JP2018100216A - Symmetrical chamfering method and device of substrate - Google Patents

Symmetrical chamfering method and device of substrate Download PDF

Info

Publication number
JP2018100216A
JP2018100216A JP2018000615A JP2018000615A JP2018100216A JP 2018100216 A JP2018100216 A JP 2018100216A JP 2018000615 A JP2018000615 A JP 2018000615A JP 2018000615 A JP2018000615 A JP 2018000615A JP 2018100216 A JP2018100216 A JP 2018100216A
Authority
JP
Japan
Prior art keywords
chamfering
substrate
wheel
edge
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018000615A
Other languages
Japanese (ja)
Inventor
明 寶 韓
Myeong Bo Han
明 寶 韓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Precision Materials Co Ltd
Original Assignee
Corning Precision Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Precision Materials Co Ltd filed Critical Corning Precision Materials Co Ltd
Publication of JP2018100216A publication Critical patent/JP2018100216A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/10Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of plate glass

Abstract

PROBLEM TO BE SOLVED: To perform chamfering always in a symmetrical state of a substrate edge, in response actively to fluctuation of a chamfering environment, without a hardware work.SOLUTION: A cycle is repeated at least in a plurality of times, which includes the steps of: chamfering a substrate edge by using a chamfering wheel; measuring asymmetrical chamfering deviation (x) of the chamfered substrate edge; and controlling a relative position of the chamfering wheel to the substrate as much as a largeness of f(x) (where, f(x) is a function using x as a variable).SELECTED DRAWING: Figure 3

Description

本発明は、基板の対称面取り方法および装置に関し、より詳細には、基板の端縁の非対称面取偏移(x)を測定し、これを基礎として面取りホイールの位置を制御することにより、基板を対称面取りする方法および装置に関する。   The present invention relates to a method and apparatus for symmetrical chamfering of a substrate, and more particularly, by measuring the asymmetric chamfer deviation (x) of the edge of the substrate and controlling the position of the chamfering wheel on the basis thereof. To a method and apparatus for symmetrical chamfering.

多様な分野において、基板の端縁の面取りが要求されている。一例として、LCD、PDP、EL等といった平板ディスプレイに使用されるガラス基板は、融解、成形、切断および面取り工程を経て製造される。すなわち、ガラスを融解させ、融解したガラスを板状に固化させて成形し、成形されたガラスを所定の規格に切断した後、切断されたガラスの端縁を面取りすることができる。   In various fields, chamfering of the edge of the substrate is required. As an example, a glass substrate used for a flat panel display such as an LCD, PDP, EL or the like is manufactured through melting, molding, cutting, and chamfering processes. That is, the glass is melted, and the melted glass is solidified into a plate shape and molded. After the molded glass is cut to a predetermined standard, the edge of the cut glass can be chamfered.

図1は、基板10の端縁の面取り工程を概略的に示す図であり、図2は、非対称面取りされた基板の端縁を示す側断面図である。   FIG. 1 is a diagram schematically showing a chamfering process of an edge of the substrate 10, and FIG. 2 is a side sectional view showing an edge of the asymmetric chamfered substrate.

基板は面取り作業台30上に位置された状態で面取りされる。このとき、基板の端縁は、上‐下対称面取りが施されることが好ましい。しかし、たとえば、平板ディスプレイに使用されるガラス基板は薄いため(約1mm以下)、面取り作業台が平坦でない、または作業台の搬送時の上下方向の流動によって、基板の端縁の断面の中心点と面取りホイール20の中心点の局部的な不一致が引き起こされる。この場合、端縁の断面は、局部的にいずれか一方により深く研磨されて上下の面取り幅が異なるようになり、基板の端縁が局部的に非対称面取りが施される非対称面取り点が発生する。   The substrate is chamfered while being positioned on the chamfering work table 30. At this time, the edge of the substrate is preferably chamfered up and down. However, for example, since the glass substrate used for a flat panel display is thin (about 1 mm or less), the chamfering table is not flat, or the center point of the cross section of the edge of the substrate due to the vertical flow during the conveyance of the table And a local mismatch of the center points of the chamfering wheel 20 is caused. In this case, the cross section of the edge is locally deeply polished by either one, and the upper and lower chamfering widths are different, and an asymmetric chamfering point is generated in which the edge of the substrate is locally asymmetrically chamfered. .

従来は、基板の非対称面取りが発生した場合、面取り作業台の平坦度を補正するために、該当部位の基板固定器具の部品を交換したり、部分的に薄い鉄片をかませて面取り作業台の局部的な高さを微調整したりする作業を行ってきていた。しかし、こうした作業は、基板の面取り作業を停止し、作業台を分解し、再組み立ておよび微補正を行う過程を要するため、生産性に莫大な支障をもたらす。また、部品の交換等により、部品費の上昇を招くという問題点を有する。   Conventionally, when asymmetric chamfering of a substrate occurs, in order to correct the flatness of the chamfering table, the parts of the substrate fixing tool at the corresponding part are replaced, or a thin piece of iron is partially bitten to remove the chamfering table. Work has been done to fine-tune the local height. However, such work requires a process of stopping the chamfering of the substrate, disassembling the workbench, reassembling, and performing fine correction, and thus enormously hinders productivity. In addition, there is a problem that the cost of parts increases due to the replacement of parts.

