JP2021014739A - Rotary hydraulic power generating system - Google Patents
Rotary hydraulic power generating system Download PDFInfo
- Publication number
- JP2021014739A JP2021014739A JP2019130790A JP2019130790A JP2021014739A JP 2021014739 A JP2021014739 A JP 2021014739A JP 2019130790 A JP2019130790 A JP 2019130790A JP 2019130790 A JP2019130790 A JP 2019130790A JP 2021014739 A JP2021014739 A JP 2021014739A
- Authority
- JP
- Japan
- Prior art keywords
- water
- pipe
- power generation
- rotary
- screw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/50—Hydropower in dwellings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Landscapes
- Sewage (AREA)
- Filtration Of Liquid (AREA)
- Sink And Installation For Waste Water (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
Description
本発明は水力発電技術に関し、具体的には、送水路が螺旋状で構成されているロータリー式水力発電システムである。 The present invention relates to a hydroelectric power generation technology, and specifically, is a rotary hydroelectric power generation system in which a water supply channel is formed in a spiral shape.
水力発電は、高低差による水の位置エネルギーを利用して水車やタービンと直結した発電機により発電するシステムとして、他の再生可能エネルギーを用いた発電システムに比べて驚異的な変換効率が期待できるものとされている。 Hydroelectric power generation is a system that uses the position energy of water due to the height difference to generate electricity with a generator directly connected to a water turbine or turbine, and can be expected to have amazing conversion efficiency compared to other power generation systems that use renewable energy. It is supposed to be.
高低差の利用は、単純な川の流れや、水を上方に汲み上げて落下することなどで実現可能である。前者は自然エネルギーを利用するもの、後者は揚水式水力発電といわれるもので上方と下方に調整池を整備するなど設備が大掛かりとなり、ともに家庭内や企業内で自家発電するような利用には不向きである。 The use of the height difference can be realized by a simple river flow or by pumping water upward and dropping it. The former uses natural energy, and the latter is called pumped-storage hydroelectric power generation, which requires large-scale facilities such as the construction of regulating reservoirs above and below, and both are unsuitable for private power generation in homes and businesses. Is.
家庭内や企業内には上水道と下水道が整備され、上水道から供給された水が利用されると排水として下水道に流れ出る管路が設けられている。排水管から排出される水は垂直降下で下水道に導かれており、例えばシンク台のような1m弱の有効落差が見込める低落差又は超低落差を利用して電力を取り出す技術はこれまでのところ発見できない。 Waterworks and sewers are installed in homes and businesses, and when water supplied from the water supply is used, there is a pipeline that flows out to the sewer as drainage. The water discharged from the drainage pipe is led to the sewer by a vertical descent, and so far, there is no technology to extract power using a low head or ultra-low head that can be expected to have an effective head of less than 1 m, such as a sink stand. I can't find it.
また、このような低落差又は超低落差を利用して電力を得る場合に、流路を螺旋状に構成した技術は発見できない。 Further, when electric power is obtained by utilizing such a low head or an ultra-low head, a technique in which a flow path is formed in a spiral shape cannot be found.
本発明は、生活廃水として処理されている水を浄化して再利用することとし、再利用出来るまでに浄化する過程において、送水路が螺旋状で構成されているロータリー式水力発電システムを提案する。 The present invention proposes a rotary hydroelectric power generation system in which the water supply channel is formed in a spiral shape in the process of purifying and reusing the water treated as domestic wastewater until it can be reused. ..
以上の課題を解決するために、本発明は、再利用出来るまでに浄化する過程において送水管内にスクリューを点在させて設置し、送水管内に流れる水力でスクリューが回転することにより、ダイナモ発電に移行するロータリー式水力発電システムである。 In order to solve the above problems, the present invention is installed with screws scattered in the water supply pipe in the process of purifying until it can be reused, and the screws rotate by the hydraulic power flowing in the water supply pipe to generate dynamo power generation. It is a rotary hydroelectric power generation system to be transferred.
