JP2018098095A - 二次電池スタックの製造方法 - Google Patents

二次電池スタックの製造方法 Download PDF

Info

Publication number
JP2018098095A
JP2018098095A JP2016243466A JP2016243466A JP2018098095A JP 2018098095 A JP2018098095 A JP 2018098095A JP 2016243466 A JP2016243466 A JP 2016243466A JP 2016243466 A JP2016243466 A JP 2016243466A JP 2018098095 A JP2018098095 A JP 2018098095A
Authority
JP
Japan
Prior art keywords
secondary battery
pressurization
battery stack
manufacturing
pressurizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016243466A
Other languages
English (en)
Other versions
JP6729342B2 (ja
Inventor
孝典 兎澤
Takanori Tozawa
孝典 兎澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016243466A priority Critical patent/JP6729342B2/ja
Priority to US15/837,573 priority patent/US10892514B2/en
Priority to CN201711319366.5A priority patent/CN108232273B/zh
Publication of JP2018098095A publication Critical patent/JP2018098095A/ja
Application granted granted Critical
Publication of JP6729342B2 publication Critical patent/JP6729342B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【課題】組付け時における二次電池への加圧力の印加を抑制しつつ,出来上がる二次電池スタックには必要な荷重が掛かり続けるようにした二次電池スタックの製造方法を提供すること。
【解決手段】二次電池と樹脂部材3とを交互に積層した積層体である二次電池スタックを製造するに当たり,二次電池とともに積層される前の樹脂部材3を,積層される予定の方向に加圧する第1加圧工程と,第1加圧工程を経た樹脂部材3を二次電池とともに積層して積層体とする積層工程と,積層された積層体を積層方向に加圧する第2加圧工程とを行う。
【選択図】図3

