図35は、実施形態5に係る電池残量調整方法を概念的に示す回路図、図36は、実施形態5に係る電池残量調整方法を示すタイミングチャートである。図34及び図35中、破線矢印は電流の流れを示している。図36中、横軸は時間、縦軸は、第1蓄電池1、第2蓄電池2及びコンデンサC11の両端電圧を示している。
制御部51は、実施形態1のステップS31〜ステップS34と同様の処理をステップS531〜ステップS534で実行することにより、第1蓄電池1及び第2蓄電池2の残量と、第2蓄電池2から第1蓄電池1への放電の要否及び可否を判定する。第2蓄電池2から第1蓄電池1への放電を要し、当該放電が可能である場合、制御部51は、信号出力部59から開閉信号を出力することによって、図34に示すように、第3スイッチSW3及び第4スイッチSW4をオン状態、第1スイッチSW1、第2スイッチSW2及び第5スイッチSW5並びに抵抗値切替スイッチSW11をオフ状態に制御する(ステップS535)。ステップS535の処理によって、蓄電回路541の両端部は、第2蓄電池2の正極及び負極に接続される。
次いで、制御部51は、第3スイッチSW3及び第4スイッチSW4をオン状態に切り替えた後、所定時間が経過したか否かを判定する(ステップS536)。所定時間が経過していないと判定した場合(ステップS536:NO)、制御部51は処理をステップS536へ戻し、待機する。この間に、コンデンサC11は第2蓄電池2により充電され、コンデンサC11の両端電圧は第2蓄電池2の電圧に達するまで上昇する。
所定時間が経過したと判定した場合(ステップS536:YES)、制御部51は、信号出力部59から開閉信号を出力することによって、図35に示すように、第3及び第4スイッチSW3、SW4をオフ状態に制御し(ステップS537)、次いで、第1スイッチSW1及び第5スイッチSW5並びに抵抗値切替スイッチSW11をオン状態に制御する(ステップS538)。ステップS537及びステップS538の処理によって、蓄電回路541の一端部は第1蓄電池1の正極に接続され、蓄電回路541の他端部は第2蓄電池2の正極端に接続される。従って、蓄電回路541の一端部の電圧は、第2蓄電池2の電圧の略2倍になる。
次いで、制御部51は、第1スイッチSW1及び第5スイッチSW5並びに抵抗値切替スイッチSW11をオン状態に切り替えた後、所定時間が経過したか否かを判定する(ステップS539)。所定時間が経過していないと判定した場合(ステップS539:NO)、制御部51は処理をステップS539へ戻し、待機する。この間に、コンデンサC11に蓄えられた電力によって第1蓄電池1の充電が行われる。
所定時間が経過したと判定した場合(ステップS539:YES)、制御部51は、信号出力部59から開閉信号を出力することによって第1スイッチSW1及び第5スイッチSW5並びに抵抗値切替スイッチSW11をオフ状態に制御する(ステップS540)。次いで、制御部51は、第1蓄電池1の電圧及び電流に基づいて第1蓄電池1の残量を算出し、第1蓄電池1の残量が所定の下限閾値以上であるか否かを判定する(ステップS541)。第1蓄電池1の残量が下限閾値未満であると判定した場合(ステップS541:NO)、制御部51は、処理をステップS531へ戻し、第2蓄電池2の放電及び第1蓄電池1の充電を継続する。
第1蓄電池1の残量が下限閾値以上であると判定した場合(ステップS541:YES)、制御部51は、第2蓄電池2の電圧及び電流に基づいて第2蓄電池2の残量が上限閾値未満であるか否かを判定する(ステップS542)。第2蓄電池2の残量が上限閾値以上であると判定した場合(ステップS542:NO)、制御部51は、処理をステップS531へ戻し、第2蓄電池2の放電及び第1蓄電池1の充電を継続する。
第2蓄電池2の残量が上限閾値未満であると判定した場合(ステップS542:YES)、制御部51は、残量調整に係る処理を終える。
以上の通り、第2蓄電池2の残量が上限値未満、第1蓄電池1の残量が下限閾値以上になるまで、ステップS535〜ステップS540の処理が繰り返し実行される。当該処理を繰り返し実行することによって、図36に示すように、第1蓄電池1及び第2蓄電池2の電圧が略同一になるまで、第1蓄電池1を第2蓄電池2にて充電することができる。