より具体的には、第1に、ロータリー式水力発電システムは、流体を高所から低所に送水可能な送水管と、前記送水管内に配置したスクリューと、前記スクリューの回転軸と接続され、前記回転軸の回転による回転動力を受ける発電機と、を有し、前記送水管を螺旋状に配置したことを特徴とする。第2に、前記送水管の管径は、高所側から低所側にかけて小さくなっていることを特徴とする。第3に、前記送水管の高所側及び低所側に開閉可能な制御弁を有することを特徴とする。第4に、前記送水管の高所側は、下水へと通じる排水管と接続されていることを特徴とする。第5に、前記送水管の低所側は、再利用可能な水を貯留する貯水槽と接続されていることを特徴とする。第6に、前記排水管は、排水を浄化する浄化フィルターが設けられていることを特徴とする。 More specifically, firstly, the rotary hydroelectric power generation system is connected to a water pipe capable of supplying fluid from a high place to a low place, a screw arranged in the water pipe, and a rotation shaft of the screw. It has a generator that receives rotational power due to the rotation of the rotating shaft, and is characterized in that the water supply pipe is arranged in a spiral shape. Secondly, the diameter of the water pipe is smaller from the high place side to the low place side. Thirdly, it is characterized by having a control valve that can be opened and closed on the high place side and the low place side of the water pipe. Fourth, the high place side of the water pipe is connected to a drain pipe leading to sewage. Fifth, the low side of the water pipe is connected to a water tank for storing reusable water. Sixth, the drainage pipe is characterized in that a purification filter for purifying the wastewater is provided.
本発明は、スクリューが点在的に設置された送水管を螺旋状に配置したことから、シンク下などに省スペースで設置が可能な発電システムを提供可能である。また、水の落下による重力と回転による遠心力が相俟って水流に勢いがつき、この水流によってスクリューを回転させることによる回転エネルギーを動力源として発電機で発電することができる。 According to the present invention, since the water pipes in which the screws are scattered are arranged in a spiral shape, it is possible to provide a power generation system that can be installed in a space-saving manner under a sink or the like. In addition, gravity due to the fall of water and centrifugal force due to rotation combine to give momentum to the water flow, and the rotational energy generated by rotating the screw by this water flow can be used as a power source to generate electricity with a generator.
図1は、本発明の実施形態に係るロータリー式水力発電システム1が設置されたシンク下の外観構成の概略を示す図であり、シンク下に設置されたディスポーザー2及びディスポーザー2のドレイン側に接続された排水管3を有し、排水管3の分岐路にロータリー式水力発電システム1が接続されている。 FIG. 1 is a diagram showing an outline of an external configuration under a sink in which a rotary hydroelectric power generation system 1 according to an embodiment of the present invention is installed, and is connected to a disposer 2 installed under the sink and a drain side of the disposer 2. The rotary hydroelectric power generation system 1 is connected to the branch path of the drainage pipe 3 having the drainage pipe 3.
ロータリー式水力発電システム1は、排水管3から分岐して流入する排水を送水可能な送水管11と、送水管11内の各所に設置されたスクリュー12と、スクリュー12の支軸に接続されてスクリュー12からの動力を受ける発電機13と、発電機13からの電力を蓄電する蓄電機14と、送水管11の下流に接続された貯水槽15とを有する。 The rotary hydroelectric power generation system 1 is connected to a water pipe 11 capable of sending inflowing drainage branched from the drain pipe 3, screws 12 installed in various places in the water pipe 11, and a support shaft of the screw 12. It has a generator 13 that receives power from the screw 12, a power storage device 14 that stores power from the generator 13, and a water storage tank 15 that is connected to the downstream of the water pipe 11.
送水管11は、上流側が排水管3と接続されて高所に位置し、下流側が貯水槽15と接続されて低所に位置する。高所から低所に至るまでは、直線状ではなく螺旋状に形成することで、排水の流路を長くしている。送水管11は、略同一の径で螺旋状に形成されているものや、高所では管径が大きく低所では管径が小さくなるような先細りで螺旋状に形成されているものなど、種々の態様が選択可能である。 The upstream side of the water supply pipe 11 is connected to the drainage pipe 3 and is located at a high place, and the downstream side is connected to the water storage tank 15 and is located at a low place. From high places to low places, the drainage flow path is lengthened by forming a spiral shape instead of a straight line. The water pipe 11 is variously formed in a spiral shape having substantially the same diameter, or in a tapered shape such that the pipe diameter is large at high places and small at low places. Aspects can be selected.
