JP2018104273A - 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法 - Google Patents
遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法 Download PDFInfo
- Publication number
- JP2018104273A JP2018104273A JP2017250274A JP2017250274A JP2018104273A JP 2018104273 A JP2018104273 A JP 2018104273A JP 2017250274 A JP2017250274 A JP 2017250274A JP 2017250274 A JP2017250274 A JP 2017250274A JP 2018104273 A JP2018104273 A JP 2018104273A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- positive electrode
- composite hydroxide
- electrode active
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
m=aS+b ・・・(式1)
(1)遷移金属含有複合水酸化物粒子の構造
本発明の遷移金属含有複合水酸化物粒子(以下、「複合水酸化物粒子」という)は、非水電解質二次電池用正極活物質の前駆体であって、複数の板状一次粒子、および、板状一次粒子よりも小さな微細一次粒子が凝集して形成された二次粒子から構成される。
本発明の複合水酸化物粒子は、二次粒子の平均粒径MVが、1μm〜15μm、好ましくは3μm〜12μm、より好ましくは3μm〜10μmに調整される。二次粒子の平均粒径MVは、この複合水酸化物粒子を前駆体とする正極活物質の平均粒径MVと相関する。このため、二次粒子の平均粒径MVをこのような範囲に制御することで、この複合水酸化物粒子を前駆体とする正極活物質の平均粒径MVを所定の範囲に制御することが可能となる。
本発明の複合水酸化物粒子は、粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径MV〕が、0.65以下、好ましくは0.55以下、より好ましくは0.50以下となるように調整される。
本発明の複合水酸化物粒子において、その二次粒子の粒径に対する中心部の外径、低密度層、および高密度層のそれぞれの大きさの比率を適切に制御することにより、凝集した一次粒子により形成された外殻部と、外殻部の内側に存在し、凝集した一次粒子により形成され、かつ、外殻部と電気的に導通する凝集部と、および、凝集部の中に分散して存在する複数の空間部とにより構成された二次粒子からなる正極活物質が得られる。
本発明の複合水酸化物粒子において、中心部、高密度層および低密度層のうちの高密度部を構成する板状一次粒子の大きさと、低密度層の低密度部を構成する微細一次粒子の大きさは、複合水酸化物粒子を樹脂などに埋め込み、クロスセクションポリッシャ加工などにより、その断面観察が可能な状態とした後、その断面について、FE−SEMなどのSEMを用いて観察した場合に、撮像の上で明確に構造の相違が把握できる程度に異なる。
本発明の複合水酸化物粒子は、上述した構造、平均粒径MVおよび粒度分布を有する限り、その組成が制限されることはないが、一般式(A):NixMnyCozMt(OH)2+a(x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表される複合水酸化物粒子であることが好ましい。このような複合水酸化物粒子を前駆体とすることで、後述する一般式(B)で表される正極活物質を容易に得ることができ、より高い電池性能を実現することができる。
本発明の複合水酸化物粒子の製造方法は、反応槽内に、少なくとも遷移金属を含有する原料水溶液と、アンモニウムイオン供給体を含む水溶液を供給することで反応水溶液を形成し、晶析反応によって、非水電解質二次電池用正極活物質の前駆体となる遷移金属含有複合水酸化物粒子を製造する方法である。
本発明の複合水酸化物粒子の製造方法では、晶析反応を、主として核生成を行う核生成工程と、主として粒子成長を行う粒子成長工程の2段階に明確に分離するとともに、それぞれの工程における晶析条件を調整することにより、特に、粒子成長工程において、原料水溶液の供給を継続しながら、散気管を用いて雰囲気ガスを送り込んで、反応雰囲気を切り換えることにより、上述した粒子構造、平均粒径MV、および、粒度分布を備える複合水酸化物粒子を効率よく得ることを可能としている。
核生成工程では、はじめに、この工程における原料となる遷移金属の化合物を水に溶解し、原料水溶液を調製する。同時に、反応槽内に、アルカリ水溶液と、アンモニウムイオン供給体を含む水溶液を供給および混合して、液温25℃基準で測定するpH値が12.0〜14.0、アンモニウムイオン濃度が3g/L〜25g/Lである反応前水溶液を調製する。なお、反応前水溶液のpH値はpH計により、アンモニウムイオン濃度はイオンメータにより測定することができる。
核生成工程終了後、反応槽内の核生成用水溶液のpH値を、液温25℃基準で10.5〜12.0に調整し、粒子成長工程における反応水溶液である粒子成長用水溶液を形成する。pH値は、アルカリ水溶液の供給を停止することでも調整可能であるが、粒度分布の狭い複合水酸化物粒子を得るためには、一旦、すべての水溶液の供給を停止してpH値を調整することが好ましい。具体的には、すべての水溶液の供給を停止した後、核生成用水溶液に、原料となる金属化合物を構成する酸と同種の無機酸を供給することにより、pH値を調整することが好ましい。
上述のようにして得られる複合水酸化物粒子の粒径は、粒子成長工程や核生成工程の時間、核生成用水溶液や粒子成長用水溶液のpH値や、原料水溶液の供給量により制御することができる。たとえば、核生成工程を高いpH値で行うことにより、または、粒子生成工程の時間を長くすることにより、供給する原料水溶液に含まれる金属化合物の量を増やし、核の生成量を増加させ、得られる複合水酸化物粒子の粒径を小さくすることができる。反対に、核生成工程における核の生成量を抑制することで、得られる複合水酸化物粒子の粒径を大きくすることができる。
本発明の複合水酸化物粒子の製造方法では、核生成用水溶液とは別に、粒子成長工程に適したpH値およびアンモニウムイオン濃度に調整された成分調整水溶液を用意し、この成分調整用水溶液に、核生成工程後の核生成用水溶液、好ましくは核生成工程後の核生成用水溶液から液体成分の一部を除去したものを添加および混合して、これを粒子成長用水溶液として、粒子成長工程を行ってもよい。
本発明の複合水酸化物粒子の製造方法では、反応槽内に、少なくとも遷移金属、好ましくは、ニッケルとマンガン、または、ニッケルとマンガンとコバルトを含有する原料水溶液と、アンモニウムイオン供給体を含む水溶液を供給することで反応水溶液を形成し、pH調整剤によって該反応水溶液のpH値を所定範囲に調整しつつ、晶析反応によって、複合水酸化物粒子を得る。