このように構成された実施形態5によれば、実施形態1と同様、第2蓄電池2の電圧が第1蓄電池1の電圧より低い場合であっても、第1蓄電池1を昇圧し、第2蓄電池2を充電することができる。また、第1蓄電池1の電圧が第2蓄電池2の電圧より低い場合であっても、第2蓄電池2を昇圧し、第1蓄電池1を充電することができる。
また、実施形態1に比べて、スイッチの部品点数を削減した簡単な回路構成で、第1蓄電池1及び第2蓄電池2の昇圧及び充放電を制御することができる。具体的には、第1乃至第5スイッチSW1、SW2、SW3、SW4、SW5の開閉を制御することによって、実施形態1と同様、第1蓄電池1を昇圧し、第2蓄電池2を充電することができる。また、第2蓄電池2を昇圧し、第1蓄電池1を充電することができる。
(変形例)
なお、実施形態5に係る電池残量調整装置3及び昇圧回路504においても、実施形態2と同趣旨で、制御部51は、第1蓄電池1を放電させ、第2蓄電池2を充電する場合、第1蓄電池1の電圧が第2蓄電池2の電圧よりも高いとき、第1スイッチSW1及び第4スイッチSW4をオン状態に制御すると良い。当該制御によって、第1蓄電池1を放電させ、第2蓄電池2を充電することができる。
同様に、第2蓄電池2を放電させ、第1蓄電池1を充電する場合、第2蓄電池2の電圧が第1蓄電池1の電圧よりも高いとき、制御部51は第1スイッチSW1及び第4スイッチSW4をオン状態に制御すると良い。当該制御によって、第2蓄電池2を放電させ、第1蓄電池1を充電することができる。
このように構成された実施形態2によれば、第1蓄電池1及び第2蓄電池2の残量を効率的に調整することができる。
なお、上記説明では、第1スイッチSW1及び第4スイッチSW4をオン状態に制御する例を説明したが、第1スイッチSW1及び第4スイッチSW4に代えて、第2スイッチSW2及び第5スイッチSW5をオン状態に制御しても良い。
(実施形態6)
実施形態6に係る電池残量調整装置3は、実施形態5と同様の昇圧回路504を備えており、当該昇圧回路504を用いた第1蓄電池1及び第2蓄電池2の充放電処理に加え、実施形態3と同様の処理手順にて第2蓄電池2の内部抵抗、充電率、劣化度等を算出するものである。制御部51の処理手順は、図21、図23、図24、25、図26に示した実施形態3に係る制御部51の処理手順と同様であり、スイッチング制御の内容が異なるため、以下では主に上記相違点を説明する。その他の構成及び作用効果は実施形態3及び実施形態5と同様であるため、対応する箇所には同様の符号を付して詳細な説明を省略する。
図21は第1蓄電池1を放電させ、第2蓄電池2を充電させる処理を示したものであるが、制御部51は、ステップS212で第1スイッチSW1及び第3スイッチSW3をオン状態、第2スイッチSW2、第4スイッチSW4及び第5スイッチSW5並びに抵抗値切替スイッチSW11をオフ状態に制御し(図30参照)、ステップS214で第1スイッチSW1及び第3スイッチSW3をオフ状態に制御する。また、制御部51は、ステップS215で第2スイッチSW2及び第4スイッチSW4並びに抵抗値切替スイッチSW11をオン状態に制御し(図31参照)、ステップS217で第2スイッチSW2及び第4スイッチSW4並びに抵抗値切替スイッチSW11をオフ状態に制御する。制御部51の他の処理内容は実施形態3と同様である。上記スイッチング制御によって、第1蓄電池1から第2蓄電池2へ放電することができる。
図23は第2蓄電池2の内部抵抗の算出処理を示したものであるが、制御部51は、ステップS231で、第1スイッチSW1及び第5スイッチSW5並びに抵抗値切替スイッチSW11をオン状態に制御し(図35参照)、ステップS235で第1スイッチSW1及び第5スイッチSW5並びに抵抗値切替スイッチSW11をオフ状態に制御する。制御部51の他の処理内容は実施形態3と同様である。上記スイッチング制御によって、第2蓄電池2の充電完了時に、第2蓄電池2を充電状態から放電状態に切り替えることができる。
上記の処理によって、第1蓄電池1を放電させて第2蓄電池2を充電する場合、第2蓄電池2の充電完了タイミングで第2蓄電池2を充電状態から放電状態に切り替えることができ、第2蓄電池2の内部抵抗を算出することができる。また、実施形態3と同様、充電率及び劣化度等を算出することができる。
