JP2016017648A - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP2016017648A
JP2016017648A JP2014138748A JP2014138748A JP2016017648A JP 2016017648 A JP2016017648 A JP 2016017648A JP 2014138748 A JP2014138748 A JP 2014138748A JP 2014138748 A JP2014138748 A JP 2014138748A JP 2016017648 A JP2016017648 A JP 2016017648A
Authority
JP
Japan
Prior art keywords
air conditioning
heat
heat exchange
conditioning system
circulating water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014138748A
Other languages
Japanese (ja)
Other versions
JP6373663B2 (en
Inventor
勝邦 芦野
Katsukuni Ashino
勝邦 芦野
隆司 座波
Takashi Zanami
隆司 座波
耀華 趙
Yaohua Zhao
耀華 趙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okinawa Pref Renewable Energy Technology Jigyo Kyodo Kumiai
Original Assignee
Okinawa Pref Renewable Energy Technology Jigyo Kyodo Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okinawa Pref Renewable Energy Technology Jigyo Kyodo Kumiai filed Critical Okinawa Pref Renewable Energy Technology Jigyo Kyodo Kumiai
Priority to JP2014138748A priority Critical patent/JP6373663B2/en
Publication of JP2016017648A publication Critical patent/JP2016017648A/en
Application granted granted Critical
Publication of JP6373663B2 publication Critical patent/JP6373663B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an efficient and economical air conditioning system showing less consumption power by using a flat plate type heat exchanger and heat exchanging means using natural energy.SOLUTION: An air conditioning system 1a comprises an air conditioning panel 4, a vertical type pipe underground heat exchanger 5 and a circulation water temperature adjusting device 6. The air conditioning panel is constructed in such a way that a heat transmitting pipe 3 where circulating water circulates is fixed to a flat panel type heat exchanger 2 having a first heat exchanging medium enclosed at a plurality of pipe passages 11 so as to perform a heat exchanging operation between the first heat exchanging medium and the circulating water. The circulation water got from the air conditioning panel is heat exchanged with the vertical type pipe underground heat exchanger and further its temperature is adjusted by the circulation water temperature adjusting device 6 to become a temperature suitable for an air conditioning performed by the air conditioning panel. Since renewable energy is utilized, a power consumption at the circulation water temperature adjusting device 6 is correspondingly reduced.SELECTED DRAWING: Figure 1

Description

本発明は、熱交換媒体が封入された平板型熱交換器による電力を使用しない空調パネルと、自然エネルギーを用いた一次熱交換手段と、電力を用いる二次熱交換手段を備えた空調システムに係り、特に、同等の空調性能を有する従来のエアコンよりも二次熱交換手段での消費電力量を可及的に削減できる空調システムに関するものである。   The present invention provides an air conditioning system including an air conditioning panel that does not use electric power by a flat plate heat exchanger in which a heat exchange medium is enclosed, primary heat exchange means using natural energy, and secondary heat exchange means using electric power. In particular, the present invention relates to an air conditioning system that can reduce the amount of power consumed by the secondary heat exchange means as much as possible as compared with a conventional air conditioner having equivalent air conditioning performance.

原発事故以来、経済産業活動において電力量不足問題がクローズアップされており、この問題に対応すべく、再生可能エネルギー発電や、生活・生産活動に関わる電力機械器具の節電、省電力化への取り組みが各方面で鋭意行われている。しかし、単なる節電や省電力化だけでは、生活・生産活動に関わる電力量不足問題を根本的に解決することは困難である。経済産業活動の発展に伴い、消費電力量は増大傾向にあり、中でもエアーコンデショナーの消費電力量の割合は大きく、特に夏期の消費電力量の増大は経済産業活動の負担を大きくしている。従って、近年の電力不足問題では、特に空調設備機器の消費電力量の削減が問題となっており、電力消費量の少ない空調設備機器の開発が望まれている。   Since the nuclear accident, the problem of power shortage has been highlighted in economic and industrial activities, and in response to this problem, efforts are being made to generate power from renewable energy sources, power machinery and equipment related to daily life and production activities, and save power Has been carried out in every direction. However, it is difficult to fundamentally solve the problem of shortage of power related to daily life and production activities only by saving power and saving power. Along with the development of economic and industrial activities, the amount of power consumption is increasing, and in particular, the proportion of power consumption by air conditioners is large. In particular, the increase in power consumption in summer increases the burden of economic and industrial activities. Therefore, in recent power shortage problems, especially the reduction of power consumption of air conditioning equipment is a problem, and the development of air conditioning equipment with low power consumption is desired.

このような背景において、近年、電力消費量を従来よりも削減した空調設備機器として、輻射冷暖房装置が提案されている。図18は平板型の輻射冷暖房装置を示す図であり、図19はスタンド型の輻射冷暖房装置を示す図である。   Against this background, in recent years, radiant cooling and heating devices have been proposed as air conditioning equipment that has reduced power consumption compared to the prior art. FIG. 18 is a diagram showing a flat type radiant cooling and heating device, and FIG. 19 is a diagram showing a stand type radiant cooling and heating device.

図18に示すように、平板型の輻射冷暖房装置は、輻射パネル100内に輻射パイプ101を蛇行して配管し、この輻射パイプ101の両端部である入口側と出口側を循環水温調整装置(図示せず)に接続した空調装置である。輻射パイプ101内に不凍液(以下循環水と呼称する)を循環させるとともに、空調空間で熱交換された循環水の温度を循環水温調整装置が空調に適した温度に再調整し、これによって循環水と空調空間の間で熱交換を継続的に行なって空調空間の温度を調整するものである。   As shown in FIG. 18, the flat plate type radiation cooling and heating apparatus has a radiant pipe 101 meandering in a radiant panel 100, and a circulating water temperature adjusting device (at both ends of the radiant pipe 101, the inlet side and the outlet side). It is an air conditioner connected to (not shown). An antifreeze liquid (hereinafter referred to as circulating water) is circulated in the radiation pipe 101, and the temperature of the circulating water heat-exchanged in the conditioned space is readjusted to a temperature suitable for air conditioning by the circulating water temperature adjusting device. The temperature of the air-conditioned space is adjusted by continuously exchanging heat between the air-conditioned space.

図19に示すように、スタンド型の輻射冷暖房装置は、円盤状で中空の蓋部材200と、円盤状で中空の底部材201との間に、複数本の輻射パイプ202を円盤の外周に沿って所定間隔をおいて縦に配管して蓋部材200と底部材201を連通させ、各輻射パイプ201の上端に連通する蓋部材200の入口管と、各輻射パイプ201の下端に連通する底部材200の出口管を、循環水温調整装置(図示しない)に接続した空調装置である。輻射パイプ202内に循環水を循環させるとともに、空調空間で熱交換された循環水の温度を循環水温調整装置が空調に適した温度に再調整し、これによって循環水と空調空間の間で熱交換を継続的に行なって空調空間の温度を調整するものである。   As shown in FIG. 19, the stand-type radiant cooling and heating device includes a plurality of radiation pipes 202 along the outer periphery of a disk between a disk-shaped hollow cover member 200 and a disk-shaped hollow bottom member 201. The lid member 200 communicates with the bottom member 201 by vertically piping with a predetermined interval, and the inlet pipe of the lid member 200 communicating with the upper end of each radiation pipe 201 and the bottom member communicating with the lower end of each radiation pipe 201 An air conditioner in which 200 outlet pipes are connected to a circulating water temperature adjusting device (not shown). The circulating water is circulated in the radiation pipe 202, and the temperature of the circulating water heat-exchanged in the air-conditioned space is readjusted to a temperature suitable for air-conditioning by the circulating water temperature adjusting device, thereby heat between the circulating water and the air-conditioned space. The replacement is continuously performed to adjust the temperature of the air-conditioned space.

下記特許文献1は、以上説明したような輻射冷暖房装置の一例を示すものである。   The following Patent Document 1 shows an example of a radiation cooling / heating apparatus as described above.

特開平5−332580号公報JP-A-5-332580

従来の輻射冷暖房装置によれば、輻射パネル内の輻射パイプを循環して空調空間と熱交換した循環水の温度を空調に適した温度に再調整する役割は循環水温調整装置が担っており、通常、そのためのエネルギー源としては専ら電力が利用されていた。前述した通り、近年の電力不足問題に応じてこれら輻射冷暖房装置の省電力化が進められてきたものの、本質的には熱交換のエネルギー源として電力のみに頼っているため、抜本的な省エネルギーは望めないという問題があった。   According to the conventional radiant cooling and heating device, the circulating water temperature adjustment device plays a role of re-adjusting the temperature of the circulating water that is circulated through the radiation pipe in the radiant panel and exchanged heat with the air-conditioned space to a temperature suitable for air conditioning. Usually, electric power was exclusively used as an energy source for that purpose. As mentioned above, although these radiant cooling and heating devices have been promoted to save power in response to the recent problem of power shortage, essentially relying solely on power as an energy source for heat exchange, There was a problem that I could not hope.

例えば、平板型の輻射冷暖房装置では、装置取り付け場所によって、例えば天井設置のような場合は輻射パイプを太くすることができず、そのため輻射パイプは比較的小径なものとせざるを得ず、したがって輻射熱量は少なくなる。このため、必要かつ十分な空調性能を得るためには循環水温調整装置の能力を大きくするしかないが、これでは電力消費量も増加し、省電力化は望めない。   For example, in a flat type radiant cooling and heating system, depending on the installation location, for example in the case of ceiling installation, the radiant pipe cannot be made thick, so the radiant pipe has to be relatively small in diameter, and therefore radiant heat is required. The amount is reduced. For this reason, in order to obtain the necessary and sufficient air conditioning performance, the capacity of the circulating water temperature control device must be increased, but this also increases the power consumption, and power saving cannot be expected.

また、スタンド型の輻射冷暖房装置では、輻射パイプを太くして輻射面積を大きくすることはできるが、そのため装置全体の重量は大きくなってしまう。そして、輻射面積が大きい大径の輻射パイプに相応の熱交換性能を発揮させるべく、必要かつ十分な温度と量の循環水を循環させるためには、循環水温調整装置の能力を大きくするしかないが、これでは電力消費量も上昇し、省電力化は望めない。   In the stand type radiant cooling and heating apparatus, the radiation pipe can be thickened to increase the radiation area, but the weight of the entire apparatus becomes large. And in order to circulate the necessary and sufficient temperature and quantity of circulating water in order to exhibit the corresponding heat exchange performance to the large-diameter radiation pipe with a large radiation area, the ability of the circulating water temperature control device must be increased. However, this also increases power consumption, and power saving cannot be expected.

本発明は、以上説明した従来の課題を解決するためになされたものであり、熱伝導媒体が封入された電力を使用しない平板型熱交換器と、自然エネルギーを用いた熱交換手段を用いることにより、消費電力量が可及的に少なくて済む効率的、経済的な空調システムを提供することを目的としている。   The present invention has been made to solve the conventional problems described above, and uses a flat plate heat exchanger that does not use electric power in which a heat conducting medium is sealed, and a heat exchanging means using natural energy. Therefore, an object of the present invention is to provide an efficient and economical air conditioning system that consumes as little power as possible.

請求項1に記載された空調システムは、
第1熱交換媒体が封入された複数の管路を有する平板型熱交換器と、前記平板型熱交換器に取りつけられて第2熱交換媒体が循環する伝熱パイプとを有し、前記第1熱交換媒体と前記第2熱交換媒体の間で熱交換が行なわれる空調パネルと、
前記伝熱パイプに接続されて前記空調パネルから循環した前記第2熱交換媒体と熱交換を行なう自然エネルギーを用いた一次熱交換手段と、
前記一次熱交換手段に接続されて前記一次熱交換手段から循環した前記第2熱交換媒体を前記空調パネルによる空調に適した温度となるように調整する二次熱交換手段と、
を備えることを特徴としている。
The air conditioning system according to claim 1 is:
A flat plate type heat exchanger having a plurality of pipes in which a first heat exchange medium is sealed; and a heat transfer pipe attached to the flat plate type heat exchanger and through which a second heat exchange medium circulates, An air conditioning panel in which heat is exchanged between one heat exchange medium and the second heat exchange medium;
Primary heat exchange means using natural energy connected to the heat transfer pipe and performing heat exchange with the second heat exchange medium circulated from the air conditioning panel;
Secondary heat exchange means connected to the primary heat exchange means and adjusting the second heat exchange medium circulated from the primary heat exchange means to a temperature suitable for air conditioning by the air conditioning panel;
It is characterized by having.

請求項2に記載された空調システムは、請求項1記載の空調システムにおいて、
複数の前記平板型熱交換器を前記管路と交差する所定方向に沿って並設し、前記伝熱パイプを前記所定方向に沿って前記各平板型熱交換器の両端部の各表面に接触するように取りつけることにより、前記空調パネルが構成されたことを特徴としている。
The air conditioning system according to claim 2 is the air conditioning system according to claim 1,
A plurality of the flat plate heat exchangers are juxtaposed along a predetermined direction intersecting the pipe line, and the heat transfer pipes are in contact with the surfaces at both ends of the flat plate heat exchangers along the predetermined direction. The air conditioning panel is configured by mounting as described above.

請求項3に記載された空調システムは、請求項2記載の空調システムの前記空調パネルにおいて、
前記伝熱パイプが、一体に構成されたパイプ部とフランジ部を有しており、
前記平板型熱交換器の前記端部を前記フランジ部と固定板によって両面から挟んで固定したことを特徴としている。
The air conditioning system according to claim 3 is the air conditioning panel of the air conditioning system according to claim 2,
The heat transfer pipe has a pipe portion and a flange portion that are integrally formed,
The end portion of the flat plate type heat exchanger is fixed by being sandwiched from both sides by the flange portion and a fixing plate.

請求項4に記載された空調システムは、請求項2記載の空調システムの前記空調パネルにおいて、
前記伝熱パイプが、互いに平行な上面と下面を有する本体部と、前記本体部の内部に設けられたパイプ部とを有しており、
前記本体部の前記上面と前記下面に異なる前記平板型熱交換器の前記端部が固定されていることを特徴としている。
The air conditioning system according to claim 4 is the air conditioning panel of the air conditioning system according to claim 2,
The heat transfer pipe has a main body portion having an upper surface and a lower surface parallel to each other, and a pipe portion provided inside the main body portion,
The different ends of the flat plate heat exchanger are fixed to the upper surface and the lower surface of the main body.

請求項5に記載された空調システムは、請求項1乃至4のいずれか一つに記載の空調システムにおいて、
自然エネルギーとして地熱を利用する前記一次熱交換手段を備えた冷房用の空調システムであることを特徴としている。
The air conditioning system according to claim 5 is the air conditioning system according to any one of claims 1 to 4,
It is an air conditioning system for cooling provided with the primary heat exchange means using geothermal heat as natural energy.

請求項6に記載された空調システムは、請求項1乃至4のいずれか一つに記載の空調システムにおいて、
自然エネルギーとして太陽熱を利用する前記一次熱交換手段を備えた暖房用の空調システムであることを特徴としている。
The air conditioning system according to claim 6 is the air conditioning system according to any one of claims 1 to 4,
It is an air conditioning system for heating provided with the primary heat exchange means that uses solar heat as natural energy.

請求項7に記載された空調システムは、請求項1乃至6のいずれか一つに記載の空調システムにおいて、
前記一次熱交換手段と前記二次熱交換手段の間に、前記熱交換媒体を貯える貯槽を設けたことを特徴としている。
The air conditioning system according to claim 7 is the air conditioning system according to any one of claims 1 to 6,
A storage tank for storing the heat exchange medium is provided between the primary heat exchange means and the secondary heat exchange means.

より具体的には、本発明の空調システムは、第1熱交換媒体が封入された平板型熱交換器を有する空調パネルと、一次熱交換手段と、二次熱交換手段を、第2熱交換媒体としての循環水が循環する循環パイプで連結して構成することができる。その際、一次熱交換手段としては、例えば、地中熱、太陽光熱、地下水熱、温泉水熱などの再生可能エネルギーとしての自然エネルギーを熱源として利用する熱交換手段を用いることができ、採用する熱源の性質等に鑑みて冷房用又は暖房用に適した空調システムとすることができる。また、二次熱交換手段としては、市販されているヒートポンプ等の電力を利用した循環水温調整装置を用いることができ、さらに循環水を循環させる循環用ポンプは二次熱交換手段に装備してもよい。そして、本発明の空調システムの操作は、循環水の温度や流量の調整を行う公知のシステム操作ユニットで行うことができる。   More specifically, the air conditioning system of the present invention includes an air conditioning panel having a flat plate heat exchanger in which a first heat exchange medium is enclosed, a primary heat exchange means, and a secondary heat exchange means, and a second heat exchange. It can be constituted by connecting with a circulation pipe through which circulating water as a medium circulates. At that time, as the primary heat exchange means, for example, heat exchange means using natural energy as a renewable energy such as underground heat, solar heat, groundwater heat, hot spring water heat, etc. can be used and adopted. In view of the nature of the heat source and the like, an air conditioning system suitable for cooling or heating can be obtained. In addition, as the secondary heat exchange means, a circulating water temperature adjusting device using electric power such as a commercially available heat pump can be used, and a circulation pump for circulating the circulating water is provided in the secondary heat exchange means. Also good. The operation of the air conditioning system of the present invention can be performed by a known system operation unit that adjusts the temperature and flow rate of circulating water.

本発明で採用した空調パネルは、内部に作り込まれた管路に第1熱交換媒体が封入されてなる平板型熱交換器の吸熱機能あるいは熱放射機能を介して、伝熱パイプを循環する第2熱交換媒体の熱を、空調対象の生活・生産空間(以下空調空間と呼称)の熱と熱交換することができる装置であり、この空調パネル自体は電力を使用しない。   The air conditioning panel employed in the present invention circulates through the heat transfer pipe via the heat absorption function or the heat radiation function of a flat plate heat exchanger in which a first heat exchange medium is sealed in a pipe line built inside. This is a device capable of exchanging heat of the second heat exchange medium with heat in a living / production space (hereinafter referred to as air-conditioned space) to be air-conditioned, and this air-conditioning panel itself does not use electric power.

そして、本発明によれば、上述したような空調パネルで熱交換した第2熱交換媒体を、一次熱交換手段において自然エネルギーと熱交換することによって温度を調整した後、さらに空調パネルでの空調に適した温度となるように二次熱交換手段で温度の再調整を行う。すなわち、一次熱交換手段で温度を調整された熱交換媒体は、空調パネルでの空調に適した温度との差が縮小するため、二次熱交換手段において温度調整のために消費される電力量はその分だけ削減される。従って、二次熱交換手段の温度調整装置で使用される電力消費量は、空調性能が同一であれば、従来の輻射冷暖房装置よりも格段に減少することとなり、装置・設備のランニングコストを削減することができる。   And according to this invention, after adjusting the temperature by heat-exchanging the 2nd heat exchange medium heat-exchanged with the above air-conditioning panels with natural energy in a primary heat-exchange means, and also air-conditioning with an air-conditioning panel The temperature is readjusted by the secondary heat exchange means so that the temperature is suitable for the temperature. That is, the heat exchange medium whose temperature has been adjusted by the primary heat exchange means reduces the difference from the temperature suitable for air conditioning in the air conditioning panel, so the amount of power consumed for temperature adjustment in the secondary heat exchange means Is reduced accordingly. Therefore, if the air conditioning performance is the same, the power consumption used by the temperature control device of the secondary heat exchange means will be significantly reduced compared to the conventional radiant cooling and heating device, reducing the running cost of equipment and facilities. can do.

また、一次熱交換手段と二次熱交換手段の間に、第2熱交換媒体を貯える貯槽を設ければ、一次熱交換手段で温度を調整された第2熱交換媒体の量をチェックし、必要に応じて過不足を調整することができる。   Further, if a storage tank for storing the second heat exchange medium is provided between the primary heat exchange means and the secondary heat exchange means, the amount of the second heat exchange medium whose temperature is adjusted by the primary heat exchange means is checked, Excess and deficiency can be adjusted as necessary.

第1実施形態の空調システムを示す模式的構成図である。It is a typical lineblock diagram showing the air-conditioning system of a 1st embodiment. 分図(a)は第1実施形態の空調システムにおける空調パネルの正面図、分図(b)は分図(a)のA−A切断線における断面図である。The partial view (a) is a front view of the air conditioning panel in the air conditioning system of the first embodiment, and the partial view (b) is a sectional view taken along the line AA of the partial view (a). 第1実施形態において空調パネルを構成する平板型熱交換器の正面図と、正面図のB−B切断線及びC−C切断線における断面図である。It is sectional drawing in the front view of the flat plate type heat exchanger which comprises an air-conditioning panel in 1st Embodiment, and the BB cutting line and CC cutting line of a front view. 分図(a)は第1実施形態の空調システムにおける空調パネルの拡大断面図、分図(b)は変形例に係る空調パネルの拡大断面図である。A partial diagram (a) is an enlarged sectional view of an air conditioning panel in the air conditioning system of the first embodiment, and a partial diagram (b) is an enlarged sectional view of an air conditioning panel according to a modification. 第1実施形態の空調システムにおける一次熱交換手段の変形例を示す断面図である。It is sectional drawing which shows the modification of the primary heat exchange means in the air conditioning system of 1st Embodiment. 第1実施形態の空調システムにおける一次熱交換手段の変形例を示す平面図である。It is a top view which shows the modification of the primary heat exchange means in the air conditioning system of 1st Embodiment. 第2実施形態の空調システムを示す模式的構成図である。It is a typical block diagram which shows the air conditioning system of 2nd Embodiment. 第3実施形態の空調システムを示す断面図である。It is sectional drawing which shows the air conditioning system of 3rd Embodiment. 第3実施形態の空調システムを示す模式的平面図である。It is a typical top view which shows the air conditioning system of 3rd Embodiment. 第4実施形態の空調システムを示す正面図である。It is a front view which shows the air conditioning system of 4th Embodiment. 第4実施形態の空調システムを示す側面図である。It is a side view which shows the air conditioning system of 4th Embodiment. 第4実施形態の空調システムを示す平面図である。It is a top view which shows the air conditioning system of 4th Embodiment. 第5実施形態の空調システムを示す正面図である。It is a front view which shows the air conditioning system of 5th Embodiment. 第5実施形態の空調システムを示す側面図である。It is a side view which shows the air conditioning system of 5th Embodiment. 第5実施形態の空調システムを示す模式的平面図である。It is a schematic plan view which shows the air conditioning system of 5th Embodiment. 第6実施形態の空調システムを示す断面図である。It is sectional drawing which shows the air conditioning system of 6th Embodiment. 第6実施形態の空調システムを示す模式的平面図である。It is a schematic plan view which shows the air conditioning system of 6th Embodiment. 分図(a)は平板型の輻射冷暖房装置の平面図、分図(b)は分図(a)のF−F切断線における断面図である。The partial view (a) is a plan view of a flat plate type radiation cooling and heating device, and the partial view (b) is a sectional view taken along the line FF of the partial view (a). 分図(b)はスタンド型の輻射冷暖房装置の正面図、分図(a)は分図(b)のG−G切断線における断面図である。The partial view (b) is a front view of a stand-type radiant cooling and heating device, and the partial view (a) is a cross-sectional view taken along the line GG of the partial view (b).

1.第1実施形態
本発明の第1実施形態を図1〜図6を参照して説明する。
図1は、第1実施形態の空調システム1aの全体構成を模式的に示す図である。例えば、この空調システム1aは、温暖地において地中の相対的に低い温度を利用した冷房システムとして用いることができる。
1. First Embodiment A first embodiment of the present invention will be described with reference to FIGS.
Drawing 1 is a figure showing typically the whole air-conditioning system 1a composition of a 1st embodiment. For example, the air conditioning system 1a can be used as a cooling system that uses a relatively low temperature in the ground in a warm region.

図1に示す空調システム1aは、電力を必要としない平板型熱交換器2に伝熱パイプ3を取り付け、この伝熱パイプ3に第2熱交換媒体である循環水を循環させ、平板型熱交換器2と循環水の間で熱交換を行なって空調空間の空調を行なう空調パネル4を備えている。そして、空調パネル4の伝熱パイプ3は、自然エネルギーとしての地熱を用いた一次熱交換手段(縦型パイプ式地中熱交換器5)に接続されており、空調パネル4から循環した循環水が一次熱交換手段で熱交換されるようになっている。さらに、一次熱交換手段は、電力をエネルギー源とする二次熱交換手段(循環水温調整装置)に接続されており、一次熱交換手段から循環した循環水を、空調パネル4による空調に適した温度となるように、二次熱交換手段で調整することができるようになっている。
以下、空調システム1aを構成する上記各部ごとに、その構造及び作用等を説明する。
The air-conditioning system 1a shown in FIG. 1 attaches a heat transfer pipe 3 to a flat plate heat exchanger 2 that does not require electric power, and circulates circulating water that is a second heat exchange medium in the heat transfer pipe 3 so that the flat plate heat An air conditioning panel 4 is provided that performs heat exchange between the exchanger 2 and the circulating water to air-condition the air-conditioned space. The heat transfer pipe 3 of the air conditioning panel 4 is connected to primary heat exchange means (vertical pipe type underground heat exchanger 5) using geothermal heat as natural energy, and the circulating water circulated from the air conditioning panel 4 The heat is exchanged by the primary heat exchange means. Further, the primary heat exchange means is connected to secondary heat exchange means (circulation water temperature adjusting device) using electric power as an energy source, and the circulating water circulated from the primary heat exchange means is suitable for air conditioning by the air conditioning panel 4. The temperature can be adjusted by the secondary heat exchange means so that the temperature is reached.
Hereinafter, the structure, operation, etc. will be described for each of the above components constituting the air conditioning system 1a.

図1〜図4を参照して空調パネル4について説明する。図2に示す空調パネル4は、第1熱交換媒体の気化と凝縮作用により熱交換を行なうため、電力を必要としない高効率の熱交換装置である平板型熱交換器2を備えている。この平板型熱交換器2は、細長い矩形の薄板状であり、長手方向と直交する幅方向に接して並べられている。   The air conditioning panel 4 will be described with reference to FIGS. The air conditioning panel 4 shown in FIG. 2 includes a flat plate heat exchanger 2 that is a high-efficiency heat exchange device that does not require electric power in order to exchange heat by vaporizing and condensing the first heat exchange medium. The flat plate heat exchanger 2 has an elongated rectangular thin plate shape and is arranged in contact with the width direction orthogonal to the longitudinal direction.

図3に示すように、空調パネル4を構成する1単位である平板型熱交換器2は、アルミ製の板状であり、その寸法は、例えば、幅Wが60mm〜90mm、長さLが2000mm、厚さtが5mm以下の薄板状であって、内部には長手方向に沿って複数本の管路11が所定間隔で幅方向に並んで形成されている。管路11の断面形状は円形でもよいし、内表面積の大きいその他の形状でもよい。管路11の両端は塞がれており、各管路11の内部には、約−100℃〜170℃の範囲で気化する第1熱交換媒体としての気化媒体液、例えばアセトン等が封入されている。この平板型熱交換器2は、内部の管路11に封入された気化媒体液を介して急速に熱伝導を行うことができ、概ね、等温性は1℃〜2℃/ m、最大熱輸送力400W、内部耐圧能力>50気圧等の機能を有しており、同じ外形状のアルミ無垢板と比較して5000倍乃至8000倍の高速伝熱機能を有している。   As shown in FIG. 3, the flat plate heat exchanger 2, which is one unit constituting the air conditioning panel 4, is an aluminum plate, and the dimensions thereof are, for example, a width W of 60 mm to 90 mm and a length L. It is a thin plate having a thickness of 2000 mm and a thickness t of 5 mm or less, and a plurality of pipelines 11 are formed in the inside along the longitudinal direction at a predetermined interval in the width direction. The cross-sectional shape of the pipe line 11 may be circular or other shapes having a large inner surface area. Both ends of the pipe line 11 are closed, and inside each pipe line 11, a vaporized medium liquid as a first heat exchange medium that vaporizes in a range of about −100 ° C. to 170 ° C., for example, acetone or the like is sealed. ing. The flat plate heat exchanger 2 can conduct heat rapidly through the vaporized medium liquid sealed in the internal pipe line 11, and generally has an isothermal property of 1 ° C. to 2 ° C./m and maximum heat transport. It has functions such as a power of 400 W and an internal pressure capacity> 50 atm, and has a high-speed heat transfer function of 5000 to 8000 times compared to a solid aluminum plate of the same outer shape.

図2及び図4(a)に示すように、幅方向に沿って並べられた各平板型熱交換器2の長手方向の両端部には、伝熱パイプ3が、その片側の表面に接して幅方向に平行にそれぞれ設けられている。伝熱パイプ3は、一体に構成されたパイプ部3aとフランジ部3bを有しており、平板型熱交換器2の端部をフランジ部3bと固定板12によって両面から挟んでボルト等の固定具により固定することにより、多数枚の平板型熱交換器2を一体化している。このため、伝熱パイプ3内の循環水の熱は確実に平板型熱交換器2に伝熱する。なお、この空調パネル4における断面丸形の伝熱パイプ3は、平板型熱交換器2の片面のみを取り付け対象とする場合の専用構成部品である。   As shown in FIG. 2 and FIG. 4 (a), the heat transfer pipe 3 is in contact with the surface of one side at both ends in the longitudinal direction of the flat plate heat exchangers 2 arranged along the width direction. Each is provided in parallel to the width direction. The heat transfer pipe 3 has a pipe portion 3a and a flange portion 3b which are integrally formed. The end portion of the flat plate heat exchanger 2 is sandwiched from both sides by the flange portion 3b and the fixing plate 12 and fixed with bolts or the like. By fixing with a tool, a large number of flat plate heat exchangers 2 are integrated. For this reason, the heat of the circulating water in the heat transfer pipe 3 is reliably transferred to the flat plate heat exchanger 2. The heat transfer pipe 3 having a round cross section in the air conditioning panel 4 is a dedicated component when only one side of the flat plate heat exchanger 2 is to be attached.

なお、図4(b)に示すように、伝熱パイプ3の形状は、上記丸型の他、方形型を選択することもできる。図4(b)に示すように、この変形例の伝熱パイプ13は、互いに平行な上面と下面を有し、断面偏平箱型で紙面垂直方向が長手形状である本体部13bと、この本体部13bの内部に長手方向に沿って設けられた複数本のパイプ部13aとを有している。この方形型の伝熱パイプ13によれば、貫通する複数本のパイプ部13aを有しているため、循環水の熱を伝える比表面積が大きく伝熱効率が高い。平板型熱交換器2に対する伝熱パイプ13の取り付けにあたっては、伝熱パイプ13の本体部13aと固定板12によって平板型熱交換器2の端部を両面から挟んで固定具により固定する。図4(b)の例では、本体部13aの下面のみに平板型熱交換器2を取付けているため、空調パネル4の放射面は2面となるが、方形型の伝熱パイプ13の本体部13aの上下両面に、それぞれ平板型熱交換器2を取付ければ、空調パネル4の放射面を4面とすることができる。   In addition, as shown in FIG.4 (b), the shape of the heat-transfer pipe 3 can also select a square type other than the said round shape. As shown in FIG. 4 (b), the heat transfer pipe 13 of this modification has a main body portion 13b having an upper surface and a lower surface that are parallel to each other, a flat box shape in cross section, and a longitudinal shape in the direction perpendicular to the paper surface. It has a plurality of pipe portions 13a provided along the longitudinal direction inside the portion 13b. According to this rectangular heat transfer pipe 13, since it has a plurality of pipe portions 13 a that penetrate therethrough, the specific surface area that transfers the heat of the circulating water is large and the heat transfer efficiency is high. When attaching the heat transfer pipe 13 to the flat plate heat exchanger 2, the end portion of the flat plate heat exchanger 2 is sandwiched from both sides by the main body 13 a and the fixing plate 12 of the heat transfer pipe 13 and fixed by a fixture. In the example of FIG. 4B, since the flat plate heat exchanger 2 is attached only to the lower surface of the main body 13a, there are two radiation surfaces of the air conditioning panel 4, but the main body of the rectangular heat transfer pipe 13 is used. If the flat plate heat exchanger 2 is attached to the upper and lower surfaces of the part 13a, the radiation surface of the air conditioning panel 4 can be made to be four surfaces.

図2に示すように、幅方向に並べられて伝熱パイプ3と固定板12で挟持結合されて一体化した複数枚の平板型熱交換器2は、枠状の外周フレーム14内に取り付けられて空調パネル4を構成している。具体的には、図示しないビス等の固定手段によって伝熱パイプ3が外周フレーム14に固定されて空調パネル4を構成している。   As shown in FIG. 2, a plurality of flat plate heat exchangers 2 arranged in the width direction and sandwiched and joined by a heat transfer pipe 3 and a fixed plate 12 are mounted in a frame-shaped outer peripheral frame 14. The air conditioning panel 4 is configured. Specifically, the heat transfer pipe 3 is fixed to the outer peripheral frame 14 by a fixing means such as a screw (not shown) to constitute the air conditioning panel 4.

図1に示す例では、前述した通り、並べられた複数枚の平板型熱交換器2の長手方向の両端部に伝熱パイプ3が設けられて空調パネル4を構成しているが、この空調パネル4はパイプジョイント15によって複数基を連結することができる。図1では、2枚の空調パネル4,4が連結されている状態が示されている。このように、空調パネル4は、放熱・吸熱する面積を必要とされる性能に応じて任意に拡大・縮小することができる。なお、このパイプジョイント15は、隣接する2枚の空調パネル4,4の伝熱パイプ3,3を接続して循環水の連続的な循環を可能ならしめるとともに、隣接する2枚の空調パネル4,4を機械的に一体化する結合具としての機能も有している。空調パネル4の構成は簡素であるため、現場で必要に応じた基数の空調パネル4をパイプジョイント15で連結する組立工程は容易であり、経済的で効率のよい工事を行なうことができる。   In the example shown in FIG. 1, as described above, the heat transfer pipes 3 are provided at both ends in the longitudinal direction of the plurality of arranged flat plate heat exchangers 2 to constitute the air conditioning panel 4. A plurality of groups of the panel 4 can be connected by a pipe joint 15. FIG. 1 shows a state where two air conditioning panels 4 and 4 are connected. Thus, the air-conditioning panel 4 can arbitrarily expand and contract the area for heat dissipation and heat absorption according to the required performance. The pipe joint 15 connects the heat transfer pipes 3 and 3 of the two adjacent air conditioning panels 4 and 4 to enable continuous circulation of the circulating water, and the two adjacent air conditioning panels 4. , 4 are also mechanically integrated as a coupler. Since the configuration of the air-conditioning panel 4 is simple, the assembly process of connecting the air-conditioning panels 4 of the radix as required at the site with the pipe joint 15 is easy, and an economical and efficient construction can be performed.

図1に示す例では、連結された2基の空調パネル4,4において、伝熱パイプ3を流れる循環水の経路は並列方式となっている。すなわち、上流側の空調パネル4(図示左側)の2本の伝熱パイプ3,3から循環水がそれぞれ流入し、下流側の空調パネル4(図示右側)の2本の伝熱パイプ3,3の各上流側から循環水がそれぞれ流入し、下流側の空調パネル4の2本の伝熱パイプ3,3の各下流側から循環水がそれぞれ流出する。なお、伝熱パイプ3を流れる循環水の経路は直列方式でもよい。その場合、循環水は、上流側の空調パネル4の一方の伝熱パイプ3に流入し、これに接続された下流側の空調パネル4の一方の伝熱パイプ3を流れ、さらに下流側の空調パネル4の他方の伝熱パイプ3を流れ、さらに上流側の空調パネル4の他方の伝熱パイプ3を経て外部に流出していく。   In the example shown in FIG. 1, in the two air-conditioning panels 4 and 4 connected, the path of the circulating water flowing through the heat transfer pipe 3 is a parallel system. That is, circulating water flows in from the two heat transfer pipes 3 and 3 of the upstream air conditioning panel 4 (left side in the figure), and the two heat transfer pipes 3 and 3 in the downstream air conditioning panel 4 (right side in the figure). Circulating water flows in from each upstream side, and the circulating water flows out from the downstream sides of the two heat transfer pipes 3, 3 of the air conditioning panel 4 on the downstream side. In addition, the path | route of the circulating water which flows through the heat-transfer pipe 3 may be a serial system. In that case, the circulating water flows into one heat transfer pipe 3 of the upstream air conditioning panel 4 and flows through one heat transfer pipe 3 of the downstream air conditioning panel 4 connected thereto, and further downstream air conditioning. It flows through the other heat transfer pipe 3 of the panel 4 and then flows out through the other heat transfer pipe 3 of the air conditioning panel 4 on the upstream side.

以上の構成において、冷房時には、伝熱パイプ3の中を、空調空間よりも温度が低い冷水を循環させる。空調パネル4の平板型熱交換器2は空調空間の熱を吸熱し、伝熱パイプ3の循環水に伝熱するので、空調空間が冷房される。また、暖房時には、伝熱パイプ3の中を、空調空間よりも温度が高い温水を循環させる。空調パネル4の平板型熱交換器2は伝熱パイプ3の循環水の熱を吸熱し、空調空間に伝熱するので、空調空間が暖房される。   In the above configuration, during cooling, cold water having a temperature lower than that of the air-conditioned space is circulated through the heat transfer pipe 3. The flat plate heat exchanger 2 of the air conditioning panel 4 absorbs the heat of the air-conditioned space and transfers it to the circulating water of the heat transfer pipe 3, so that the air-conditioned space is cooled. During heating, hot water having a temperature higher than that of the air-conditioned space is circulated through the heat transfer pipe 3. The flat plate heat exchanger 2 of the air conditioning panel 4 absorbs the heat of the circulating water of the heat transfer pipe 3 and transfers it to the air conditioned space, so that the air conditioned space is heated.

図1を参照して一次熱交換手段について説明する。
図1に示す本実施形態の一次熱交換手段は、電力を使用しない再生可能エネルギー熱交換装置である縦型パイプ式地中熱交換器5である。縦型パイプ式地中熱交換器5は、循環水の流路において前記空調パネル4の下流側にあり、伝熱パイプ3に接続された循環水パイプ7に接続されており、空調パネル4から循環してきた循環水と熱交換を行なう。この縦型パイプ式地中熱交換器5は、同心状に配置された外筒16及び内筒17から成る複数基の二重管容器18によって構成されている。空調パネル4で熱交換された循環水は、第1の二重管容器18の入水口19から内筒17の上部に入水し、その下端を廻り、外筒16の底部に入って上昇し、外筒16の上部にある出水口20から連通管21を通り、隣接する他の二重管容器18の入水口19から内筒17の上部に入る。以下、循環水は、以上の説明と同様の流れで各二重管容器18の内部を順次移動していく。空調パネル4で熱交換した循環水温度は、縦型パイプ式地中熱交換器5内を循環する時間中に地中熱と熱交換することによって調整される。
The primary heat exchange means will be described with reference to FIG.
The primary heat exchange means of this embodiment shown in FIG. 1 is a vertical pipe type underground heat exchanger 5 which is a renewable energy heat exchange device that does not use electric power. The vertical pipe type underground heat exchanger 5 is downstream of the air conditioning panel 4 in the flow path of the circulating water, and is connected to the circulating water pipe 7 connected to the heat transfer pipe 3. Exchange heat with circulating water. The vertical pipe type underground heat exchanger 5 is constituted by a plurality of double-pipe containers 18 including an outer cylinder 16 and an inner cylinder 17 arranged concentrically. The circulating water heat-exchanged by the air conditioning panel 4 enters the upper part of the inner cylinder 17 from the inlet 19 of the first double-pipe container 18, goes around its lower end, rises into the bottom part of the outer cylinder 16, From the water outlet 20 at the upper part of the outer cylinder 16, it passes through the communication pipe 21 and enters the upper part of the inner cylinder 17 from the water inlet 19 of another adjacent double pipe container 18. Hereinafter, the circulating water sequentially moves inside each double tube container 18 in the same flow as described above. The temperature of the circulating water exchanged by the air conditioning panel 4 is adjusted by exchanging heat with the underground heat during the time of circulation through the vertical pipe type underground heat exchanger 5.

縦型パイプ式地中熱交換器5は、循環水の熱交換時間を必要なだけ獲得するため、外筒16及び内筒17の内径を循環水パイプ7の断面より大きくし、あるいは二重管容器18を適宜の数だけ設置するものとするが、必要な量と温度の循環水を確保できる容量であれば、二重管容器18は1基だけでも良い。   The vertical pipe-type underground heat exchanger 5 has an inner diameter of the outer cylinder 16 and the inner cylinder 17 larger than the cross section of the circulating water pipe 7 or a double pipe in order to obtain a necessary amount of heat exchange time for the circulating water. Although an appropriate number of containers 18 are installed, the number of the double pipe containers 18 may be only one as long as it has a capacity capable of securing the necessary amount and temperature of circulating water.

一次熱交換手段としてのパイプ式地中熱交換器は図1に示すような縦型のみに限定されるものではなく、図5及び図6に示すように、熱交換パイプを地中に並列配置した横型のものでもよい。この横型パイプ式地中熱交換器5aは、複数本の熱交換パイプ22を並列して並べ、各熱交換パイプ22の一端側同士を連結して循環水の入口側とし、各熱交換パイプ22の他端側同士を連結して循環水の出口側としたもので、必要な深さの地中に埋設される。この他、自然エネルギーを利用する一次熱交換手段としては、地下水槽、井戸、池、川等に投入されるフレキブルなパイプ式熱交換器(図示しない)でもよい。さらに、再生可能エネルギー熱交換装置の熱源としては、太陽光熱、地下水温あるいは温泉水温を利用することもできる。   The pipe type underground heat exchanger as the primary heat exchange means is not limited to the vertical type as shown in FIG. 1, but as shown in FIGS. 5 and 6, the heat exchange pipes are arranged in parallel in the ground. It may be a horizontal type. In this horizontal pipe type underground heat exchanger 5a, a plurality of heat exchange pipes 22 are arranged in parallel, and one end side of each heat exchange pipe 22 is connected to be an inlet side of circulating water. The other end sides of the two are connected to form the outlet side of the circulating water, and are buried in the ground at a necessary depth. In addition, as a primary heat exchange means using natural energy, a flexible pipe-type heat exchanger (not shown) that is put into a groundwater tank, a well, a pond, a river, or the like may be used. Furthermore, solar heat, underground water temperature, or hot spring water temperature can be used as a heat source of the renewable energy heat exchange device.

一次熱交換手段の熱源温度は、空調に適した循環水温度に近いほど、後述する二次熱交換手段の循環水温調整装置6の消費電力量を節約することができる。再生可能エネルギーを利用した一次熱交換手段の熱源として、冷房時は空調温度より低い温度の地中熱、地下水熱が好ましく、暖房時は空調温度より高い温度の太陽熱温水、温泉水などが好ましい。   As the heat source temperature of the primary heat exchange means is closer to the circulating water temperature suitable for air conditioning, the power consumption of the circulating water temperature adjusting device 6 of the secondary heat exchange means described later can be saved. As the heat source of the primary heat exchange means using renewable energy, underground heat and groundwater heat at temperatures lower than the air conditioning temperature are preferable during cooling, and solar hot water and hot spring water at temperatures higher than the air conditioning temperature are preferable during heating.

しかし再生可能エネルギーの熱源となる地中温度、地下水温度は、たとえば、地下水温度の場合、沖縄では20℃〜24℃程度、沖縄県外の地域においては18℃〜24℃程度で、地域によって異なる。太陽熱温水器の温水温度は30℃〜60℃程度で、温泉水温度は25℃以上である。   However, the underground temperature and groundwater temperature, which are heat sources for renewable energy, vary depending on the region, for example, in the case of groundwater temperature, about 20 ° C to 24 ° C in Okinawa and about 18 ° C to 24 ° C in regions outside Okinawa Prefecture. The hot water temperature of the solar water heater is about 30 ° C to 60 ° C, and the hot spring water temperature is 25 ° C or higher.

このような種々の温度の自然熱源を利用する一次熱交換手段で熱交換された後の循環水の温度は、最終的に空調に適した循環水温度に調整して空調パネル4に安定的に提供するために、後述する二次熱交換手段の循環水温調整装置6において再調整する必要がある。   The temperature of the circulating water after the heat exchange by the primary heat exchanging means using such natural heat sources of various temperatures is adjusted to the circulating water temperature suitable for the air conditioning in a stable manner in the air conditioning panel 4. In order to provide, it is necessary to readjust in the circulating water temperature adjusting device 6 of the secondary heat exchange means mentioned later.

図1に示すように、縦型パイプ式地中熱交換器5で熱交換した循環水は、循環水パイプ7を経て貯槽としての貯水槽8に送られる。貯水槽8は、本システム内における循環水の量を自動的に補充する機能を有している。貯水槽8の下流側には、循環水パイプ7を介して二次熱交換手段としての循環水温調整装置6が接続されている。循環水温調整装置6は循環水ポンプを含み、前記一次熱交換手段である縦型パイプ式地中熱交換器5から循環した循環水を空調パネル4による空調に適した温度となるように調整し、本空調システム1aの循環系に送り出す装置であり、一般の市場で販売されているヒートポンプを循環水温調整用に改造したものである。循環水温調整装置6には、電源9を有する操作ユニット10が接続されており、循環水を必要に応じた温度に設定し、また循環水の循環水量を必要量となるよう任意に設定できるようになっている。そして、循環水温調整装置6の循環水の下流側は、循環水パイプ7を介して空調パネル4の伝熱パイプ3の最上流側に接続されている。
なお、本装置1a内の循環水パイプ7は遮熱防護を施しており、外気温度の影響を少なくして、循環水温度のロスを可及的に抑止している。
As shown in FIG. 1, the circulating water heat-exchanged by the vertical pipe type underground heat exchanger 5 is sent to a water storage tank 8 as a storage tank through a circulating water pipe 7. The water storage tank 8 has a function of automatically replenishing the amount of circulating water in the present system. A circulating water temperature adjusting device 6 as a secondary heat exchange means is connected to the downstream side of the water storage tank 8 through a circulating water pipe 7. The circulating water temperature adjusting device 6 includes a circulating water pump, and adjusts the circulating water circulated from the vertical pipe type underground heat exchanger 5 serving as the primary heat exchange means to a temperature suitable for air conditioning by the air conditioning panel 4. This is a device for sending out to the circulation system of the air conditioning system 1a, which is a heat pump sold in the general market and modified for adjusting the circulating water temperature. An operation unit 10 having a power source 9 is connected to the circulating water temperature adjusting device 6 so that the circulating water can be set to a temperature as required, and the circulating water amount can be arbitrarily set to a required amount. It has become. The downstream side of the circulating water of the circulating water temperature adjusting device 6 is connected to the most upstream side of the heat transfer pipe 3 of the air conditioning panel 4 via the circulating water pipe 7.
In addition, the circulating water pipe 7 in this apparatus 1a is providing the heat-shielding protection, the influence of outside temperature is reduced and the loss of circulating water temperature is suppressed as much as possible.

次に、以上説明した本実施形態の空調システム1aの作用について説明する。
本発明の空調システム1aによれば、循環水温調整装置6の循環水ポンプによって循環水が空調システム1a内を循環し、空調パネル4に設けられた伝熱パイプ3を通過していく。これにより、循環水の熱は、平板型熱交換器2の第1熱交換媒体を介して、空調空間の温度と熱交換される。平板型熱交換器2において熱交換された循環水は、一次熱交換手段である縦型パイプ式地中熱交換器5で熱交換された後に貯水槽8に貯留され、さらに二次熱交換手段である循環水温調整装置6において熱交換され、空調に適した温度に調整される。そして、空調に適した温度に調整された循環水が、循環水温調整装置6の循環水ポンプによって、上述したように再度各装置、設備を連続して循環することにより、空調空間の空調が継続されていく。
Next, the effect | action of the air conditioning system 1a of this embodiment demonstrated above is demonstrated.
According to the air conditioning system 1 a of the present invention, the circulating water circulates in the air conditioning system 1 a by the circulating water pump of the circulating water temperature adjusting device 6 and passes through the heat transfer pipe 3 provided in the air conditioning panel 4. Thereby, the heat of circulating water is heat-exchanged with the temperature of air-conditioning space via the 1st heat exchange medium of the flat plate type heat exchanger 2. The circulating water heat-exchanged in the flat plate heat exchanger 2 is heat-exchanged in the vertical pipe-type underground heat exchanger 5 as primary heat exchange means, and then stored in the water storage tank 8, and further secondary heat exchange means. In the circulating water temperature adjusting device 6, the heat is exchanged and adjusted to a temperature suitable for air conditioning. Then, the circulating water adjusted to a temperature suitable for air conditioning is continuously circulated through each device and facility again by the circulating water pump of the circulating water temperature adjusting device 6 as described above, thereby continuing air conditioning in the air-conditioned space. It will be done.

なお、本空調システム1aを冷房用に使用する場合、運転開始当初は、循環水温調整装置6を十分な負荷をかけて運転することにより空調空間の室温を比較的短い時間で目標値まで下げ、その後、循環水温調整装置6の負荷を下げて一定の状態で運転することが好ましい。この場合、縦型パイプ式地中熱交換器5による循環水の冷却効果が得られるため、循環水温調整装置6における電力消費を少なくしても、一度目標値に達した空調空間の温度を地下の冷熱の効果によって維持することができる。   When the air conditioning system 1a is used for cooling, at the beginning of operation, the circulating water temperature adjusting device 6 is operated with a sufficient load to lower the room temperature of the conditioned space to the target value in a relatively short time. Thereafter, it is preferable to operate in a constant state by reducing the load of the circulating water temperature adjusting device 6. In this case, since the cooling effect of the circulating water by the vertical pipe type underground heat exchanger 5 can be obtained, the temperature of the air-conditioned space that has once reached the target value can be reduced underground even if the power consumption in the circulating water temperature adjusting device 6 is reduced. Can be maintained by the effect of cold heat.

このように、空調パネル4で熱交換されて温度が変化した循環水は、縦型パイプ式地中熱交換器5で再生可能エネルギーを利用して熱交換することにより、温度がある程度調整されてから循環水温調整装置6に送られるため、循環水温調整装置6で行う電力を利用して行なわれる循環水の調整温度差が縮小され、循環水温調整装置6の消費電力量が削減される。   Thus, the temperature of the circulating water whose temperature has been changed by the heat exchange with the air conditioning panel 4 is adjusted to some extent by exchanging heat using the renewable energy in the vertical pipe type underground heat exchanger 5. Therefore, the adjustment temperature difference of the circulating water performed using the electric power performed by the circulating water temperature adjusting device 6 is reduced, and the power consumption of the circulating water temperature adjusting device 6 is reduced.

2.第2実施形態
本発明の第2実施形態を図7を参照して説明する。
図7は、第2実施形態の空調システム1aの全体構成を模式的に示す図である。例えば、この空調システム1bは、寒冷地において太陽熱を用いた農作物栽培ハウス用の暖房システムとして用いることができる。
2. Second Embodiment A second embodiment of the present invention will be described with reference to FIG.
FIG. 7 is a diagram schematically showing the overall configuration of the air conditioning system 1a of the second embodiment. For example, the air conditioning system 1b can be used as a heating system for a crop cultivation house using solar heat in a cold region.

図7に示す空調システム1bは、前述した第1実施形態において、縦型パイプ式地中熱交換器5に替えて、自然エネルギーを用いた一次熱交換手段として太陽熱温水器25を設けたものであり、その他の構成は第1実施形態と同一であるので説明を省略する。太陽熱温水器25は、集束した多数本の集熱パイプ26に温水パイプ27を取り付けたものである。空調パネル4の下流側に接続した循環水パイプ7を、太陽熱温水器25の温水パイプ27の上流側に接続し、温水パイプ27の下流側を貯水槽8に接続する。なお、図7中に「温水供給」と示すように、温水パイプ27の下流側に接続した循環水パイプ7を分岐させ、温水の一部を取り出して別用途に供することができるようにしてもよい。   The air conditioning system 1b shown in FIG. 7 is provided with a solar water heater 25 as a primary heat exchange means using natural energy instead of the vertical pipe type underground heat exchanger 5 in the first embodiment described above. Since other configurations are the same as those of the first embodiment, description thereof is omitted. The solar water heater 25 is obtained by attaching a hot water pipe 27 to a large number of converged heat collecting pipes 26. The circulating water pipe 7 connected to the downstream side of the air conditioning panel 4 is connected to the upstream side of the hot water pipe 27 of the solar water heater 25, and the downstream side of the hot water pipe 27 is connected to the water storage tank 8. In addition, as shown as "warm water supply" in FIG. 7, the circulating water pipe 7 connected to the downstream side of the warm water pipe 27 may be branched so that a part of the warm water can be taken out and used for another purpose. Good.

本実施形態によれば、循環水の熱は空調パネル4の平板型熱交換器2で吸収され、空調空間に放出されて暖房に供される。そして、空調パネル4で熱交換されて温度が低下した循環水は、太陽熱温水器25で太陽熱を利用して加熱され、温度がある程度上昇してから循環水温調整装置6に送られる。このため、再び暖房のために空調パネル4に送るべき循環水の温度と、太陽熱で温められて送られてくる循環水の温度差は小さくなるため、循環水温調整装置6で循環水を加熱するために消費される電力は少なくて済む。   According to the present embodiment, the heat of the circulating water is absorbed by the flat plate heat exchanger 2 of the air conditioning panel 4 and is released into the air-conditioned space for heating. Then, the circulating water whose temperature has been reduced by heat exchange in the air conditioning panel 4 is heated by using the solar heat in the solar water heater 25 and is sent to the circulating water temperature adjusting device 6 after the temperature has risen to some extent. For this reason, since the temperature difference of the circulating water which should be sent to the air-conditioning panel 4 for heating again and the temperature of the circulating water heated and sent with solar heat becomes small, circulating water temperature heating apparatus 6 heats circulating water. Therefore, less power is consumed.

3.第3実施形態
第3実施形態である天井据付型冷房空調装置としての空調システム1cを図8及び図9を参照して説明する。
本実施形態の空調システム1cの基本的な構成は第1実施形態と同一である。すなわち、この空調システム1cは、平板型熱交換器2と伝熱パイプ3を有する空調パネル4と、自然エネルギーを用いた一次熱交換手段である縦型パイプ式地中熱交換器5と、貯水槽8と、二次熱交換手段である循環水温調整装置6とを備え、これら各構成部分の間で循環水パイプ7を介して循環水が循環する構成となっている。但し、空調パネル4の数は5基である。図8及び図9においては、他の実施形態と対応する構成部分については他の実施形態と同一の符号を付して他の実施形態の説明を援用し、以下では本実施形態に特有の構成を中心に説明するものとする。
3. 3rd Embodiment The air conditioning system 1c as a ceiling installation type | formula air conditioning apparatus which is 3rd Embodiment is demonstrated with reference to FIG.8 and FIG.9.
The basic configuration of the air conditioning system 1c of the present embodiment is the same as that of the first embodiment. That is, the air conditioning system 1c includes an air conditioning panel 4 having a flat plate heat exchanger 2 and a heat transfer pipe 3, a vertical pipe type underground heat exchanger 5 which is a primary heat exchange means using natural energy, A tank 8 and a circulating water temperature adjusting device 6 as secondary heat exchange means are provided, and the circulating water is circulated through the circulating water pipe 7 between these components. However, the number of air conditioning panels 4 is five. 8 and 9, components corresponding to those of the other embodiments are denoted by the same reference numerals as those of the other embodiments, and the description of the other embodiments is used. Hereinafter, configurations unique to this embodiment are described. The explanation will be focused on.

図8及び図9に示すように、天井据付型冷房空調装置である本実施形態の空調システム1cでは、各空調パネル4は天井28に近接して天井28に平行となるように天井28から吊具29によって吊られて設置されている。冷房時には循環水温度と空調空間の温度差や湿度によって、平板型熱交換器2には結露が生じる場合がある。そのため、結露水処理対策として、空調パネル4より広い面積を有する結露水受けプレート30を、各空調パネル4ごとに設備する。結露水受けプレート30は、各空調パネル4の下方に排水勾配をつけて吊具31で設置し、下方の縁側から排水する構造とする。具体的には、結露水受けプレート30の勾配下方の端部に排水管32を接続開口させて結露水を外部に排出する。   As shown in FIGS. 8 and 9, in the air conditioning system 1 c of this embodiment that is a ceiling-mounted cooling air conditioner, each air conditioning panel 4 is suspended from the ceiling 28 so as to be close to and parallel to the ceiling 28. It is installed suspended by a tool 29. During cooling, condensation may occur in the flat plate heat exchanger 2 due to the temperature difference and humidity between the circulating water temperature and the air-conditioned space. Therefore, a dew condensation water receiving plate 30 having a larger area than the air conditioning panel 4 is installed for each air conditioning panel 4 as a countermeasure for the dew condensation water treatment. The condensed water receiving plate 30 has a structure in which a drainage gradient is provided below each air-conditioning panel 4 with a hanging tool 31 and drained from the lower edge side. Specifically, the drainage pipe 32 is connected to the end of the condensed water receiving plate 30 below the gradient, and the condensed water is discharged to the outside.

図示はしないが、結露水を排出するための構造としては、前述した結露水受けプレート30を設ける構造例の他、結露水が流出する排水勾配以上に空調パネル4を傾斜させて天井に吊り下げて設置し、勾配下方の平板型熱交換器2の端部に樋を装着して排水する手段でもよい。   Although not shown in the drawings, as a structure for discharging condensed water, in addition to the above-described structure in which the condensed water receiving plate 30 is provided, the air conditioning panel 4 is inclined and suspended from the ceiling above the drainage gradient from which the condensed water flows out. May be installed and drained by attaching a gutter to the end of the flat plate heat exchanger 2 below the gradient.

図9に示すように、本実施形態では、各空調パネル4の伝熱パイプ3に流入する循環水の流れは直列方式とされているが、並列方式でも良い。   As shown in FIG. 9, in this embodiment, the flow of circulating water flowing into the heat transfer pipe 3 of each air conditioning panel 4 is a series system, but a parallel system may be used.

なお、結露水の滴下が障害とならない植物工場、農業ハウスなどに設置する場合には、結露水受けプレート30や前述した樋等の結露水排水手段は省略しても良い。   In addition, when installing in a plant factory, an agricultural house, etc. where dripping of dew condensation water does not become an obstacle, the dew condensation water draining means such as the dew condensation water receiving plate 30 and the above-described dredging may be omitted.

4.第4実施形態
第4実施形態であるスタンド型冷暖房空調装置としての空調システム1dを図10〜図12を参照して説明する。
本実施形態の空調システム1dの基本的な構成は第1実施形態と同一である。すなわち、この空調システム1dは、平板型熱交換器2と伝熱パイプ3を有する空調パネル4と、自然エネルギーを用いた一次熱交換手段(例えば縦型パイプ式地中熱交換器5)と、貯水槽8と、二次熱交換手段である循環水温調整装置6とを備え、これら各構成部分の間で循環水パイプ7を介して循環水が循環する構成となっている。但し、図10〜図12においては、空調パネル4の部分のみを図示し、その他の実施形態と同等の構成部分については図示を省略してその他の実施形態の説明を援用するものとする。
4). 4th Embodiment The air conditioning system 1d as a stand type air-conditioning air conditioning apparatus which is 4th Embodiment is demonstrated with reference to FIGS.
The basic configuration of the air conditioning system 1d of the present embodiment is the same as that of the first embodiment. That is, the air conditioning system 1d includes an air conditioning panel 4 having a flat plate heat exchanger 2 and a heat transfer pipe 3, primary heat exchange means using natural energy (for example, a vertical pipe type underground heat exchanger 5), A water storage tank 8 and a circulating water temperature adjusting device 6 as secondary heat exchange means are provided, and the circulating water is circulated through the circulating water pipe 7 between these components. However, in FIGS. 10-12, only the part of the air-conditioning panel 4 is shown in figure, About the component equivalent to other embodiment, illustration is abbreviate | omitted and the description of other embodiment shall be used.

本実施形態の空調システム1dの空調パネル4は、特に図11に現れるように、図4(b)に示す方形型の伝熱パイプ13を備えた第1実施形態の変形例に近似した構造である。すなわち図4(b)の構造では、方形型の伝熱パイプ13の片面に1枚の平板型熱交換器2を取り付けて、その2面を放射面としたが、本実施形態では、前述した方形型の伝熱パイプ13の本体部13aの上下両面にそれぞれ平板型熱交換器2,2を取付けて本体部13aを挟み、本体部13aを貫通するねじ等の固定手段で固定することにより、2枚の空調パネル4によって4面の放射面を提供している。   The air-conditioning panel 4 of the air-conditioning system 1d of this embodiment has a structure similar to that of the modification of the first embodiment provided with the rectangular heat transfer pipe 13 shown in FIG. is there. That is, in the structure of FIG. 4 (b), one flat plate heat exchanger 2 is attached to one side of the rectangular heat transfer pipe 13, and the two sides are used as radiation surfaces. By attaching flat plate heat exchangers 2 and 2 to the upper and lower surfaces of the main body portion 13a of the rectangular heat transfer pipe 13 and sandwiching the main body portion 13a, and fixing with a fixing means such as a screw penetrating the main body portion 13a, Two air-conditioning panels 4 provide four radiation surfaces.

そして、図10〜図12に示すように、本実施形態の空調システム1dの空調パネル4は、外周フレーム14に取り付けられており、各空調パネル4の4つの放射面が鉛直方向(上下方向)に対して平行となるように、結露水受皿33の中に立設され、固定されている。このように、本実施形態の空調システム1dは、空調パネル4を設置面上に立てて使用するため、前述したようにスタンド型と称している。該スタンド型は空調空間床部の中央あるいは壁面寄りに設置する。従って平板型熱交換器2の放射面は、人為的な接触を受ける機会が多い。その防護のため外周フレーム14内の放射面はアルミ板(図示していない)で被覆してある。なお、結露水受皿33には、排水管32が接続されており、冷房時に生じた結露水を外部に排出できるようになっている。   10-12, the air conditioning panel 4 of the air conditioning system 1d of this embodiment is attached to the outer peripheral frame 14, and the four radiation surfaces of each air conditioning panel 4 are in the vertical direction (up and down direction). Are set up and fixed in the dew condensation water receiving tray 33 so as to be parallel to each other. Thus, since the air conditioning system 1d of this embodiment uses the air conditioning panel 4 while standing on the installation surface, it is referred to as a stand type as described above. The stand type is installed at the center of the air-conditioned space floor or near the wall surface. Therefore, the radiation surface of the flat plate heat exchanger 2 has many opportunities to receive artificial contact. For protection, the radiation surface in the outer peripheral frame 14 is covered with an aluminum plate (not shown). In addition, the drainage pipe 32 is connected to the dew condensation water receiving tray 33 so that the dew condensation water generated during cooling can be discharged to the outside.

図10〜図12に示す本実施形態の空調システム1dを冷房装置として使用する場合、循環水温調整装置6から送られる循環水(冷水)を、上側の伝熱パイプ3の一端から投入し、上側の伝熱パイプ3の他端から連絡パイプ34を介して下側の伝熱パイプ3の他端に循環水を循環させ、下側の伝熱パイプ3の一端から循環水を排出させて一次熱交換手段に帰還させる。また、暖房装置とする場合は、逆に下側の循環水温伝熱パイプ3から循環水(温水)を投入し、冷房時とは逆に上側の伝熱パイプ3から循環水を排出させて一次熱交換手段に帰還させる。   When the air conditioning system 1d of the present embodiment shown in FIGS. 10 to 12 is used as a cooling device, circulating water (cold water) sent from the circulating water temperature adjusting device 6 is introduced from one end of the upper heat transfer pipe 3, and the upper side Circulating water is circulated from the other end of the heat transfer pipe 3 to the other end of the lower heat transfer pipe 3 through the connecting pipe 34, and the circulating water is discharged from one end of the lower heat transfer pipe 3 to generate primary heat. Return to exchange means. In the case of a heating device, on the contrary, circulating water (hot water) is introduced from the lower circulating water temperature heat transfer pipe 3, and the circulating water is discharged from the upper heat transfer pipe 3 in the opposite direction to the cooling. Return to heat exchange means.

5.第5実施形態
第5実施形態であるスタンド型冷暖房空調装置としての空調システム1eを図13〜図15により説明する。
本実施形態の空調システム1eの基本的な構成は第1実施形態と同一である。すなわち、この空調システム1eは、平板型熱交換器2と伝熱パイプ3を有する空調パネル4と、自然エネルギーを用いた一次熱交換手段である縦型パイプ式地中熱交換器5と、貯水槽8と、二次熱交換手段である循環水温調整装置6とを備え、これら各構成部分の間で循環水パイプ7を介して循環水が循環する構成となっている。但し、空調パネル4の数は図13に示すように1基又は2基(図15に示す変形例のW型)であり、その設置態様は天井から吊すのではなく、床面35上に設置するスタンド型であり、結露水受皿33を有している。また、空調パネル4は、図14に示すように、図4(a)に示す第1実施形態と同一の構造である。図13〜図15においては、その他の実施形態と対応する構成部分についてはその他の実施形態と同一の符号を付してその他の実施形態の説明を援用する。
5). 5th Embodiment The air-conditioning system 1e as a stand type air-conditioning air conditioning apparatus which is 5th Embodiment is demonstrated using FIGS.
The basic configuration of the air conditioning system 1e of this embodiment is the same as that of the first embodiment. That is, this air conditioning system 1e includes an air conditioning panel 4 having a flat plate heat exchanger 2 and a heat transfer pipe 3, a vertical pipe type underground heat exchanger 5 which is a primary heat exchange means using natural energy, A tank 8 and a circulating water temperature adjusting device 6 as secondary heat exchange means are provided, and the circulating water is circulated through the circulating water pipe 7 between these components. However, the number of the air-conditioning panels 4 is one or two as shown in FIG. 13 (the W type of the modified example shown in FIG. 15), and the installation mode is not suspended from the ceiling but installed on the floor 35. And has a dew condensation water tray 33. Moreover, the air-conditioning panel 4 is the same structure as 1st Embodiment shown to Fig.4 (a), as shown in FIG. In FIGS. 13 to 15, components corresponding to those of the other embodiments are denoted by the same reference numerals as those of the other embodiments, and descriptions of the other embodiments are incorporated.

本実施形態のスタンド型冷暖房空調装置は、図15に示すように空調空間の壁面36に沿って空調空間の床面35上に設置することができる。また、本実施形態のスタンド型冷暖房空調装置は、第3実施形態(図8及び図9)の天井据付型冷房空調装置と異なり、図4(b)、図11に示すタイプの伝熱パイプ13の両側に平板型熱交換器2をそれぞれ取り付けて2枚とし、平板型熱交換器2の放射面を4面とする構造を採用できる。従って空調空間の壁面36から離れた床面35の中央部にも設置することができるため、床面積が比較的広い空調空間の空調にも適する。また、このスタンド型冷暖房空調装置は、除湿装置としても活用できる。   As shown in FIG. 15, the stand-type cooling / heating air conditioner of this embodiment can be installed on the floor surface 35 of the air-conditioned space along the wall surface 36 of the air-conditioned space. Moreover, the stand type air conditioning apparatus of this embodiment differs from the ceiling installation type cooling air conditioner of 3rd Embodiment (FIG.8 and FIG.9), and the heat transfer pipe 13 of the type shown in FIG.4 (b) and FIG. It is possible to adopt a structure in which two flat plate heat exchangers 2 are attached on both sides of the plate, and the radiation surface of the flat plate heat exchanger 2 is four. Therefore, since it can also be installed at the center of the floor surface 35 away from the wall surface 36 of the air-conditioned space, it is also suitable for air conditioning in an air-conditioned space having a relatively large floor area. Moreover, this stand-type air conditioning air conditioner can be utilized also as a dehumidifier.

6.第6実施形態
第6実施形態である床面埋込型暖房装置としての空調システム1fを図16及び図17により説明する。
本実施形態の空調システム1fの基本的な構成は第1実施形態と同一である。すなわち、この空調システム1fは、平板型熱交換器2と伝熱パイプ3を有する空調パネル4と、自然エネルギーを用いた一次熱交換手段である縦型パイプ式地中熱交換器5と、貯水槽と、二次熱交換手段である循環水温調整装置6とを備え、これら各構成部分の間で循環水パイプ7を介して循環水が循環する構成となっている。但し、空調パネル4の数は1基であり、その設置態様は天井から吊るすのではなく、図16に示すように、空調パネル4の厚さに相当する深さの凹部40を床面35に形成し、伝熱パイプ3を下側にして該凹部40内に空調パネル4を水平に設置し、該凹部40の開口を張付床材41で覆って覆工した埋込型である。また、空調パネル4と凹部40の底部との間には充填材42を充填して空調パネル4の配置状態を安定させる。なお、空調パネル4は、特に図16に現れるように、図4(a)に示す第1実施形態と同一の構造である。図16及び図17においては、その他の実施形態と対応する構成部分についてはその他の実施形態と同一の符号を付してその他の実施形態の説明を援用する。
6). Sixth Embodiment An air conditioning system 1f as a floor-embedded heating apparatus according to a sixth embodiment will be described with reference to FIGS.
The basic configuration of the air conditioning system 1f of the present embodiment is the same as that of the first embodiment. That is, the air conditioning system 1f includes an air conditioning panel 4 having a flat plate heat exchanger 2 and a heat transfer pipe 3, a vertical pipe type underground heat exchanger 5 which is a primary heat exchange means using natural energy, A tank and a circulating water temperature adjusting device 6 as secondary heat exchange means are provided, and the circulating water is circulated through the circulating water pipe 7 between these components. However, the number of the air conditioning panels 4 is one, and the installation mode is not hung from the ceiling, but a recess 40 having a depth corresponding to the thickness of the air conditioning panel 4 is provided on the floor surface 35 as shown in FIG. It is an embedded type in which the air-conditioning panel 4 is horizontally installed in the recess 40 with the heat transfer pipe 3 facing down, and the opening of the recess 40 is covered with a covering flooring 41. Further, a filler 42 is filled between the air conditioning panel 4 and the bottom of the recess 40 to stabilize the arrangement state of the air conditioning panel 4. The air conditioning panel 4 has the same structure as that of the first embodiment shown in FIG. In FIG.16 and FIG.17, about the component corresponding to other embodiment, the code | symbol same as other embodiment is attached | subjected and description of other embodiment is used.

本実施形態の床面埋込型暖房装置によれば、空調パネル4は、伝熱パイプ3を下側にして水平に配置されるため、平板型熱交換器2の片面側の全面が放射面として張付床材41に近接した状態となる。したがって、循環水の熱が平板型熱交換器2を介して床面35から空調空間に効率的に伝達される。   According to the floor-embedded heating device of the present embodiment, the air conditioning panel 4 is disposed horizontally with the heat transfer pipe 3 on the lower side, so that the entire surface on one side of the flat plate heat exchanger 2 is the radiation surface. As shown in FIG. Therefore, the heat of the circulating water is efficiently transmitted from the floor surface 35 to the conditioned space via the flat plate heat exchanger 2.

以上説明したように、本発明の各実施形態の空調システム1a〜1fによれば、一次熱交換手段5において、地域特性に応じて採用できる再生可能エネルギー、例えば地下水、太陽熱、温泉水等を有効的に活用しているので、二次熱交換手段6による消費電力量を削減し、効果的な空調を経済的に行なうことができる。例えば、寒冷地域において暖房する場合には、空調パネル4での熱交換により温度が低下した循環水を、太陽熱温水器25や温泉水熱交換器を循環させて加熱して貯水槽8に貯えることにより、循環水温調整装置6の使用電力量を削減することができる。空調の対象となる空間には特に制限はなく、あらゆる生活・生産活動空間が対象となり、例えば通常の家屋内の居室や事務所等の他、コンピューターサーバー室、農業ハウス、植物工場、仮設プレハブハウスなどを経済的に空調することができる。   As described above, according to the air conditioning systems 1a to 1f of the embodiments of the present invention, the primary heat exchange means 5 effectively uses renewable energy that can be employed according to regional characteristics, such as groundwater, solar heat, and hot spring water. Therefore, the amount of power consumed by the secondary heat exchange means 6 can be reduced, and effective air conditioning can be performed economically. For example, when heating in a cold region, circulating water whose temperature has been lowered by heat exchange at the air conditioning panel 4 is circulated through the solar water heater 25 or hot spring water heat exchanger and heated and stored in the water storage tank 8. Thus, the amount of power used by the circulating water temperature adjusting device 6 can be reduced. There are no particular restrictions on the space that is subject to air conditioning, and all living and production activity spaces are covered. For example, in addition to ordinary living rooms and offices in homes, computer server rooms, agricultural houses, plant factories, temporary prefabricated houses Etc. can be air-conditioned economically.

7.実施例
実施形態の空調システムによって空調を行う場合の消費電力量削減実施例を説明する。
1.空調空間はコンクリート構造の壁に囲われ、床面積32m2 、壁面積59.3m2 のうち30%(17.8)は窓である。但し床面に直射日光は差し込まれないものとする。
2.空調時の外気温度は最高32℃であり、空調空間の空調設定温度は27℃とする。
3.対象空調空間の熱量、即ち輻射熱量及び対流熱量は、床面積、壁構造、空調空間の高さ、窓面積、日光直射量、外気温度等の条件により変化する。そのため、本説明においては、事前の輻射熱量調査データー等を引用し、空調空間の輻射熱量及び対流熱量は、単位床面積あたり100wと仮定する。
よって、冷暖房時の空調パネルが行う熱交換量は、対象空調空間全体で32m2 ×100w≒3200w以上が必要である。
4.実施例は第5実施形態で説明した空調システム1eであって、1基(空調パネル4)の熱放射面積は、幅1.2m×高さ2.0m×2(面)=4.8m2 である。空調パネルは、空調空間に2基設置するものとする。
5.上記空調パネルの循環水パイプの流量を23リットル/ 分と設定する。
6.空調空間の空調において、従来のファンコイル式エアーコンデショナーによれば、外気温度を室外機で空調温度に調整する。
7.本発明の空調システムは、空調パネルの循環水熱量を空調空間に放射して空調温度を調整する。この時、二次熱交換手段の温度調整装置6で行う温度調整量が少なければ少ないほど、従来の空調パネルより省エネ的となる。
8.初期運転後の、輻射熱量、対流熱量は、前述のように、諸条件によって変化するため、循環水温度は2次温度調整装置の操作ユニットによって適切な温度に自動調整する。
7). Example An example of power consumption reduction when air conditioning is performed by the air conditioning system of the embodiment will be described.
1. Conditioned space is surrounded by the walls of the concrete structure, floor area 32m 2, 30% of the wall area 59.3m 2 (17.8) is a window. However, direct sunlight should not be inserted into the floor.
2. The outside air temperature during air conditioning is a maximum of 32 ° C., and the air conditioning set temperature of the air conditioned space is 27 ° C.
3. The amount of heat in the target air-conditioned space, that is, the amount of radiant heat and the amount of convection varies depending on conditions such as the floor area, wall structure, height of the air-conditioned space, window area, direct sunlight amount, and outside air temperature. Therefore, in this description, prior radiant heat amount survey data and the like are cited, and the radiant heat amount and convective heat amount of the air-conditioned space are assumed to be 100 w per unit floor area.
Therefore, the amount of heat exchange performed by the air conditioning panel during cooling and heating needs to be at least 32 m 2 × 100 w≈3200 w in the entire target air conditioning space.
4). An example is the air-conditioning system 1e described in the fifth embodiment, and the heat radiation area of one unit (air-conditioning panel 4) is 1.2 m wide × 2.0 m × 2 (surface) = 4.8 m 2. It is. Two air-conditioning panels shall be installed in the air-conditioned space.
5). The flow rate of the circulating water pipe of the air conditioning panel is set to 23 liters / minute.
6). In the air-conditioning space, according to the conventional fan coil type air conditioner, the outside air temperature is adjusted to the air conditioning temperature by the outdoor unit.
7). The air conditioning system of the present invention adjusts the air conditioning temperature by radiating the circulating water heat amount of the air conditioning panel to the air conditioning space. At this time, the smaller the amount of temperature adjustment performed by the temperature adjustment device 6 of the secondary heat exchange means, the more energy saving is achieved than the conventional air conditioning panel.
8). As described above, the amount of radiant heat and convective heat after the initial operation varies depending on various conditions, and thus the circulating water temperature is automatically adjusted to an appropriate temperature by the operation unit of the secondary temperature adjusting device.

冷房時には、平板型熱交換器2は、空調空間の熱を吸熱して、伝熱パイプ3内の循環水に伝熱する。すなわち、空調空間において循環水の熱と空調空間の熱が交換される。これによって循環水の温度は上昇し、空調空間の温度は低下する。暖房時には、平板型熱交換器2は、伝熱パイプ3内の循環水の温熱を空調空間に放射する。その時、空調空間において循環水の熱と空調空間の熱が交換される。即ち、循環水温は低下し、空調空間の温度は上昇する。   During cooling, the flat plate heat exchanger 2 absorbs heat from the air-conditioned space and transfers it to the circulating water in the heat transfer pipe 3. That is, the heat of the circulating water and the heat of the air-conditioned space are exchanged in the air-conditioned space. As a result, the temperature of the circulating water increases and the temperature of the air-conditioned space decreases. During heating, the flat plate heat exchanger 2 radiates the heat of the circulating water in the heat transfer pipe 3 to the air-conditioned space. At that time, the heat of the circulating water and the heat of the air-conditioned space are exchanged in the air-conditioned space. That is, the circulating water temperature decreases and the temperature of the air-conditioned space increases.

前記において、循環水と空調空間では、流量23リットル/ 分あたりの循環水の温度差2℃(パネル4の循環水入口温度と、循環水出口温度の差)について、パネル4で熱交換される。その熱量は、23リットル×2℃×4180(比熱)/ 60秒≒3200Wである。
このことは、空調空間32m2 の熱交換に必要な空調熱量は3200w(32m2 ×100w/ m2 ≒3200w)以上とする空調条件を満たす。
循環水温調整装置6は、従来の空調装置であるファンコイル式エアーコンデショナーと比較して、動力を消費するファンコイルが無く、さらに自然エネルギーにおける1次温度調整によって2次温度調整の温度差を縮減するため、消費電力量の削減ができる。
In the above, in the circulating water and the air-conditioned space, heat exchange is performed at the panel 4 with respect to a temperature difference of 2 ° C. (difference between the circulating water inlet temperature of the panel 4 and the circulating water outlet temperature) per flow rate of 23 liters / minute. . The amount of heat is 23 liters × 2 ° C. × 4180 (specific heat) / 60 seconds≈3200 W.
This satisfies the air-conditioning condition that the air-conditioning heat amount necessary for heat exchange of the air-conditioned space 32 m 2 is 3200 w (32 m 2 × 100 w / m 2 ≈3200 w) or more.
The circulating water temperature adjusting device 6 has no fan coil that consumes power compared to the fan coil type air conditioner that is a conventional air conditioner, and further reduces the temperature difference of the secondary temperature adjustment by the primary temperature adjustment in natural energy. Therefore, power consumption can be reduced.

循環水温調整装置6で流量23リットル/ 分あたりの循環水温度差2℃(パネル4の入口と出口の温度差)について、循環水温調整装置6が温度調整を行なうための想定電力消費量は、循環水温調整装置動力仕様から、多く見込んでも12時間当たり約10kwH以下である。   Regarding the circulating water temperature difference 2 ° C. (temperature difference between the inlet and outlet of the panel 4) at a flow rate of 23 liters / minute in the circulating water temperature adjusting device 6, the assumed power consumption for the circulating water temperature adjusting device 6 to adjust the temperature is It is about 10 kWH or less per 12 hours from the circulation water temperature adjusting device power specifications.

前述した環境条件等において、従来のファンコイル式エアーコンデショナーによって行われる2℃の温度調整において、空調システムの動力(圧縮機、ファンコイル及び循環ポンプが消費する電力量)は1200W(システムの装置仕様から)程度を要する。この時の、空調システム想定消費電力量は、12時間当たり約14kWHとなる。   Under the environmental conditions described above, the power of the air conditioning system (the amount of power consumed by the compressor, fan coil, and circulation pump) is 1200 W (system equipment specifications) in the temperature adjustment of 2 ° C. performed by the conventional fan coil air conditioner. To) degree. At this time, the assumed power consumption of the air conditioning system is about 14 kWh per 12 hours.

したがって、本発明の空調システム1eは、従来のエアーコンデショナーと比較して、12時間当たり4kWHを削減でき、経済的である。   Therefore, the air conditioning system 1e of the present invention is economical because it can reduce 4 kWh per 12 hours as compared with the conventional air conditioner.

1a,1b,1c,1d,1e,1f…空調システム
2…平板型熱交換器
3…伝熱パイプ
3a…パイプ部
3b…フランジ部
4…空調パネル
5…一次熱交換手段としての縦型パイプ式地中熱交換器
5a…一次熱交換手段としての横型パイプ式地中熱交換器
6…二次熱交換手段としての循環水温調整装置
8…貯槽としての貯水槽
11…管路
12…固定板
13…伝熱パイプ
13a…本体部
13b…パイプ部
25…一次熱交換手段としての太陽熱温水器
DESCRIPTION OF SYMBOLS 1a, 1b, 1c, 1d, 1e, 1f ... Air conditioning system 2 ... Flat plate heat exchanger 3 ... Heat transfer pipe 3a ... Pipe part 3b ... Flange part 4 ... Air conditioning panel 5 ... Vertical pipe type as a primary heat exchange means Underground heat exchanger 5a ... Horizontal pipe type underground heat exchanger as primary heat exchange means 6 ... Circulating water temperature adjusting device as secondary heat exchange means 8 ... Reservoir tank as storage tank 11 ... Pipe line 12 ... Fixed plate 13 ... Heat transfer pipe 13a ... Body part 13b ... Pipe part 25 ... Solar water heater as primary heat exchange means

Claims (7)

第1熱交換媒体が封入された複数の管路を有する平板型熱交換器と、前記平板型熱交換器に取りつけられて第2熱交換媒体が循環する伝熱パイプとを有し、前記第1熱交換媒体と前記第2熱交換媒体の間で熱交換が行なわれる空調パネルと、
前記伝熱パイプに接続されて前記空調パネルから循環した前記第2熱交換媒体と熱交換を行なう自然エネルギーを用いた一次熱交換手段と、
前記一次熱交換手段に接続されて前記一次熱交換手段から循環した前記第2熱交換媒体を前記空調パネルによる空調に適した温度となるように調整する二次熱交換手段と、
を備えることを特徴とする空調システム。
A flat plate type heat exchanger having a plurality of pipes in which a first heat exchange medium is sealed; and a heat transfer pipe attached to the flat plate type heat exchanger and through which a second heat exchange medium circulates, An air conditioning panel in which heat is exchanged between one heat exchange medium and the second heat exchange medium;
Primary heat exchange means using natural energy connected to the heat transfer pipe and performing heat exchange with the second heat exchange medium circulated from the air conditioning panel;
Secondary heat exchange means connected to the primary heat exchange means and adjusting the second heat exchange medium circulated from the primary heat exchange means to a temperature suitable for air conditioning by the air conditioning panel;
An air conditioning system comprising:
前記空調パネルは、複数の前記平板型熱交換器を前記管路と交差する所定方向に沿って並設し、前記伝熱パイプを前記所定方向に沿って前記各平板型熱交換器の両端部の各表面に接触するように取りつけて構成したことを特徴とする請求項1記載の空調システム。 The air conditioning panel includes a plurality of the flat plate heat exchangers arranged in parallel along a predetermined direction intersecting the pipe line, and the heat transfer pipes at both ends of the flat plate heat exchangers along the predetermined direction. The air conditioning system according to claim 1, wherein the air conditioning system is configured to be in contact with each of the surfaces. 前記空調パネルにおいて、
前記伝熱パイプは、一体に構成されたパイプ部とフランジ部を有しており、
前記平板型熱交換器の前記端部を前記フランジ部と固定板によって両面から挟んで固定したことを特徴とする請求項2記載の空調システム。
In the air conditioning panel,
The heat transfer pipe has a pipe portion and a flange portion that are integrally formed,
The air conditioning system according to claim 2, wherein the end portion of the flat plate heat exchanger is fixed by being sandwiched from both sides by the flange portion and a fixing plate.
前記空調パネルにおいて、
前記伝熱パイプは、互いに平行な上面と下面を有する本体部と、前記本体部の内部に設けられたパイプ部とを有しており、
前記本体部の前記上面と前記下面に異なる前記平板型熱交換器の前記端部が固定されていることを特徴とする請求項2記載の空調システム。
In the air conditioning panel,
The heat transfer pipe has a main body portion having an upper surface and a lower surface parallel to each other, and a pipe portion provided inside the main body portion,
The air conditioning system according to claim 2, wherein the end portions of the flat plate type heat exchangers are fixed to the upper surface and the lower surface of the main body.
前記空調システムは、自然エネルギーとして地熱を利用する前記一次熱交換手段を備えた冷房用の空調システムであることを特徴とする請求項1乃至4のいずれか一つに記載の空調システム。 The air conditioning system according to any one of claims 1 to 4, wherein the air conditioning system is a cooling air conditioning system including the primary heat exchange means that uses geothermal heat as natural energy. 前記空調システムは、自然エネルギーとして太陽熱を利用する前記一次熱交換手段を備えた暖房用の空調システムであることを特徴とする請求項1乃至4のいずれか一つに記載の空調システム。 The air conditioning system according to any one of claims 1 to 4, wherein the air conditioning system is a heating air conditioning system including the primary heat exchange unit that uses solar heat as natural energy. 前記一次熱交換手段と前記二次熱交換手段の間に、前記熱交換媒体を貯える貯槽を設けたことを特徴とする請求項1乃至6のいずれか一つに記載の空調システム。 The air conditioning system according to any one of claims 1 to 6, wherein a storage tank for storing the heat exchange medium is provided between the primary heat exchange means and the secondary heat exchange means.
JP2014138748A 2014-07-04 2014-07-04 Air conditioning system Active JP6373663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014138748A JP6373663B2 (en) 2014-07-04 2014-07-04 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014138748A JP6373663B2 (en) 2014-07-04 2014-07-04 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2016017648A true JP2016017648A (en) 2016-02-01
JP6373663B2 JP6373663B2 (en) 2018-08-15

Family

ID=55233001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014138748A Active JP6373663B2 (en) 2014-07-04 2014-07-04 Air conditioning system

Country Status (1)

Country Link
JP (1) JP6373663B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018138850A (en) * 2017-02-24 2018-09-06 鹿島建設株式会社 Heat pump type cold and hot water generating device
KR20200109479A (en) * 2019-03-13 2020-09-23 부산대학교 산학협력단 Modular low-depth ground heat exchanging apparatus and installation method thereof
JP2020153654A (en) * 2018-12-25 2020-09-24 竜也 新谷 Method for using space subjected to temperature adjustment inexpensively using pet bottle
JP2021008964A (en) * 2019-06-28 2021-01-28 株式会社Ihi建材工業 Underground heat utilizing system
CN113188209A (en) * 2021-05-14 2021-07-30 中建七局安装工程有限公司 Water circulation system of mobile board room
CN114960685A (en) * 2022-07-12 2022-08-30 山东省鲁南地质工程勘察院(山东省地质矿产勘查开发局第二地质大队) Pile anchor formula supporting construction shallow layer geothermal energy utilization transformation device
CN115823647A (en) * 2022-12-30 2023-03-21 河北工业大学 Distributed multi-energy complementary cold-heat radiation heat exchange system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111678254A (en) * 2020-06-03 2020-09-18 青岛海信日立空调系统有限公司 Air source heat pump unit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4191329A (en) * 1978-04-17 1980-03-04 Solartech Systems Corporation Single-pipe hot water solar system
JPH07139767A (en) * 1993-11-12 1995-05-30 Toshiba Corp Radiation air conditioner
JP2003194346A (en) * 2001-12-28 2003-07-09 Osaka Gas Co Ltd Floor heating device
WO2007091680A1 (en) * 2006-02-10 2007-08-16 Just Thokai Co., Ltd. Snow melting structure and snow melting device for roof and pent-roof
US20080016895A1 (en) * 2006-05-19 2008-01-24 Lg Electronics Inc. Air conditioning system using ground heat
JP2010243129A (en) * 2009-04-09 2010-10-28 Asahi Kasei Homes Co Radiation cooling/heating system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4191329A (en) * 1978-04-17 1980-03-04 Solartech Systems Corporation Single-pipe hot water solar system
JPH07139767A (en) * 1993-11-12 1995-05-30 Toshiba Corp Radiation air conditioner
JP2003194346A (en) * 2001-12-28 2003-07-09 Osaka Gas Co Ltd Floor heating device
WO2007091680A1 (en) * 2006-02-10 2007-08-16 Just Thokai Co., Ltd. Snow melting structure and snow melting device for roof and pent-roof
US20080016895A1 (en) * 2006-05-19 2008-01-24 Lg Electronics Inc. Air conditioning system using ground heat
JP2010243129A (en) * 2009-04-09 2010-10-28 Asahi Kasei Homes Co Radiation cooling/heating system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018138850A (en) * 2017-02-24 2018-09-06 鹿島建設株式会社 Heat pump type cold and hot water generating device
JP2020153654A (en) * 2018-12-25 2020-09-24 竜也 新谷 Method for using space subjected to temperature adjustment inexpensively using pet bottle
KR20200109479A (en) * 2019-03-13 2020-09-23 부산대학교 산학협력단 Modular low-depth ground heat exchanging apparatus and installation method thereof
KR102196024B1 (en) * 2019-03-13 2020-12-29 부산대학교 산학협력단 Modular low-depth ground heat exchanging apparatus and installation method thereof
JP2021008964A (en) * 2019-06-28 2021-01-28 株式会社Ihi建材工業 Underground heat utilizing system
JP2021143821A (en) * 2019-06-28 2021-09-24 株式会社Ihi建材工業 Earth thermal utilization system
JP7004686B2 (en) 2019-06-28 2022-02-04 株式会社Ihi建材工業 Geothermal utilization system
CN113188209A (en) * 2021-05-14 2021-07-30 中建七局安装工程有限公司 Water circulation system of mobile board room
CN114960685A (en) * 2022-07-12 2022-08-30 山东省鲁南地质工程勘察院(山东省地质矿产勘查开发局第二地质大队) Pile anchor formula supporting construction shallow layer geothermal energy utilization transformation device
CN114960685B (en) * 2022-07-12 2024-04-12 山东省鲁南地质工程勘察院(山东省地质矿产勘查开发局第二地质大队) Pile anchor type supporting structure shallow layer ground temperature energy utilization transformation device
CN115823647A (en) * 2022-12-30 2023-03-21 河北工业大学 Distributed multi-energy complementary cold-heat radiation heat exchange system

Also Published As

Publication number Publication date
JP6373663B2 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
JP6373663B2 (en) Air conditioning system
JP4936726B2 (en) Geothermal air conditioning system
EP2089661B1 (en) Low energy consumption climate control system
EP3004748A1 (en) System for thermally conditioning a room inside a building
Liu et al. Development of distributed multiple‐source and multiple‐use heat pump system using renewable energy: Outline of test building and experimental evaluation of cooling and heating performance
JP6060463B2 (en) Heat pump system
JP6085431B2 (en) building
JP2012251677A (en) Heat storage air-conditioning system
WO2015094102A1 (en) Construction comprising a building structure and a ground-based heat storage
Hawks et al. Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems
JP2003120949A (en) Heat accumulating device of building and building having it
US11092345B2 (en) Central solar water heater system for a multi story building
Lokapure et al. Energy conservation through roof surface evaporative cooling for air conditioning system
JP2008304167A (en) Hot-water supply facility for multiple dwelling house
KR101631503B1 (en) Heating and cooling and hot water supplying apparatus using geothermy
US20240125505A1 (en) Thermal energy unit for quasi-autonomous climate control
JP2007319089A (en) Heating device of agricultural greenhouse
Dumas et al. Zero emission temporary habitation: Analysis of a passive container housing system acclimatized by geothermal water
JP2005300120A (en) Heat pump heating system of high efficiency by low-temperature water
KR20170126356A (en) Cooling and Heating system using the Geothermal Energy
Thakkar Recent trends in non-conventional space-conditioning systems
Verma et al. Thermal Energy Applications in Net-Zero Energy Buildings
JP3196117U (en) Underground heat exchanger
ES2284333B1 (en) CLIMATE CONTROL TEAM.
Snezhko Creation of an energy-efficient and comfortable country house using “passive” energy sources

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170615

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180718

R150 Certificate of patent or registration of utility model

Ref document number: 6373663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250