Description

本発明は,二次電池スタックの製造方法に関するものである。
複数の二次電池を組合わせて一体とした二次電池スタックが,種々の用途に利用されている。二次電池スタックには,二次電池として角形の外形のものを用いるものがある。そのような二次電池スタックでは,二次電池と,略平板状の枠部材とが,二次電池の厚さ方向に積層されているのが普通である。
そのような構成の二次電池スタックの一例として,特許文献1に記載されている「電池パック1」を挙げることができる。同文献の「電池パック1」は,その図2および図14に示されるように,「単電池10」(二次電池)と「仕切り部材40」(枠部材)とを積層したものである。そして同文献の図1に示されるように,その積層体を「エンドプレート31」と「バンド32」とで拘束して一体のものとしている。同文献の技術では,「バンド32」により「電池パック1」に拘束力を与えている。この拘束力の印加は,「単電池10」の膨張を抑制するために必要なことである(同文献の[0023]参照)。
特開2012−129043号公報
しかしながら前記の技術には,次のような問題点があった。「電池パック1」の一部となった「単電池10」において短絡不良が発生する場合があるのである。その原因として,前述の拘束力の印加があることが分かってきた。積層体を「バンド32」で拘束する際に積層方向に加圧を行うので,その加圧により「単電池10」の内部でも圧力が上昇する。そしてこの加圧は,「仕切り部材40」をある程度変形させる程度に強く行われる。このため,このときの内圧上昇が,「単電池10」内にある程度混入している微小な金属性異物による短絡を生じさせてしまうことがあるのである。
本発明は,前記した従来の技術が有する問題点を解決するためになされたものである。すなわちその課題とするところは,組付け時における二次電池への加圧力の印加を抑制しつつ,出来上がる二次電池スタックには必要な荷重が掛かり続けるようにした二次電池スタックの製造方法を提供することにある。
本発明の一態様における二次電池スタックの製造方法は,二次電池と樹脂部材とを交互に積層した積層体である二次電池スタックを製造する方法であって,二次電池とともに積層される前の樹脂部材を,積層される予定の方向に加圧する第1加圧工程と,第1加圧工程を経た樹脂部材を二次電池とともに積層して積層体とする積層工程と,積層された積層体を積層方向に加圧する第2加圧工程とを有している。
上記態様における二次電池スタックの製造方法では,第1加圧工程を,樹脂部材に対してのみ行い,二次電池に対しては行わない。このため,第1加圧工程では,樹脂部材に高い加圧荷重を掛けることができる。このようにしてあらかじめ加圧した樹脂部材が,積層工程で二次電池とともに積層されることとなる。このため,積層体を加圧する第2加圧工程では,それほど高い荷重を掛ける必要がない。それでも第1加圧工程を行ったことの効果により,出来上がる二次電池スタックには必要な荷重が掛かることとなる。
上記態様の二次電池スタックの製造方法ではさらに,第1加圧工程の際に樹脂部材を,溶融しない範囲内の温度に昇温させるようにしてもよい。昇温により樹脂部材が軟化した状態で,第1加圧工程を行うことで,より確実に樹脂部材を圧縮することができるからである。
上記態様の二次電池スタックの製造方法ではさらに,第1加圧工程で,樹脂部材にクリープ変形を起こさせることとしてもよい。これにより,出来上がる二次電池スタックにおける荷重抜けが防止され,必要な荷重が長く掛かり続けることとなる。
上記態様の二次電池スタックの製造方法ではさらに,第2加圧工程での加圧を第1加圧工程での加圧力よりも弱い加圧力で行うこととすることができる。このようにすることで,二次電池への加圧荷重によるダメージを防止することができる。
本構成によれば,組付け時における二次電池への加圧力の印加を抑制しつつ,出来上がる二次電池スタックには必要な荷重が掛かり続けるようにした二次電池スタックの製造方法が提供されている。
実施の形態に係る製造方法で製造される二次電池スタックの斜視図である。 通気溝を有する枠部材の断面図である。 プレ加圧工程を示す模式図である。 プレ加圧工程でのストロークと荷重との関係を取得する試験を行っている状況を示す模式図である。 図4の試験により得られた結果を示すグラフである。 プレ加圧工程で複数の枠部材を一度に加圧する場合を示す模式図である。 温度調整を行う場合のプレ加圧工程を示す模式図である。 本加圧工程を示す模式図である。 プレ加圧工程および本加圧工程を通しての加重の変遷を示すグラフである。 本加圧工程後におけるセルに掛かる荷重の経時変化を,プレ加圧工程の有無により比較して示すグラフである。
以下,本発明を具体化した実施の形態について,添付図面を参照しつつ詳細に説明する。本形態は,図1に示す二次電池スタック1の製造方法に本発明を適用したものである。そこでまず,二次電池スタック1について簡単に説明する。図1の二次電池スタック1は,セル2と枠部材3とを,それらの厚さ方向に交互に多数積層したものである。
セル2は,リチウムイオン二次電池その他の二次電池であって,平板状の外形のものである。より詳細に言えば,アルミ等の角形の金属製ケースに,電極捲回体を内蔵させたものである。電極捲回体は,正負の帯状の電極板をセパレータを介して交互に重ねて捲回し,扁平状に圧縮したものである。枠部材3は,略平板状でありセル2を収納する枠状に形成された樹脂製の部材である。枠部材3は,図2に示すように平坦部分に通気溝14が形成されているものであってもよい。通気溝14は,二次電池スタック1としての使用状態でのセル2の放熱のための形状である。以下の説明では簡単のため,通気溝14を省略する。
また,二次電池スタック1における図1手前側端部には,端面部材4が備えられている。端面部材4も枠部材3と同様に樹脂製であり,二次電池スタック1の両端が樹脂製の部材となっている。二次電池スタック1にはまた,図示は省略するが,例えば特許文献1の図1に「20」として描かれているような結束部材が適宜設けられていてもよい。
本形態の製造方法においては,セル2および枠部材3はいずれも,それらの単体としては完成品として供給されているものとする。それらの単体としてのセル2および枠部材3を二次電池スタック1という積層形態に組み付けて固定する過程が,本形態の製造方法の適用対象である。本形態では,二次電池スタック1の製造を次の手順で行う。以下,各手順について順次説明する。
1.枠部材3についてのプレ加圧工程(第1加圧工程)