本発明においては、原料水溶液中の金属元素の比率が、概ね、得られる複合水酸化物粒子の組成比となる。このため、原料水溶液は、目的とする複合水酸化物粒子の組成に応じて、それぞれの金属元素の含有量を適宜調整することが必要となる。たとえば、上述した一般式(A)で表される複合水酸化物粒子を得ようとする場合には、原料水溶液中の金属元素の比率を、Ni:Mn:Co:M=x:y:z;t(ただし、x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1)となるように調整することが必要となる。ただし、上述したように添加元素Mを別工程で導入する場合には、原料水溶液に添加元素Mが含まれないようにする。また、核生成工程と粒子成長工程とにおいて、添加元素Mの添加の有無、あるいは、遷移金属や添加元素Mの含有比率を変更することも可能である。
反応水溶液中のpH値を調整するアルカリ水溶液は、特に制限されることはなく、水酸化ナトリウムや水酸化カリウムなどの一般的なアルカリ金属水酸化物水溶液を用いることができる。なお、アルカリ金属水酸化物を、直接、反応水溶液に添加することもできるが、pH制御の容易さから、水溶液として添加することが好ましい。この場合、アルカリ金属水酸化物水溶液の濃度を、好ましくは20質量%〜50質量%、より好ましくは20質量%〜30質量%とする。アルカリ金属水溶液の濃度をこのような範囲に規制することにより、反応系に供給する溶媒量(水量)を抑制しつつ、添加位置で局所的にpH値が高くなることを防止することができるため、粒度分布の狭い複合水酸化物粒子を効率的に得ることが可能となる。
アンモニウムイオン供給体を含む水溶液も、特に制限されることはなく、たとえば、アンモニア水、または、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウムもしくはフッ化アンモニウムなどの水溶液を使用することができる。
本発明の複合水酸化物粒子の製造方法においては、反応水溶液の液温25℃基準におけるpH値を、核生成工程においては12.0〜14.0の範囲に、粒子成長工程においては10.5〜12.0の範囲に制御することが必要となる。なお、いずれの工程においても、晶析反応中のpH値の変動幅は、±0.2以内に制御することが好ましい。pH値の変動幅が大きい場合には、核生成量と粒子成長の割合が一定とならず、粒度分布の狭い複合水酸化物粒子を得ることが困難となる。なお、反応水溶液のpH値はpH計により、アンモニウムイオン濃度はイオンメータにより測定することができる。
本発明の複合水酸化物粒子の製造方法では、晶析反応を、主として核生成が行われる核生成工程と、主として粒子成長が行われる粒子成長工程との2つの工程に明確に分離し、それぞれの工程における晶析反応の条件を調整するとともに、粒子成長工程において、原料水溶液の供給を継続しながら、反応雰囲気、すなわち反応水溶液内の雰囲気を、散気管を用いて、非酸化性雰囲気と酸化性雰囲気とに、適宜切り替えることを特徴としている。特に、この雰囲気の切り替え時に、反応水溶液中に、雰囲気ガス、すなわち酸化性ガス、もしくは、不活性ガスあるいはこれらの混合ガスを、散気管を用いて送り込み、これらのガスと反応水溶液を直接接触させ、反応雰囲気を速やかに切り換えることにより、上述した低密度層と高密度層とが積層した粒子構造、平均粒径MV、および粒度分布を備える複合水酸化物粒子を効率よく得ることを可能としている。
核生成工程においては、反応水溶液(核生成用水溶液)のpH値を、液温25℃基準で、12.0〜14.0、好ましくは12.3〜13.5、より好ましくは12.5〜13.3の範囲に制御することが必要となる。これにより、核の成長を抑制し、核生成を優先させることが可能となり、この工程で生成する核を均質かつ粒度分布の狭いものとすることができる。一方、pH値が12.0未満では、核生成とともに核(粒子)の成長が進行するため、得られる複合水酸化物粒子の粒径が不均一となり、粒度分布が悪化する。また、pH値が14.0を超えると、生成する核が微細になりすぎるため、核生成用水溶液がゲル化する問題が生じる。
粒子成長工程においては、反応水溶液(粒子成長水溶液)のpH値を、液温25℃基準で、10.5〜12.0、好ましくは11.0〜12.0、より好ましくは11.5〜12.0の範囲に制御することが必要となる。これにより、新たな核の生成が抑制され、粒子成長を優先させることが可能となり、得られる複合水酸化物粒子を均質かつ粒度分布が狭いものとすることができる。一方、pH値が10.5未満では、アンモニウムイオン濃度が上昇し、金属イオンの溶解度が高くなるため、晶析反応の速度が遅くなるばかりでなく、反応水溶液中に残存する金属イオン量が増加し、生産性が悪化する。また、pH値が12.0を超えると、粒子成長工程中の核生成量が増加し、得られる複合水酸化物粒子の粒径が不均一となり、粒度分布が悪化する。
本発明の複合水酸化物粒子の構造は、核生成工程および粒子成長工程における反応水溶液のpH値を上述のように制御するとともに、これらの工程における反応雰囲気を制御することにより形成される。したがって、本発明の複合水酸化物粒子の製造方法においては、それぞれの工程におけるpH値の制御とともに、反応雰囲気の制御が重要な意義を有する。すなわち、それぞれの工程におけるpH値を上述のように制御した上で、核生成工程と粒子成長工程の初期の反応雰囲気を非酸化性雰囲気に調整することで、板状一次粒子が凝集した中心部が形成される。また、粒子成長工程の途中で、散気管を用いて雰囲気ガスを導入することで、非酸化性雰囲気から酸化性雰囲気に切り替えた後、さらに、非酸化性雰囲気に切り替えることにより、中心部の外側に、板状一次粒子および微細一次粒子が凝集した低密度層と、板状一次粒子が凝集した高密度層が積層した構造が形成される。
本発明の製造方法においては、複合水酸化物粒子の中心部および高密度層を形成する段階における反応雰囲気は、非酸化性雰囲気に制御することが必要となる。具体的には、不活性ガスなどの非酸化性ガスを導入することにより、反応雰囲気中における酸素濃度が、5容量%以下、好ましくは2容量%以下、より好ましくは1容量%以下である非酸化性雰囲気となるように、酸素と不活性ガスの混合雰囲気に制御することが必要となる。これにより、不要な酸化を抑制しつつ、核生成工程で生成した核を一定の範囲まで成長させることができるため、複合水酸化物粒子の中心部および高密度層を板状一次粒子が凝集した構造とすることができる。なお、上述したように、反応雰囲気の調整は、通常、原料水溶液の供給を開始する前に行う。
一方、複合水酸化物粒子の低密度層を形成する段階では、反応雰囲気を、酸化性雰囲気に制御することが必要となる。具体的には、反応雰囲気中における酸素濃度が、5容量%を超えるように、好ましくは10容量%以上、より好ましくは大気雰囲気(酸素濃度:21容量%)となるように制御することが必要となる。反応雰囲気中の酸素濃度をこのような範囲に制御することにより、粒子成長が抑制され、一次粒子の平均粒径が0.01μm〜0.3μmの範囲となるため、上述した中心部および高密度層と十分な密度差を有する低密度層を形成することができる。