以上のように構成された実施形態6によれば、実施形態3同様、第1蓄電池1及び第2蓄電池2の充放電が行われるタイミングで、第2蓄電池2の内部抵抗、充電率、劣化度等を算出することができる。
(変形例1)
なお、上記実施形態6では、ステップS231及びステップS235で第1スイッチSW1及び第5スイッチSW5をオン状態に制御することによって、第2蓄電池2の正極を制限抵抗回路541b及びコンデンサC11を介して第1蓄電池1の正極に接続する例を説明したが、第1蓄電池1に比べ第2蓄電池2の電圧が高い場合、ステップS231で第2スイッチSW2及び第5スイッチSW5をオン状態に制御し、ステップS235で第2スイッチSW2及び第5スイッチSW5をオフ状態に制御するように構成しても良い。つまり、第1蓄電池1及び第2蓄電池2の正極を直接接続しても良い。なお、第2スイッチSW2及び第5スイッチSW5に代えて、第1スイッチSW1及び第4スイッチSW4をオン状態に制御しても良い。また、第1蓄電池1及び第2蓄電池2の正極を接続する場合、図示しない制限抵抗を介して接続する構成が好ましい。
(変形例2)
また、上記実施形態6では、第2蓄電池2を充電状態から放電状態に切り替えて、当該第2蓄電池2の内部抵抗等を算出する構成を説明したが、第2蓄電池2を放電状態から充電状態に切り替えて、内部抵抗等を算出するように構成しても良い。
具体的には、ステップS212の処理で第3スイッチSW3及び第4スイッチSW4をオン状態、第1スイッチSW1、第2スイッチSW2及び第5スイッチSW5並びに抵抗値切替スイッチSW11をオフ状態に制御し(図34参照)、ステップS214で第3スイッチSW3及び第4スイッチSW4をオフ状態に制御する。
また、制御部51は、ステップS215で第1スイッチSW1及び第5スイッチSW5並びに抵抗値切替スイッチSW11をオン状態に制御し(図35参照)、ステップS217で第1スイッチSW1及び第5スイッチSW5並びに抵抗値切替スイッチSW11をオフ状態に制御する。上記スイッチング制御によって、第2蓄電池2から第1蓄電池1へ放電することができる。
そして、制御部51は、ステップS231で、第2スイッチSW2及び第4スイッチSW4並びに抵抗値切替スイッチSW11をオン状態に制御し(図31参照)、ステップS235で第2スイッチSW2及び第4スイッチSW4並びに抵抗値切替スイッチSW11をオフ状態に制御する。上記スイッチング制御によって、第2蓄電池2の放電完了時に第1蓄電池1を放電状態から充電状態に切り替えることができる。
(変形例3)
なお、上記変形例2では、ステップS231及びステップS235で第1蓄電池1の正極を制限抵抗回路541b及びコンデンサC11を介して第2蓄電池2の正極に接続する例を説明したが、第2蓄電池2に比べ第1蓄電池1の電圧が高い場合、変形例1と同様、ステップS231で第2スイッチSW2及び第5スイッチSW5をオン状態に制御し、ステップS235で第2スイッチSW2及び第5スイッチSW5をオフ状態に制御するように構成しても良い。
1 第1蓄電池
2 第2蓄電池
3 電池残量調整装置
4,204,404,504 昇圧回路
5 電池状態監視装置
6 電装品負荷
7 負荷
8 始動モータ
9 発電機
41,441 第1蓄電回路
41a 第1経路切替スイッチ
42,442 第2蓄電回路
42a 第2経路切替スイッチ
441b 第1制限抵抗回路
442b 第2制限抵抗回路
541 蓄電回路
541a 経路切替スイッチ
541b 制限抵抗回路
51 制御部
51a CPU
51b 内部記憶部
51c タイマ
51d インタフェース
52 記憶部
52a 制御プログラム
53 第1温度検出部
53a サーミスタ
54 第1電圧検出部
55 第1電流検出部
55a シャント抵抗
56 第2温度検出部
56a サーミスタ
57 第2電圧検出部
58 第2電流検出部
58a シャント抵抗
59 信号出力部
C1 第1コンデンサ
R1 第1抵抗器
C2 第2コンデンサ
R2 第2抵抗器
C11 コンデンサ
SW1 第1スイッチ
SW2 第2スイッチ
SW3 第3スイッチ
SW4 第4スイッチ
SW5 第5スイッチ
SW6 第6スイッチ
SW7 第7スイッチ
SW8 第8スイッチ
SW9 迂回スイッチ
SW11,SW21 抵抗値切替スイッチ
R3 制限抵抗器
R11,R21 第1制限抵抗器
R12,R22 第2制限抵抗器