2.セル2と枠部材3との積層工程

3.積層体についての本加圧工程(第2加圧工程)
まず,「1.」のプレ加圧工程について説明する。プレ加圧工程は,図3に示すように枠部材3をその厚さ方向に加圧する工程である。この工程は,セル2と組み合わせられる前の,単独の状態での枠部材3を対象として行われる。つまり,セル2はプレ加圧工程の対象物とはならない。図3のプレ加圧工程では,枠部材3の平坦部分を,固定ブロック5と可動ブロック6とで挟み付けている。そして,シリンダ7で可動ブロック6を固定ブロック5に向かって押し付けている(押し付け力F)。これにより,枠部材3の平坦部分を厚さ方向に加圧している。むろんこの加圧の方向は,後に枠部材3がセル2とともに積層される予定の方向である。シリンダ7の押し付け力Fの発生源は,空気圧でも油圧でも電磁力でも何でもよい。この加圧工程により枠部材3のうち加圧された部分にはクリープ変形が起こる。変形の内容はむろん,厚さ方向の圧縮である。このクリープ変形による圧縮は,押し付け力Fを解除した後でも完全には回復せず,ある程度残る。
プレ加圧工程での加圧の状況について,図4および図5を用いてより詳細に説明する。図4は,圧縮のストロークと荷重との関係を取得する試験を行っている状況を示している。図4は,枠部材3をダミー板8で上下から挟んだものをベース盤9の上に置き,上からオートグラフ10で押し付けている状況を描いたものである。ベース盤9は不動である。ベース盤9と下のダミー板8が固定ブロック5に相当し,上のダミー板8が可動ブロック6に相当する。オートグラフ10で上のダミー板8を下向きに押し付けつつ,その時のストローク(下降量)と押し付け力Fとを測定することができる。
図5は,図4の装置でストロークを時間の経過とともに直線的に増加させていったときにおける,押し付け力Fの荷重値の上昇の状況を示している。加圧開始後4秒程度でストロークが1.3mmに達し,その後は逆にストロークを直線的に減少させている。このグラフは,ダミー板8による枠部材3への接触面積が片面当たり50cm2 である場合のものである。
図5を見ると,加圧を開始しても,ストロークが0.6mm程度に達するまでは荷重値はほとんど上昇しないことが分かる。ストロークが0.6mmを超えてから荷重値が急激に上昇して,最大ストローク時には荷重値が約30[kN]に達している。その後は,ストロークも荷重値も減少している。ただしその減少はストロークよりも荷重値の方が速く,ストロークが0.6mm程度まで戻ったところで荷重がほぼゼロとなっている。それ以降は,オートグラフ10のストロークをさらに戻しても枠部材3の圧縮変形の回復が付いてこない状況である。すなわち枠部材3がクリープ変形した状態となっているのである。
図5では,枠部材3と組み合わせられるセル2に印加することが許容される荷重の上限値が約10[kN]とされている。図5のグラフ中における最大の荷重値は前述の通り約30[kN]であるから,許容上限値10[kN]を大幅に超えていることになる。つまり,図5のグラフ中における最大の荷重は,もしセル2に印加すると,セル2の内部での微小短絡を生じさせるおそれがあるほどの高荷重なのである。しかしながら図3で説明したように,実際にはセル2にプレ加圧工程での圧縮荷重が掛かることはない。このため本形態のプレ加圧工程では,高い圧縮荷重を掛けることができるのである。
なお,図4でオートグラフ10を使用したのは,試験として圧縮のストロークと荷重の値を読み取る必要があったためである。実際の量産時においては,図3に示したような適当なシリンダ7で十分である。また,実際の量産時においては,図6に示すように,複数の枠部材3を一度に加圧するようにしてもよい。図6では,前述の固定ブロック5と可動ブロック6に加えて中間ブロック11をも用いている。ここで,固定ブロック5,可動ブロック6,中間ブロック11,ダミー板8は,プレ加圧工程での加圧荷重に耐える強度があるものであれば何でもよい。適当な金属部材でよい。また,何度でも再使用できるものである。
ここまでの説明では,プレ加圧工程で特に温度調整は行わないこととした。しかしそればかりではなく,図7に示すように,プレ加圧工程にて温度調整を行うこととしてもよい。図7では,図3中の固定ブロック5および可動ブロック6に替えて,ヒータを内蔵する固定ブロック12および可動ブロック13を用いている。さらにサーミスタ等の温度センサも固定ブロック12または可動ブロック13に備えられていることが望ましい。これにより,枠部材3をある程度昇温させつつプレ加圧工程を行うのである。
この場合の枠部材3の昇温温度は,枠部材3の素材である樹脂がある程度軟化し,しかし溶融するには至らない程度とする。枠部材3の素材としての樹脂は通常,ポリエチレン,ポリプロピレン等の熱可塑性樹脂が使用される。そのため枠部材3の昇温温度は,さして高い温度である必要はない。50℃以上120℃以下程度で十分である。このように温度調整を行う場合のプレ加圧工程では,圧縮荷重は前述の水準より低くてもよい。後述する本加圧工程での圧縮荷重と同程度もしくはそれ以下でもよい。
また,図7の固定ブロック12および可動ブロック13は電熱ヒータを内蔵していることを想定して描いたものであるが,加熱方式はこれに限られない。IHヒータでもよいし赤外線式でもよいし温熱流体の循環によるものでもよい。また,ヒータのない固定ブロック5および可動ブロック6を用いそれとは別にヒータを付近に配置する方式でもよい。むろん,図6のように多数の枠部材3を一度に加圧する場合でも温調方式を採用することは可能である。
