JP2018074985A - Plant factory using microhydraulic power generation system - Google Patents

Plant factory using microhydraulic power generation system Download PDF

Info

Publication number
JP2018074985A
JP2018074985A JP2016221079A JP2016221079A JP2018074985A JP 2018074985 A JP2018074985 A JP 2018074985A JP 2016221079 A JP2016221079 A JP 2016221079A JP 2016221079 A JP2016221079 A JP 2016221079A JP 2018074985 A JP2018074985 A JP 2018074985A
Authority
JP
Japan
Prior art keywords
water
plant factory
power
power generation
generation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016221079A
Other languages
Japanese (ja)
Other versions
JP6964213B2 (en
Inventor
孝幸 櫻井
Takayuki Sakurai
孝幸 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2016221079A priority Critical patent/JP6964213B2/en
Publication of JP2018074985A publication Critical patent/JP2018074985A/en
Application granted granted Critical
Publication of JP6964213B2 publication Critical patent/JP6964213B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect

Landscapes

  • Cultivation Of Plants (AREA)
  • Greenhouses (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive plant by reducing the energy cost of power, etc., for a plant factory.SOLUTION: A plant factory using power acquired from a microhydraulic power generation system as a power source for the plant factory in which the microhydraulic power generation system comprises: a water tank 31; a water conduit pipe 32 provided below the water tank with one end communicating with the water tank, and descending toward the other end; a condensate pipe one end of which communicates with the other end of the water conduit pipe, and rising toward the other end; a plurality of power generation units 35 provided at a point on the water conduit pipe and which generates power by using the flow of water through the water conduit pipe; a pump 33 that connects to the other end of the condensate pipe that discharges water in the condensate pipe into the water tank; and a power unit connected to the plurality of power generation units which is charged by power from the plurality of power generation units and which supplies power to the pump. The pump generates a uniform suction flow in the condensate pipe and the water conduit pipe by the suction force generated by discharging water from the condensate pipe, and is configured to form a water flow through the water conduit pipe.SELECTED DRAWING: Figure 2

Description

本発明は、水力により発電するマイクロ水力発電システムを用いた植物工場に関する。 The present invention relates to a plant factory using a micro hydroelectric power generation system that generates electricity by hydropower.

地球温暖化に伴い気候変動の影響により国内、世界で起きている異常気候、たとえば経験したことのない大雨や竜巻等の被害は人々に心配と不安を与えている。また、人類の生存に必要な食物は、世界の人口増加や砂漠化・塩害による耕作面積の減少等により、かなり不足することが予想される。さらに、特に海外のから輸入される農作物は、大量生産するために農薬を多量散布しているので、人体への影響も懸念される。このように、自然力を使用して栽培する野菜や果物等の植物の生育や収穫は、天候により左右されるので、収入が安定しないという問題がある。また、生活者・消費者の安全・安心を守るには、安定した農業経営と安心できる食料生産が持続する供給体制を構築する必要がある。そこで、近年、温度等の環境を制御して安定した生産を行なうための植物工場が日本各地で建設され、稼働している。 Due to the effects of climate change due to global warming, domestic and global abnormal climates, such as heavy rain and tornadoes that have never been experienced, are worried and anxious. In addition, food necessary for the survival of mankind is expected to be considerably deficient due to an increase in the world's population and a decrease in cultivated area due to desertification and salt damage. Furthermore, since agricultural products imported from overseas are sprayed with a large amount of agricultural chemicals for mass production, there is a concern about the impact on the human body. As described above, the growth and harvesting of plants such as vegetables and fruits that are cultivated by using natural power are affected by the weather, so that there is a problem that income is not stable. In order to protect the safety and security of consumers and consumers, it is necessary to build a supply system that maintains stable agricultural management and reliable food production. Therefore, in recent years, plant factories for controlling the environment such as temperature and performing stable production have been constructed and operated in various parts of Japan.

特開2012−193730JP2012-193730 特開2015−195708JP2015-195708

従来の植物工場は、温度等の環境を制御するためのエネルギー供給に費用がかかり、生産した植物の価格は、従来植物より価格が高くなるという問題がある。 Conventional plant factories are expensive to supply energy for controlling the environment such as temperature, and the price of produced plants is higher than that of conventional plants.

本発明の目的は、植物工場で使用するエネルギーを植物工場内で作り、植物工場内のエネルギーコストを押さえて、植物工場で栽培する植物の価格を低減することである。本発明者は、水流を利用して発電を行なう揚水式のマイクロ水力発電システムを提案した。(特許文献1、2)この揚水式のマイクロ水力発電システムは小型なので、植物工場内にも設置でき、そのマイクロ水力発電システムで得られた電力を植物工場の動力(エネルギー)に用いるもので、具体的には以下の特徴を有する。 An object of the present invention is to make energy used in a plant factory in the plant factory, reduce energy costs in the plant factory, and reduce the price of plants cultivated in the plant factory. The present inventor has proposed a pumped-up type micro hydroelectric power generation system that generates power using a water flow. (Patent Documents 1 and 2) Since this pumped-type micro hydroelectric power generation system is small, it can be installed in a plant factory, and the electric power obtained by the micro hydroelectric power generation system is used for the power (energy) of the plant factory. Specifically, it has the following characteristics.

(1)本発明は、植物を栽培する植物工場において、水力による発電するマイクロ水力発電システムを有し、前記マイクロ水力発電システムから得られた電力を前記植物工場の動力源(エネルギー源)として使用することを特徴とする植物工場であって、前記マイクロ水力発電システムは、水を貯留する貯水槽と、前記貯水槽の下方に配置され、一端が前記貯水槽に連通し他端に向かって下降している導水管と、一端が該導水管の前記他端に連通しており、他端に向かって上昇している復水管と、前記導水管の途中に設けられ、該導水管を流れる水流を利用して発電する複数の発電ユニットと、前記復水管の前記他端に接続されており、該復水管内の水を前記貯水槽内に排出するポンプと、前記複数の発電ユニットに接続されており、該複数の発電ユニットからの電力によって充電されると共に前記ポンプに電力を供給する電源装置とを備えており、前記ポンプが前記復水管内の水を排出することによって生じる吸引力により、該復水管及び前記導水管内に一様な吸引流を発生させ、前記導水管を流れる前記水流を形成するように構成されており、前記電源装置の電力を植物工場の動力として用いることを特徴とする植物工場である。 (1) The present invention has a micro hydroelectric power generation system that generates electricity by hydropower in a plant factory that grows plants, and uses electric power obtained from the micro hydroelectric power generation system as a power source (energy source) of the plant factory. The micro hydro power generation system is a water storage tank for storing water, and is disposed below the water storage tank, and one end communicates with the water storage tank and descends toward the other end. A water conduit, one end of which is in communication with the other end of the water conduit, a condensate tube rising toward the other end, and a water flow that is provided in the middle of the water conduit and flows through the water conduit Connected to the other end of the condensate pipe, and a pump for discharging water in the condensate pipe into the water storage tank, and connected to the plurality of power generation units. The plurality A power supply unit that is charged with electric power from the power generation unit and supplies electric power to the pump, and the condensate pipe and the water guide by the suction generated by the pump discharging water in the condensate pipe The plant factory is configured to generate a uniform suction flow in the pipe to form the water flow that flows through the water conduit, and uses the power of the power supply device as power for the plant factory.