粒子成長工程において、目的とする粒子構造を有する複合水酸化物粒子が形成されるように、上述した雰囲気制御を行うことが必要となる。
従来、晶析工程中における反応雰囲気の切り替えは、反応槽内に雰囲気ガスを流通させるか、反応水溶液に、内径が1mm〜50mm程度の導管を挿入し、雰囲気ガスによってバブリングすることで行うことが一般的である。しかしながら、このような従来技術では、反応雰囲気の切り替えに長時間を要するため、切替中に、原料水溶液の供給を停止することが必要とされる。これは、原料水溶液の供給を停止しない場合には、複合水酸化物粒子内部に緩やかな密度勾配が形成され、低密度層を十分な大きさとすることができないと考えられていたからである。
反応水溶液中のアンモニウムイオン濃度は、好ましくは3g/L〜25g/L、より好ましくは5g/L〜20g/Lの範囲内で一定値に保持する。反応水溶液中においてアンモニウムイオンは錯化剤として機能するため、アンモニウムイオン濃度が3g/L未満では、金属イオンの溶解度を一定に保持することができず、また、反応水溶液がゲル化しやすくなり、形状や粒径の整った複合水酸化物粒子を得ることが困難となる。一方、アンモニウムイオン濃度が25g/Lを超えると、金属イオンの溶解度が大きくなりすぎるため、反応水溶液中に残存する金属イオン量が増加し、組成ずれなどの原因となる。
反応水溶液の温度(反応温度)は、核生成工程と粒子成長工程を通じて、好ましくは20℃以上、より好ましくは20℃〜60℃の範囲に制御することが必要となる。反応温度が20℃未満では、反応水溶液の溶解度が低くなることに起因して、核生成が起こりやすくなり、得られる複合水酸化物粒子の平均粒径MVや粒度分布の制御が困難となる。なお、反応温度の上限は、特に制限されることはないが、60℃を超えると、アンモニアの揮発が促進され、反応水溶液中のアンモニウムイオンを一定範囲に制御するために供給するアンモニウムイオン供給体を含む水溶液の量が増加し、生産コストが増加してしまう。
本発明の複合水酸化物粒子の製造方法では、原料水溶液中に添加元素Mを含有する化合物を添加することで、粒子内部に添加元素Mが分散した複合水酸化物粒子を得ることができる。しかしながら、より少ない添加量で、添加元素Mの添加による効果を得ようとする場合には、粒子成長工程後に、複合水酸化物粒子の表面を、添加元素Mを含む化合物で被覆する被覆工程を行うことが好ましい。
本発明の複合水酸化物粒子を製造するための晶析装置(反応槽)としては、上述した散気管によって反応雰囲気の切り替えを行うことができるものである限り、特に制限されることはない。しかしながら、晶析反応が終了するまで、析出した生成物を回収しないバッチ式晶析装置を用いることが好ましい。このような晶析装置であれば、オーバーフロー方式によって生成物を回収する連続晶析装置とは異なり、成長中の粒子がオーバーフロー液と同時に回収されることがないため、粒度分布の狭い複合水酸化物粒子を容易に得ることができる。また、本発明の複合水酸化物粒子の製造方法では、晶析反応中の反応雰囲気を適切に制御することが必要となるため、密閉式の晶析装置を用いることが好ましい。
本発明の正極活物質は、リチウム遷移金属含有複合酸化物粒子からなる非水電解質二次電池用正極活物質であって、複数の一次粒子が凝集して形成された二次粒子から構成される。特に、本発明の正極活物質において、二次粒子は、凝集した一次粒子からなる外殻部と、外殻部の内側に存在し、外殻部と同様に凝集した一次粒子からなり、かつ、外殻部と電気的に導通する凝集部、および、該凝集部の中に分散して存在する複数の気孔構造の空間部とを備えていることを特徴とする。
a)二次粒子の構造
本発明の正極活物質は、複数の一次粒子が凝集して形成された二次粒子から構成される。この二次粒子は、二次粒子の周方向全体に凝集した一次粒子からなる外殻部と、外殻部の内側に存在し、外殻部と同様に凝集した一次粒子からなり、かつ、外殻部と電気的に導通する凝集部、および、該凝集部の中に分散して存在する複数の気孔構造の空間部とを備えていることを特徴とする。換言すると、正極活物質を構成する二次粒子の中に、所定の大きさであって、好ましくはその大きさの二次粒子内でのバラツキが少ない、複数の空間部が分散している構造を備えることを特徴とする。
本発明の正極活物質は、平均粒径MVが、1μm〜15μm、好ましくは3μm〜12μm、より好ましくは3μm〜10μmとなるように調整される。正極活物質の平均粒径MVがこのような範囲にあれば、この正極活物質を用いた二次電池の単位体積あたりの電池容量を増加させることができるばかりでなく、安全性や出力特性も改善することができる。これに対して、平均粒径MVが1μm未満では、正極活物質の充填性が低下し、単位体積あたりの電池容量を増加させることができない。一方、平均粒径MVが15μmを超えると、正極活物質の反応面積が低下し、電解液との界面が減少するため、出力特性を改善することが困難となる。
本発明の正極活物質は、粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径MV〕が、0.70以下、好ましくは0.60以下、より好ましくは0.55以下であり、きわめて粒度分布が狭いリチウム複合酸物粒子により構成される。このような正極活物質は、微細粒子や粗大粒子の割合が少なく、これを用いた二次電池は、安全性、サイクル特性および出力特性が優れたものとなる。
本発明の正極活物質は、二次粒子の内部に形成された空間部の存在により比表面積が向上している点に特徴がある。本発明における正極活物質の比表面積としては、たとえば窒素ガス吸着によるBET法により測定したBET比表面積が用いられる。本発明の正極活物質において、上述の二次粒子の構造が維持される限り、BET比表面積は可能な限り大きくあることが好ましい。BET比表面積が大きくなるほど電解液との接触面積が大きく、これを用いた二次電池の出力特性を大幅に改善することができるためである。具体的には、本発明の非水電解質二次電池用正極活物質のBET比表面積は、1.4m2/g〜6.0m2/gの範囲にある。本発明において、正極活物質の比表面積が1.4m2/g未満では、二次電池を構成した場合に、電解液との反応面積を十分に確保することができず、出力特性を十分に向上させることが困難となるためである。BET比表面積は、2.0m2/g以上であることが好ましく、3.0m2/g以上であることがより好ましい。
携帯電子機器の使用時間や電気自動車の走行距離を伸ばすために、二次電池の高容量化は重要な課題となっている。一方、二次電池の電極の厚さは、電池全体のパッキングや電子伝導性の問題から数ミクロン程度とすることが要求される。このため、正極活物質として高容量のものを使用するばかりでなく、正極活物質の充填性を高め、二次電池全体としての高容量化を図ることが必要となる。