続いて,「2.」の積層工程を行う。この工程そのものは特記するほどのことではなく,セル2と枠部材3とを,それらの厚さ方向に交互に多数積み重ねて,図1に示した二次電池スタック1のような積層体の形態にする,ということである。ただしそこにおける枠部材3として,前述のプレ加圧工程を経てクリープ変形が生じているものを用いる,ということである。
次に,「3.」の本加圧工程を行う。この工程では,前述の積層工程で積層した二次電池スタック1の全体(端面部材4を含む)を加圧する。加圧の方向は二次電池スタック1の長手方向であり,つまり,個々のセル2や枠部材3の厚み方向である。この工程での加圧は,前述の固定ブロック5とシリンダ7とを用いて図8のようにして行えばよい。この本加圧により二次電池スタック1が一体化される。結束部材の取付が適宜行われてもよい。
ただし,本加圧工程での押し付け力Gは,前述のプレ加圧工程における温度調整なしの場合の押し付け力Fよりも弱い力とする。本加圧工程ではセル2も加圧の対象物に入っているからである。本加圧工程では,セル2の内部での微小短絡を生じさせないため,弱い加圧にとどめる必要がある。一方で,二次電池スタック1の組付け後における加圧,すなわち本加圧を全く行わない訳にもいかない。本加圧を行わないと,逆にセル2の異常の原因になるからである。セル2の内部では,正負の電極板の積層体が,外装ケースの蓋部材から集電部材によりぶら下がった状態となっている。このため,ある程度の加圧をセル2に掛けて積層体を挟み付ける形にする必要があるのである。そうでないと,使用開始後の振動等により電極板の積層体が集電部材から引きちぎられてしまうことがあるからである。
図9に,プレ加圧工程および本加圧工程を通しての加重の変遷を示す。図9に示されるように本形態では,本加圧工程での押し付け力Gが,プレ加圧工程での押し付け力Fに比べてかなり低い水準で済んでいる。これは,前述のようにあらかじめプレ加圧工程で枠部材3をクリープ変形させているから可能なのである。もし,プレ加圧工程を行わずに二次電池スタック1を組付けて本加圧工程を行うと,図9中に示されるように,押し付け力Gより強い押し付け力Hが必要である。このため,押し付け力Hによりセル2の内部での微小短絡を生じる場合がある。また,プレ加圧工程を行わずに,かつ本加圧工程を弱い押し付け力Gで行うと,前述のように使用開始後の振動による不具合が生じる場合がある。
このようにプレ加圧工程の有無によって違いが生じる理由を,図10により説明する。図10は,本加圧工程後におけるセル2に掛かる荷重の経時変化を示している。このグラフは,シリンダ7の代わりに図4に示したオートグラフ10を用いて測定した結果に基づくものである。図10では,プレ加圧工程を行ったものと行わなかったものについて,荷重値5.5[kN]で本加圧工程を行い,その後6時間にわたってセル2に掛かる荷重を測定した結果を示している。プレ加圧工程を行ったものについてのプレ加圧工程の際の荷重値は,図5に示したのと同じく30[kN]とした。
図10を見ると,プレ加圧工程を行ったものでは,本加圧終了後約2時間程度で荷重値の下降が収束し,その後安定した荷重がセル2に掛かり続ける状況となっている。このため,使用開始後における不具合が生じにくいのである。これは,プレ加圧工程の際にすでに枠部材3をクリープ変形させているので,本加圧工程後にさらにクリープ変形が進行することがほとんどないためである。
一方,プレ加圧工程を行わなかったものでは,本加圧終了後6時間程度経過してもなお,荷重値の下降が緩やかながら続いている。6時間後の時点で,プレ加圧工程を行ったものとの荷重値の差が0.1[kN]程度に開いている。このため,使用過程でのセル2への荷重が不足し,使用開始後の振動による不具合が生じてしまうことがある。これは,あらかじめクリープ変形させていない枠部材3を用いたため,本加圧工程後にさらにクリープ変形が進行してしまうためである。プレ加圧工程を行わない場合には,この荷重の過低下を補うため,図9に示したように本加圧工程の際に強い押し付け力Hが必要なのである。しかしそれは前述のように,逆に圧力過多による不具合を生んでしまう。
以上詳細に説明したように本実施の形態によれば,セル2と枠部材3とを交互に積層した二次電池スタック1を製造するに際して,積層工程に先立ち,枠部材3のみを加圧してクリープ変形を起こさせるプレ加圧工程を行うこととしている。そして,このようにあらかじめクリープ変形した枠部材3をセル2とともに積層することとしている。これにより,積層状態で行われる本加圧工程での加圧力を,セル2に微小短絡を生じさせない程度の弱い力で抑えつつ,なおかつ,出来上がる二次電池スタック1には必要な荷重が掛かり続ける製造方法が実現されている。またこれにより,セル2の外装体として過度に頑丈なものを用いる必要も排除している。
なお,本実施の形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。例えば,セル2は,リチウムイオン二次電池以外の種類の二次電池であってもよい。また,枠部材3は,単純な平板状の樹脂板であってもよい。また,荷重値やストローク等について示した数値は,特定サイズのセル2の場合についての例示にすぎない。
1 二次電池スタック
2 セル(二次電池)
3 枠部材(樹脂部材)