本発明は、上述した問題点を解決するために案出されたものであって、本発明の目的は、従来のようなハードウェア的な作業がなくても、面取り環境の変動に能動的に対応して、基板の端縁を常に対称的な状態で面取りすることができる基板の対称面取り方法および装置を提供することにある。   The present invention has been devised in order to solve the above-described problems, and the object of the present invention is to actively respond to changes in the chamfering environment without the conventional hardware work. Correspondingly, it is an object of the present invention to provide a symmetrical chamfering method and apparatus for a substrate which can be chamfered in a symmetrical state at the edges of the substrate.

上述した目的を達成するために、本発明は、面取りホイールを使用して基板の端縁を面取りするステップと、面取りされた前記基板の端縁の非対称面取偏移(x)を測定するステップと、f(x)(ここで、f(x)は、xを変数とする関数)の大きさ分だけ前記基板に対する前記面取りホイールの相対位置を制御するステップと、を少なくとも複数回繰り返すことを特徴とする基板の対称面取り方法を提供する。   To achieve the above objective, the present invention comprises the steps of chamfering the edge of the substrate using a chamfer wheel and measuring the asymmetric chamfer deviation (x) of the edge of the substrate chamfered. And the step of controlling the relative position of the chamfering wheel with respect to the substrate by the magnitude of f (x) (where f (x) is a function with x as a variable) A method for symmetrical chamfering of a substrate is provided.

また、本発明は、基板の端縁を少なくとも複数回面取りする面取りホイールと、面取りされた前記基板の端縁の非対称面取偏移(x)を測定する測定部と、前記基板に対する前記面取りホイールの相対位置をf(x)(ここで、f(x)は、xを変数とする関数)の大きさ分だけ制御する制御部と、を含むことを特徴とする基板の対称面取り装置を提供する。   The present invention also provides a chamfering wheel that chamfers the edge of the substrate at least a plurality of times, a measurement unit that measures asymmetric chamfer deviation (x) of the edge of the chamfered substrate, and the chamfering wheel for the substrate. And a control unit that controls the relative position of the substrate by a magnitude of f (x) (where f (x) is a function having x as a variable). To do.

上述した構成によれば、本発明は、面取り作業が行われる面取り作業台の補正を通じて、基板の端縁の断面の中心点と面取りホイールの中心点を合わせる従来の方法に代わって、面取りホイールの高さを基板の端縁の断面の中心点と常に自動的に一致させて対称的な面取り断面を得ることができる。すなわち、本発明は、ハードウェア的な作業がなくても、面取り環境の変動に能動的に対応して、基板の端縁を常に対称的な状態で面取りすることができる効果がある。特に、本発明は、面取り作業台が繰り返される面取り作業によって持続的に劣化するため、その劣化の程度を直ちに把握してすぐさま措置を取ることができるようになる。   According to the above-described configuration, the present invention replaces the conventional method of aligning the center point of the cross section of the edge of the substrate with the center point of the chamfering wheel through the correction of the chamfering work table on which the chamfering operation is performed. A symmetrical chamfered cross section can be obtained by automatically automatically matching the height with the center point of the cross section of the edge of the substrate. That is, the present invention has an effect that the edge of the substrate can be always chamfered in a symmetrical state, actively responding to a change in the chamfering environment, even without hardware work. In particular, according to the present invention, since the chamfering work table is continuously deteriorated due to repeated chamfering work, it is possible to immediately grasp the degree of deterioration and take measures immediately.

また、本発明は、面取り作業の停止を要求しないため、生産性を犠牲にせず、かつ簡易に基板の端縁の対称面取りを得ることができる効果がある。   Further, since the present invention does not require the chamfering operation to be stopped, there is an effect that the symmetrical chamfering of the edge of the substrate can be easily obtained without sacrificing the productivity.

また、本発明は、従来の面取り作業台の補正に伴う作業者の労力と時間の損失を取り除き、終局的に面取り工程の効率を向上することができる効果がある。すなわち、現業の作業ロードをゼロ化しつつ、最大限の効果を得ることができ、面取り幅散布水準を劇的に向上させることができる。完全自動化により、現業勤務者による作業遂行がなくても、単純なプログラムの稼働を通じて基板の上面と下面の面取り幅の差を最大30μm以下の水準(平均20μm前後)に維持しつつ、面取り基板を量産することができる。従来の補正方式は50μm以下の面取り幅差の対称性を得ることが不可能であったことと比較すると、面取り対称性を大きく向上させることができる。   In addition, the present invention has an effect of eliminating the labor and time loss associated with the conventional correction of the chamfering workbench and ultimately improving the efficiency of the chamfering process. In other words, it is possible to obtain the maximum effect while zeroing the current work load, and to dramatically improve the chamfer width distribution level. Even if there is no work performed by on-the-job workers, the chamfered substrate can be maintained while maintaining the difference in chamfer width between the upper and lower surfaces of the substrate to a maximum of 30 μm or less (average around 20 μm) through the operation of a simple program. Can be mass-produced. Compared with the fact that the conventional correction method cannot obtain the symmetry of the chamfer width difference of 50 μm or less, the chamfer symmetry can be greatly improved.