r1 始動リレー
r2 負荷リレー
r3 充電リレー

Claims (18)

  1. 第1蓄電池の電圧を昇圧し、昇圧された電力を第2蓄電池へ供給する昇圧回路を備え、前記第1蓄電池及び前記第2蓄電池の残量を調整する電池残量調整装置であって、
    前記昇圧回路は、
    前記第1蓄電池の電力を蓄えるコンデンサを含む蓄電回路と、
    該蓄電回路の一端部及び他端部が前記第1蓄電池の正極及び負極にそれぞれ接続される経路と、前記一端部が前記第2蓄電池の正極に接続され、前記他端部が前記第1蓄電池の正極に接続される経路とを切り替える経路切替スイッチと、
    各経路が交互に繰り返し切り替えられるように、前記経路切替スイッチの動作を制御する制御部と
    を備える電池残量調整装置。
  2. 前記蓄電回路は、
    抵抗値が可変であり、前記コンデンサに流れる電流を制限する制限抵抗回路を備え、
    前記制限抵抗回路は、
    前記コンデンサの充電時は抵抗値が高く、前記コンデンサの放電時は抵抗値が低い
    請求項1に記載の電池残量調整装置。
  3. 前記制限抵抗回路は、
    第1制限抵抗器を有する回路と、第2制限抵抗器及びスイッチを直列接続してなる直列回路とを備え、該直列回路は前記回路に並列接続されており、前記スイッチの開閉を切り替えることによって、抵抗値を変化させる
    請求項2に記載の電池残量調整装置。
  4. 前記経路切替スイッチは、
    前記蓄電回路の前記一端部を前記第2蓄電池の正極に接続する経路を開閉する第1スイッチと、
    前記蓄電回路の前記一端部を前記第1蓄電池の正極に接続する経路を開閉する第2スイッチと、
    前記蓄電回路の前記他端部を前記第1蓄電池の正極に接続する経路を開閉する第3スイッチと、
    前記蓄電回路の前記他端部を前記第1蓄電池の負極に接続する経路を開閉する第4スイッチと
    を備え、
    前記制御部は、
    第2スイッチ及び第4スイッチがオン状態、第1スイッチ及び第3スイッチがオフ状態になる第1通電状態と、第1スイッチ及び第3スイッチがオン状態、第2スイッチ及び第4スイッチがオフ状態になる第2通電状態とが繰り返し切り替えられるように、第1乃至第4スイッチの開閉を制御する
    請求項1〜請求項3までのいずれか一項に記載の電池残量調整装置。
  5. 前記蓄電回路を迂回して、前記第1蓄電池及び前記第2蓄電池の正極同士を接続する迂回経路と、
    該迂回経路を開閉する迂回スイッチと
    を備える請求項1〜請求項4までのいずれか一項に記載の電池残量調整装置。
  6. 前記昇圧回路は、
    前記第2蓄電池の電力を蓄える第2のコンデンサを含む第2の蓄電回路と、
    該第2の蓄電回路の一端部及び他端部が前記第2蓄電池の正極及び負極にそれぞれ接続される経路と、前記第2の蓄電回路の前記一端部が前記第1蓄電池の正極に接続され、前記他端部が前記第2蓄電池の正極に接続される経路とを切り替える第2の経路切替スイッチと
    を備える請求項1〜請求項5までのいずれか一項に記載の電池残量調整装置。
  7. 前記経路切替スイッチは、
    更に、前記蓄電回路の一端部及び他端部が前記第2蓄電池の正極及び負極にそれぞれ接続される経路と、前記蓄電回路の前記一端部が前記第1蓄電池の正極に接続され、前記他端部が前記第2蓄電池の正極に接続される経路とを切り替えるようにしてあり、
    前記制御部は、
    前記第1蓄電池から前記第2蓄電池へ放電する場合、前記蓄電回路の一端部及び他端部が前記第1蓄電池の正極及び負極にそれぞれ接続される経路と、前記蓄電回路の前記一端部が前記第2蓄電池の正極に接続され、前記他端部が前記第1蓄電池の正極に接続される経路とが交互に繰り返し切り替えられるように、前記経路切替スイッチの動作を制御し、
    前記第2蓄電池から前記第1蓄電池へ放電する場合、前記蓄電回路の一端部及び他端部が前記第2蓄電池の正極及び負極にそれぞれ接続される経路と、前記蓄電回路の前記一端部が前記第1蓄電池の正極に接続され、前記他端部が前記第2蓄電池の正極に接続される経路とが交互に繰り返し切り替えられるように、前記経路切替スイッチの動作を制御する
    請求項1〜請求項3までのいずれか一項に記載の電池残量調整装置。
  8. 前記経路切替スイッチは、