本発明の正極活物質では、複数の空間部が粒子内部に分散していることが必要となる。本発明の正極活物質では、二次粒子の断面観察により計測される複数の空間部の全体の面積割合が、二次粒子の断面積に対して12%〜55%の範囲にある。この正極活物質の断面積に対する空間部面積の占有率(以下、「空間部率」)は、大きくなるほど、比表面積は増大する傾向となる。すなわち、二次電池を構成した場合に、電解液との反応面積を確保することにつながる。この空間部率が、12%を下回ると、十分な空間部が形成されず、比表面積を増大させる効果が得られない。一方、55%を超えると、二次粒子内部に機構構造よりも大きな空隙部が存在し、凝集部の割合が低くなりすぎて、所望の特性を得られない。この空間部率は、好ましくは15%以上であり、より好ましくは20%以上である。
正極活物質のBET比表面積S(m2/g)とタップ密度m(g/cm3)との間には、同一組成で、酸化性雰囲気での全晶析反応の割合を一定とし、酸化性雰囲気でのそれぞれの晶析反応の割合を変更し、および/または、焼成条件を変更することにより、その比表面積を変えて正極活物質を作製した場合、式1に示す関係が成立する。本発明において、この式1における傾きaの範囲は、−0.6<a<−0.15となる。すなわち、本発明では、空間部(気孔)の大きさおよび数が適切に制御するとともに、比表面積を増大させるに際して、それぞれの空間部(気孔)の大きさを維持しつつ、その数を増加させている。なお、傾きaは最小二乗法により計算される。
m=aS+b ・・・(式1)
本発明の正極活物質は、上述した構造を有する限り、その組成が制限されることはないが、一般式(B):Li1+uNixMnyCozMtO2(−0.05≦u≦0.50、x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表される正極活物質に対して好適に適用することができる。
本発明の正極活物質の製造方法は、上述した複合水酸化物粒子を前駆体として用い、所定の構造、平均粒径MVおよび粒度分布を備える正極活物質を合成することができる限り、特に制限されることはない。しかしながら、工業規模の生産を前提とした場合には、上述した複合水酸化物粒子をリチウム化合物と混合し、リチウム混合物を得る混合工程と、得られたリチウム混合物を、酸化性雰囲気中、650℃〜920℃で焼成する焼成工程とを備える製造方法によって正極活物質を合成することが好ましい。なお、必要に応じて、上述した工程に、熱処理工程や仮焼工程などの工程を追加してもよい。このような製造方法によれば、上述した正極活物質、特に、一般式(B)で表される正極活物質を容易に得ることができる。
本発明の正極活物質の製造方法においては、任意的に、混合工程の前に熱処理工程を設けて、複合水酸化物粒子を熱処理粒子としてからリチウム化合物と混合してもよい。ここで、熱処理粒子には、熱処理工程において余剰水分を除去された複合水酸化物粒子のみならず、熱処理工程により、酸化物に転換された遷移金属含有複合酸化物粒子(以下、「複合酸化物粒子」という)、または、これらの混合物も含まれる。
混合工程は、上述した複合水酸化物粒子または熱処理粒子に、リチウム化合物を混合して、リチウム混合物を得る工程である。
リチウム化合物として、水酸化リチウムや炭酸リチウムを使用する場合には、混合工程後、焼成工程の前に、リチウム混合物を、後述する焼成温度よりも低温、かつ、350℃〜800℃、好ましくは450℃〜780℃で仮焼する仮焼工程を行ってもよい。これにより、複合水酸化物粒子または熱処理粒子中に、リチウムを十分に拡散させることができ、より均一なリチウム複合酸化物粒子を得ることができる。
焼成工程は、混合工程で得られたリチウム混合物を所定条件の下で焼成し、複合水酸化物粒子または熱処理粒子中にリチウムを拡散させて、リチウム複合酸化物粒子を得る工程である。
リチウム混合物の焼成温度は、650℃〜920℃とすることが必要となる。焼成温度が650℃未満では、複合水酸化物粒子または熱処理粒子中にリチウムが十分に拡散せず、余剰のリチウムや未反応の複合水酸化物粒子または熱処理粒子が残存したり、得られるリチウム複合酸化物粒子の結晶性が不十分なものとなったりする。一方、焼成温度が920℃を超えると、リチウム複合酸化物粒子中の気孔が潰れてしまう可能性があり、また、リチウム複合酸化物粒子間が激しく焼結し、異常粒成長が引き起こされ、不定形な粗大粒子の割合が増加することとなる。
焼成時間のうち、上述した焼成温度での保持時間は、少なくとも2時間とすることが好ましく、4時間〜24時間とすることがより好ましい。焼成温度における保持時間が2時間未満では、複合水酸化物粒子または熱処理粒子中にリチウムが十分に拡散せず、余剰のリチウムや未反応の複合水酸化物粒子または熱処理粒子が残存したり、得られるリチウム複合酸化物粒子の結晶性が不十分なものとなったりするおそれがある。
焼成時の雰囲気は、酸化性雰囲気とすることが好ましく、酸素濃度が18容量%〜100容量%の雰囲気とすることがより好ましく、上記酸素濃度の酸素と不活性ガスの混合雰囲気とすることが特に好ましい。すなわち、焼成は、大気ないしは酸素気流中で行うことが好ましい。酸素濃度が18容量%未満では、リチウム複合酸化物粒子の結晶性が不十分なものとなるおそれがある。
焼成工程によって得られたリチウム複合酸化物粒子は、凝集または軽度の焼結が生じている場合がある。このような場合には、リチウム複合酸化物粒子の凝集体または焼結体を解砕することが好ましい。これによって、得られる正極活物質の平均粒径MVや粒度分布を好適な範囲に調整することができる。なお、解砕とは、焼成時に二次粒子間の焼結ネッキングなどにより生じた複数の二次粒子からなる凝集体に、機械的エネルギを投入して、二次粒子自体をほとんど破壊することなく分離させて、凝集体をほぐす操作を意味する。
本発明の非水電解質二次電池は、正極、負極、セパレータおよび非水電解質などの、一般の非水電解質二次電池と同様の構成部材を備える。なお、以下に説明する実施形態は例示にすぎず、本発明の非水電解質二次電池は、本明細書に記載されている実施形態を基づいて、種々の変更、改良を施した形態に適用することも可能である。
a)正極
上述した正極活物質を用いて、たとえば、以下のようにして非水電解質二次電池の正極を作製する。
負極には、金属リチウムやリチウム合金などを使用することができる。また、リチウムイオンを吸蔵および脱離できる負極活物質に、結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅などの金属箔集電体の表面に塗布し、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを使用することができる。
セパレータは、正極と負極との間に挟み込んで配置されるものであり、正極と負極とを分離し、非水電解質を保持する機能を有する。このようなセパレータとしては、たとえば、ポリエチレンやポリプロピレンなどの薄い膜で、微細な孔を多数有する膜を用いることができるが、上記機能を有するものであれば、特に限定されることはない。
非水電解質には、支持塩であるリチウム塩を有機溶媒に溶解してなる非水電解液のほか、不燃性でイオン電導性を有する固体電解質などが用いられる。
以上の正極、負極、セパレータおよび非水電解質で構成される本発明の非水電解質二次電池は、円筒形や積層形など、種々の形状にすることができる。