従来の面取り作業台の平坦度測定および補正は、生産ラインを停止させ、設備の中で行わなければならない危険な作業であるのに反して、本発明は、作業者を危険な環境から保護することができる。   Contrary to conventional chamfering platform flatness measurement and correction, which is a dangerous operation that must be done in a facility with the production line shut down, the present invention protects workers from hazardous environments. be able to.

基板の端縁の面取り工程を概略的に示す図である。It is a figure which shows roughly the chamfering process of the edge of a board | substrate. 非対称面取りされた基板の端縁を示す側断面図である。It is a sectional side view which shows the edge of the board | substrate by which the asymmetrical chamfering was carried out. 本発明の一実施例に係る基板の対称面取り方法を説明するための図である。It is a figure for demonstrating the symmetrical chamfering method of the board | substrate which concerns on one Example of this invention. 基板の端縁における複数の測定点を示す図である。It is a figure which shows the some measurement point in the edge of a board | substrate. 基板の端縁の非対称面取り偏移を示す側断面図である。It is a sectional side view which shows the asymmetrical chamfering deviation of the edge of a board | substrate. 本発明の一実施例に係る基板の対称面取り方法による場合における、各回次の上面の面取り幅と下面の面取り幅を示す図である。It is a figure which shows the chamfering width of the upper surface of each round, and the chamfering width of a lower surface in the case of being based on the symmetrical chamfering method of the board | substrate which concerns on one Example of this invention. 本発明の一実施例に係る基板の対称面取り方法による場合における、基板の対称面取り前と後の、上面の面取り幅と下面の面取り幅、ならびに非対称面取偏移を示す図である。It is a figure which shows the chamfering width of the upper surface, the chamfering width of the lower surface, and the asymmetrical chamfering deviation before and after the symmetrical chamfering of the substrate in the case of the method of symmetrical chamfering of the substrate according to one embodiment of the present invention. 本発明の一実施例に係る基板の対称面取り方法の採択前と後における非対称面取偏移の低減を示す図である。It is a figure which shows reduction of the asymmetrical chamfering deviation before and after the adoption of the symmetrical chamfering method of the substrate according to one embodiment of the present invention. 本発明の一実施例に係る基板の対称面取り装置を概略的に示す図である。It is a figure which shows roughly the symmetrical chamfering apparatus of the board | substrate which concerns on one Example of this invention.

以下、添付図面を参照しつつ、本発明の実施例を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図3は、本発明の一実施例に係る基板の対称面取り方法を説明するための図であり、図4は、基板の端縁における、非対称面取り偏移の測定が遂行される複数の測定点を示す図であり、図5は、基板の端縁の非対称面取偏移を示す側断面図である。   FIG. 3 is a diagram for explaining a symmetrical chamfering method for a substrate according to an embodiment of the present invention, and FIG. 4 is a diagram illustrating a plurality of measurement points at which an asymmetric chamfer deviation measurement is performed at an edge of the substrate. FIG. 5 is a side sectional view showing an asymmetric chamfer shift of the edge of the substrate.

本発明の基板の対称面取り方法は、面取りステップと、測定ステップと制御ステップを、少なくとも複数回繰り返す。   In the symmetrical chamfering method for a substrate of the present invention, the chamfering step, the measurement step, and the control step are repeated at least a plurality of times.

面取りステップにおいては、面取りホイールを使用して、基板の端縁を面取りする。   In the chamfering step, the edge of the substrate is chamfered using a chamfering wheel.

基板10は、面取り作業台30上に位置される。本明細書において、上下左右は、相対的な位置関係を説明するためのものであるだけであって、地表面を基準とする絶対的な位置関係を示すものではない。したがって、基板10が面取り作業台30上に位置されるということは、面取り作業台30から上側と指定された方向に基板10が位置することを意味するだけであって、その上側と指定された方向が必ずしも地表面からより遠い側を意味するものではない。基板10は、ディスプレイ装置用ガラス基板であってもよいが、本発明は、必ずしもこれに限定されるものではない。本発明の基板10は、面取り対象となるいかなる材質の基板であってもよい。   The substrate 10 is positioned on the chamfering work table 30. In the present specification, the upper, lower, left and right are only for explaining the relative positional relationship, and do not indicate the absolute positional relationship with respect to the ground surface. Accordingly, the fact that the substrate 10 is positioned on the chamfering workbench 30 only means that the substrate 10 is positioned in the direction designated as the upper side from the chamfering workbench 30 and is designated as the upper side thereof. The direction does not necessarily mean the side farther from the ground surface. The substrate 10 may be a glass substrate for a display device, but the present invention is not necessarily limited to this. The substrate 10 of the present invention may be a substrate made of any material to be chamfered.

面取りホイール20は、基板10よりも強い材質からなる。面取り対象がガラス基板10である場合、面取りホイール20は、通常、ダイヤモンド研磨チップを含む。面取りホイール20は、一般的に、ディスクタイプで提供される。面取りホイール20の外周面には、その周方向に沿って凹形グルーブ(groove)が形成される。このグルーブの内面が基板10の端縁と接触して、基板10の端縁を均等に研磨することになる。面取りホイール20は、専用の研磨機械に設置されて高速回転することになる。   The chamfering wheel 20 is made of a material stronger than the substrate 10. When the target of chamfering is the glass substrate 10, the chamfering wheel 20 usually includes a diamond polishing tip. The chamfer wheel 20 is generally provided in a disc type. A concave groove is formed on the outer peripheral surface of the chamfering wheel 20 along the circumferential direction thereof. The inner surface of the groove comes into contact with the edge of the substrate 10, and the edge of the substrate 10 is uniformly polished. The chamfering wheel 20 is installed in a dedicated polishing machine and rotates at a high speed.