(2)本発明は、(1)に加えて、前記植物工場内で使用する電力の全部または一部は前記マイクロ発電システムで発電された電力であり、また、前記貯水槽および/または復水管に、貯水槽内に貯留された水および/または復水管内に貯留された水を加熱または冷却するヒーターおよび/または冷却装置が設置されており、前記ヒーターおよび/または冷却装置の動力源の全部または一部は、前記マイクロ発電システムで発電された電力であることを特徴とし、また前記導水管には放熱板が設置されて、植物工場内に加熱水または冷水の熱を放散することを特徴とし、さらに前記植物工場内の温度を所定温度に設定する温度調節システムが設置されており、前記温度調節システムの動力源の全部または一部は、前記マイクロ水力発電システムで発電された電力であることを特徴とする。 (2) In addition to (1), the present invention provides that all or part of the electric power used in the plant factory is electric power generated by the micro power generation system, and the water storage tank and / or the condensate pipe In addition, a heater and / or a cooling device for heating or cooling the water stored in the water tank and / or the water stored in the condensate pipe is installed, and all the power sources of the heater and / or the cooling device are installed. Alternatively, a part of the electric power is generated by the micro power generation system, and a heat radiating plate is installed in the water conduit to dissipate heat of heating water or cold water in the plant factory. And a temperature control system for setting the temperature in the plant factory to a predetermined temperature is installed, and all or part of the power source of the temperature control system is the micro hydroelectric power generation system. Characterized in that in a generated electric power.

本発明は、植物工場内にマイクロ水力発電システムを設置して、マイクロ水力発電システムで得られた電力を用いて植物工場を稼働することができ、植物工場で使用する電力消費量を削減することができる。また、マイクロ水力発電システムで用いる流体(水)は植物工場内の温度に合わせて暖めたり冷やしたりする機能を設けているので、植物工場内の温度調節を効率的に制御することができるとともに、温度調節装置で使用するエネルギー(電力)を低減することができる。特にマイクロ水力発電システムで用いている導水管は植物工場内をくまなく配回しており、その導水管に取り付けられた放熱板により植物工場内の温度調節を効率良く制御することができる。この結果、植物工場のコスト、特に電力等のエネルギーコストを低減し、安価な植物を供給できる。 The present invention is to install a micro hydroelectric power generation system in a plant factory, operate the plant factory using electric power obtained by the micro hydroelectric power generation system, and reduce power consumption used in the plant factory. Can do. In addition, since the fluid (water) used in the micro hydroelectric power generation system has a function of heating and cooling according to the temperature in the plant factory, the temperature adjustment in the plant factory can be controlled efficiently, Energy (electric power) used in the temperature control device can be reduced. In particular, the water conduit used in the micro hydroelectric power generation system is distributed throughout the plant factory, and the temperature adjustment in the plant factory can be efficiently controlled by the heat radiating plate attached to the water conduit. As a result, it is possible to reduce the cost of the plant factory, in particular, energy costs such as electric power, and supply inexpensive plants.

図1は、本発明のマイクロ水力発電システムを用いた植物工場の正面(立面)模式図である。FIG. 1 is a front (elevation) schematic diagram of a plant factory using the micro hydroelectric power generation system of the present invention. 図2は、本発明のマイクロ水力発電システムを用いた植物工場の平面模式図である。FIG. 2 is a schematic plan view of a plant factory using the micro hydroelectric power generation system of the present invention. 図3は、植物工場の建物を側面側から見た側面模式図である。FIG. 3 is a schematic side view of a plant factory building viewed from the side. 図4は、導水管の途中に取り付けた回転式円板状発電機を導水管に設置した状態を示す図である。FIG. 4 is a diagram showing a state in which a rotary disk-shaped generator attached in the middle of the water conduit is installed in the water conduit. 図5は、図4で一点鎖線B1−B2で示す部分の断面を示す図である。FIG. 5 is a diagram showing a cross section of the portion indicated by the alternate long and short dash line B1-B2 in FIG. 図6は、回転式円板状発電機の別の実施形態を示す図である。FIG. 6 is a diagram showing another embodiment of the rotary disk generator.

本発明の植物工場においては、植物工場の建物内に下降する導水管を設置し、その導水管の途中に導水管を流れる流水により発電するマイクロ水力発電機を複数配置して、そのマイクロ水力発電機により発電した電力を用いて、植物工場で消費するエネルギーを賄うというものである。 In the plant factory of the present invention, a water conduit that descends in the plant factory building is installed, and a plurality of micro hydroelectric generators that generate electricity by flowing water flowing through the water conduit are arranged in the middle of the water conduit, and the micro hydro power generation The power consumed by the machine is used to cover the energy consumed by the plant factory.

図1は、本発明の実施形態を示す図である。本発明の植物工場11は建物12内に設置される。図1は、植物工場が設置された建物を正面から見た(立面)模式図である。建物12は床21、天井24、側壁22、23、27、28に囲まれており、その中に、下降する導水管32が配置される。導水管32の途中に発電機35が設置され、導水管32内を流れる流体(水)により、発電機35が発電する。この発電機35は導水管32の途中に複数配置されるので、発電ユニットと記載することもある。また、導水管32の途中には適宜放熱部37が配置されており、流体の熱を効率的に建物12内に放散(放射)し、建物内の温度を温めたり、または冷やしたりする。放熱部37は、たとえば、フィン構造(表面積が大となる構造)の放熱板(表面積が大となる)を用いた管をフランジ45で導水管に取り付けたものや、熱伝導の良好な材料(たとえば、銅やアルミニウム)で作成した管、またはこれらを組み合わせたもの等であり、放熱部37を流れる流体の熱を効率的に放熱部37の外部、すなわち植物工場内に放熱する部分である。放熱板37を導水管32の下降する流れに沿って配置すれば、導水管32を流れる流体(水)の熱(温熱または冷熱)を段階的に導水管の外側に効率的に放散することができる。 FIG. 1 is a diagram showing an embodiment of the present invention. The plant factory 11 of the present invention is installed in a building 12. FIG. 1 is a schematic view of a building in which a plant factory is installed as seen from the front (elevation). The building 12 is surrounded by a floor 21, a ceiling 24, and side walls 22, 23, 27, 28, in which a descending water conduit 32 is arranged. A power generator 35 is installed in the middle of the water conduit 32, and the power generator 35 generates power using a fluid (water) flowing through the water conduit 32. Since a plurality of the generators 35 are arranged in the middle of the water conduit 32, they may be described as power generation units. In addition, a heat radiating portion 37 is appropriately disposed in the middle of the water conduit 32, and the heat of the fluid is efficiently dissipated (radiated) into the building 12 to warm or cool the temperature in the building. The heat dissipating part 37 is, for example, a pipe using a heat sink (having a large surface area) with a fin structure (structure having a large surface area) attached to a water conduit with a flange 45, or a material having good heat conduction ( For example, it is a pipe made of copper or aluminum, or a combination of these, and is a part that efficiently dissipates heat of a fluid flowing through the heat radiating part 37 to the outside of the heat radiating part 37, that is, inside the plant factory. If the heat radiating plate 37 is disposed along the downward flow of the water conduit 32, the heat (hot or cold) of the fluid (water) flowing through the water conduit 32 can be efficiently dissipated stepwise to the outside of the water conduit. it can.

導水管32は発電機の発電効率を最適にする流体速度を維持できれば、植物工場内の広範な領域に配置されることが望ましく、放熱部37からの放熱を植物工場内の植物を育成する領域に効率的に配分することができる。放熱部37も導水管32の複数の部分、特に植物工場内の温度を所定値に保持するために最適な部分に配置することが望ましい。建物12の最上部に、貯水槽31が設置され、貯水槽31には水道や地下水、あるいは川等の自然水から水が注がれて、貯水槽31に水が貯留されている。その貯水槽31の下部に導水管32の入口が接続し、導水管32は貯水槽31から下降しているので、貯水槽31の水は導水管32の入口から導水管32内へ流れていく。この導水管32内の下降する流水により、導水管32の途中に配置された複数の発電機35で発電する。導水管32は植物工場11が設置された建物12内の必要箇所を回り、下降していく。図1に示す建物12は、3階建てであり、3階部分では、導水管32は、貯水槽31が設置された左端から右端へ下降して右端で折れ曲がり、さらに右端から左端へ下降する。 If the water conduit 32 can maintain the fluid velocity that optimizes the power generation efficiency of the generator, it is desirable to be disposed in a wide area in the plant factory, and the heat radiation from the heat radiating unit 37 is the area where the plants in the plant factory are grown. Can be allocated efficiently. It is desirable that the heat radiating portion 37 is also arranged at a plurality of portions of the water conduit 32, particularly at an optimum portion for keeping the temperature in the plant factory at a predetermined value. A water tank 31 is installed at the top of the building 12, and water is poured into the water tank 31 from tap water, ground water, or natural water such as a river, and the water is stored in the water tank 31. The inlet of the water conduit 32 is connected to the lower part of the water storage tank 31, and the water conduit 32 descends from the water reservoir 31, so that the water in the water reservoir 31 flows from the inlet of the water conduit 32 into the water conduit 32. . Electricity is generated by a plurality of generators 35 arranged in the middle of the water conduit 32 by the flowing water descending in the water conduit 32. The water guide pipe 32 goes around a necessary portion in the building 12 where the plant factory 11 is installed, and descends. The building 12 shown in FIG. 1 has a three-story structure. In the third-floor portion, the water conduit 32 descends from the left end where the water storage tank 31 is installed to the right end, bends at the right end, and further descends from the right end to the left end.