本発明の非水電解質二次電池は、上述したように、本発明の正極活物質を正極材料として用いているため、容量特性、出力特性およびサイクル特性に優れる。しかも、従来のリチウムニッケル系酸化物粒子からなる正極活物質を用いた二次電池との比較においても、熱安定性や安全性において優れているといえる。
本発明の非水電解質二次電池は、上述のように、容量特性、出力特性およびサイクル特性に優れており、これらの特性が高いレベルで要求される小型携帯電子機器(ノート型パーソナルコンピュータや携帯電話端末など)の電源に好適に利用することができる。また、本発明の非水電解質二次電池は、安全性にも優れており、小型化および高出力化が可能であるばかりでなく、高価な保護回路を簡略することができるため、搭載スペースに制約を受ける輸送用機器の電源としても好適に利用することができる。
a)複合水酸化物粒子の製造
[核生成工程]
はじめに、反応槽内に、水を14L入れて撹拌しながら、槽内温度を40℃に設定した。この際、反応槽内に窒素ガスを30分間流通させ、反応雰囲気を、酸素濃度が2容量%以下の非酸化性雰囲気とした。続いて、反応槽内に、25質量%水酸化ナトリウム水溶液と25質量%アンモニア水を適量供給し、pH値が、液温25℃基準で12.6、アンモニウムイオン濃度が10g/Lとなるように調整することで反応前水溶液を形成した。
核生成終了後、一旦、すべての水溶液の供給を一旦停止するとともに、硫酸を加えて、pH値が、液温25℃基準で11.2となるように調整することで、粒子成長用水溶液を形成した。pH値が所定の値になったことを確認した後、核生成工程と同様の115ml/分と一定の割合で、原料水溶液を供給し、核生成工程で生成した核(粒子)を成長させた。
[組成]
ICP発光分光分析装置(株式会社島津製作所島津製作所製、ICPE−9000)を用いた分析により、この複合水酸化物粒子は、一般式:Ni0.38Mn0.30Co0.32(OH)2で表されるものであることが確認された。
複合水酸化物粒子の一部を樹脂に埋め込み、クロスセクションポリシャ加工によって断面観察可能な状態とした上で、10個以上の複合水酸化物粒子を電界放射型走査電子顕微鏡(FE−SEM:日本電子株式会社製、JSM−6360LA)により観察した。この結果、この複合水酸化物粒子は、板状一次粒子が凝集して形成された中心部を有し、中心部の外側に、板状一次粒子および微細一次粒子が凝集して形成された低密度層と、板状一次粒子が凝集して形成された高密度層とが積層した積層構造を2つ備えており、高密度層は、低密度層内で板状一次粒子が凝集して形成された高密度部によって、中心部および他の高密度層と連結していることが確認された。
レーザ光回折散乱式粒度分析計(日機装株式会社製、マイクロトラックHRA)を用いて、複合水酸化物粒子の平均粒径MVを測定するとともに、d10およびd90を測定し、粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径MV〕を算出した。この結果、平均粒径MVは、5.5μmであり、〔(d90−d10)/平均粒径MV〕は0.40であることが確認された。
上述のようにして得られた複合水酸化物粒子を、空気(酸素濃度:21容量%)気流中、120で12時間熱処理した後(熱処理工程)、Li/Meが1.10となるように、シェーカーミキサ装置(ウィリー・エ・バッコーフェン(WAB)社製TURBULA TypeT2C)を用いて炭酸リチウムと十分に混合し、リチウム混合物を得た(混合工程)。
[組成]
ICP発光分光分析装置を用いた分析により、この正極活物質は、一般式:Li1.10Ni0.38Mn0.30Co0.32O2で表されるものであることが確認された。
正極活物質の一部を樹脂に埋め込み、クロスセクションポリシャ加工によって断面観察可能な状態とした上で、SEMにより観察した。この結果、この複合水酸化物粒子は、複数の一次粒子が凝集して形成された二次粒子から構成され、この二次粒子は、外殻部と、外殻部の内側に分散して存在し、外殻部と電気的に導通する一次粒子の凝集部、および、凝集部の内部に存在し、複数の気孔構造からなる、一次粒子が存在しない空間部とを備えていることが確認された。
レーザ光回折散乱式粒度分析計(日機装株式会社製、マイクロトラックHRA)を用いて、正極活物質の平均粒径MVを測定するとともに、d10およびd90を測定し、粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径MV〕を算出した。この結果、平均粒径MVは、4.9μmであり、〔(d90−d10)/平均粒径MV〕は0.41であることが確認された。
流動方式ガス吸着法比表面積測定装置(ユアサアイオニクス株式会社製、マルチソーブ)によりBET比表面積を、タッピングマシン(株式会社蔵持科学器械製作所、KRS−406)によりタップ密度を、それぞれ測定した。この結果、BET比表面積は1.64m2/gであり、タップ密度は1.78g/cm3であることが確認された。
図3に示すような2032型コイン電池(B)を作成した。具体的には、上述のようにして得られた正極活物質:52.5mgと、アセチレンブラック:15mgと、PTEE:7.5mgを混合し、100MPaの圧力で、直径11mm、厚さ100μmにプレス成形した後、真空乾燥機中、120℃で12時間乾燥することにより、正極(1)を作製した。
[初期放電容量]
2032型コイン電池を作製してから24時間程度放置し、開回路電圧OCV(Open Circuit Voltage)が安定した後、正極に対する電流密度を0.1mA/cm2として、カットオフ電圧が4.3Vとなるまで充電し、1時間の休止後、カットオフ電圧が3.0Vになるまで放電したときの放電容量を測定する充放電試験を行ない、初期放電容量を求めた。この結果、初期放電容量は、167.5mAh/gであることが確認された。なお、初期放電容量の測定には、マルチチャンネル電圧/電流発生器(株式会社アドバンテスト製、R6741A)を用いた。
充電電位4.1Vで充電した2032型コイン電池を用いて、交流インピーダンス法により抵抗値を測定した。測定には、周波数応答アナライザおよびポテンショガルバノスタット(ソーラトロン・メトロロジー社製)を使用し、図6に示すナイキストプロットを得た。プロットは、溶液抵抗、負極抵抗と容量、および、正極抵抗と容量を示す特性曲線の和として表れているため、等価回路を用いてフィッティング計算し、正極抵抗の値を算出した。この結果、正極抵抗は、5.35Ωであることが確認された。
焼成工程において、リチウム混合物を、空気(酸素濃度:21容量%)気流中、昇温速度を2.4℃/分として885℃まで昇温したこと以外は、実施例1と同様にして、正極活物質および二次電池を得て、その評価を行った。
粒子成長工程において、晶析の条件を下記条件に変更し、かつ、焼成工程において、リチウム混合物を、空気(酸素濃度:21容量%)気流中、昇温速度を2.3℃/分として850℃まで昇温したこと以外は、実施例1と同様にして、複合水酸化物粒子を得た。