基板10が移動し、面取りホイール20はその場で回転するのが一般的であるが、必ずしもこれに限定されるものではない。たとえば、基板10は固定され、面取りホイール20が移動することも可能であり、基板10と面取りホイール20がともに移動することも可能である。基板10と面取りホイール20の相対移動により、面取りホイール20が基板10の端縁に沿って相対移動しながら面取りすることになる。   In general, the substrate 10 moves and the chamfering wheel 20 rotates on the spot, but the invention is not necessarily limited thereto. For example, the substrate 10 is fixed and the chamfering wheel 20 can move, and the substrate 10 and the chamfering wheel 20 can move together. Due to the relative movement of the substrate 10 and the chamfering wheel 20, the chamfering wheel 20 is chamfered while relatively moving along the edge of the substrate 10.

測定ステップにおいては、面取りされた基板の端縁の非対称面取偏移(x)を測定する。   In the measuring step, the asymmetric chamfer deviation (x) of the edge of the chamfered substrate is measured.

好ましい実施例によると、基板10の上面の面取り幅と基板10の場合の面取り幅の差を非対称面取り偏移として測定する。しかし、本発明は、必ずしもこれに限定されるものではない。たとえば、側方から基板10の端縁の断面を直接判読して、非対称面取り偏移を測定することも可能である。非対称面取り偏移を測定するために、ビジョンカメラ、距離センサー等、多様な装置な装置が使用されてよい。   According to a preferred embodiment, the difference between the chamfer width of the upper surface of the substrate 10 and the chamfer width in the case of the substrate 10 is measured as an asymmetric chamfer deviation. However, the present invention is not necessarily limited to this. For example, it is possible to directly read the cross section of the edge of the substrate 10 from the side and measure the asymmetric chamfer deviation. Various devices such as vision cameras, distance sensors, etc. may be used to measure the asymmetric chamfer deviation.

好ましくは、基板の端縁の複数の点ごとに、非対称面取り偏移を各々測定する。図4においては、かかる測定作業を4つの端縁すべてに遂行したものを示しているが、必ずしもこれに限定されるものではない。必要によっては、要求される端縁のみを測定してもよいであろう。基板の4つの端縁の測定のために、たとえば4台のビジョンカメラが使用されてよい。   Preferably, the asymmetric chamfer deviation is measured for each of a plurality of points on the edge of the substrate. Although FIG. 4 shows a case where such a measurement operation is performed on all four edges, the present invention is not necessarily limited to this. If necessary, only the required edge may be measured. For example, four vision cameras may be used for measuring the four edges of the substrate.

制御ステップにおいては、f(x)(ここで、f(x)は、xを変数とする関数)の大きさ分だけ、前記基板に対する前記面取りホイールの相対位置を制御する。   In the control step, the relative position of the chamfering wheel with respect to the substrate is controlled by the magnitude of f (x) (where f (x) is a function having x as a variable).

典型的には、制御対象となる面取りホイールの位置は、基板に対する面取りホイールの相対高さである。上述したところのように、高さとは、相対的な位置関係を説明するためのものであるだけであって、絶対的な位置関係を示すためのものでないことに留意する必要がある。また、相対高さの変更は、面取りホイールを上下方向に移動させるのが一般的であるが、必ずしもこれに限定されるものではない。たとえば、面取りホイールを固定し、基板を上下に移動させることも可能であり、面取りホイールと基板をともに上下に移動させることも可能である。   Typically, the position of the chamfering wheel to be controlled is the relative height of the chamfering wheel with respect to the substrate. As described above, it should be noted that the height is only for explaining the relative positional relationship, not for showing the absolute positional relationship. In addition, the change of the relative height is generally performed by moving the chamfering wheel in the vertical direction, but is not necessarily limited thereto. For example, the chamfering wheel can be fixed and the substrate can be moved up and down, and both the chamfering wheel and the substrate can be moved up and down.

たとえば、板ガラスは薄いため(約1mm以下)、面取り作業台の平坦度によって、板ガラスの自重等の影響により平坦度の形状と同様に屈曲されて作業台に密着されるようになる。したがって、面取り作業台30が平坦でないならば、基板10の端縁の断面の中心点と面取りホイール20の中心点の局部的な不一致が発生する。図5に示されたところのように、面取り作業台30の局部的な高さが基準高さよりも低ければ、基板10の端縁の断面の局部的な中心点は、面取りホイール20の中心点よりも低い高さに位置される。この場合、下面が上面よりも多く面取りされて、下面の面取り幅が上面の面取り幅よりも大きくなる。したがって、基板に対する面取りホイールの相対高さを下方へ制御する。   For example, since the plate glass is thin (about 1 mm or less), the flatness of the chamfering work table is bent in the same manner as the flatness shape due to the influence of the weight of the plate glass and the like, and comes into close contact with the work table. Therefore, if the chamfering table 30 is not flat, a local mismatch between the center point of the cross section of the edge of the substrate 10 and the center point of the chamfering wheel 20 occurs. As shown in FIG. 5, if the local height of the chamfering workbench 30 is lower than the reference height, the local center point of the cross section of the edge of the substrate 10 is the center point of the chamfering wheel 20. Located at a lower height. In this case, the lower surface is chamfered more than the upper surface, and the chamfering width of the lower surface is larger than the chamfering width of the upper surface. Therefore, the relative height of the chamfering wheel with respect to the substrate is controlled downward.