    前記蓄電回路の前記一端部を前記第1蓄電池の正極に接続する経路を開閉する第1スイッチと、
    前記蓄電回路の前記他端部を前記第1蓄電池の正極に接続する経路を開閉する第2スイッチと、
    前記蓄電回路の前記他端部を前記第1蓄電池及び前記第2蓄電池の負極に接続する経路を開閉する第3スイッチと、
    前記蓄電回路の前記一端部を前記第2蓄電池の正極に接続する経路を開閉する第4スイッチと、
    前記蓄電回路の前記他端部を前記第2蓄電池の正極に接続する経路を開閉する第5スイッチと
    を備え、
    前記制御部は、
    前記第1蓄電池から前記第2蓄電池へ放電する場合、第1スイッチ及び第3スイッチがオン状態、第2スイッチ、第4スイッチ及び第5スイッチがオフ状態になる第1通電状態と、第2スイッチ及び第4スイッチがオン状態、第1スイッチ、第3スイッチ及び第5スイッチがオフ状態になる第2通電状態とが繰り返し切り替えられるように、第1乃至第5スイッチの開閉を制御し、
    前記第2蓄電池から前記第1蓄電池へ放電する場合、第3スイッチ及び第4スイッチがオン状態、第1スイッチ、第2スイッチ及び第5スイッチがオフ状態になる第1通電状態と、第1スイッチ及び第5スイッチがオン状態、第2スイッチ、第3スイッチ及び第4スイッチがオフ状態になる第2通電状態とが繰り返し切り替えられるように、第1乃至第5スイッチの開閉を制御する
    請求項7に記載の電池残量調整装置。
  9. 前記制御部は、
    各蓄電回路の一端部及び他端部がそれぞれ前記第1蓄電池及び前記第2蓄電池の正極及び負極に接続されるように各経路切替スイッチの動作を制御する蓄電制御部と、
    該蓄電制御部による制御を終えた後、前記蓄電回路の前記一端部が前記第2蓄電池の正極に接続され、前記他端部が前記第1蓄電池の正極に接続される状態と、前記第2の蓄電回路の前記一端部が前記第1蓄電池の正極に接続され、前記他端部が前記第2蓄電池の正極に接続される状態とを切り替える切替制御部と、
    前記第2蓄電池の電圧を取得する電圧取得部と、
    前記第2蓄電池の電流を取得する電流取得部と、
    前記第2蓄電池のインピーダンススペクトルにて、所定のイオンの拡散過程に起因する拡散インピーダンスが前記第2蓄電池のインピーダンスに寄与する境界周波数域に基づいて待機時間を特定する特定部と、
    前記切替制御部にて充放電が切り替えられた場合、前記特定部で特定した待機時間後に前記電圧取得部で取得した電圧及び前記電流取得部で取得した電流に基づいて前記第2蓄電池の内部抵抗を算出する抵抗算出部と
    を備える請求項6に記載の電池残量調整装置。
  10. 前記制御部は、
    前記第1蓄電池から前記第2蓄電池へ放電させた後、前記蓄電回路の前記一端部が前記第1蓄電池の正極に接続され、前記他端部が前記第2蓄電池の正極に接続される状態、若しくは前記第2蓄電池の正極が前記第1蓄電池の正極に直接的又は間接的に接続される状態に切り替え、
    前記第2蓄電池から前記第1蓄電池へ放電させた後、前記蓄電回路の前記一端部が前記第2蓄電池の正極に接続され、前記他端部が前記第1蓄電池の正極に接続される状態、若しくは前記第1蓄電池の正極が前記第2蓄電池の正極に直接的又は間接的に接続される状態に切り替える切替制御部と、
    前記第2蓄電池の電圧を取得する電圧取得部と、
    前記第2蓄電池の電流を取得する電流取得部と、
    前記第2蓄電池のインピーダンススペクトルにて、所定のイオンの拡散過程に起因する拡散インピーダンスが前記第2蓄電池のインピーダンスに寄与する境界周波数域に基づいて待機時間を特定する特定部と、
    前記切替制御部にて充放電が切り替えられた場合、前記特定部で特定した待機時間後に前記電圧取得部で取得した電圧及び前記電流取得部で取得した電流に基づいて前記第2蓄電池の内部抵抗を算出する抵抗算出部と
    を備える請求項7又は請求項8に記載の電池残量調整装置。
  11. 前記抵抗算出部は、
    充放電の切り替え前に前記電圧取得部で取得した電圧及び前記電流取得部で取得した電流、並びに前記特定部で特定した待機時間後に前記電圧取得部で取得した電圧及び前記電流取得部で取得した電流に基づいて前記第2蓄電池の内部抵抗を算出する請求項9又は請求項10に記載の電池残量調整装置。