粒子成長工程において、晶析の条件を下記条件に変更し、かつ、焼成工程において、リチウム混合物を、空気(酸素濃度:21容量%)気流中、昇温速度を2.3℃/分として850℃まで昇温したこと以外は、実施例1と同様にして、複合水酸化物粒子を得た。
前駆体水酸化物粒子の晶析工程において、粒成長工程をすべて非酸化性雰囲気にて行い、かつ、粒径が約5μmになるように、反応時間を制御したこと以外は、実施例1と同様にして、複合水酸化物粒子、正極活物質および二次電池を得て、その評価を行った。得られた水酸化物粒子は全体が板状一次粒子の凝集体により構成された二次粒子からなり、得られた正極活物質は、中実の二次粒子であった。
m=aS+b ・・・(式1)
2 負極
3 セパレータ
4 ガスケット
5 正極缶
6 負極缶
B 2032型コイン電池
Claims (13)
- 反応槽内に、少なくとも遷移金属を含有する原料水溶液と、アンモニウムイオン供給体を含む水溶液を供給することで反応水溶液を形成し、晶析反応によって、非水電解質二次電池用正極活物質の前駆体となる遷移金属含有複合水酸化物粒子を製造する方法であって、
前記反応水溶液の液温25℃基準におけるpH値を12.0〜14.0の範囲となるように制御することにより、核生成を行う核生成工程と、該核生成工程で得られた核を含む反応水溶液の液温25℃基準におけるpH値を、前記核生成工程のpH値よりも低く、かつ、10.5〜12.0の範囲となるように制御することにより、前記核を成長させる、粒子成長工程とを備え、
前記核生成工程および前記粒子成長工程の初期段階における反応雰囲気を酸素濃度が5容量%以下の非酸化性雰囲気に調整し、前記粒子成長工程の初期段階の後に、前記原料水溶液の供給を継続しながら、酸化性ガスを導入することにより、前記反応雰囲気を、前記非酸化性雰囲気から酸素の濃度が5容量%を超える酸化性雰囲気に切り替え、さらに、前記原料水溶液の供給を継続しながら、非酸化性ガスを導入することにより、前記反応雰囲気を、該非酸化性雰囲気から酸素濃度が5容量%以下の非酸化性雰囲気に切り替える雰囲気制御を、2回行い、および、
前記反応雰囲気の切り替えに際して、前記酸化性ガスおよび前記非酸化性ガスの導入を、散気管を用いて行うとともに、前記反応雰囲気の切り替えを、前記粒子成長工程において添加される全金属量に対し酸化性雰囲気で添加された金属量の割合で定義される、前記酸化性雰囲気での晶析反応全体の割合が前記粒子成長工程全体に対して5%〜60%の範囲となり、かつ、前記酸化性雰囲気でのそれぞれの晶析反応の割合が前記粒子成長工程全体に対して2%〜40%の範囲となるように制御する、
遷移金属含有複合水酸化物粒子の製造方法。 - 前記遷移金属含有複合水酸化物粒子は、一般式(A):NixMnyCozMt(OH)2+a(x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表される組成を有する、請求項1に記載の遷移金属含有複合水酸化物粒子の製造方法。
- 前記粒子成長工程後に、前記遷移金属含有複合水酸化物粒子を、前記添加元素Mを含む化合物で被覆する、被覆工程をさらに備える、請求項2に記載の遷移金属含有複合水酸化物粒子の製造方法。
- 非水電解質二次電池用正極活物質の前駆体となる遷移金属含有複合水酸化物粒子であって、複数の板状一次粒子および該板状一次粒子よりも小さな微細一次粒子が凝集して形成された二次粒子からなり、
前記二次粒子は、前記板状一次粒子が凝集して形成された中心部を有し、該中心部の外側に、該板状一次粒子および前記微細一次粒子が凝集して形成された低密度層と、該板状一次粒子が凝集して形成された高密度層とが積層した積層構造を2つ備え、
前記低密度層は、前記微細一次粒子が凝集して形成された低密度部と、前記板状一次粒子が凝集して形成された高密度部とを備え、前記高密度層は、前記低密度層を構成する前記高密度部によって、前記中心部および/または他の高密度層と連結されており、
前記二次粒子は、平均粒径MVが1μm〜15μmの範囲にあり、かつ、粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径MV〕が0.65以下である、
遷移金属含有複合水酸化物粒子。 - 前記遷移金属含有複合水酸化物粒子は、一般式(A):NixMnyCozMt(OH)2+a(x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、0≦a≦0.5、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表される組成を有する、請求項4に記載の遷移金属複合水酸化物粒子。
- 前記添加元素Mは、前記二次粒子の表面を被覆している、請求項5に記載の遷移金属複合水酸化物粒子。
- 請求項4〜6のいずれかに記載の遷移金属含有複合水酸化物粒子とリチウム化合物を混合して、リチウム混合物を形成する混合工程と、
前記混合工程で形成された前記リチウム混合物を、酸化性雰囲気中、650℃〜920℃の範囲にある温度で焼成する焼成工程と、
を備える、非水電解質二次電池用正極活物質の製造方法。 - 前記混合工程において、前記リチウム混合物を、該リチウム混合物に含まれるリチウム以外の金属の原子数の和と、リチウムの原子数との比が、1:0.95〜1.5となるように調整する、請求項7に記載の非水電解質二次電池用正極活物質の製造方法。
- 前記混合工程前に、前記遷移金属含有複合水酸化物粒子を105℃〜750℃の範囲にある温度で熱処理する、熱処理工程をさらに備える、請求項7または8に記載の非水電解質二次電池用正極活物質の製造方法。
- 前記非水電解質二次電池用正極活物質は、一般式(B):Li1+uNixMnyCozMtO2(−0.05≦u≦0.50、x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表され、多孔質構造を有する六方晶系のリチウムニッケルマンガン複合酸化物粒子からなる、請求項7〜9のいずれかに記載の非水電解質二次電池用正極活物質の製造方法。
- リチウム遷移金属含有複合酸化物粒子からなる非水電解質二次電池用正極活物質であって、
複数の一次粒子が凝集して形成された二次粒子から構成され、
前記二次粒子は、前記凝集した一次粒子により形成された外殻部と、該外殻部の内側に存在し、前記凝集した一次粒子により形成され、かつ、前記外殻部と電気的に導通する凝集部と、および、該凝集部の中に分散して存在する複数の空間部とを備えた多孔質構造を有し、
前記二次粒子の平均粒径MVは、1μm〜15μmの範囲にあり、かつ、前記二次粒子の粒度分布の広がりを示す指標である〔(d90−d10)/平均粒径MV〕は、0.7以下であり、および、
1.4m2/g〜6.0m2/gの範囲にあるBET比表面積、および、0.95g/cm3〜2.0g/cm3の範囲にあるタップ密度を有する、
非水電解質二次電池用正極活物質。 - 前記二次粒子の断面観察により計測される前記複数の空間部の全体の面積割合が、前記二次粒子の断面積に対して12%〜55%の範囲にある、請求項11に記載の非水電解質二次電池用正極活物質。