これとは逆に、面取り作業台30の局部的な高さが基準高さよりも高ければ、基板10の端縁の断面の局部的な中心点は、面取りホイール20の中心点よりも高い高さに位置される。この場合、上面が下面よりも多く面取りされて、上面の面取り幅が下面の面取り幅よりも大きくなる。したがって、基板に対する面取りホイールの相対高さを上方へ制御する。   On the contrary, if the local height of the chamfering table 30 is higher than the reference height, the local center point of the cross section of the edge of the substrate 10 is higher than the center point of the chamfering wheel 20. Located in. In this case, the upper surface is chamfered more than the lower surface, and the chamfer width of the upper surface becomes larger than the chamfer width of the lower surface. Therefore, the relative height of the chamfering wheel with respect to the substrate is controlled upward.

測定ステップと同様に、制御ステップにおいても、好ましくは、基板の端縁の複数の点を面取りする際における面取りホイールの位置を各々制御する。図6および図7は、かかる制御作業を4つの端縁すべてに遂行したものを示しているが、必ずしもこれに限定されるものではない。必要によっては、要求される端縁にのみ制御処理を遂行してもよいであろう。基板の4つの端縁の面取りのために4つの面取りホイールが使用されてよい。   Similarly to the measurement step, the control step preferably controls the position of the chamfering wheel when chamfering a plurality of points on the edge of the substrate. 6 and 7 show such a control operation performed on all four edges, but the present invention is not necessarily limited to this. If necessary, the control process may be performed only on the required edge. Four chamfer wheels may be used for chamfering the four edges of the substrate.

基板10に対する面取りホイール20の相対高さを変更した後、上述した面取りステップ、測定ステップおよび制御ステップを繰り返す。同一の基板10の端縁を再び面取りおよび測定することも可能であるが、他の基板10を使用することが好ましい。すなわち、各々の基板10に対する面取りホイール20の相対高さを制御しつつ、複数の基板10の端縁を面取りおよび測定し、単一面取りホイールの相対高さを制御してよい。   After changing the relative height of the chamfering wheel 20 with respect to the substrate 10, the above-described chamfering step, measurement step, and control step are repeated. Although it is possible to chamfer and measure the edge of the same substrate 10 again, it is preferable to use another substrate 10. In other words, the relative height of the single chamfering wheel may be controlled by chamfering and measuring the edges of the plurality of substrates 10 while controlling the relative height of the chamfering wheel 20 with respect to each substrate 10.

反復回数は、その値をあらかじめ指定してプログラムに入力してもよく、非対称面取偏移(x)が指定された範囲内の値を有するまで繰り返し続けるようにしてもよい。ひいては、面取り作業中は、常時測定および制御が遂行されるように、すなわち無限に繰り返されるようにしてもよいであろう。   The number of iterations may be specified in advance and input to the program, or may be repeated until the asymmetric chamfer deviation (x) has a value within a specified range. As a result, during the chamfering operation, measurement and control may be performed constantly, that is, it may be repeated indefinitely.

面取り後、基板の端縁の断面の非対称度を測定し、非対称面取り偏移をフィードバックして、変移(x)に一定の定数(a)を乗じて制御量(f(x)、たとえば、f(x)=x*a)を生成し、その制御量分だけ面取りホイールの高さを微調整する。かかる1サイクルの後、再び同一の点の断面の非対称度を測定して、同様の方法で制御量を生成し、以前に生成された面取りホイールの位置に制御量分を累積して修正する。かかる一連の過程を無限反復する場合、面取り作業の劣化によって生じる搬送精度と、平坦度によって持続的に変化する面取り幅の変動を最小限に制御することができるようになる。   After chamfering, the degree of asymmetry of the cross-section of the edge of the substrate is measured, the asymmetric chamfer deviation is fed back, and the controlled variable (f (x), for example, f) is multiplied by a constant (a). (X) = x * a) is generated, and the height of the chamfering wheel is finely adjusted by the control amount. After such one cycle, the degree of asymmetry of the cross section at the same point is again measured, and a control amount is generated in the same manner, and the control amount is accumulated and corrected at the position of the chamfer wheel generated previously. When such a series of processes is repeated infinitely, it becomes possible to control the conveyance accuracy caused by the deterioration of the chamfering operation and the fluctuation of the chamfering width continuously changing depending on the flatness to the minimum.

図6は、本発明の一実施例に係る基板の対称面取り方法による場合における、各回次の上面の面取り幅と下面の面取り幅を示す図であり、図7は、本発明の一実施例に係る基板の対称面取り方法による場合における、基板の対称面取り前と後の、上面の面取り幅と下面の面取り幅、ならびに非対称面取偏移を示す図であり、図8は、本発明の一実施例に係る基板の対称面取り方法の採択前と後における非対称面取偏移の低減を示す図である。   FIG. 6 is a diagram showing the chamfer width of the upper surface and the chamfer width of the lower surface in the case of using the symmetrical chamfering method of the substrate according to one embodiment of the present invention, and FIG. FIG. 8 is a diagram showing the chamfering width of the upper surface, the chamfering width of the lower surface, and the asymmetrical chamfering deviation before and after the symmetrical chamfering of the substrate in the case of the symmetrical chamfering method of the substrate. It is a figure which shows reduction of the asymmetrical chamfering deviation before and after the adoption of the symmetrical chamfering method of the substrate according to the example.