導水管32は、さらに3階の左端の床26の付近で折れ曲がり、2階に入り、左端から右端へ下降して右端で折れ曲がり、さらに右端から左端へ下降する。導水管32は、さらに2階の左端の床25の付近で折れ曲がり、1階に入り、左端から右端へ下降して右端で折れ曲がり、さらに右端から左端へ下降する。導水管32は1階の左端で出口となる。このように導水管32は建物内(植物工場内)の広い領域を配回しているので、長さが長く必要な数の発電機35や放熱部(放熱板)を配置できる。導水管32の出口は復水管43に接続し、復水管43は1階の床部分から3階の貯水槽31の近くまで略垂直に上昇する。復水管43は2つの部分{43(43−1、2)}から構成され、上部の復水管43(43−2)は下部の復水管43(43−1)より内径が太くなっており、水が多くたまるようになっている。上部の復水管43(43−2)の上部に揚水ポンプ33が接続し、復水管43に貯まった水を排出する。その排出によって生じる吸引力により、復水管及び導水管内に一様な吸引流を発生させ、導水管を流れる水流を形成するように構成されている。すなわち、揚水ポンプ33の排出量により、導水管32の水流の速度や量を調整することもできる。 The water guide pipe 32 further bends in the vicinity of the floor 26 at the left end of the third floor, enters the second floor, descends from the left end to the right end, bends at the right end, and further descends from the right end to the left end. The water guide pipe 32 further bends in the vicinity of the floor 25 at the left end of the second floor, enters the first floor, descends from the left end to the right end, bends at the right end, and further descends from the right end to the left end. The water conduit 32 becomes an exit at the left end of the first floor. As described above, since the water guide pipe 32 is arranged in a wide area in the building (in the plant factory), the required number of generators 35 and heat dissipating parts (heat dissipating plates) can be arranged with a long length. The outlet of the water conduit 32 is connected to the condensate pipe 43, and the condensate pipe 43 rises substantially vertically from the floor portion of the first floor to the vicinity of the water tank 31 on the third floor. The condensate pipe 43 is composed of two parts {43 (43-1, 2)}, and the upper condensate pipe 43 (43-2) has a larger inner diameter than the lower condensate pipe 43 (43-1). There is a lot of water. The pumping pump 33 is connected to the upper part of the upper condensate pipe 43 (43-2), and the water stored in the condensate pipe 43 is discharged. A uniform suction flow is generated in the condensate pipe and the conduit pipe by the suction force generated by the discharge, and a water stream flowing through the conduit pipe is formed. That is, the speed and amount of water flow in the conduit 32 can be adjusted by the discharge amount of the pumping pump 33.

揚水ポンプ33によって排出された水は注水管42から流れ出し貯水槽31に貯留する。その貯留水は再び導水管32に入り、導水管32を水が流れていく。たとえば、このように、復水管内の水をポンプが排出することによってあたかも生じる空隙に吸引される力により、復水管及び導水管内の水が動き、この復水管及び導水管内の水は、サイホンの原理によって平衡状態に復帰するまで、減圧状態で一様な吸引流となって管内を循環する。このため、比較的に小さいエネルギーで循環水流を形成することができ、また、ポンプによって生じた負圧に吸引されて水が管内を循環するため、発電ユニット35においては、水流によって回転する水車羽根の回転を阻害しない真空に近い空間を形成することができる。その結果、貯水槽31の水を用い、非常に少ないエネルギー消費で効率的に発電を行い、その発電後の水を貯水槽に戻して循環利用するマイクロ水力発電システムとして、災害時の非常用電源はもちろんのこと、エネルギー変換過程を、シンプルでコンパクトにパッケージングすることにより、スマートコミニティにおける地域分散型発電装置として、用途に応じた必要量の電気を供給できると共に、高度なメンテナンス技能を必要としない、装置組立を地域別企業が施行し周期保守点検を実施する装置として、より多くの人々がエネルギー供給過程に参加することを可能となる。本発明ではこのマイクロ水力発電システムを植物工場内に配置して、その発生する電力を用いて植物工場を稼働している。 The water discharged by the pumping pump 33 flows out from the water injection pipe 42 and is stored in the water storage tank 31. The stored water enters the conduit 32 again, and water flows through the conduit 32. For example, the water in the condensate pipe and the conduit pipe is moved by the force sucked into the gap generated by the pump discharging the water in the condensate pipe, and the water in the condensate pipe and the conduit pipe is It circulates in the pipe as a uniform suction flow in a decompressed state until it returns to an equilibrium state by the principle. Therefore, a circulating water flow can be formed with relatively small energy, and water is circulated in the pipe by being sucked by the negative pressure generated by the pump. Therefore, in the power generation unit 35, the turbine blades rotated by the water flow It is possible to form a space close to a vacuum that does not impede the rotation. As a result, as a micro hydroelectric power generation system that uses the water in the water storage tank 31 to efficiently generate power with very little energy consumption and returns the generated water to the water storage tank for circulation, it is an emergency power source for disasters. Of course, the energy conversion process is packaged in a simple and compact manner, so that it can supply the required amount of electricity according to the application as a regional distributed generator in smart communities, and requires advanced maintenance skills. However, it is possible for more people to participate in the energy supply process as a device that implements device assembly by regional companies and performs periodic maintenance inspections. In the present invention, this micro hydroelectric power generation system is arranged in a plant factory, and the plant factory is operated using the generated electric power.

揚水ポンプは、復水管内の水面と貯水槽内の水面との高さの差だけ復水管内の水を揚水するように構成されていることが好ましい。このように、復水管内の水面と貯水槽内の水面とが、逆サイホンの原理により、同一平面内にあって平衡状態を保っており、ポンプは、わずかな高さだけ揚水すれば良い。このため、ポンプによって消費されるエネルギー量は非常に少ない。複数の発電ユニット35の各々は、水流によって回転するように構成された水車羽根を有する水車部と、水車羽根の回転力を電気に変換する発電機部とを備えていることも好ましい。水車羽根は、水流の有する運動エネルギーを効率良く受け取って、回転運動に変換することができるように構成されている。 The pump is preferably configured to pump the water in the condensate pipe by the difference in height between the water surface in the condensate pipe and the water surface in the water storage tank. As described above, the water surface in the condensate pipe and the water surface in the water storage tank are in the same plane and kept in an equilibrium state by the principle of the inverse siphon, and the pump only needs to lift water by a slight height. For this reason, the amount of energy consumed by the pump is very small. It is also preferable that each of the plurality of power generation units 35 includes a water turbine unit having a water turbine blade configured to rotate by a water flow, and a generator unit that converts the rotational force of the water turbine blade into electricity. The water wheel blade is configured to efficiently receive the kinetic energy of the water flow and convert it into rotational motion.