Claims (4)

  1. 二次電池と樹脂部材とを交互に積層した積層体である二次電池スタックの製造方法であって,
    前記二次電池とともに積層される前の前記樹脂部材を,積層される予定の方向に加圧する第1加圧工程と,
    前記第1加圧工程を経た前記樹脂部材を前記二次電池とともに積層して前記積層体とする積層工程と,
    積層された前記積層体を積層方向に加圧する第2加圧工程とを有することを特徴とする二次電池スタックの製造方法。
  2. 請求項1に記載の二次電池スタックの製造方法であって,
    前記第1加圧工程の際に前記樹脂部材を,溶融しない範囲内の温度に昇温させることを特徴とする二次電池スタックの製造方法。
  3. 請求項1または請求項2に記載の二次電池スタックの製造方法であって,
    前記第1加圧工程では,前記樹脂部材にクリープ変形を起こさせることを特徴とする二次電池スタックの製造方法。
  4. 請求項1から請求項3までのいずれか1つに記載の二次電池スタックの製造方法であって,
    前記第2加圧工程での加圧を前記第1加圧工程での加圧力よりも弱い加圧力で行うことを特徴とする二次電池スタックの製造方法。
JP2016243466A 2016-12-15 2016-12-15 二次電池スタックの製造方法 Active JP6729342B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016243466A JP6729342B2 (ja) 2016-12-15 2016-12-15 二次電池スタックの製造方法
US15/837,573 US10892514B2 (en) 2016-12-15 2017-12-11 Method of manufacturing secondary battery stack
CN201711319366.5A CN108232273B (zh) 2016-12-15 2017-12-12 二次电池堆的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016243466A JP6729342B2 (ja) 2016-12-15 2016-12-15 二次電池スタックの製造方法

Publications (2)

Publication Number Publication Date
JP2018098095A true JP2018098095A (ja) 2018-06-21
JP6729342B2 JP6729342B2 (ja) 2020-07-22

Family

ID=62562624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016243466A Active JP6729342B2 (ja) 2016-12-15 2016-12-15 二次電池スタックの製造方法

Country Status (3)