図示したところのように、本発明の基板の対称面取り方法による場合、面取り、測定および制御ステップの数回の繰り返しのみで、基板の端縁の対称面取りを得ることができることを示している。作業遂行の結果、5回以内の動作で目標水準である50μm以内(平均水準20μm内外)に到達することができた。   As shown in the figure, the method of symmetrical chamfering of a substrate according to the present invention shows that a symmetrical chamfering of the edge of the substrate can be obtained by only repeating the chamfering, measurement and control steps several times. As a result of the work, the target level was reached within 50 μm (average level within 20 μm) within 5 operations.

図9は、本発明の一実施例に係る基板の対称面取り装置を概略的に示す図である。   FIG. 9 is a view schematically showing a symmetrical chamfering apparatus for a substrate according to an embodiment of the present invention.

図示したところのように、本発明の一実施例に係る基板の対称面取り装置は、面取りホイール、測定部および制御部を含む。   As illustrated, a symmetrical chamfering device for a substrate according to an embodiment of the present invention includes a chamfering wheel, a measurement unit, and a control unit.

測定部は、面取りされた前記基板の端縁の非対称面取偏移(x)を測定する。制御部は、面取りホイールの位置をf(x)(ここで、f(x)は、xを変数とする関数)の大きさ分だけ制御する。   The measurement unit measures an asymmetric chamfer deviation (x) of the edge of the chamfered substrate. The control unit controls the position of the chamfering wheel by the magnitude of f (x) (where f (x) is a function having x as a variable).

10:基板
20:面取りホイール
30:面取り作業台
10: Substrate 20: Chamfering wheel 30: Chamfering work table

Claims (12)

面取りホイールを使用して基板の端縁を面取りするステップと、
面取りされた前記基板の端縁の非対称面取偏移(x)を測定するステップと、
f(x)(ここで、f(x)は、xを変数とする関数)の大きさ分だけ前記基板に対する前記面取りホイールの相対位置を制御するステップと、
を含むサイクルを少なくとも複数回繰り返すことを特徴とする基板の対称面取り方法。
Chamfering the edge of the substrate using a chamfer wheel;
Measuring the asymmetric chamfer deviation (x) of the edge of the chamfered substrate;
controlling the relative position of the chamfering wheel with respect to the substrate by the magnitude of f (x) (where f (x) is a function with x as a variable);
A method for symmetrically chamfering a substrate, comprising repeating a cycle including: at least a plurality of times.
前記非対称面取偏移は、前記基板の上面の面取り幅と前記基板の下面の面取り幅の差であることを特徴とする、請求項1に記載の基板の対称面取り方法。   The method of claim 1, wherein the asymmetric chamfering deviation is a difference between a chamfering width of the upper surface of the substrate and a chamfering width of the lower surface of the substrate. 前記基板の上面の面取り幅が前記基板の下面の面取り幅よりも大きい場合、前記基板に対する前記面取りホイールの相対位置を上方へ制御し、
前記基板の上面の面取り幅が前記基板の下面の面取り幅よりも小さい場合、前記基板に対する前記面取りホイールの相対位置を下方へ制御することを特徴とする、請求項2に記載の基板の対称面取り方法。
When the chamfering width of the upper surface of the substrate is larger than the chamfering width of the lower surface of the substrate, the relative position of the chamfering wheel with respect to the substrate is controlled upward,
The symmetrical chamfering of a substrate according to claim 2, wherein when the chamfering width of the upper surface of the substrate is smaller than the chamfering width of the lower surface of the substrate, the relative position of the chamfering wheel with respect to the substrate is controlled downward. Method.
前記面取りホイールの相対位置は、前記基板に対する前記面取りホイールの相対高さであることを特徴とする、請求項1に記載の基板の対称面取り方法。   The method of claim 1, wherein the relative position of the chamfering wheel is a relative height of the chamfering wheel with respect to the substrate. 前記f(x)は、前記非対称面取偏移(x)に制御定数を乗じた大きさを有することを特徴とする、請求項1に記載の基板の対称面取り方法。   The method of claim 1, wherein the f (x) has a magnitude obtained by multiplying the asymmetric chamfer deviation (x) by a control constant. 各回次の面取りごとに、互いに異なる基板を面取りすることを特徴とする、請求項1に記載の基板の対称面取り方法。   2. The method for symmetrically chamfering a substrate according to claim 1, wherein a different substrate is chamfered at each round of chamfering. 各回次ごとに、
前記基板の端縁の複数の点ごとに、前記非対称面取り偏移を各々測定し、
前記基板の端縁の複数の点を面取りしたときの前記面取りホイールの相対位置を各々制御することを特徴とする、請求項1に記載の基板の対称面取り方法。
Each time,
Measuring the asymmetric chamfer deviation for each of a plurality of points on the edge of the substrate;
2. The method for symmetrically chamfering a substrate according to claim 1, wherein a relative position of the chamfering wheel is controlled when chamfering a plurality of points on an edge of the substrate.
前記基板は、ディスプレイ装置用ガラス基板であることを特徴とする、請求項1に記載の基板の対称面取り方法。   The method of claim 1, wherein the substrate is a glass substrate for a display device. 前記面取りホイールの外周面には、周方向に沿って凹形グルーブが形成されることを特徴とする、請求項1に記載の基板の対称面取り方法。   2. The method for symmetrical chamfering of a substrate according to claim 1, wherein concave grooves are formed along a circumferential direction on an outer peripheral surface of the chamfering wheel. 基板の端縁を少なくとも複数回面取りする面取りホイールと、
面取りされた前記基板の端縁の非対称面取偏移(x)を測定する測定部と、
前記基板に対する前記面取りホイールの相対位置をf(x)(ここで、f(x)は、xを変数とする関数)の大きさ分だけ制御する制御部と
を含むことを特徴とする基板の対称面取り装置。
A chamfer wheel that chamfers the edge of the substrate at least several times;
A measurement unit for measuring the asymmetric chamfer deviation (x) of the edge of the substrate chamfered;
A control unit that controls the relative position of the chamfering wheel with respect to the substrate by a magnitude of f (x) (where f (x) is a function having x as a variable). Symmetric chamfering device.
前記測定部は、前記基板の上面の面取り幅と前記基板の下面の面取り幅を検出するビジョンカメラを含むことを特徴とする、請求項10に記載の基板の対称面取り装置。   The symmetrical chamfering apparatus for a substrate according to claim 10, wherein the measurement unit includes a vision camera that detects a chamfering width of the upper surface of the substrate and a chamfering width of the lower surface of the substrate. 前記制御部は、前記基板に対する前記面取りホイールの相対高さを制御することを特徴とする、請求項10に記載の基板の対称面取り装置。
11. The symmetrical chamfering device for a substrate according to claim 10, wherein the control unit controls a relative height of the chamfering wheel with respect to the substrate.
JP2018000615A 2013-05-28 2018-01-05 Symmetrical chamfering method and device of substrate Pending JP2018100216A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130060306A KR101452250B1 (en) 2013-05-28 2013-05-28 Method and appratus of symmetrically chamfering a substrate
KR10-2013-0060306 2013-05-28