揚水ポンプ33によって復水管43から排出された水は注水管42から流れ出し貯水槽31に貯留する。その貯留水は再び導水管32に入り、導水管32を水が流れていく。貯水槽31の上部には発電機34が設置されており、発電機34は注水管42から排出される水により発電する。すなわち、注水管42からの落水が発電機34の羽根板を回転させることにより、発電機34が発電する。発電機34や発電機35は、たとえば本発明者が発明したものであり、その詳細は特許文献(特開2012−193730、特開2015−195708)に詳細に記載されている。たとえば、円板状の外周に水車羽根が取り付けられており、その水車羽根に水流が当たり、円板が回転し、その回転により円板に取り付けたコイルおよび永久磁石の電磁誘導により発電するシステムである。その他の発電システムも上記特許文献に詳細に示されている。その一例を図4に示す。 The water discharged from the condensate pipe 43 by the pumping pump 33 flows out from the water injection pipe 42 and is stored in the water storage tank 31. The stored water enters the conduit 32 again, and water flows through the conduit 32. A generator 34 is installed in the upper part of the water storage tank 31, and the generator 34 generates power using water discharged from the water injection pipe 42. That is, the water generated from the water injection pipe 42 rotates the blades of the generator 34, so that the generator 34 generates power. The generator 34 and the generator 35 are invented by the present inventors, for example, and the details thereof are described in detail in patent documents (Japanese Unexamined Patent Application Publication Nos. 2012-193730 and 2015-195708). For example, in a system in which a turbine blade is attached to a disc-shaped outer periphery, a water flow hits the turbine blade, the disc rotates, and power is generated by electromagnetic induction of a coil and a permanent magnet attached to the disc by the rotation. is there. Other power generation systems are also described in detail in the above patent document. An example is shown in FIG.

図4は、導水管の途中に取り付けた回転式円板状発電機60を導水管61に設置した状態を示す図である。図4では、導水管61と水の流れ65および発電機60の位置関係が分かるように、配置状態と同じく傾斜して示している。導水管61の一部を開口し、その開口部に回転式円板状発電機設置ボックス62を設置する。その設置ボックス62の空間63に回転式円板状発電機60を配置する。導水管61には水等の流体64が矢印65で示す方向へ流れている。回転式円板状発電機60は、羽根板66、固定円環体68、回転円板体69、回転軸70から構成される。 FIG. 4 is a view showing a state in which the rotary disk-shaped generator 60 attached in the middle of the water conduit is installed in the water conduit 61. In FIG. 4, in order to understand the positional relationship between the water guide pipe 61, the water flow 65, and the generator 60, it is shown as inclined as in the arrangement state. A part of the water conduit 61 is opened, and a rotary disk-shaped generator installation box 62 is installed in the opening. A rotary disk-shaped generator 60 is arranged in the space 63 of the installation box 62. A fluid 64 such as water flows in the water guide pipe 61 in the direction indicated by the arrow 65. The rotary disk-shaped generator 60 includes a blade plate 66, a fixed annular body 68, a rotary disk body 69, and a rotary shaft 70.

回転式円板状発電機60の一部が流体の流れの中に入り、回転式円板状発電機60の外周に取り付けられた羽根板66が流体の力65を受けて矢印67方向へ回転する。この回転に伴い、回転軸70および回転円板体69が回転し、発電する。回転式円板状発電機60は、導水管61および設置ボックス62の空間63に対応した大きさを有している。また、羽根板66の形状は流体の流れを受けて効率良く回転可能な形状およびサイズとなっている。羽根板66の一部が流体中に浸漬しており、またその他の羽根板66は流体中に浸漬せず設置ボックス62の空間63の流体がない領域に存在しているので、羽根板66が流体の力を効率良く受けるとともに流体の抵抗力を最小限にすることによって最大の回転力を得るように、回転式円板状発電機60が配置されている。また、回転式円板状発電機60の一部だけを流体中に浸漬すると回転軸70や回転円板体69側への流体の浸入が極力抑えられるという利点もある。尚、流体流れの中に回転式円板状発電機60全体を漬けても回転させることはできるので、使用状態や発電能力に応じて本発明の回転式円板状発電機を用いれば良い。 A part of the rotary disk-shaped generator 60 enters the fluid flow, and the blades 66 attached to the outer periphery of the rotary disk-shaped generator 60 receive the fluid force 65 and rotate in the direction of arrow 67. To do. With this rotation, the rotating shaft 70 and the rotating disk 69 rotate to generate electricity. The rotary disk-shaped generator 60 has a size corresponding to the space 63 of the water conduit 61 and the installation box 62. Further, the blade plate 66 has a shape and size that can be rotated efficiently by receiving a flow of fluid. A part of the blade plate 66 is immersed in the fluid, and the other blade plates 66 are not immersed in the fluid and are present in a region where there is no fluid in the space 63 of the installation box 62. The rotary disk-shaped generator 60 is arranged so as to obtain the maximum rotational force by efficiently receiving the force of the fluid and minimizing the resistance force of the fluid. Further, when only a part of the rotary disk-shaped generator 60 is immersed in the fluid, there is an advantage that the intrusion of the fluid to the rotating shaft 70 or the rotating disk body 69 side can be suppressed as much as possible. In addition, since it can be rotated even if the rotary disk-shaped generator 60 whole is immersed in the fluid flow, the rotary disk-shaped generator of the present invention may be used according to the use state and the power generation capacity.

図5は、図4で一点鎖線B1−B2で示す部分の断面を示す図である。断面が略円形の導水管61と回転式円板状発電機設置ボックス62の側壁は繋がっており、設置ボックス62の側壁(62−1、62−2)は回転式円板状発電機の固定円環体68の外周面を取り囲んで外周面と接続している。すなわち、固定円環体68の幅W1は羽根板66の幅や導水管61の幅W2より大きい。固定円環体68の下部の一部は流体64に浸かっており、羽根板66は固定円環体68の周囲を回転するので、固定円環体68の下方に来た羽根板66は流体64に入り、流体64の力を受けてさらに回転していく。羽根板66と回転軸70は連結回転体75で連結されているので、回転軸70が回転する。さらに、回転軸70と回転円板体69は連結または一体となっているので、回転軸70の回転により回転円板体69が回転する。固定円環体68は文字通り固定しているので、固定円環体68の周囲面と設置ボックス62と接続(結合)することができ、設置ボックス62内の空間63を外部環境に対して封鎖することができる。固定円環体68の両側は、設置ボックス62の外側に出ている。回転軸の両側はさらに固定円環体68の外側に出ており、回転軸は固定基台72に配置されたベアリング73により回転自在に固定基台72で支持されている。 FIG. 5 is a diagram showing a cross section of the portion indicated by the alternate long and short dash line B1-B2 in FIG. The side pipe 61 and the side wall of the rotary disk-shaped generator installation box 62 are connected to each other, and the side walls (62-1, 62-2) of the installation box 62 are fixed to the rotary disk-shaped generator. The outer peripheral surface of the annular body 68 is surrounded and connected to the outer peripheral surface. That is, the width W1 of the fixed annular body 68 is larger than the width of the blade plate 66 and the width W2 of the water conduit 61. A part of the lower part of the fixed annular body 68 is immersed in the fluid 64, and the blade plate 66 rotates around the fixed annular member 68. Then, it receives the force of the fluid 64 and further rotates. Since the blade plate 66 and the rotating shaft 70 are connected by the connecting rotating body 75, the rotating shaft 70 rotates. Further, since the rotating shaft 70 and the rotating disk body 69 are connected or integrated, the rotating disk body 69 is rotated by the rotation of the rotating shaft 70. Since the fixed torus 68 is literally fixed, it can be connected (coupled) to the peripheral surface of the fixed torus 68 and the installation box 62, and the space 63 in the installation box 62 is sealed off from the external environment. be able to. Both sides of the fixed annular body 68 are outside the installation box 62. Both sides of the rotating shaft further protrude outside the fixed annular body 68, and the rotating shaft is supported by the fixed base 72 so as to be rotatable by a bearing 73 disposed on the fixed base 72.