  12. 前記抵抗算出部は、
    前記特定部で特定した待機時間後に前記電流取得部で取得した電流が所定の閾値より大きい場合、前記第2蓄電池の内部抵抗を算出する請求項9〜請求項11までのいずれか一項に記載の電池残量調整装置。
  13. 前記特定部は、
    さらに、前記第2蓄電池の充電率に基づいて待機時間を特定する請求項9〜請求項12までのいずれか一項に記載の電池残量調整装置。
  14. 前記第2蓄電池の温度を取得する温度取得部を備え、
    前記特定部は、
    さらに、前記温度取得部で取得した温度に基づいて待機時間を特定する請求項9〜請求項13までのいずれか一項に記載の電池残量調整装置。
  15. 前記抵抗算出部で算出した内部抵抗、前記電圧取得部で取得した電圧及び前記電流取得部で取得した電流に基づいて、前記第2蓄電池の開放電圧を算出する開放電圧算出部と、
    該開放電圧算出部で算出した開放電圧に基づいて前記第2蓄電池の充電率を算出する充電率算出部と
    を備える請求項9〜請求項14までのいずれか一項に記載の電池残量調整装置。
  16. 前記第2蓄電池の内部抵抗の初期値に対する前記抵抗算出部で算出した内部抵抗の割合に基づいて前記第2蓄電池の劣化度を算出する劣化度算出部を備える請求項9〜請求項15までのいずれか一項に記載の電池残量調整装置。
  17. 第1蓄電池の電圧を昇圧し、昇圧された電力を第2蓄電池へ供給することにより、前記第1蓄電池及び前記第2蓄電池の残量を調整する電池残量調整方法であって、
    コンデンサを含む蓄電回路の一端部及び他端部を前記第1蓄電池の正極及び負極にそれぞれ接続するステップと、
    前記蓄電回路の前記一端部及び他端部をそれぞれ前記第2蓄電池の正極及び前記第1蓄電池の正極に接続するステップと
    を有し、
    各ステップを交互に繰り返し実行する電池残量調整方法。
  18. 第1蓄電池の電圧を昇圧して第2蓄電池へ供給するために、前記第1蓄電池の電力を蓄えるコンデンサを含む蓄電回路と、該蓄電回路の一端部及び他端部が前記第1蓄電池の正極及び負極にそれぞれ接続される経路と、前記一端部が前記第2蓄電池の正極に接続され、前記他端部が前記第1蓄電池の正極に接続される経路とを切り替える経路切替スイッチとを有する昇圧回路を備え、前記第1蓄電池及び前記第2蓄電池の残量を調整する電池残量調整装置の動作をコンピュータに制御させるための制御プログラムであって、
    前記コンピュータに、
    前記蓄電回路の一端部及び他端部が前記第1蓄電池の正極及び負極にそれぞれ接続されるように前記経路切替スイッチの動作を制御するステップと、
    前記蓄電回路の前記一端部及び他端部がそれぞれ前記第2蓄電池の正極及び前記第1蓄電池の正極に接続されるように前記経路切替スイッチの動作を制御するステップと
    を交互に繰り返し実行させるための制御プログラム。
JP2017134038A 2016-07-11 2017-07-07 電池残量調整装置、電池残量調整方法及び制御プログラム Pending JP2018121511A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016137011 2016-07-11
JP2016137011 2016-07-11
JP2017011538 2017-01-25
JP2017011538 2017-01-25

Publications (1)

Publication Number Publication Date
JP2018121511A true JP2018121511A (ja) 2018-08-02

Family

ID=63043132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017134038A Pending JP2018121511A (ja) 2016-07-11 2017-07-07 電池残量調整装置、電池残量調整方法及び制御プログラム

Country Status (1)

Country Link
JP (1) JP2018121511A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020051785A (ja) * 2018-09-25 2020-04-02 トヨタ自動車株式会社 バッテリ状態推定装置