- 前記リチウム遷移金属複合酸化物粒子は、一般式(B):Li1+uNixMnyCozMtO2(−0.05≦u≦0.50、x+y+z+t=1、0.3≦x≦0.95、0.05≦y≦0.55、0≦z≦0.4、0≦t≦0.1、Mは、Mg、Ca、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上の添加元素)で表される組成、および、層状構造からなる六方晶系の結晶構造を有する、請求項11または12に記載の非水電解質二次電池用正極活物質。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016252220 | 2016-12-27 | ||
JP2016252220 | 2016-12-27 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2018104273A true JP2018104273A (ja) | 2018-07-05 |
JP2018104273A5 JP2018104273A5 (ja) | 2020-10-15 |
JP7006255B2 JP7006255B2 (ja) | 2022-01-24 |
Family
ID=62785499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017250274A Active JP7006255B2 (ja) | 2016-12-27 | 2017-12-26 | 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7006255B2 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020177860A (ja) * | 2019-04-22 | 2020-10-29 | 住友金属鉱山株式会社 | ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムニッケルマンガンコバルト含有複合酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池 |
WO2020261962A1 (ja) | 2019-06-25 | 2020-12-30 | 住友金属鉱山株式会社 | リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池 |
JP2021005548A (ja) * | 2019-06-25 | 2021-01-14 | 住友金属鉱山株式会社 | リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池 |
JP2021009778A (ja) * | 2019-06-28 | 2021-01-28 | 住友金属鉱山株式会社 | リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池 |
JP2021012807A (ja) * | 2019-07-05 | 2021-02-04 | 住友金属鉱山株式会社 | ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池 |
US11923534B2 (en) | 2019-07-18 | 2024-03-05 | Toyota Jidosha Kabushiki Kaisha | Nonaqueous electrolyte secondary battery including a positive electrode active substance containing a lithium composite oxide porous particle having voids |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014181891A1 (ja) * | 2013-05-10 | 2014-11-13 | 住友金属鉱山株式会社 | 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法および非水電解質二次電池 |
-
2017
- 2017-12-26 JP JP2017250274A patent/JP7006255B2/ja active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014181891A1 (ja) * | 2013-05-10 | 2014-11-13 | 住友金属鉱山株式会社 | 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法および非水電解質二次電池 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020177860A (ja) * | 2019-04-22 | 2020-10-29 | 住友金属鉱山株式会社 | ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムニッケルマンガンコバルト含有複合酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池 |
WO2020261962A1 (ja) | 2019-06-25 | 2020-12-30 | 住友金属鉱山株式会社 | リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池 |
JP2021005548A (ja) * | 2019-06-25 | 2021-01-14 | 住友金属鉱山株式会社 | リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池 |
CN114026045A (zh) * | 2019-06-25 | 2022-02-08 | 住友金属矿山株式会社 | 锂离子二次电池用正极活性物质及其制造方法以及锂离子二次电池 |
EP3992150A4 (en) * | 2019-06-25 | 2023-08-02 | Sumitomo Metal Mining Co., Ltd. | ACTIVE MATERIAL OF POSITIVE ELECTRODE FOR SECONDARY LITHIUM-ION BATTERIES, ITS PRODUCTION METHOD AND SECONDARY LITHIUM-ION BATTERY |
CN114026045B (zh) * | 2019-06-25 | 2024-01-16 | 住友金属矿山株式会社 | 锂离子二次电池用正极活性物质及其制造方法以及锂离子二次电池 |
JP7484283B2 (ja) | 2019-06-25 | 2024-05-16 | 住友金属鉱山株式会社 | リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池 |