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014109285A Division JP6451004B2 (en) 2013-05-28 2014-05-27 Method and apparatus for symmetrical chamfering of substrates

Publications (1)

Publication Number Publication Date
JP2018100216A true JP2018100216A (en) 2018-06-28

Family

ID=51985634

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014109285A Active JP6451004B2 (en) 2013-05-28 2014-05-27 Method and apparatus for symmetrical chamfering of substrates
JP2018000615A Pending JP2018100216A (en) 2013-05-28 2018-01-05 Symmetrical chamfering method and device of substrate

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014109285A Active JP6451004B2 (en) 2013-05-28 2014-05-27 Method and apparatus for symmetrical chamfering of substrates

Country Status (5)

Country Link
US (2) US20140357160A1 (en)
JP (2) JP6451004B2 (en)
KR (1) KR101452250B1 (en)
CN (1) CN104209836B (en)
TW (1) TWI560027B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101395055B1 (en) * 2013-05-28 2014-05-14 삼성코닝정밀소재 주식회사 Method of determining flatness of a chmfer table
KR101452250B1 (en) * 2013-05-28 2014-10-22 코닝정밀소재 주식회사 Method and appratus of symmetrically chamfering a substrate
JP6921054B2 (en) * 2015-07-08 2021-08-18 コーニング インコーポレイテッド A method of providing a glass substrate support device and a flexible glass substrate support
CN113211235A (en) * 2021-05-10 2021-08-06 山西光兴光电科技有限公司 Polishing apparatus and polishing method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08243891A (en) * 1995-03-07 1996-09-24 Kao Corp Chamfer work device for substrate
JPH10289413A (en) * 1997-04-10 1998-10-27 Fujitsu Ltd Manufacture of magnetic head
JP2001246539A (en) * 2000-03-03 2001-09-11 Inst Of Physical & Chemical Res Grinding work method for non-axisymmetric aspherical mirror
WO2008093488A1 (en) * 2007-01-31 2008-08-07 Shin-Etsu Handotai Co., Ltd. Silicon wafer beveling device, silicon wafer manufacturing method, and etched silicon wafer
JP2009125876A (en) * 2007-11-26 2009-06-11 Nakamura Tome Precision Ind Co Ltd Registration method of correction value in side edge machining apparatus of glass substrate
JP2010247273A (en) * 2009-04-15 2010-11-04 Daito Electron Co Ltd Method for chamfering wafer
WO2011162163A1 (en) * 2010-06-21 2011-12-29 旭硝子株式会社 Glass substrate and method for manufacturing glass substrate
JP2014087879A (en) * 2012-10-30 2014-05-15 Avanstrate Inc Method of manufacturing glass substrate
JP2014231471A (en) * 2013-05-28 2014-12-11 コーニング精密素材株式会社Corning Precision Materials Co.,Ltd. Method and device for symmetrical chamfering of substrate