WO2022030355A1 (ja) * 2020-08-04 2022-02-10 株式会社Gsユアサ 蓄電装置、蓄電システム、内部抵抗推定方法及びコンピュータプログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020051785A (ja) * 2018-09-25 2020-04-02 トヨタ自動車株式会社 バッテリ状態推定装置
JP7031545B2 (ja) 2018-09-25 2022-03-08 トヨタ自動車株式会社 バッテリ状態推定装置
WO2022030355A1 (ja) * 2020-08-04 2022-02-10 株式会社Gsユアサ 蓄電装置、蓄電システム、内部抵抗推定方法及びコンピュータプログラム

Similar Documents

Publication Publication Date Title
CN110914696B (zh) 用于在电池的操作期间估计电池开路池格电压、充电状态以及健康状态的方法和系统
KR101846690B1 (ko) Wls 기반 soh 추정 시스템 및 방법
JP4473823B2 (ja) 電気エネルギー蓄積器のための複数の部分モデルを用いた状態量およびパラメータの推定装置
KR102511510B1 (ko) 배터리 셀의 충전 상태를 추정하는 자동적 방법
JP7211420B2 (ja) パラメータ推定装置、パラメータ推定方法及びコンピュータプログラム
CN108885242B (zh) 二次电池劣化估计装置和二次电池劣化估计方法
KR102534692B1 (ko) 배터리의 셀의 충전의 상태를 추정하는 자동적 방법
US20080150491A1 (en) Method Of Estimating The State-Of-Charge And Of The Use Time Left Of A Rechageable Battery, And Apparatus For Executing Such A Method
US9148031B2 (en) Apparatus and method for varying usable band range of battery
JP2008253129A (ja) リチウム系二次電池の急速充電方法およびそれを用いる電子機器
JP2010521948A (ja) 適応充電装置及び方法
JP2011085592A (ja) 電源装置用状態検知装置及び電源装置
US20010035738A1 (en) Method for determining the state of charge of lead-acid rechargeable batteries
CN112534283B (zh) 电池管理系统、电池管理方法、电池组和电动车辆
JP2018013456A (ja) 電池状態監視装置、電池状態監視システム、電池状態監視方法及び制御プログラム
JP7183576B2 (ja) 二次電池パラメータ推定装置、二次電池パラメータ推定方法及びプログラム
JP2015215272A (ja) 二次電池状態検出装置および二次電池状態検出方法
CN110729797A (zh) 车辆及其电池组均衡的控制方法、装置和系统
JP2021531456A (ja) バッテリー管理装置、バッテリー管理方法及びバッテリーパック
JP6577990B2 (ja) 内部状態推定装置
JP2018121511A (ja) 電池残量調整装置、電池残量調整方法及び制御プログラム
CN114556738A (zh) 快速充电方法
JP2019016528A (ja) 蓄電池等価回路モデルの評価装置
JP2021524127A (ja) バッテリー管理装置、バッテリー管理方法及びバッテリーパック
WO2020012720A1 (ja) 二次電池パラメータ推定装置、二次電池パラメータ推定方法及びプログラム

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20191108

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191223