Country Link
US (1) US10892514B2 (ja)
JP (1) JP6729342B2 (ja)
CN (1) CN108232273B (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319383A (ja) * 2001-04-23 2002-10-31 Toyota Motor Corp 電池モジュール
JP2008016259A (ja) * 2006-07-04 2008-01-24 Toyota Motor Corp 蓄電モジュールの製造装置および蓄電モジュールの製造方法
JP2008053072A (ja) * 2006-08-25 2008-03-06 Toyota Motor Corp 蓄電モジュール
JP2010143162A (ja) * 2008-12-22 2010-07-01 Toyota Industries Corp 樹脂成形体の製造方法及び樹脂成形体
JP2014093270A (ja) * 2012-11-06 2014-05-19 Toyota Motor Corp 組電池の製造方法
JP2016139476A (ja) * 2015-01-26 2016-08-04 トヨタ自動車株式会社 電池モジュール
WO2017057207A1 (ja) * 2015-10-02 2017-04-06 日立オートモティブシステムズ株式会社 組電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4076787A (en) * 1976-08-30 1978-02-28 General Motors Corporation Universal battery case having embossed intercell partitions and process for making same
DE10392584B4 (de) * 2002-04-30 2021-05-12 General Motors Corp. (N.D.Ges.D. Staates Delaware) Elektrochemischer Brennstoffzellenstapel
JP4581481B2 (ja) 2004-05-26 2010-11-17 トヨタ自動車株式会社 電池モジュールの製造方法
JP5625834B2 (ja) * 2010-12-02 2014-11-19 日産自動車株式会社 組電池
JP5352571B2 (ja) 2010-12-15 2013-11-27 トヨタ自動車株式会社 蓄電装置
JP5742800B2 (ja) * 2012-08-10 2015-07-01 トヨタ自動車株式会社 仕切り板および蓄電素子の拘束方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319383A (ja) * 2001-04-23 2002-10-31 Toyota Motor Corp 電池モジュール
JP2008016259A (ja) * 2006-07-04 2008-01-24 Toyota Motor Corp 蓄電モジュールの製造装置および蓄電モジュールの製造方法
JP2008053072A (ja) * 2006-08-25 2008-03-06 Toyota Motor Corp 蓄電モジュール
JP2010143162A (ja) * 2008-12-22 2010-07-01 Toyota Industries Corp 樹脂成形体の製造方法及び樹脂成形体
JP2014093270A (ja) * 2012-11-06 2014-05-19 Toyota Motor Corp 組電池の製造方法
JP2016139476A (ja) * 2015-01-26 2016-08-04 トヨタ自動車株式会社 電池モジュール
WO2017057207A1 (ja) * 2015-10-02 2017-04-06 日立オートモティブシステムズ株式会社 組電池

Also Published As

Publication number Publication date
JP6729342B2 (ja) 2020-07-22
US20180175436A1 (en) 2018-06-21
US10892514B2 (en) 2021-01-12
CN108232273B (zh) 2021-01-15
CN108232273A (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
KR102067951B1 (ko) 리튬 이온 배터리 모듈의 제조 방법 및 리튬 이온 배터리 모듈
KR101713042B1 (ko) 전지셀 고온 가압 장치
KR101471765B1 (ko) 파우치형 이차 전지의 실링방법, 파우치형 이차 전지 및 그의 제조방법
JP6056964B2 (ja) 燃料電池の製造方法及び製造装置
JP2018512720A5 (ja)
US10840494B2 (en) Compensation system for swelling of electrochemical cells
CA2604439A1 (en) Fuel cell, method and apparatus for manufacturing fuel cell
EP3686969B1 (en) Battery electrode piece thermal compounding apparatus and method for using same to carry out thermo-compression bonding on battery electrode piece assembly
JP6019224B2 (ja) ラミネート型二次電池の製造方法および製造装置
JP7302507B2 (ja) 電池モジュール及び電池モジュール製造方法
KR102197691B1 (ko) 플렉서블 플레이트가 형성되어 있는 가압 플레이트 어셈블리 및 이를 구비한 전지셀 가압 장치
JP2018106930A (ja) バッテリセルの製造方法および加圧マガジン
JP6612814B2 (ja) 燃料電池スタックの製造方法及び製造装置
JP6671728B2 (ja) 製造工程性が向上した電池ケースの製造装置およびこれを用いた製造方法
JP2017069169A (ja) 電池パック
JP6902731B2 (ja) 電池の製造方法
KR102468695B1 (ko) 전지셀의 활성화 방법 및 활성화 장치
JP6729342B2 (ja) 二次電池スタックの製造方法
KR102265219B1 (ko) 분리막 잉여부를 접합시키는 전지셀 제조방법
JP4581481B2 (ja) 電池モジュールの製造方法
JP2015100976A (ja) シール部品の製造装置及び製造方法
Sung et al. Compressive behavior of representative volume element specimens of lithium-ion battery cells under different constrained conditions
JP7232408B2 (ja) ラミネート電池の製造装置
JP2011258493A (ja) 密閉型電池の製造方法
CN213124541U (zh) 一种抗形变折叠电芯

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R151 Written notification of patent or utility model registration

Ref document number: 6729342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151