図6は、コイルを配置した固定円板体と永久磁石のみを配置した回転円板体の底面同士が対向して配列する方式の回転式円板状発電機を、流体を用いて回転させることが可能な実施形態を示す図である。固定円板体113、115は片側のコイルは必要がないので記載していない。また、本実施形態ではコイルの一端に永久磁石を固定していない固定円板体332、333も配置している。すなわち、固定円板体332や333においてコイル335、336の両端面は固定円板体332の両底面に接近または一致して配置されている。また、それらの隣接するコイルの間に1つまたは複数の永久磁石の磁極が固定円板体332の両底面に接近または一致して配置されている。固定円板体111と332の間に回転円板体331、固定円板体113と332の間に回転円板体112が配置される。また、固定円板体115と333の間に回転円板体116、固定円板体113と333の間に回転円板体334が配置される。回転円板体331、334には、回転円板体112、116と同様に複数の永久磁石337、340の磁極が回転円板体331、334の両底面に接近または一致して配置される。 FIG. 6 shows a rotating disk-shaped generator of a type in which a bottom surface of a rotating disk body in which only a permanent magnet is disposed and a stationary disk body in which a coil is disposed is arranged to face each other, using a fluid. It is a figure which shows embodiment which can be. The fixed disk bodies 113 and 115 are not shown because a coil on one side is not necessary. Further, in the present embodiment, fixed disk bodies 332 and 333 not having a permanent magnet fixed to one end of the coil are also arranged. That is, both end surfaces of the coils 335 and 336 in the fixed disk body 332 and 333 are arranged close to or coincide with both bottom surfaces of the fixed disk body 332. Further, the magnetic poles of one or a plurality of permanent magnets are arranged close to or coincide with both bottom surfaces of the fixed disk body 332 between the adjacent coils. A rotating disk body 331 is disposed between the fixed disk bodies 111 and 332, and a rotating disk body 112 is disposed between the fixed disk bodies 113 and 332. Further, the rotating disk body 116 is disposed between the fixed disk bodies 115 and 333, and the rotating disk body 334 is disposed between the fixed disk bodies 113 and 333. In the rotating disc bodies 331 and 334, the magnetic poles of the plurality of permanent magnets 337 and 340 are arranged close to or coincide with both bottom surfaces of the rotating disc bodies 331 and 334, as in the rotating disc bodies 112 and 116.

発電機を左右に分割しその間に羽根板312を外側に取り付けた連結回転体311を配置する。連結回転体311は回転軸203と連結している。従って、羽根板312が流体の力を受けて回転すると、連結回転体も回転し、さらに回転軸203も回転する。また、固定円板体111、113、332並びに固定円板体115、117、333の外側は固定基台301および固定側壁基台302によって囲まれており、さらに回転円板体112、331並びに116、336もその内部に配置されている。これらの回転円板体は、当然台座201、固定基台301および固定側壁基台302には接触せず、回転軸203に連結しているので、回転軸203とともに自在に回転できる。固定側壁基台302には軸穴があいており、その軸穴に配置されたシールベアリング313に回転軸203が入っているので、回転軸は自在に回転でき、かつ台座201、固定基台301、および固定側壁基台302で囲まれた内側には流体が浸入しない。また、外側全体を固定基台やケースで取り囲むこともできる。従って、回転板112、331や116、333、固定基台等で囲まれた内側に配置されたコイル、永久磁石等の各種部材は流体の影響を受けない。すなわち、本発明の円板状発電機は流体の存在する場所でも使用できる。さらに、回転軸を回すエネルギーに応じて、これらの回転円板体や固定円板体を繰り返し多数配置して発電能力を大きくできる。 The generator is divided into left and right, and a connecting rotating body 311 having a blade plate 312 attached to the outside is disposed between them. The connecting rotating body 311 is connected to the rotating shaft 203. Therefore, when the vane plate 312 receives the force of the fluid and rotates, the connecting rotating body also rotates, and the rotating shaft 203 also rotates. Further, the outer sides of the fixed disk bodies 111, 113, 332 and the fixed disk bodies 115, 117, 333 are surrounded by the fixed base 301 and the fixed side wall base 302, and the rotating disk bodies 112, 331, 116 are further surrounded. 336 is also disposed therein. Of course, these rotating disk bodies are not in contact with the pedestal 201, the fixed base 301 and the fixed side wall base 302 and are connected to the rotating shaft 203, so that they can freely rotate together with the rotating shaft 203. The fixed side wall base 302 has a shaft hole, and the rotation shaft 203 is contained in the seal bearing 313 disposed in the shaft hole. Therefore, the rotation shaft can freely rotate, and the pedestal 201 and the fixed base 301 can be rotated. And the fluid does not enter the inside surrounded by the fixed side wall base 302. Further, the entire outside can be surrounded by a fixed base or case. Therefore, various members such as coils and permanent magnets arranged inside the rotary plates 112, 331 and 116, 333 and the fixed base are not affected by the fluid. That is, the disk generator of the present invention can be used in a place where a fluid exists. Furthermore, according to the energy which rotates a rotating shaft, these rotation disc bodies and fixed disc bodies can be repeatedly arranged, and electric power generation capability can be enlarged.

また、回転円板体の外周形状は回転により台座201に接触しないようにすれば良いので、外周形状は円形状以外の形状、たとえば三角形、矩形、多角形、星形、楕円形状等でも良い。ただし、円形状が回転モーメントが均一なので最も良い。また、回転円板体の重量が小さい方が回転エネルギーが小さくなるので回転速度を速くできるので、永久磁石およびそれを支持する分以外はフレーム枠にするなどして回転円板体に空間を形成した方が良い。従って、外側の永久磁石の配置領域が同じ円周状になり、その他の領域は空間としたフレーム形状の回転円板体でも良い。固定円板体については、前述したコイル、永久磁石が配列していれば、特に形状を特定するものではない。たとえば、円板体と記載はしているが、外周形状は三角形、矩形、多角形、星形、楕円形状等で良いし、全体が組立てやすいフレーム構造でも良い。回転円板体や回転円環体を動力源として羽根板を用いて回転させる方法については、羽根板に特に限定されるものではなく、前述した様に自動車やモーターで使われる回転を回転円板体や回転円環体または回転軸へ伝達しても良い。たとえば、回転円環体にベルトを回して回転したり回転円環体を歯車形状にしたりして、回転円環体を回転させることもできる。その際、回転調整機構を用いれば発電の最適化も実現できる。たとえば、羽根板312および連結回転体311と回転円板体112等との連結歯車の歯数比を大きくするなどして、羽根板312および連結回転体311の回転に対して回転円板体112等が速く回るようにすればより多くの発電が可能となる。 In addition, since the outer peripheral shape of the rotating disk body only needs to be prevented from contacting the pedestal 201 by rotation, the outer peripheral shape may be a shape other than a circular shape, for example, a triangle, a rectangle, a polygon, a star, an ellipse, or the like. However, the circular shape is the best because the rotational moment is uniform. In addition, since the rotational energy becomes smaller when the weight of the rotating disk is smaller, the rotation speed can be increased. Therefore, a space is formed in the rotating disk by using a frame frame other than the permanent magnet and the part supporting it. Better to do. Therefore, the outer permanent magnet may be arranged in the same circumferential shape, and the other region may be a frame-shaped rotating disk body having a space. The shape of the fixed disk body is not particularly specified as long as the above-described coils and permanent magnets are arranged. For example, although described as a disc body, the outer peripheral shape may be a triangle, rectangle, polygon, star, ellipse, or the like, or a frame structure that is easy to assemble as a whole. The method of rotating a rotating disk or rotating toroid using a vane plate as a power source is not particularly limited to the vane plate. As described above, the rotation used in an automobile or a motor is a rotating disk. It may be transmitted to a body, a rotating torus, or a rotating shaft. For example, the rotating torus can be rotated by rotating a belt around the rotating torus or rotating the rotating toroid into a gear shape. At that time, optimization of power generation can be realized by using a rotation adjusting mechanism. For example, the rotating disk body 112 is rotated with respect to the rotation of the blade board 312 and the connecting rotating body 311 by increasing the gear ratio of the connecting gear between the blade plate 312 and the connecting rotating body 311 and the rotating disk body 112 or the like. More power can be generated by making them rotate faster.

図1において、各発電機34、35で発電した電気は電源装置36に集められて、その電力を使って揚水ポンプや貯水槽31へ水を供給する供給装置39、植物工場や建物内の照明装置38、建物内や植物工場の温度調節装置38、植物への酸素や肥料等の供給装置等を駆動できる。また、建物・植物工場内の冷房・暖房等の電力や、その他建物・植物工場内で使用する種々の装置の電力もマイクロ水力発電で得た電力を用いることができる。水を供給する供給装置39は、たとえば水道や地下水等からの水であり、貯水槽31、導水管32、復水管43をある程度満たした後は揚水ポンプ33を使って循環させることができるので、蒸発したり漏れたりして少なくなった分を適宜補充するだけで良い。揚水ポンプ33や水供給装置39の駆動電力、地下水を汲みあげて供給装置まで運ぶ動力、川等の水を水供給装置まで運ぶ動力もマイクロ水力発電で得た電力を用いることができる。復水管43(43−2)の上部にはキャップ41が取り付けられ、このキャップ41からも水を供給したり、余分な水を排出できる。尚、滝等の近くに植物工場を設置する場合は、滝等から直接貯水槽31に水を供給して、導水管32の下部から出る水をそのまま川等へ排出して、導水管や貯水槽に配置した発電機34や35で発電することもできる。この場合、復水管43や揚水ポンプ33を使う必要はないので、余分な電力消費はなくなり、より効率的な発電が可能となる。 In FIG. 1, electricity generated by each of the generators 34 and 35 is collected in a power supply device 36, and a supply device 39 for supplying water to a pumping pump or a water storage tank 31 using the power, lighting in a plant factory or a building. The apparatus 38, the temperature control apparatus 38 in a building or a plant factory, the supply apparatus of oxygen, fertilizer, etc. to a plant can be driven. Moreover, the electric power obtained by micro hydroelectric power generation can be used for electric power for cooling and heating in buildings and plant factories, and electric power for various devices used in other buildings and plant factories. The supply device 39 for supplying water is, for example, water from tap water or groundwater, and can be circulated using the pumping pump 33 after filling the water storage tank 31, the water conduit 32, and the condensate pipe 43 to some extent. It is only necessary to replenish as much as possible due to evaporation or leakage. The electric power obtained by the micro hydroelectric power generation can be used as the driving power for the pumping pump 33 and the water supply device 39, the power for pumping up the ground water and transporting it to the supply device, and the power for transporting water from the river to the water supply device. A cap 41 is attached to the upper portion of the condensate pipe 43 (43-2), and water can be supplied from this cap 41 or excess water can be discharged. In addition, when installing a plant factory near a waterfall etc., water is directly supplied to the water storage tank 31 from the waterfall etc., and water discharged from the lower part of the water conduit 32 is discharged to the river etc. It is also possible to generate electricity with the generators 34 and 35 arranged in the tank. In this case, since it is not necessary to use the condensate pipe 43 or the pumping pump 33, extra power consumption is eliminated and more efficient power generation is possible.

貯水槽31には貯水槽内および/または復水管には復水管内の流体(水)を温めたり、冷やしたりするヒーター(加熱装置)または冷却装置40、46が設置されている。ヒーターはたとえば抵抗加熱装置で、冷却装置はたとえばペルティエ装置である。植物工場内の温度が低いときは、電源装置36からの電力供給で貯水槽31内および/または復水管43内の水を暖めて、その温水を導水管32へ供給する。導水管32の各所には放熱板37が取り付けられているので、植物工場内にその熱を供給して暖める。放熱が不足していれば、植物工場内の各所に設置された温度調節設備でも温度制御する。植物工場内の温度が高いときは、電源装置36からの電力供給で貯水槽31内や復水管43内の水を冷やして、その冷水を導水管32へ供給する。導水管32の各所には放熱板37が取り付けられているので、植物工場内にその冷気を供給して冷やす。冷熱が不足していれば、植物工場内の各所に設置された温度調節設備でも温度制御する。この温度調節設備で使用する電力も電源装置36から供給される。図1では、ヒーターまたは冷却装置40、46は、貯水槽31や復水管43の外側に配置しているが、貯水槽や31復水管43そのものに埋め込んでも良いし、水中へ配置しても良い。あるいは、赤外線やランプで加熱する場合は、貯水槽31や復水管43から少し離して放射することもできる。ヒーターまたは冷却装置40、46の動力(電力)は、マイクロ水力発電システムで得た電力を使用する。あるいは、ヒーターまたは冷却装置を揚水ポンプ33やその他の必要な部分に配置しても良い。また、ヒーターまたは冷却装置は貯水槽や復水管等の全体に配置しても良いし、その一部だけでも良く、ヒーターまたは冷却装置の能力や、加熱または冷却する水量によって適宜選択すれば良い。このようにヒーターまたは冷却装置40、46と放熱板37を用いて、植物工場の各所に配置する温度調節設備を補助しながら、植物工場内の温度を最適な状態に維持することができる。 The water storage tank 31 is provided with heaters (heating devices) or cooling devices 40 and 46 for heating and cooling the fluid (water) in the water storage tank and / or the condensate pipe. The heater is, for example, a resistance heating device, and the cooling device is, for example, a Peltier device. When the temperature in the plant factory is low, the water in the water storage tank 31 and / or the condensate pipe 43 is warmed by power supply from the power supply device 36, and the hot water is supplied to the water conduit 32. Since the heat radiating plate 37 is attached to each part of the water conduit 32, the heat is supplied to the plant factory to warm it. If there is insufficient heat dissipation, temperature control is also performed at temperature control equipment installed at various locations in the plant factory. When the temperature in the plant factory is high, the water in the water storage tank 31 and the condensate pipe 43 is cooled by supplying power from the power supply device 36, and the cold water is supplied to the water conduit 32. Since the heat radiating plate 37 is attached to each part of the water conduit 32, the cool air is supplied into the plant factory to be cooled. If cold heat is insufficient, the temperature is controlled by temperature control equipment installed at various locations in the plant factory. Electric power used in this temperature control facility is also supplied from the power supply device 36. In FIG. 1, the heaters or cooling devices 40 and 46 are disposed outside the water storage tank 31 and the condensate pipe 43, but may be embedded in the water storage tank and the 31 condensate pipe 43 themselves, or may be disposed in the water. . Or when heating with infrared rays or a lamp, it can also radiate a little away from the water storage tank 31 or the condensate pipe 43. The power (electric power) of the heaters or cooling devices 40 and 46 uses electric power obtained by the micro hydroelectric power generation system. Or you may arrange | position a heater or a cooling device in the pumping pump 33 or other required parts. In addition, the heater or the cooling device may be arranged in the whole of the water storage tank, the condensate pipe or the like, or only a part thereof, and may be appropriately selected depending on the capacity of the heater or the cooling device and the amount of water to be heated or cooled. Thus, using the heaters or cooling devices 40 and 46 and the heat radiating plate 37, the temperature in the plant factory can be maintained in an optimum state while assisting the temperature control equipment arranged in various places in the plant factory.

図2は、植物工場の建物を平面的に示した図である。建物の側壁22、23、27、28の中に4つのマイクロ水力発電システム1(1−1、2、3,4)が配置されており、その間に畑51が設置されている。図3は、植物工場の建物を図1と直角方向から示した側面模式図である。3階建ての建物の各階(1階、2階、3階)に畑51が設置される。畑51も3層構造になっており、各層の基台52上に植物が栽培されている領域53とその植物に水分を供給する装置54、照明装置55が配置されている。養分供給装置、酸素等を供給する装置等を配置することもできる。植物はどんな種類でも可能であり、たとえばレタス、小松菜、ホウレンソウ、ピーマン等の野菜、いちご等の果物である。水分供給装置や照明装置等で必要な電力も、マイクロ水力発電システムから供給することができる。畑51は各マイクロ水力発電システム1の導水管32の間に設置されているので、導水管32の各所に配置された放熱板37からの放熱により温度調節が効率良く行なわれる。照明装置55は、各種の機構を採用できる。たとえば、LED、白熱灯、蛍光灯、高輝度放電灯(たとえば、水銀灯、高圧ナトリウム灯、メタルハライド灯)が挙げられる。上記水分供給装置54、照明装置55、養分供給装置等で使用する電力もマイクロ水力発電システムで発生する電力を使用する。また、植物工場内の空調設備の動力もマイクロ水力発電システムで発生する電力を使用することができる。その他、植物工場内において電力で駆動するすべての装置にもマイクロ水力発電システムで発生する電力を使用することができる。 FIG. 2 is a plan view of a plant factory building. Four micro hydroelectric power generation systems 1 (1-1, 2, 3, 4) are arranged in the side walls 22, 23, 27, and 28 of the building, and a field 51 is installed between them. FIG. 3 is a schematic side view showing a plant factory building from a direction perpendicular to FIG. A field 51 is installed on each floor (first floor, second floor, and third floor) of a three-story building. The field 51 also has a three-layer structure, and an area 53 where plants are cultivated, a device 54 for supplying moisture to the plants, and an illumination device 55 are arranged on a base 52 of each layer. A nutrient supply device, a device for supplying oxygen, and the like can also be arranged. The plant can be of any kind, for example, lettuce, Japanese mustard spinach, spinach, green pepper and other fruits, strawberry and other fruits. Electric power necessary for a water supply device, a lighting device, and the like can also be supplied from the micro hydroelectric power generation system. Since the field 51 is installed between the water conduits 32 of each micro hydroelectric power generation system 1, the temperature is efficiently adjusted by heat radiation from the heat radiating plates 37 arranged at various locations of the water conduit 32. The illumination device 55 can employ various mechanisms. For example, LEDs, incandescent lamps, fluorescent lamps, and high-intensity discharge lamps (for example, mercury lamps, high-pressure sodium lamps, metal halide lamps) can be mentioned. The electric power used by the water supply device 54, the lighting device 55, the nutrient supply device, etc. is also the electric power generated by the micro hydroelectric power generation system. Moreover, the electric power generated by the micro hydroelectric power generation system can be used for the power of the air conditioning equipment in the plant factory. In addition, the electric power generated by the micro hydroelectric power generation system can be used for all devices driven by electric power in the plant factory.

従来の植物工場では電力等のエネルギー自給設備を持っていないため、高い電力等のエネルギーコストを植物の生産コストに上乗せする必要あり、植物の生産価格が高く通常の自然農業で生産した植物の価格に対して価格競争力が乏しかった。すなわち、植物工場の経営が安定しないという問題がある。しかし、本発明のマイクロ水力発電システムを用いた植物工場では、前述したように植物工場内でエネルギー(電力)を生産でき、そのエネルギー(電力)を植物工場内で使用するエネルギー(電力)の全部または一部として使用できるので、植物の生産コストを劇的に低減できる。しかも植物工場の利点である天候や環境に左右されずに、年中安定した生産が可能である。さらに土壌の選択や管理、肥料等の養分の選択や管理、水分供給の管理、照明(照射する光)の選択や管理、温度・湿度管理、酸素・二酸化炭素の管理、その他植物の生育に必要な条件の選択や管理を科学的に制御し、生育のための最適な環境を設定できるので、植物生産の増大、人が好む植物の生産、人間にとって安全・安心な植物の供給等が可能となる。 Since conventional plant factories do not have energy self-sufficiency facilities such as electric power, it is necessary to add energy costs such as high electric power to plant production costs, and the price of plants produced by ordinary natural agriculture is high due to high plant production prices. The price competitiveness was poor. That is, there is a problem that the management of the plant factory is not stable. However, in the plant factory using the micro hydroelectric power generation system of the present invention, energy (electric power) can be produced in the plant factory as described above, and all of the energy (electric power) used in the plant factory is used. Or because it can be used as a part, the production cost of plants can be drastically reduced. Moreover, stable production is possible throughout the year, regardless of the weather and environment that are the advantages of plant factories. In addition, selection and management of soil, selection and management of nutrients such as fertilizer, management of moisture supply, selection and management of lighting (irradiation light), temperature / humidity management, oxygen / carbon dioxide management, and other plant growth The optimal environment for growth can be set by scientifically controlling the selection and management of various conditions, enabling plant production to increase, production of plants preferred by humans, supply of plants that are safe and secure for humans, etc. Become.

以上詳細に説明した様に、本発明は、マイクロ水力発電システムを植物工場内に設置して、植物工場で消費するエネルギーをこのマイクロ水力発電システムで発生するエネルギーで賄うシステムである。図1〜図3では、3階建ての建物に畑を配置したが、1階や2階建てでも良いし、4階建て以上でも良い。図1には各階の高さを記載しているが、この値に制限されるものでもない。高さに応じて導水管の傾き、貯水層の水量、導水管を流れる水量を変えたり、発電機の大きさや羽根板の大きさ等を変えながら、最適に発電するシステムにすれば良い。図1では各階で導水管は折れ曲がっているが一方向へ傾斜して各階の床で折れ曲がるようにしても良く、その構造や引き回し方は適宜最適状態に変更すれば良い。植物工場の大きさも敷地の大きさに合わせたり、最適なマイクロ水力発電システムを稼働できる大きさに設定すれば良い。尚、明細書の各部分に記載し説明した内容を記載しなかった他の部分においても矛盾なく適用できることに関しては、当該他の部分に当該内容を適用できることは言うまでもない。さらに、上記実施形態は一例であり、要旨を逸脱しない範囲内で種々変更して実施でき、本発明の権利範囲が上記実施形態に限定されないことも言うまでもない。 As described above in detail, the present invention is a system in which a micro hydroelectric power generation system is installed in a plant factory, and energy consumed in the plant factory is covered by energy generated by the micro hydroelectric power generation system. In FIG. 1 to FIG. 3, the field is arranged in a three-story building, but it may be one or two stories, or four or more stories. Although FIG. 1 shows the height of each floor, it is not limited to this value. What is necessary is just to set it as the system which produces | generates electricity optimally, changing the inclination of a water conduit, the amount of water of a reservoir, the amount of water which flows through a water conduit, or changing the size of a generator or the size of a slat according to height. In FIG. 1, the water conduit is bent at each floor, but it may be inclined in one direction and bent at the floor of each floor, and the structure and the way of routing may be changed to an optimum state as appropriate. The size of the plant factory should also be set to the size of the site, or set to a size that can operate the optimum micro hydroelectric power generation system. In addition, it cannot be overemphasized that the said content can be applied to the said other part regarding that it can apply without contradiction also in the other part which did not describe the content described and demonstrated in each part of a specification. Furthermore, the said embodiment is an example, and can be implemented in various changes within the range which does not deviate from a summary, and it cannot be overemphasized that the right range of this invention is not limited to the said embodiment.

本発明のマイクロ水力発電システムを用いた植物工場の概念は、植物工場内だけでなく植物園、通常のビルディング(たとえば、マンションやオフィス)、さらには各種の工場等にも適用できる。すなわち、マイクロ水力発電システムを植物園や通常のビルディング等の内部に設置し、マイクロ水力発電システムで得られた電力を植物園やビルディング等の温度調整機構や空調設備等、植物園やビルディング等で必要な動力(電力)に使用することもできる。植物園やビルディング等で使用する熱交換器の可動電力もマイクロ水力発電システムで得られた電力を使用できる。また、マイクロ水力発電システムで循環する水は災害時の飲料水として使用することも可能である。さらに、マイクロ水力発電システムを設置した建物内では、そこで発生する電力を用いて雪国や寒冷地などで年中作業する農業工場として活用や災害防止として活用することもできる。 The concept of a plant factory using the micro hydroelectric power generation system of the present invention can be applied not only to a plant factory but also to a botanical garden, a normal building (for example, an apartment or an office), and various factories. In other words, a micro hydroelectric power generation system is installed in a botanical garden or a normal building, and the electric power obtained by the micro hydroelectric power generation system is used as a power source necessary for the botanical garden or the building, such as a temperature control mechanism or an air conditioner. It can also be used for (electric power). The moving power of heat exchangers used in botanical gardens and buildings can also be obtained from the micro hydro power generation system. In addition, the water circulating in the micro hydroelectric power generation system can be used as drinking water in the event of a disaster. Furthermore, in a building where a micro hydroelectric power generation system is installed, it can be used as an agricultural factory that works year-round in snowy countries or cold regions using the electric power generated there, or as a disaster prevention.

31・・・貯水槽、32・・・導水管(流水管)、33・・・揚水ポンプ、
34・・・発電機、35・・・発電機、36・・・電源装置、37・・・放熱部、
38・・・温調・照明、39・・・水供給装置、40・・・ヒーター(冷却装置)、
41・・・キャップ、42・・・注水管、43・・・復水管、45・・・フランジ、
51・・・畑、46・・・ヒーター(冷却装置)
31 ... Water storage tank, 32 ... Water guide pipe (flow pipe), 33 ... Water pump,
34 ... generator, 35 ... generator, 36 ... power supply, 37 ... heat dissipation part,
38 ... temperature control / lighting, 39 ... water supply device, 40 ... heater (cooling device),
41 ... cap, 42 ... water injection pipe, 43 ... condensate pipe, 45 ... flange,
51 ... field, 46 ... heater (cooling device)

Claims (5)

植物を栽培する植物工場において、水力により発電するマイクロ水力発電システムを有し、前記マイクロ水力発電システムから得られた電力を前記植物工場の動力源(エネルギー源)として使用することを特徴とする植物工場であって、
前記マイクロ水力発電システムは、
水を貯留する貯水槽と、前記貯水槽の下方に配置され、一端が前記貯水槽に連通し他端に向かって下降している導水管と、一端が該導水管の前記他端に連通しており、他端に向かって上昇している復水管と、前記導水管の途中に設けられ、該導水管を流れる水流を利用して発電する複数の発電ユニットと、前記復水管の前記他端に接続されており、該復水管内の水を前記貯水槽内に排出するポンプと、前記複数の発電ユニットに接続されており、該複数の発電ユニットからの電力によって充電されると共に前記ポンプに電力を供給する電源装置とを備えており、前記ポンプが前記復水管内の水を排出することによって生じる吸引力により、該復水管及び前記導水管内に一様な吸引流を発生させ、前記導水管を流れる前記水流を形成するように構成されており、前記電源装置の電力を植物工場の動力として用いることを特徴とする植物工場。
A plant characterized by having a micro hydroelectric power generation system that generates electricity by hydropower in a plant factory that cultivates plants, and using electric power obtained from the micro hydroelectric power generation system as a power source (energy source) of the plant factory A factory,
The micro hydroelectric power generation system is
A water storage tank for storing water, a water conduit arranged below the water storage tank, one end communicating with the water storage tank and descending toward the other end, and one end communicating with the other end of the water conduit A condensate pipe that rises toward the other end, a plurality of power generation units that are provided in the middle of the water conduit, and that generate power using a water flow flowing through the water conduit, and the other end of the condensate pipe Is connected to the pump for discharging the water in the condensate pipe into the reservoir, and is connected to the plurality of power generation units, and is charged by the power from the plurality of power generation units and A power supply device for supplying electric power, and a suction force generated by the pump discharging water in the condensate pipe generates a uniform suction flow in the condensate pipe and the conduit pipe. So as to form the water flow through the water pipe It made which are, plant factory, which comprises using the power of the power supply as a power plant factory.
前記植物工場内で使用する電力の全部または一部は前記マイクロ発電システムで発電された電力であることを特徴とする、請求項1に記載の植物工場。 The plant factory according to claim 1, wherein all or part of the electric power used in the plant factory is generated by the micro power generation system. 前記貯水槽および/または復水管に、貯水槽内に貯留された水および/または復水管内に貯留された水を加熱または冷却するヒーターおよび/または冷却装置が設置されており、前記ヒーターおよび/または冷却装置の動力源の全部または一部は、前記マイクロ発電システムで発電された電力であることを特徴とする、請求項1または2に記載の植物工場。 The water tank and / or the condensate pipe is provided with a heater and / or a cooling device for heating or cooling the water stored in the water tank and / or the water stored in the condensate pipe. The plant factory according to claim 1, wherein all or part of a power source of the cooling device is electric power generated by the micro power generation system. 前記導水管には放熱板が設置されて、植物工場内に加熱水または冷水の熱を放散することを特徴とする、請求項1〜3のいずれかの項に記載の植物工場。 The plant factory according to any one of claims 1 to 3, wherein a heat radiating plate is installed in the water conduit to dissipate heat of heated water or cold water into the plant factory. 前記植物工場内の温度を所定温度に設定する温度調節システムが設置されており、前記温度調節システムの動力源の全部または一部は、前記マイクロ発電システムで発電された電力であることを特徴とする、請求項1〜4のいずれかの項に記載の植物工場。 A temperature control system for setting the temperature in the plant factory to a predetermined temperature is installed, and all or part of the power source of the temperature control system is electric power generated by the micro power generation system, The plant factory according to any one of claims 1 to 4.
JP2016221079A 2016-11-13 2016-11-13 Plant factory using micro hydropower system Active JP6964213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016221079A JP6964213B2 (en) 2016-11-13 2016-11-13 Plant factory using micro hydropower system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016221079A JP6964213B2 (en) 2016-11-13 2016-11-13 Plant factory using micro hydropower system

Publications (2)

Publication Number Publication Date
JP2018074985A true JP2018074985A (en) 2018-05-17
JP6964213B2 JP6964213B2 (en) 2021-11-10

Family

ID=62149699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016221079A Active JP6964213B2 (en) 2016-11-13 2016-11-13 Plant factory using micro hydropower system

Country Status (1)

Country Link
JP (1) JP6964213B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021014739A (en) * 2019-07-16 2021-02-12 隆道 中島 Rotary hydraulic power generating system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017083A (en) * 2001-06-29 2003-01-17 Toshiba Eng Co Ltd Micro hydraulic-fuel cell power generating system
JP2012193730A (en) * 2011-03-01 2012-10-11 Takayuki Sakurai Micro hydraulic power generation system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017083A (en) * 2001-06-29 2003-01-17 Toshiba Eng Co Ltd Micro hydraulic-fuel cell power generating system
JP2012193730A (en) * 2011-03-01 2012-10-11 Takayuki Sakurai Micro hydraulic power generation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021014739A (en) * 2019-07-16 2021-02-12 隆道 中島 Rotary hydraulic power generating system

Also Published As

Publication number Publication date
JP6964213B2 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
US10436465B2 (en) Coaxial ventilator
JP2007533950A (en) Structure and method using a multi-system for generating electricity and desalting water
AU2017272291B2 (en) A Cooling System
CA2910793C (en) Combined wind and solar power generating system
US20110108018A1 (en) Solar based energy conversion apparatus
WO2009105587A2 (en) Solar radiation collection systems
JP2016017648A (en) Air conditioning system
TW201035505A (en) Solar radiation collection systems
WO2015087035A1 (en) Passive cooling system for wind tower
JP6964213B2 (en) Plant factory using micro hydropower system
US20120222421A1 (en) Solar energy gas turbine
CN202382449U (en) Solar water heater capable of automatically spraying water at constant temperature
JP2014070618A (en) Power generator
RU2636018C2 (en) Heating and hot water supply system
US9157660B2 (en) Solar heating system
ES2641713T3 (en) Construction Engineering Module
KR101685683B1 (en) Hot water production and electricity generation system using solar energy
WO2022195369A1 (en) Device and method of hybrid management of energy production and storage in mushroom-shaped buildings
WO2014080475A1 (en) Air-cooled thermoelectric power generation apparatus and solar thermal power generation apparatus using air-cooled thermoelectric power generation apparatus
ES2538751B1 (en) Power generation system in water distribution networks
KR20120054148A (en) A natural ventilation conduit manhole use of sunlight and wind
CN117156830B (en) Outdoor intelligent ammeter
JP3193625U (en) Energy extraterrestrial emission device for global warming control
JP2008309027A (en) Portable steam power generation device using temperature difference between solar heat and underground temperature
JP2005282974A (en) Distilling plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201008

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210818

R150 Certificate of patent or registration of utility model

Ref document number: 6964213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150