送水管11は、上流の高所側に二尖弁21が、下流の低所側に二尖弁22が設けられている。排水の流入口と排出口の双方に設置することで排水を安定的に供給して、水流を維持することができる。二尖弁21,二尖弁22を開くことで、送水管11内にスクリュー12を回転させるために必要な水が導入される。 The water pipe 11 is provided with a bicuspid valve 21 on the upstream side at a high place and a bicuspid valve 22 on the downstream side at a low place. By installing it at both the inflow port and the discharge port of the drainage, the drainage can be stably supplied and the water flow can be maintained. By opening the bicuspid valve 21 and the bicuspid valve 22, the water required to rotate the screw 12 is introduced into the water pipe 11.
例えば、送水管11内のスクリュー12が常時恒常的に回転し続ける為の方法の一つとして、送水管11内の水量を一定に保つ必要に鑑み、流入する水に対して二尖弁21、送水管11内の水が多くなれば排出する為の二尖弁22をそれぞれ設けている。 For example, as one of the methods for the screw 12 in the water pipe 11 to constantly rotate constantly, in view of the need to keep the amount of water in the water pipe 11 constant, the bicuspid valve 21 for the inflowing water, Two-pointed valves 22 are provided to discharge water in the water pipe 11 when the amount of water increases.
また、送水管11の下流側には貯水槽15に通じる排出管5が設けられるほか、送水管11の下流側の水を再び上流側に戻す還流管6が設けられてもよく、送水管11と還流管6とで水を循環することで、送水管11内に絶えず水が供給されてスクリュー12を回転して発電する循環型のロータリー式水力発電システムを構築することができる。送水管11の水を循環するか排出するかは二尖弁22の開閉によって制御することとしてもよい。 Further, a discharge pipe 5 leading to the water storage tank 15 may be provided on the downstream side of the water pipe 11, and a return pipe 6 for returning the water on the downstream side of the water pipe 11 to the upstream side may be provided. By circulating water through the water pipe 6 and the water pipe 6, it is possible to construct a circulation type rotary hydraulic power generation system in which water is constantly supplied into the water pipe 11 and the screw 12 is rotated to generate power. Whether to circulate or discharge the water in the water pipe 11 may be controlled by opening and closing the bicuspid valve 22.
ディスポーザー2は、シンクの排水口の下に投入される生ゴミを粉砕するものであり、排水管3には、排水を浄化する浄化フィルター4が設けられており、浄化フィルター4で段階的に排水を濾過することにより、飲料水に近い純度にまで戻した水を循環させることができる。例えば、粗目フィルター,細目フィルター,繊維フィルター,糸目活性炭入りフィルターの4段階の工程が組み込まれた浄化フィルター4とすることができる。本実施形態においては、送水管11を流れる排水中にスクリュー12の回転を阻害する異物が混入する状態を少なくとも回避すればよいことから、ディスポーザー2及び浄化フィルター4は必要に応じて採用することができる。 The disposer 2 crushes the garbage thrown under the drain port of the sink, and the drain pipe 3 is provided with a purification filter 4 for purifying the drainage, and the purification filter 4 gradually drains the water. By filtering the water, it is possible to circulate the water that has been returned to a purity close to that of drinking water. For example, the purification filter 4 can be a purification filter 4 incorporating a four-step process of a coarse filter, a fine filter, a fiber filter, and a filter containing thread activated carbon. In the present embodiment, since it is sufficient to at least avoid a state in which foreign matter that hinders the rotation of the screw 12 is mixed in the drainage flowing through the water pipe 11, the disposer 2 and the purification filter 4 may be adopted as necessary. it can.
発電機13は、スクリュー12の回転で得られる回転軸16の回転エネルギーを電気エネルギーに変換する変換機構を含み、各々の回転軸に対応して発電部13a,・・・が接続されている。蓄電機14は、各々の発電部13a,・・・で発電された電力を統合して蓄電する。なお、ダイナモ発電機のような整流子発電では整流された電流をそのまま蓄電機14に供給することで蓄電が可能である一方、交流発電では周波数調整等を行って蓄電機14に供給する。蓄電機14に蓄電された電気は、配電盤等を介して所望の電気機器に配電される。 The generator 13 includes a conversion mechanism that converts the rotational energy of the rotating shaft 16 obtained by the rotation of the screw 12 into electrical energy, and the power generation units 13a, ... Are connected corresponding to the respective rotating shafts. The power storage device 14 integrates and stores the power generated by the power generation units 13a, .... In commutator power generation such as a dynamo generator, rectified current can be supplied to the power storage device 14 as it is to store electricity, while in AC power generation, frequency adjustment or the like is performed to supply the rectified current to the power storage device 14. The electricity stored in the power storage device 14 is distributed to a desired electric device via a switchboard or the like.
図2及び図3は、送水管11に取り付けた回転軸16とスクリュー12の態様を示す図である。送水管11の内壁に回転軸16を回転可能に係合する一対の係合凹部11a,11bが離間して設けられ、回転軸16は係合凹部11a,11bに回転可能に係合された状態となっていて、上下一対の半割状の送水管を対向し、軸受け19を間に挟み込んで接着する(図7参照)。上下の送水管に取り付けられた軸受け20は、発電機へと動力が伝導される回転軸16の一端に設けられ、送水管11内の水が外部に漏れないように防水機能を有する。回転軸16には複数のスクリュー12(12a,12b,12c,12d)が取り付けられている。回転軸16とスクリュー12とは一条ネジで取り付けられても多条ネジで取り付けられてもよい。スクリュー12の羽根までの回転径rは送水管11の内径に応じて定められるが、送水管11の内壁寄り2つはrが小さく中心寄り2つはrが大きいとすることで、効率的な送水を行うことに資する。また、1つのスクリュー12の回転径を、一方側は大きくし(r2)、他方側は小さくして(r2)、送水管11内を流れる水の水位に応じた効率的なスクリュー12の回転が可能となる。さらに、送水管11内の外側寄りに設けられたスクリューは、螺旋状に流れる水に加わる遠心力で回転が強まる一方、内側寄りに設けられたスクリューは、螺旋状に流れる水に加わる向心力で回転が弱まることとなるが、内側寄りのスクリューの羽根の数を増やすなどして、回転の強さを適切に維持することができる。 2 and 3 are views showing aspects of the rotating shaft 16 and the screw 12 attached to the water pipe 11. A pair of engaging recesses 11a and 11b that rotatably engage the rotary shaft 16 are provided on the inner wall of the water supply pipe 11 at a distance, and the rotary shaft 16 is rotatably engaged with the engaging recesses 11a and 11b. A pair of upper and lower half-split water supply pipes are opposed to each other, and a bearing 19 is sandwiched between them to bond them (see FIG. 7). The bearings 20 attached to the upper and lower water pipes are provided at one end of the rotating shaft 16 in which power is conducted to the generator, and have a waterproof function so that the water in the water pipe 11 does not leak to the outside. A plurality of screws 12 (12a, 12b, 12c, 12d) are attached to the rotating shaft 16. The rotating shaft 16 and the screw 12 may be attached with a single-threaded screw or a multi-threaded screw. The rotation diameter r to the blades of the screw 12 is determined according to the inner diameter of the water pipe 11, but it is efficient because the two near the inner wall of the water pipe 11 are small and the two near the center are large. Contributes to water supply. Further, the rotation diameter of one screw 12 is increased on one side (r2) and decreased on the other side (r2) so that the screw 12 can rotate efficiently according to the water level of the water flowing in the water pipe 11. It will be possible. Further, the screw provided on the outer side in the water supply pipe 11 is rotated by the centrifugal force applied to the spirally flowing water, while the screw provided on the inner side is rotated by the centripetal force applied to the spirally flowing water. However, the strength of rotation can be maintained appropriately by increasing the number of blades of the screw toward the inside.
図4は、貯水槽15の断面図であり、送水管11の下流側から流入する排水を木炭等の濾過媒体Aで濾過する濾過区域17と、濾過された整水を貯水する貯水区域18と、に区画されている。貯水区域18の整水は、ポンプPで汲み上げて再利用する。 FIG. 4 is a cross-sectional view of the water storage tank 15, and includes a filtration area 17 for filtering the wastewater flowing in from the downstream side of the water supply pipe 11 with a filtration medium A such as charcoal, and a water storage area 18 for storing the filtered water. It is divided into. The water conditioner in the water storage area 18 is pumped by the pump P and reused.
図5は、送水管11の例を示しており、送水管11は、曲げ半径の曲率により水圧及び流速が異なってくることから、螺旋状の特殊設計を利用して発電量の制御ができる。 FIG. 5 shows an example of the water pipe 11, and since the water pressure and the flow velocity of the water pipe 11 differ depending on the curvature of the bending radius, the amount of power generation can be controlled by using the special spiral design.
図5(A)は、上流端から下流端にかけての曲げ半径の曲率が大から徐々に小になるように巻回した送水管である。曲げ半径の曲率は下流に向かうにつれて回転湾曲し徐々に小さくなっていく。上流側の曲げ半径の曲率が大きいので回転流速も早くなる。曲げ半径の曲率が大から徐々に小になるにつれて瞬間的に水圧及び流速は増大する。 FIG. 5A shows a water pipe wound so that the curvature of the bending radius from the upstream end to the downstream end gradually decreases from large. The curvature of the bending radius is rotationally curved toward the downstream and gradually becomes smaller. Since the curvature of the bending radius on the upstream side is large, the rotational flow velocity is also high. The water pressure and flow velocity increase momentarily as the curvature of the bending radius gradually decreases from large.
図5(B)は、上流端から下流端にかけての曲げ半径の曲率が同じであるように巻回した送水管である。上流端から下流端にかけて、管内の水は同じ圧力と流速で持続的に流れることができる。 FIG. 5B is a water pipe wound so that the curvature of the bending radius from the upstream end to the downstream end is the same. From the upstream end to the downstream end, the water in the pipe can flow continuously at the same pressure and flow velocity.
図6は、本発明の実施形態に係るロータリー式水力発電システム1に使用するロータリー式水力発電ユニットの設置例を示す図である。図6(A)は、送水管11の中心内部に発電機13及び蓄電機14を環設する例であり、図6(B)は、排水管3を中心として送水管11、発電機13及び蓄電機14を環設する例である。このような設置を可能とする各機器をユニット化したロータリー式水力発電ユニットは、シンク下の省スペース化に資することとなる。 FIG. 6 is a diagram showing an installation example of a rotary hydroelectric power generation unit used in the rotary hydroelectric power generation system 1 according to the embodiment of the present invention. FIG. 6A is an example in which the generator 13 and the power storage device 14 are ringed inside the center of the water pipe 11, and FIG. 6B shows the water pipe 11, the generator 13 and the water pipe 11 centering on the drainage pipe 3. This is an example of installing the power storage device 14 in a ring. A rotary hydroelectric power generation unit that unitizes each device that enables such installation will contribute to space saving under the sink.
図8は、螺旋状の送水管を横一直線に展開した状態を示しており、図8(A)は管径が先端から末端にかけて終始同一の送水管11a、図8(B)は、管径が先端から末端にかけて区画(1)・区画(2)・区画(3)と段階的に先細りしていく送水管11bである。送水管11bは管を狭めた分だけ水流が強くなるため、設置したスクリューの回転数が増えることになる。管径が狭まり、水が管に当たって下に流れ落ちることで、水力(水圧)が増してスクリューにかかる力が増すことになるので、スクリューの回転数の増加が期待できる。 FIG. 8 shows a state in which a spiral water pipe is developed in a horizontal straight line. FIG. 8 (A) shows a water pipe 11a having the same pipe diameter from the tip to the end, and FIG. 8 (B) shows a pipe diameter. Is a water pipe 11b that gradually tapers from the tip to the end into a section (1), a section (2), and a section (3). Since the water flow of the water pipe 11b becomes stronger as the pipe is narrowed, the rotation speed of the installed screw increases. As the pipe diameter narrows and water hits the pipe and flows down, the hydraulic power (water pressure) increases and the force applied to the screw increases, so an increase in the number of rotations of the screw can be expected.
以上、本発明をシンク下に設置して台所排水を利用する場合について説明したが、これ以外にも、洗面台からの排水、浴室からの排水、洗濯機からの排水など、あらゆる排水を利用したロータリー式水力発電システムとして適用可能である。 The case where the present invention is installed under the sink and the kitchen drainage is used has been described above, but in addition to this, all kinds of drainage such as drainage from the washbasin, drainage from the bathroom, and drainage from the washing machine are used. It can be applied as a rotary hydraulic power generation system.
1 ロータリー式水力発電システム
2 ディスポーザー
3 排水管
4 浄化フィルター
5 排出管
6 還流管
11 送水管(11a,11b)
12 スクリュー
13 発電機
14 蓄電機
15 貯水槽(17:濾過区域、18:貯水区域)
16 回転軸
19,20 軸受け
21,22 二尖弁
1 Rotary hydroelectric power generation system 2 Disposer 3 Drainage pipe 4 Purification filter 5 Discharge pipe 6 Reflux pipe 11 Water pipe (11a, 11b)
12 Screw 13 Generator 14 Power storage 15 Water tank (17: Filtration area, 18: Water storage area)
16 Rotating shaft 19, 20 Bearing 21, 22, Bicuspid valve
Claims (6)
前記送水管内に配置したスクリューと、
前記スクリューの回転軸と接続され、前記回転軸の回転による回転動力を受ける発電機と、
を有し、
前記送水管を螺旋状に配置したことを特徴とするロータリー式水力発電システム。 A water pipe that can send fluid from a high place to a low place,
With the screw placed in the water supply pipe,
A generator that is connected to the rotating shaft of the screw and receives rotational power due to the rotation of the rotating shaft.
Have,
A rotary hydroelectric power generation system characterized in that the water pipes are arranged in a spiral shape.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019130790A JP2021014739A (en) | 2019-07-16 | 2019-07-16 | Rotary hydraulic power generating system |
JP2023076597A JP2023101534A (en) | 2019-07-16 | 2023-05-08 | Rotary type hydroelectric power generating system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019130790A JP2021014739A (en) | 2019-07-16 | 2019-07-16 | Rotary hydraulic power generating system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023076597A Division JP2023101534A (en) | 2019-07-16 | 2023-05-08 | Rotary type hydroelectric power generating system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2021014739A true JP2021014739A (en) | 2021-02-12 |
Family
ID=74531841
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019130790A Pending JP2021014739A (en) | 2019-07-16 | 2019-07-16 | Rotary hydraulic power generating system |
JP2023076597A Pending JP2023101534A (en) | 2019-07-16 | 2023-05-08 | Rotary type hydroelectric power generating system |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023076597A Pending JP2023101534A (en) | 2019-07-16 | 2023-05-08 | Rotary type hydroelectric power generating system |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP2021014739A (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56120368U (en) * | 1980-02-16 | 1981-09-12 | ||
JPH08237997A (en) * | 1995-02-23 | 1996-09-13 | Fujita Corp | Generator utilizing drain |
WO1997028367A1 (en) * | 1996-01-31 | 1997-08-07 | Piesold David D A | Helical penstock |
JP2002161845A (en) * | 2000-11-29 | 2002-06-07 | Yasuhiko Shinjo | Siphon hydraulic power generator |
JP3142077U (en) * | 2008-03-18 | 2008-06-05 | 香 佐志原 | Wastewater power generation system |
JP4132867B2 (en) * | 2002-02-20 | 2008-08-13 | 鹿島建設株式会社 | Power generation system |
JP2012193730A (en) * | 2011-03-01 | 2012-10-11 | Takayuki Sakurai | Micro hydraulic power generation system |
JP2013060726A (en) * | 2011-09-12 | 2013-04-04 | Jfe Engineering Corp | Disaster prevention handling facility system for building/condominium and drain water storage tank therefor |
JP2013174235A (en) * | 2012-01-24 | 2013-09-05 | Oga:Kk | Sealed pressurizing/depressurizing type hydraulic power generation system |
WO2017069452A1 (en) * | 2015-10-22 | 2017-04-27 | 최종인 | Pumped-storage hydroelectric system for controlling load of water lift pump |
JP2018074985A (en) * | 2016-11-13 | 2018-05-17 | 桜井 孝幸 | Plant factory using microhydraulic power generation system |
-
2019
- 2019-07-16 JP JP2019130790A patent/JP2021014739A/en active Pending
-
2023
- 2023-05-08 JP JP2023076597A patent/JP2023101534A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56120368U (en) * | 1980-02-16 | 1981-09-12 | ||
JPH08237997A (en) * | 1995-02-23 | 1996-09-13 | Fujita Corp | Generator utilizing drain |
WO1997028367A1 (en) * | 1996-01-31 | 1997-08-07 | Piesold David D A | Helical penstock |
JP2002161845A (en) * | 2000-11-29 | 2002-06-07 | Yasuhiko Shinjo | Siphon hydraulic power generator |
JP4132867B2 (en) * | 2002-02-20 | 2008-08-13 | 鹿島建設株式会社 | Power generation system |
JP3142077U (en) * | 2008-03-18 | 2008-06-05 | 香 佐志原 | Wastewater power generation system |
JP2012193730A (en) * | 2011-03-01 | 2012-10-11 | Takayuki Sakurai | Micro hydraulic power generation system |
JP2013060726A (en) * | 2011-09-12 | 2013-04-04 | Jfe Engineering Corp | Disaster prevention handling facility system for building/condominium and drain water storage tank therefor |
JP2013174235A (en) * | 2012-01-24 | 2013-09-05 | Oga:Kk | Sealed pressurizing/depressurizing type hydraulic power generation system |
WO2017069452A1 (en) * | 2015-10-22 | 2017-04-27 | 최종인 | Pumped-storage hydroelectric system for controlling load of water lift pump |
JP2018074985A (en) * | 2016-11-13 | 2018-05-17 | 桜井 孝幸 | Plant factory using microhydraulic power generation system |
Also Published As
Publication number | Publication date |
---|---|
JP2023101534A (en) | 2023-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7119451B2 (en) | Self-powered miniature liquid treatment system with ultraviolet dosing | |
US7768147B2 (en) | Miniature hydro-power generation system | |
US7632040B2 (en) | Waste water electrical power generating system with storage system and methods for use therewith | |
Tamrakar et al. | Hydro power opportunity in the sewage waste water | |
KR102023811B1 (en) | Tap water recycling apparatus based on water saving, and water saving method using the same | |
JP2013024161A (en) | Intra-building water power generation system utilizing fall energy of high-rise building sewage | |
KR20230142690A (en) | Generating system for using small hydropower | |
JP2021014739A (en) | Rotary hydraulic power generating system | |
KR20130082186A (en) | Power generating system for using waste water | |
US20160341064A1 (en) | Power generator, system and method | |
CN104712022A (en) | High floor purified water-based power generating apparatus | |
KR101755256B1 (en) | Scroll turbine for electricity generation | |
JP2016014360A (en) | Water turbine device and small-scale power generator using the same | |
JP2014118831A (en) | Water turbine device, and water turbine generator | |
JP2000291525A (en) | Power generating system | |
KR101911305B1 (en) | Scroll turbine for electricity generation to reduce vibration | |
JP2013167237A (en) | Water stream power generation device | |
CN117646695A (en) | Pipeline hydroelectric power generation system | |
CZ309583B6 (en) | Equipment for producing electrical energy and a method of controlling the operation of the equipment | |
JP2011169250A (en) | Hydraulic power generation system | |
JP2018518366A (en) | RO water purification system wastewater recovery equipment | |
JP2008157124A (en) | Water storage type automatic circulation type hydraulic power generation equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220713 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20220713 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20220713 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20220719 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230110 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230207 |