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3625685B2 (en) * 1999-04-15 2005-03-02 富士通株式会社 Lapping device and lapping method
JP4441823B2 (en) * 2003-11-26 2010-03-31 株式会社東京精密 Truing method and chamfering device for chamfering grindstone
JP2006026845A (en) * 2004-07-20 2006-02-02 Nakamura Tome Precision Ind Co Ltd Adjustment method for tool position of chamfering machine
CN101877305B (en) * 2005-04-19 2012-01-11 株式会社荏原制作所 Substrate processing apparatus
JP4742845B2 (en) * 2005-12-15 2011-08-10 信越半導体株式会社 Method for processing chamfered portion of semiconductor wafer and method for correcting groove shape of grindstone
JP4915146B2 (en) * 2006-06-08 2012-04-11 信越半導体株式会社 Wafer manufacturing method
US8640497B2 (en) * 2007-01-31 2014-02-04 Hoya Corporation Method of manufacturing glass substrate for magnetic disk and system for manufacturing glass substrate for magnetic disk
JP2009283650A (en) * 2008-05-22 2009-12-03 Sumco Corp Method for regenerating semiconductor wafer
JP5439066B2 (en) * 2009-07-06 2014-03-12 中村留精密工業株式会社 Method and apparatus for chamfering hard brittle plate
WO2012005019A1 (en) * 2010-07-08 2012-01-12 旭硝子株式会社 Glass substrate end surface evaluation method, glass substrate end surface processing method, and glass substrate
US8986072B2 (en) * 2011-05-26 2015-03-24 Corning Incorporated Methods of finishing an edge of a glass sheet
CN202212831U (en) * 2011-08-18 2012-05-09 北京京东方光电科技有限公司 Edging device
CN103111922B (en) * 2013-01-31 2015-04-01 广东富山玻璃机械有限公司 Multifunctional rapid four-edge edge grinding machine
JP6007889B2 (en) * 2013-12-03 2016-10-19 信越半導体株式会社 Chamfering apparatus and notchless wafer manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08243891A (en) * 1995-03-07 1996-09-24 Kao Corp Chamfer work device for substrate
JPH10289413A (en) * 1997-04-10 1998-10-27 Fujitsu Ltd Manufacture of magnetic head
JP2001246539A (en) * 2000-03-03 2001-09-11 Inst Of Physical & Chemical Res Grinding work method for non-axisymmetric aspherical mirror
WO2008093488A1 (en) * 2007-01-31 2008-08-07 Shin-Etsu Handotai Co., Ltd. Silicon wafer beveling device, silicon wafer manufacturing method, and etched silicon wafer
JP2009125876A (en) * 2007-11-26 2009-06-11 Nakamura Tome Precision Ind Co Ltd Registration method of correction value in side edge machining apparatus of glass substrate
JP2010247273A (en) * 2009-04-15 2010-11-04 Daito Electron Co Ltd Method for chamfering wafer
WO2011162163A1 (en) * 2010-06-21 2011-12-29 旭硝子株式会社 Glass substrate and method for manufacturing glass substrate
JP2014087879A (en) * 2012-10-30 2014-05-15 Avanstrate Inc Method of manufacturing glass substrate
JP2014231471A (en) * 2013-05-28 2014-12-11 コーニング精密素材株式会社Corning Precision Materials Co.,Ltd. Method and device for symmetrical chamfering of substrate

Also Published As

Publication number Publication date
JP6451004B2 (en) 2019-01-16
US20180304430A1 (en) 2018-10-25
KR101452250B1 (en) 2014-10-22
US20140357160A1 (en) 2014-12-04
TW201515773A (en) 2015-05-01
JP2014231471A (en) 2014-12-11
TWI560027B (en) 2016-12-01
CN104209836B (en) 2017-01-11
CN104209836A (en) 2014-12-17

Similar Documents

Publication Publication Date Title
JP2018100216A (en) Symmetrical chamfering method and device of substrate
EP2538267B1 (en) A method and a device for titling
CN108121291B (en) Casting machining method
CN105371773B (en) Method for measuring thickness
KR20120013929A (en) Device for chamfering glass substrate
JP2009117301A (en) Glass substrate and method of inspecting warpage in glass substrate
CN105509660B (en) Method measuring flatness
JP6146917B2 (en) Chamfering table flatness measurement method
JP6744626B2 (en) Scribing method and scribing device
KR20190016123A (en) Chemical mechanical polishing Automated recipe creation
KR20120007980U (en) Substrate transfer arm
KR20210013205A (en) Double-sided polishing device and double-sided polishing method of work
JP2007079837A (en) Head operation controller, control method and stage device
JP7043067B2 (en) Work processing method and work processing device
TWI730104B (en) Projection exposure device and projection exposure method thereof
JP2007203258A (en) Chuck table for base material
JP5934046B2 (en) measuring device
JP5892280B2 (en) Strain-free precision machining by radical reaction
KR102065190B1 (en) Grinding device for hard and brittle plate and method for measuring and compensating machining accuracy
CN102141698B (en) Film thickness measuring device and correction method thereof
JP2017022242A (en) Imprint device and article manufacturing method
CN113725092A (en) Wafer bonding method, device, processor and wafer bonding system
JP2016034672A (en) Substrate processing device
CN104227043B (en) A kind of radially overflow the patch system of glue and method thereof for alleviating tyre adjustable die
KR101150788B1 (en) Device and system for aligning substrate, and a coating apparatus having the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190625