JP2021009778A (ja) * | 2019-06-28 | 2021-01-28 | 住友金属鉱山株式会社 | リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池 |
JP2021012807A (ja) * | 2019-07-05 | 2021-02-04 | 住友金属鉱山株式会社 | ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池 |
JP7447401B2 (ja) | 2019-07-05 | 2024-03-12 | 住友金属鉱山株式会社 | ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池 |
US11923534B2 (en) | 2019-07-18 | 2024-03-05 | Toyota Jidosha Kabushiki Kaisha | Nonaqueous electrolyte secondary battery including a positive electrode active substance containing a lithium composite oxide porous particle having voids |
Also Published As
Publication number | Publication date |
---|---|
JP7006255B2 (ja) | 2022-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6596978B2 (ja) | 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池 | |
JP6159395B2 (ja) | 遷移金属複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法および非水電解質二次電池 | |
JP5971109B2 (ja) | ニッケル複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 | |
JP6331983B2 (ja) | 遷移金属複合水酸化物粒子の製造方法および非水電解質二次電池用正極活物質の製造方法 | |
JP7188081B2 (ja) | 遷移金属含有複合水酸化物とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池 | |
JP6380711B1 (ja) | 遷移金属含有複合水酸化物とその製造方法、および、非水電解質二次電池用正極活物質の製造方法 | |
JP7087381B2 (ja) | 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法 | |
JP7087380B2 (ja) | 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法 | |
JP7260249B2 (ja) | 遷移金属含有複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池 | |
JP2018095505A (ja) | 遷移金属含有複合水酸化物とその製造方法、および、非水電解質二次電池用正極活物質とその製造方法 | |
JP7006255B2 (ja) | 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法 | |
JP7087379B2 (ja) | 遷移金属含有複合水酸化物粒子およびその製造方法、並びに、非水電解質二次電池用正極活物質およびその製造方法 | |
WO2017119459A1 (ja) | 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法 | |
JP2019149349A (ja) | 遷移金属複合水酸化物粒子の製造方法、遷移金属複合水酸化物粒子、非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質 | |
WO2017119457A1 (ja) | 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質前駆体の製造方法、及び非水系電解質二次電池用正極活物質の製造方法 | |
JP7183813B2 (ja) | ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池 | |
JP7035540B2 (ja) | 遷移金属含有複合水酸化物粒子とその製造方法、非水電解質二次電池用正極活物質とその製造方法、および非水電解質二次電池 | |
JP2020119787A (ja) | ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池 | |
JP2020119784A (ja) | ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池 | |
JP2019220361A (ja) | リチウムイオン二次電池用正極活物質とその製造方法およびリチウムイオン二次電池 | |
WO2018097191A1 (ja) | 非水電解質二次電池用正極活物質および非水電解質二次電池 | |
JP2019077577A (ja) | 遷移金属複合水酸化物粒子およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池 | |
JP2020119786A (ja) | ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池 | |
JP2019212396A (ja) | リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質、及びリチウムイオン二次電池 | |
JP2018085198A (ja) | 遷移金属含有複合水酸化物の製造方法および非水電解質二次電池用正極活物質の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200907 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200907 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210810 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210831 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211220 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7006255 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |