WO2007091680A1 - Snow melting structure and snow melting device for roof and pent-roof - Google Patents

Snow melting structure and snow melting device for roof and pent-roof Download PDF

Info

Publication number
WO2007091680A1
WO2007091680A1 PCT/JP2007/052373 JP2007052373W WO2007091680A1 WO 2007091680 A1 WO2007091680 A1 WO 2007091680A1 JP 2007052373 W JP2007052373 W JP 2007052373W WO 2007091680 A1 WO2007091680 A1 WO 2007091680A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
heat
roof
snow
snow melting
Prior art date
Application number
PCT/JP2007/052373
Other languages
French (fr)
Japanese (ja)
Inventor
Hitoshi Shiga
Takao Yokoyama
Original Assignee
Just Thokai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Just Thokai Co., Ltd. filed Critical Just Thokai Co., Ltd.
Priority to JP2007557907A priority Critical patent/JP4324224B2/en
Publication of WO2007091680A1 publication Critical patent/WO2007091680A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D13/00Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage ; Sky-lights
    • E04D13/10Snow traps ; Removing snow from roofs; Snow melters
    • E04D13/103De-icing devices or snow melters

Definitions

  • the present invention relates to a snow melting structure and a snow melting device for roofs and fences that melt and remove snow accumulated on fences such as roofs and straw trees.
  • Patent Document 1 Tsujiko “Protrusions are provided on the roof surface with an appropriate interval to project the brackets, and a roof plate and a gap are provided on these brackets to support the heat generating body that also has heat pipe force.
  • a roof snow melting device in which these heating elements are fixed along the roof slope on the eaves side of the roof is disclosed.
  • Patent Document 2 states that “a group of heat pipes distributed and installed on a roof surface, a steam header pipe that communicates with each other to form an evaporation section, and a heat medium piped in the steam header pipe. There is disclosed a “heat pipe type snow melting device provided with a heating medium circulation pipe for supply, and a heating medium heating means and a heating medium feed means interposed in the heating medium circulation pipe”.
  • Patent Document 3 discloses a “hot water melting apparatus for roofs in which a hot water pipe is provided on the back surface of the roof material and the hot water is circulated to melt the roof snow”.
  • Patent Document 1 Japanese Patent Publication No. 2-48711
  • Patent Document 2 Real Fairness 3-50867
  • Patent Document 3 Japanese Utility Model Publication No. 6-43166
  • Patent Document 1 since the heating element (3) such as a heat pipe is fixed on the eave side of the roof, the snow that is formed on the eave side portion by the snow that has accumulated on the roof.
  • a snow cave (10) is formed in the bank where only the snow around the heating element melts and penetrates to the eaves. For this reason, the snowmelt water that accumulates at the place of the bank can flow down to the bottom of the eaves through the snow cave (10).
  • the snow around the snow cave (10) cannot be melted because it is in a so-called “kamakura” snow chamber, and when heavy snow falls, more snow accumulates on the bank and the amount of snow accumulation increases. It was hardened and eventually it was necessary to carry out snowfall.
  • Patent Document 2 In the technology disclosed in (Patent Document 2), the surrounding snow is melted by the heat pipe (3) arranged along the roof slope to form a snow cave, and the snow melt flows through the snow cave. Therefore, it is impossible to melt snow on the roof surface where heat noisy (3) and steam header (4) are separated, and when heavy snow falls, snow accumulates and the amount of snow accumulates. There was a problem that it was necessary.
  • the present invention solves the above-described conventional problems, and can melt and slide down roofs and repulsive forces in a soft state before tightening, which may hinder walking or running, injury, etc.
  • the object is to provide a snow melting structure for roofs and reeds that can remove snow on the entire surface safely and without spotting, and has excellent snow removal performance.
  • the snow melting structure and the snow melting apparatus for roofs and fences of the present invention have the following configurations.
  • the snow melting structure of a roof or a fence according to claim 1 of the present invention is a snow melting structure of a roof or a fence provided with a heat nove arranged on the roof or the fence, and the heat pipe is additionally provided with a heat source pipe or And a plurality of substantially parallel heat pipe branch pipes branched from the header pipe force, wherein the heat pipe branch pipes are substantially perpendicular to the gradient direction of the roof or fence. It is arranged and has a structure.
  • header pipes are branched so that multiple heat pipe branch pipes cover the installation surface of the roof and fence, the area of the roof and fence can be increased even if the header pipe length is short.
  • the heater pipe can be heated, so the header pipe can be shortened. For this reason, the length of the heat source pipe penetrating or attached to the header pipe can be shortened, the path of the heat source pipe arranged on the roof is shortened, and the pipe friction resistance is reduced. Since it requires only a small output, driving the pump requires little energy and can reduce running costs.
  • a header pipe is provided on one side of a plurality of heat pipe branch pipes arranged substantially in parallel, and a heat pipe branch pipe is provided on the left and right with the header portion as the center. It is possible to use a heat pipe branch pipe provided with header pipes on both sides.
  • a wick having a predetermined thickness or depth can be provided on all or part of the inner wall of the header pipe or the heat pipe branch pipe.
  • the wick sintered metal, wire mesh, metal fiber, glass fiber, and many thin grooves are used.
  • the header pipe and the heat pipe branch pipe have a substantially rectangular cross section perpendicular to the longitudinal direction of the header pipe and the heat pipe branch pipe so that the upper surface is flattened in order to increase the heat transfer area to the roof surface. It is preferably formed in a substantially rectangular shape, a substantially triangular shape, a substantially oval shape, or a substantially semicircular shape. If a header pipe or heat pipe branch pipe with a substantially circular cross section is used, a flat plate is fixed to the upper surface by welding or the like. If this is the case, the heat transfer area to the roof surface can be expanded in the same way as when using a header pipe or heat pipe branch pipe with a flat top surface.
  • the material of the header pipe and the heat pipe branch pipe is made of copper, stainless steel, aluminum, magnesium, titanium, or other metal.
  • HCFC 141b and 142b HCFC solvents, HFC134a, etc.—freeze up to around 30 ° C in the heat pipe! RU
  • the material of the heat source pipe copper, stainless steel, aluminum, magnesium, titanium, or other metal is used.
  • Well water, hot spring water, groundwater, etc. that are heated by geothermal heat and maintained at a constant temperature throughout the year can be used as the heat medium that is introduced into the heat source pipe and heats the header pipe.
  • river water, wastewater from factories and households can be used.
  • antifreeze liquid heated by geothermal heat or drainage can be used.
  • the heat source pipe is penetrated or attached to the header pipe, but is preferably penetrated.
  • the heat of the heat medium is transferred to the working fluid of the heat pipe through the wall surface of the heat source pipe, but when the heat source pipe is added to the header pipe, the heat source pipe This is because heat is transferred to the working fluid of the heat pipe through the wall surface and the wall surface of the header pipe, resulting in loss.
  • the heat pipe branch pipes are arranged so as to intersect at an angle of 60 to 90 °, preferably 70 to 90 ° with respect to the gradient direction of the roof, substantially perpendicular to the gradient direction of the roof or fence.
  • the placement angle decreases by 70 °, the snow melt from the snow on the heat pipe branch becomes easier to flow along the heat pipe along the heat pipe, and only the snow around the heat pipe branch melts.
  • a snow cave that penetrates to the eaves is formed, and the snow surrounding the snow cave tends to remain on the roof, and the snow accumulates one after another to be compacted.
  • the angle is smaller than 60 °, this tendency becomes remarkable, which is not preferable.
  • the invention according to claim 2 of the present invention is the snow melting structure of the roof or the fence according to claim 1, wherein both ends of each of the heat pipe branch pipes are arranged with a space therebetween. To two of the above It has a configuration communicating with each of the pipe tubes.
  • the invention according to claim 3 of the present invention is the snow melting structure of the roof or fence according to claim 1 or 2, wherein a cross section perpendicular to a longitudinal direction of the header pipe and the heat pipe branch pipe is provided.
  • the upper surface is formed in any one of a substantially rectangular shape, a substantially rectangular shape, a substantially triangular shape, a substantially oval shape, and a substantially semicircular shape, and the upper surface is flat and wide.
  • the header pipe and the heat pipe branch pipe have a substantially rectangular cross section, a substantially square shape, a substantially triangular shape, a substantially oval shape, or a substantially semicircular cross section, and a flat upper surface (heat transfer surface). Therefore, the heat transfer surface between the header pipe and the far-infrared radiation plate of the heat pipe branch pipe can be increased, and the heat transfer efficiency with the roof surface can be increased.
  • the four outer surfaces of the header pipe and the heat pipe branch pipe can be flattened. Therefore, when a heat dispersion member made of aluminum or the like that transmits heat from the heat pipe is fitted between the heat pipe branch pipes, the side surface of the heat distribution member and the side wall of the heat pipe branch pipe are brought into contact with each other. The area can be increased, and the efficiency of heat exchange with the heat dispersion member can be increased.
  • the bottom surface of the header pipe and the heat pipe branch pipe is also formed flat, it can be stably installed on a roof surface board, a field road board, a roof tile, etc., and is excellent in workability.
  • the invention according to claim 4 of the present invention is the snow melting structure of a roof or a fence according to any one of claims 1 to 3, wherein an upper surface of the heat pipe branch pipe and the header pipe is provided. It has a configuration that includes a heat dispersion member formed between the heat pipe branch pipes and formed to be flush with or slightly lower than the upper surface! / Speak. With this configuration, in addition to the action obtained in any one of claims 1 to 3, the following action can be obtained.
  • the upper surface is formed to be flush with or slightly lower than the upper surfaces of the heat pipe branch pipe and the header pipe, and the heat dispersion member is disposed between the heat pipe branch pipes. Heat can be reliably transferred to the roof surface over the entire upper surface of the heat distribution member via the header pipe.
  • the side surface of the heat dissipating member and the side wall of the heat pipe branch pipe or header pipe can be brought into contact with each other to transfer heat from the heat pipe to the heat dissipating member so that the heat radiation area can be widened and the temperature unevenness on the roof surface is reduced. It can be done.
  • the heat pipe and the heat dissipating member can be handled like a planar panel. Since the root surface can be supported by the entire surface of the heat pipe and the heat dispersion member, it is possible to prevent the roof surface from being deformed or cracked by the weight of snow.
  • the heat dispersion member a member made of copper, stainless steel, aluminum, magnesium, titanium or other metal, mortar, concrete or other inorganic material is used.
  • those made of metal such as copper, stainless steel, aluminum, magnesium, titanium, etc. are suitable because of their high thermal conductivity.
  • the heat dissipating member is formed so that the upper surface thereof is flush or slightly lower than the upper surfaces of the heat pipe branch pipe and the header pipe.
  • the difference from the height of the upper surface of the header pipe is preferably 0 to 1 mm, preferably 0 to 0.5 mm.
  • the roof surface is deformed at the edge of the heat pipe branch pipe or header pipe due to the weight of the snow due to the step between the heat pipe branch pipe and header pipe and the heat dispersion member.
  • a snow melting device is the snow melting device according to any one of claims 1 to 4, wherein the snow melting device is used in a snow melting structure of a roof or a fence, wherein the heat pipe and the heat source are used. And a loop pipe that circulates the antifreeze collected from the hole formed in the ground connected to the pipe.
  • the antifreeze is heated to about 13 ° C with geothermal heat at a stable temperature of about 15-17 ° C throughout the year, and this antifreeze is circulated through the heat source pipe. It can be heated to about C and used for melting snow, and it does not require special energy to heat the antifreeze liquid of the heat medium and is safe and energy-saving.
  • various underground heat collecting elements can be used to collect heat from the hole formed in the ground.
  • the casing filled in about 10 to 50m underground is filled with the heat medium.
  • a pipe in the borehole or underground heat exchange and a heat source pipe are connected by a transport pipe covered with a heat insulating material to form a loop pipe.
  • An antifreeze such as ethylene glycol, propylene glycol, or aqueous potassium acetate solution is circulated in the heat source pipe as a heat medium.
  • the invention according to claim 6 of the present invention is the snow melting device according to claim 5, having a configuration in which a closed expansion tank is connected to the loop pipe.
  • the following operation can be obtained. (1) Since the expansion tank absorbs the volume change caused by the thermal expansion and contraction of the antifreeze liquid filled in the loop pipe, the loop pipe is filled with the antifreeze liquid. Can be raised to the roof.
  • the header pipe power can carry a large amount of heat to the heat pipe branch pipe in a short time, and the temperature difference between the header pipe and the heat pipe branch pipe can be made almost zero.
  • the heat transfer area can be increased, and a snow melting structure for roofs and fences with excellent heat exchange efficiency can be provided.
  • Heat pipe branch pipe and header pipe force Heat can be reliably transferred to the roof surface, and a snow melting structure of a roof or a fence with few snow spots can be provided.
  • the side surface of the heat distribution member and the side wall of the heat pipe branch pipe or header pipe can be brought into contact with each other to increase the heat radiation area, to reduce the temperature spot on the roof surface, and to reduce the snow melting spot.
  • a snow melting structure of roots and ridges can be provided.
  • the heat pipe and heat dissipating member can be handled like a planar panel, and the roof surface can be supported by the entire surface of the heat pipe and heat dissipating member. It is possible to provide a snow melting structure of a roof and a kite that is prevented from being easily opened and has excellent durability.
  • the expansion tank absorbs the volume change caused by the thermal expansion and contraction of the antifreeze liquid filled in the loop pipe, the loop pipe is filled with the antifreeze liquid. It is possible to provide a snow melting device that can raise the roof to the roof.
  • FIG. 1 is a partially broken perspective view showing a snow melting structure in which the snow melting apparatus in the first embodiment is installed on the roof of a house.
  • FIG. 2 is a plan view of a heat pipe of the snow melting device in Embodiment 1.
  • FIG. 3 Cross-sectional view of the main part of the snow melting structure of the roof obtained by vertically cutting the roof on which the snow melting device in Embodiment 1 is installed
  • FIG.4 Cross-sectional end view of main part along line A-A in Fig.3
  • FIG. 5 (a) Schematic perspective view of a heat dispersion member according to a modification.
  • FIG. 6 Plan view of heat pipe of snow melting device in embodiment 2.
  • FIG. 7 is a plan view of a heat pipe of the snow melting device in Embodiment 3.
  • FIG. 8 A snow melting structure in which the heat pipe of the snow melting device in the fourth embodiment is installed on the roof of a house. Schematic perspective view showing a state in which the roofing material is removed.
  • Fig. 1 is a partially broken perspective view showing a snow melting structure of a roof in which the snow melting device in the first embodiment is installed on the roof of a house
  • Fig. 2 is a plan view of a heat pipe of the snow melting device in the first embodiment
  • Fig. 3 is a cross-sectional view of the main part of the snow melting structure of the roof obtained by cutting the roof on which the snow melting device in Embodiment 1 is installed in the vertical direction.
  • FIG. 5 (a) is a schematic perspective view of a modified example of the heat dissipating member
  • FIG. 5 (b) is a cross-sectional view of the main part of the heat dissipating member of the modified example.
  • 1 is a snow melting device in the first embodiment installed on a gable roof 21 of a house 20, and 2 is a plurality of snow melting devices arranged in parallel on the entire surface of a roof 21 having a slope.
  • 5 is a heat source pipe to be described later
  • 6 is a connection pipe to be described later for connecting the heat source pipes 5 and 5
  • 7 is a joint connected to the heat source pipes 5 and 5 of the heat pipes 2 and 2
  • 8 Is a connecting pipe connecting the heat source pipes 5 and 5 of the heat pipes 2 and 2 connected to the joint 7 in parallel.
  • 10 is the borehole of the underground heat collecting element formed in the ground
  • 11 is a casing driven to a depth of about 10-50m underground
  • 12 is a double pipe or U-shaped pipe installed in the casing, etc.
  • the pipe 13 is covered with a heat insulating material (not shown) and connects the pipe 12 and the heat source pipes 5 and 5 to form a loop pipe
  • 14 is a pump arranged in the transport pipe 13 forming a loop pipe.
  • 15 is a branch pipe branched from the transport pipe 13, and 16 is a closed expansion tank in which the lower part is connected to the branch pipe 15 and not shown! /, And a heat medium is accommodated on the branch pipe 15 side by a diaphragm or the like. .
  • antifreeze heat medium
  • the heat source pipe 5, the connection pipe 6, the connection pipe 8, the pipe 12, the transport pipe 13, and the pump 14 are expanded. Is buffered with the heat medium in the expansion tank 16.
  • 2 is a heat pipe in which antifreezing working fluid that does not freeze up to around 30 ° C is enclosed
  • 3 and 3 are two header pipes arranged in parallel
  • 4 Is a plurality of heat pipe branch pipes whose both ends communicate with each of the two header pipes 3 and 3 and are arranged substantially in parallel.
  • a section perpendicular to the longitudinal direction of the header pipe 3 and the heat pipe branch pipe 4 is used. Surface force It is formed in the same size of a rectangular shape.
  • Reference numeral 5 denotes a heat source pipe penetrating along the longitudinal direction of the header pipe 3, and both end portions of the header pipe 3 are sealed with outer peripheral walls at both ends of the heat source pipe 5.
  • 6 is a connecting pipe that connects between the ends of the heat source pipes 5 and 5.
  • the heat pipe 2 is arranged such that the header pipe 3 is arranged along the gradient direction of the roof 21 and the heat pipe branch pipe 4 is arranged substantially orthogonal to the gradient direction of the roof 21.
  • the heat pipe branch pipe 4 can be arranged so that the angle with respect to the gradient direction of the roof 21 is in the range of 60 to 90 °, preferably 70 to 90 °.
  • the melted water melted by the heat from the heat pipe branch 4 flows in a plane on the roof material 29, so that only the snow around the heat pipe branch 4 melts and penetrates to the eaves as before. It is possible to prevent a snow cave from being formed, and the snow around the snow cave from remaining on the roof and compacted, making it impossible to remove the snow.
  • the heat medium heated in the bore hole 10 is also introduced into the eaves side force of the heat source pipe 5 of the heat pipe 2 installed on the roof 21 through the transport pipe 13, and goes up the roof 21 through the connecting pipe 6.
  • the connecting pipe 8 Down from the ridge side of the opposite heat source pipe 5, through the joint 7, the connecting pipe 8, enter from the ridge side of the heat source pipe 5 of the adjacent heat pipe 2, up the roof 21, and through the connecting pipe 6, the opposite heat source pipe It descends from the 5th building side and returns to the borehole 10 through the transport pipe 13.
  • 22 is a rafter of the roof 21, 23 is a field board installed on the rafter 22, 24 is an eavespiece mounted on the rafter 22, 26 is a plywood, made of aluminum
  • the heat pipe branch pipes 4, 4 and the header pipes 3, 3 are made of a heat conductive plate such as aluminum so that the upper surface is flush with or slightly lower than the upper surfaces of the heat pipe branch pipe 4 and the header pipe 3.
  • Heat dissipating member fitted between the heat pipe branch pipes 4, 4 and header pipes 3, 3 heat transfer, 29 is made of steel, cladding steel, alloy steel such as stainless steel, molten aluminum 'zinc Alloy-plated steel plate (galvalume steel plate), painted plate material, etc. It is a roofing material laid on the upper surface of material 28.
  • 28a is made of a metal such as aluminum, and is a thin-walled box with one side open.
  • the heat dispersion member 28b is formed of an inorganic fiber such as glass wool or rock wool, a synthetic resin such as urethane foam or expanded polystyrene, or a fiber such as a wood fiber, or the like. It is the heat insulating material fitted by the part.
  • the heat dissipating member 28a can be arranged in place of the heat dissipating member 28 with the opening fitted with the heat insulating material 28b on the base material 26 side and the flat surface on the roof material 29 side.
  • the heat dissipating member 28a of the modified example is formed in a thin box shape so that it can be made light in weight, and since the heat insulating material 28b is fitted in the opening, heat radiation to the base material 26 side is reduced. Can reduce heat loss.
  • a method of using the snow melting structure and the snow melting device in Embodiment 1 of the present invention configured as described above will be described below.
  • the heat medium in the pipe 12 of the borehole 10 is heated to about 13 ° C by underground heat of about 15-17 ° C.
  • the heating medium (antifreeze) in the heated pipe 12 is driven by the pump 14 installed in the transport pipe 13 and the building of the heat source pipe 5 of the heat pipe 2 installed on the roof 21 from the transport pipe 13 Introduce to the side.
  • the heat medium is introduced from the eaves side of the heat source pipe 5, goes down the roof 21 through the upstream connecting pipe 6 and descends from the opposite side of the heat source pipe 5 and passes through the joint 7 and the connecting pipe 8 to the adjacent heat pipe 2 Also enters the ridge side force of the heat source pipe 5 and goes up the roof 21, passes through the connecting pipe 6 and descends from the opposite side of the heat source pipe 5 and returns to the pipe 12 of the bore hole 10 through the transport pipe 13 and inside the loop pipe Circulate.
  • the condensed working fluid in the heat pipe 2 is easy to flow down to the eave side of the header pipe 3 due to gravity. Therefore, by first heating the eave side of one header pipe 3 with the heat medium, the heat possessed by the heat medium is reduced.
  • the working fluid in the header pipe 3 is given to one header pipe 3 and evaporates by force toward the heat pipe branch pipe 4 and the other header pipe 3.
  • the working fluid vapor diffuses and condenses in the heat pipe branch pipe 4 to release condensation heat, and dissipates heat to the heat dispersion member 28 and the roof material 29 through the wall of the heat pipe branch pipe 4.
  • the heat medium that has flowed through the heat source pipe 5 of one header pipe 3 then enters the ridge side force into the heat source pipe 5 of the other header pipe 3 and evaporates the working fluid in the other header pipe 3.
  • the working fluid condensed by heat exchange is returned to the header pipe 3, and the roof material 29 dissipates heat to the snow accumulated on the surface and melts.
  • the snow on the roof material 29 on the heat pipe branch pipe 4 and header pipe 3 having a high temperature is first melted, and the snow melt flows on the surface of the roof material 29 along the roof slope.
  • the bottom surface of the snow piled on the roofing material 29 surrounded by the branch pipes 4 and 4 and the header pipes 3 and 3 is snowmelt water. It is melted by. Since the roof snow on the heat pipe branch pipe 4 and header pipe 3 melts quickly, the roof snow is divided into a plurality of rectangular blocks cut out by the heat pipe branch pipe 4, 4 and header pipe 3, 3. Is done. Then, the tensile force that supported the roof snow against the gravity at the upper part is cut off, each block becomes free, and each slides out and slides down, so the roof snow can be removed.
  • Both ends of the heat pipe branch pipe 4 communicate with each of the two header pipes 3 and 3 arranged substantially in parallel, and the heat medium is transferred from the heat source pipe 5 of one header pipe 3 to the other. Since the working fluid in both header pipes 3 evaporates when flowing through the heat source pipe 5 of the header pipe 3, the heat generated by the evaporation of the working fluid in the header pipes and the transfer of latent heat accompanying condensation in the heat pipe branch pipes Is discharged in each of the two header pipes 3 and 3, the temperature spots of the heat pipe 2 can be reduced, and the snow facing the roof material 29 can be melted without spots.
  • the header pipe 3 and the heat pipe branch pipe 4 have a rectangular cross section, the four surfaces of the outer periphery of the header pipe 3 and the heat pipe branch pipe 4 can be flattened.
  • the heat transfer area can be increased.
  • a heat dispersion member 28 made of aluminum or the like is fitted between the heat nove branch pipes 4, and the side surfaces of the heat dispersion member 28 and the side walls of the heat pipe branch pipe 4 and the header pipe 3 are in surface contact.
  • the contact area can be increased and the heat exchange efficiency can be increased.
  • the header pipe 3 and the heat pipe branch pipe 4 can be stably installed on the base material 26 and have excellent workability.
  • the side surface of the heat distribution member 28 and the side wall of the heat pipe branch pipe 4 or header pipe 3 are brought into contact with each other to transfer the heat of the heat pipe branch pipe 4 or header pipe 3 to the heat distribution member 28 to widen the heat radiation area. And the temperature spots on the roofing material 29 can be reduced.
  • the roofing material 29 can be supported on the entire surface of the heat pipe 2 and the heat dissipating member 28. Therefore, it is possible to prevent the roof material 29 from being deformed by the weight of snow. In addition, the weight of the snow accumulated on the roofing material 29 causes the roofing material 29 to come into close contact with the heat pipe branch pipe 4, the header pipe 3, and the heat dispersion member 28, improving heat transfer and reliably melting the snow. be able to.
  • the heat pipe 2 and the roofing material 29 can be heated to about 2 ° C and used for melting snow. It does not require special energy to heat the heat medium, and is safe and excellent in energy saving.
  • Heat source pipe 5, connecting pipe 6, pipe in bore hole 10, pipe 12, transport pipe 13, pump 14 are filled so that the antifreeze heat medium will not break, so a simple pump With a small driving force of 14, the heat medium in the loop pipe can be raised from the borehole 10 to the roof 21 and is excellent in energy saving.
  • the expansion tank 16 Since the expansion tank 16 is connected to the branch pipe 15 branched from the transport pipe 13, the heat source pipe 5, the connection pipe 6, the connection pipe 8, the pipe 12, the transport pipe 13, and the pump 14 are filled.
  • the volume change due to expansion and contraction of the heat medium is buffered by the heat medium in the expansion tank 16, and the heat medium is interrupted in the heat source pipe 5, connection pipe 6, connection pipe 8, pipe 12, transport pipe 13, and pump 14. It can be filled so that nothing happens.
  • the heat pipe 2 is installed on the newly installed roof 21 has been described, but the heat pipe 2 may be installed on a roof such as an existing steel sheet roof.
  • the base material 26 can be placed on the surface of a roofing material such as a steel plate, and the heat pipe 2 can be installed as in the present embodiment. If tiles are formed along the roof slope direction, place a spacer with the same height as the tiles on or between the tiles. The base material 26 is installed between the spacer and the spacer, and the heat pipe 2 is installed as in the present embodiment. In some cases, the base material 26 is installed directly on the roof bar, and the heat nove 2 is installed thereon.
  • the base material 26 and the heat dispersion member 28 are integrally formed of metal such as aluminum or concrete, and are integrally formed.
  • the header pipe 3 and the heat pipe branch pipe 4 of the heat pipe 2 are fitted into the hollow.
  • the workability can be improved.
  • the roof surface of the roof 21 is provided with protrusions that prevent the melted roof snow from sliding down, and the amount of roof snow to be melted on the roof 21 is thereby reduced. You can do more.
  • FIG. 6 is a plan view of a heat pipe of the snow melting device in the second embodiment. Note that the same components as those in Embodiment 1 are denoted by the same reference numerals and description thereof is omitted.
  • 2a is a heat pipe of the snow melting device in the second embodiment
  • 4a is a plurality of heat pipe branch pipes having one end communicating with the header pipe 3 and arranged substantially in parallel
  • 5a is attached in the longitudinal direction of the header pipe 3.
  • It is a heat source pipe that is provided and formed to have substantially the same thickness as the header pipe 3.
  • the heat pipe 2a of the snow melting device in the second embodiment configured as described above has a head.
  • the da pipe 3 is arranged along the gradient direction of the roof 21, and the heat pipe branch pipe 4 a is arranged so as to be substantially orthogonal to the gradient direction of the roof 21, and is constructed in the same manner as in the first embodiment.
  • FIG. 7 is a plan view of the heat pipe of the snow melting device in the third embodiment. Note that the same components as those in Embodiment 1 are denoted by the same reference numerals and description thereof is omitted.
  • 2b is a heat pipe of the snow melting device in Embodiment 3
  • 4b is a plurality of heat pipe branch pipes with one end communicating with the header pipe 3 and arranged substantially in parallel
  • 4c is the other end of the heat pipe branch pipe 4b. It is a pressure equalizing pipe communicating with the.
  • the header pipe 3 is arranged along the gradient direction of the roof 21, and the heat pipe branch pipe 4b is arranged in the gradient direction of the roof 21. Arranged so as to be substantially orthogonal, and constructed in the same manner as in the first embodiment.
  • Figure 8 shows snow melting with the heat pipe of the snow melting device in the fourth embodiment installed on the roof of a house. It is a model perspective view which shows the state except the roof material of the structure. Note that components similar to those described in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • 2c is the heat pipe of the snow-melting device in Embodiment 4 placed on the roof of the ridge-type house 20a, and 3a and 3a are squeezed inward for a while, and the interval is temporarily A narrowed header tube.
  • 2d is the heat pipe of the snow melting device of the modified example in Embodiment 4 arranged on the roof of the house 20a
  • 3b and 3b are header pipes that are squeezed to the inside for a while and the interval is temporarily narrowed for a while. It is.
  • the header pipes 3a and 3a of the heat pipe 2a and the header pipes 3b and 3b of the heat pipe 2b are connected to a plurality of heat pipe branch pipes 4 arranged substantially in parallel at both ends, and the heat pipe branch pipe 4 Is substantially orthogonal to the slope direction of the roof, and is arranged so as to intersect with the slope direction of the roof 21 at an angle of 60 to 90 °, preferably 70 to 90 °.
  • the heat pipe of the snow melting device in the fourth embodiment is configured, it can be arranged freely on the entire surface of the roof according to the shape of the roof, and the snow on the entire surface of the roof is melted and removed. can do.
  • snow melting structure of the roof has been described in the first to fourth embodiments, similarly, by installing the snow melting device described in the first to fourth embodiments on a fence such as a straw tree, Snow melting structure can be provided.
  • the present invention relates to a snow melting structure and a snow melting apparatus for roofs and fences that melt and remove snow accumulated on fences such as roofs and firewood, etc., and melts in a soft state before being compacted.
  • the roof can be slid down from the roof or fence, and it can safely remove the entire roof without any hindrance or injury, etc. It is possible to provide a snow melting structure of snow and snow, and to provide a snow melting device that has small temperature spots and can remove snow on the installation surface without any spots and has excellent energy saving and low running cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

A snow melting structure for a roof and a pent-roof, adapted to melt snow on a roof and a pent-roof to allow the snow to slip and fall before it becomes compacted and while it is soft. The structure can safely and uniformly remove the snow on the entire surface of the roof and the pent-roof without obstructing pedestrians and traffic and without injuring them. The snow melting structure has heat pipes disposed on the roof and the pent-roof. Each of the heat pipes (2) has header pipes (3) along which heat source pipes (5) are installed or in which they are passed and also has branch heat pipes (4) branched from the header pipes (3) and disposed generally in parallel with each other. The branch heat pipes (4) are disposed generally perpendicularly to the direction of slope of the roof (21) and the pent roof.

Description

屋根や庇の融雪構造及び融雪装置  Snow melting structure and snow melting device for roof and fence
技術分野  Technical field
[0001] 本発明は、屋根や雁木等の庇に積もった雪を融カゝして除去する屋根や庇の融雪構 造及び融雪装置に関するものである。  [0001] The present invention relates to a snow melting structure and a snow melting device for roofs and fences that melt and remove snow accumulated on fences such as roofs and straw trees.
背景技術  Background art
[0002] 寒冷地における多量の積雪が社会生活に大きな影響を及ぼすことは周知の通りで あり、例えば屋根に積もった雪は家屋の倒壊の原因になるため、積雪量がある程度 以上になると雪降ろしを行う必要がある。雪降ろしはそのほとんどを人力に頼る作業 であり多大な時間と重労働を強いられ、さらに危険を伴う作業なので、高齢者世帯の 増加に伴 、大きな問題となって 、る。  [0002] It is well known that a large amount of snow in a cold region has a great impact on social life. For example, snow on a roof can cause a house to collapse. Need to do. Snowing is a task that depends on human power for the most part, is forced to take a lot of time and labor, and is also a dangerous task, so it becomes a big problem as the number of elderly households increases.
また、雪降ろしをしなくて済むように、固く締まった屋根雪を自重で自然に落下させ るため屋根の勾配を大きくした家屋もある。しかし、道路を通行する人や車にとって、 屋根力 勢い良く落下する雪の塊は、歩行や走行の妨げになるだけでなく怪我等を 引き起こす危険物となる。  In addition, there are houses with a large roof slope so that the tight snow can be dropped naturally by its own weight so that it does not have to snow. However, for people and cars traveling on the road, a lump of snow falling with a strong roof is not only a hindrance to walking and running, but also a hazard that causes injury.
このような問題を解消するため、雪降ろしを行うことなく屋根の積雪を融力して除去 する融雪装置が提案されて!ヽる。  In order to solve such problems, a snow melting device has been proposed that melts and removes snow on the roof without removing snow!
従来の技術としては、(特許文献 1)〖こ「屋根面上に適宜の間隔を設けてブラケット を突出させ、これらのブラケット上に屋根面板と隙間を設けてヒートパイプ力もなる発 熱体を支持固定し、これらの発熱体を屋根の軒側部分に屋根勾配に沿って配設した 屋根の融雪装置」が開示されている。  As a conventional technique, (Patent Document 1) Tsujiko “Protrusions are provided on the roof surface with an appropriate interval to project the brackets, and a roof plate and a gap are provided on these brackets to support the heat generating body that also has heat pipe force. A roof snow melting device in which these heating elements are fixed along the roof slope on the eaves side of the roof is disclosed.
(特許文献 2)には「屋根面上に分散して据付けたヒートパイプ群と、各ヒートパイプ 相互間を連通して蒸発部を構成する蒸気ヘッダ管と、蒸気ヘッダ管内に配管された 熱媒体供給用の熱媒循環管路と、熱媒循環管路内に介装した熱媒加熱手段及び熱 媒送流手段と、を備えたヒートパイプ式融雪装置」が開示されている。  (Patent Document 2) states that “a group of heat pipes distributed and installed on a roof surface, a steam header pipe that communicates with each other to form an evaporation section, and a heat medium piped in the steam header pipe. There is disclosed a “heat pipe type snow melting device provided with a heating medium circulation pipe for supply, and a heating medium heating means and a heating medium feed means interposed in the heating medium circulation pipe”.
(特許文献 3)には「屋根材の裏面に温水パイプを配設し温水を循環させて屋根の 融雪を行う屋根の温水融雪装置」が開示されている。 特許文献 1:特公平 2 -48711号公報 (Patent Document 3) discloses a “hot water melting apparatus for roofs in which a hot water pipe is provided on the back surface of the roof material and the hot water is circulated to melt the roof snow”. Patent Document 1: Japanese Patent Publication No. 2-48711
特許文献 2:実公平 3 - 50867号公報 Patent Document 2: Real Fairness 3-50867
特許文献 3:実開平 6— 43166号公報 Patent Document 3: Japanese Utility Model Publication No. 6-43166
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
し力しながら上記従来の技術においては、以下のような課題を有していた。  However, the conventional techniques described above have the following problems.
(1) (特許文献 1)に開示の技術は、屋根の軒側にヒートパイプカゝらなる発熱体 (3)が 固定されているので、屋根に積もった雪で軒側部分に形成される雪の堤のうち、発熱 体の周囲の雪だけが融けて軒先まで貫通する雪洞(10)が形成される。このため、堤 の個所にたまる融雪水を軒下まで雪洞(10)を通して流下させることができるので、融 雪水が棟側へと逆流して生じる「す力 Sもり」と呼ばれる漏水を防止できる。しかし、雪洞 (10)の周囲の雪は、いわゆる「かまくら」の雪室の状態になるため融かすことができ ず、大雪が降ると堤の上にさらに雪が堆積して積雪量が多くなり締め固められ、結局 は雪降ろしを行わなければならな 、と 、う課題を有して 、た。  (1) In the technology disclosed in (Patent Document 1), since the heating element (3) such as a heat pipe is fixed on the eave side of the roof, the snow that is formed on the eave side portion by the snow that has accumulated on the roof. A snow cave (10) is formed in the bank where only the snow around the heating element melts and penetrates to the eaves. For this reason, the snowmelt water that accumulates at the place of the bank can flow down to the bottom of the eaves through the snow cave (10). However, the snow around the snow cave (10) cannot be melted because it is in a so-called “kamakura” snow chamber, and when heavy snow falls, more snow accumulates on the bank and the amount of snow accumulation increases. It was hardened and eventually it was necessary to carry out snowfall.
(2) (特許文献 2)に開示の技術も、屋根勾配に沿って配設されたヒートパイプ (3)で 周囲の雪が融かされ雪洞が形成され、雪洞の中を融雪水が流れてしまうため、ヒート ノイブ (3)や蒸気ヘッダ (4)力も離れた屋根面の積雪は融かすことができず、大雪が 降るとさらに雪が堆積して積雪量が多くなり、結局は雪降ろしを行わなければならな いという課題を有していた。  (2) In the technology disclosed in (Patent Document 2), the surrounding snow is melted by the heat pipe (3) arranged along the roof slope to form a snow cave, and the snow melt flows through the snow cave. Therefore, it is impossible to melt snow on the roof surface where heat noisy (3) and steam header (4) are separated, and when heavy snow falls, snow accumulates and the amount of snow accumulates. There was a problem that it was necessary.
(3) (特許文献 3)に開示の技術は、屋根材の裏面全体に温水パイプを配設させるた め、温水パイプの経路が長くなり管摩擦抵抗が大きくなるので、出力の大きな温水循 環ポンプが必要になりポンプを駆動させるのに多大なエネルギーを要しランニングコ ストが増加すると 、う課題を有して 、た。  (3) In the technology disclosed in (Patent Document 3), since the hot water pipe is arranged on the entire back surface of the roofing material, the path of the hot water pipe becomes long and the pipe friction resistance increases, so that the hot water circulation with a large output is performed. When a pump was required and a lot of energy was required to drive the pump, and the running cost increased, there was a problem.
(4)また、温水パイプの経路が長 、ので温水パイプの下流側の温水の温度が低下し 、下流側付近では融雪できなくなると 、う課題を有して 、た。  (4) Further, since the path of the hot water pipe is long, the temperature of the hot water on the downstream side of the hot water pipe decreases, and snow melting cannot be performed in the vicinity of the downstream side.
(5) (特許文献 1)乃至 (特許文献 3)に開示の技術では、ヒートパイプの周囲の温度 だけが高くなつたり温水パイプの上流側と下流側で温度差が生じたりするので、屋根 の表面に温度斑が生じ、一晩で数十センチ以上もの大量の降雪があった場合等に は融雪できなくなると 、う課題を有して 、た。 (5) In the technologies disclosed in (Patent Document 1) to (Patent Document 3), only the temperature around the heat pipe increases, or a temperature difference occurs between the upstream side and the downstream side of the hot water pipe. When temperature spots occur on the surface and there is a large amount of snow falling over several tens of centimeters overnight. When he was unable to melt snow, he had a problem.
[0004] 本発明は上記従来の課題を解決するもので、締め固まる前の柔らかな状態のうち に融力して屋根や庇力も滑落させることができ、歩行や走行の妨げになったり怪我等 をさせたりすることもなく安全に全面の屋根雪を斑なく除去することができ除雪性に著 しく優れる屋根や庇の融雪構造を提供することを目的とする。  [0004] The present invention solves the above-described conventional problems, and can melt and slide down roofs and repulsive forces in a soft state before tightening, which may hinder walking or running, injury, etc. The object is to provide a snow melting structure for roofs and reeds that can remove snow on the entire surface safely and without spotting, and has excellent snow removal performance.
また、本発明は、温度斑力 、さく設置面の雪を斑なく除去することができるとともに、 省エネルギー性に優れランニングコストの小さな融雪装置を提供することを目的とす る。  It is another object of the present invention to provide a snow melting device that can remove temperature spots and snow on the installation surface without any spots and has excellent energy saving and low running cost.
課題を解決するための手段  Means for solving the problem
[0005] 上記従来の課題を解決するために本発明の屋根や庇の融雪構造及び融雪装置は 、以下の構成を有している。 [0005] In order to solve the above-described conventional problems, the snow melting structure and the snow melting apparatus for roofs and fences of the present invention have the following configurations.
本発明の請求項 1に記載の屋根や庇の融雪構造は、屋根や庇に配置されたヒート ノイブを備えた屋根や庇の融雪構造であって、前記ヒートパイプが、熱源管が添設 若しくは貫設されたヘッダ管と、前記ヘッダ管力 分岐した複数の略平行に配設され たヒートパイプ枝管と、を有し、前記ヒートパイプ枝管が、屋根や庇の勾配方向と略直 交して配置されて 、る構成を有して 、る。  The snow melting structure of a roof or a fence according to claim 1 of the present invention is a snow melting structure of a roof or a fence provided with a heat nove arranged on the roof or the fence, and the heat pipe is additionally provided with a heat source pipe or And a plurality of substantially parallel heat pipe branch pipes branched from the header pipe force, wherein the heat pipe branch pipes are substantially perpendicular to the gradient direction of the roof or fence. It is arranged and has a structure.
この構成により、以下のような作用が得られる。  With this configuration, the following effects can be obtained.
(1)ヘッダ管と、ヘッダ管から分岐した複数のヒートパイプ枝管と、を備えたヒートパイ プを配置しているので、熱源管に熱媒体を流してヘッダ管に熱を伝えると、ヘッダ管 内の作動流体が蒸発し多量の蒸発の潜熱を熱源管から吸収する。蒸発した蒸気はヒ ートパイプ枝管の各々で凝縮し凝縮熱を放出する。ヘッダ管とヒートパイプ枝管の各 々との間に生じた蒸気の圧力勾配によって、ヘッダ管力 分岐した各々のヒートパイ プ枝管に短時間で熱が運ばれるので、ヘッダ管とヒートパイプ枝管との温度差をほと んど無くすことができる。  (1) Since a heat pipe having a header pipe and a plurality of heat pipe branch pipes branched from the header pipe is arranged, if a heat medium is passed through the heat source pipe to transfer heat to the header pipe, the header pipe The working fluid inside evaporates and absorbs a large amount of latent heat of evaporation from the heat source tube. The evaporated vapor is condensed in each of the heat pipe branch pipes and releases heat of condensation. Due to the pressure gradient of the steam generated between the header pipe and each of the heat pipe branch pipes, heat is transferred to each heat pipe branch pipe branched into the header pipe force in a short time, so the header pipe and the heat pipe branch pipe The temperature difference with can be almost eliminated.
(2)複数の略平行に配設されたヒートパイプ枝管が、屋根や庇の勾配方向と略直交 して配置されているので、始めに、温度の高いヒートパイプ枝管とヘッダ管の上の屋 根面に積もった雪が融カされ、融雪水は屋根勾配に沿って屋根面を流れるので、ヒ ートパイプ枝管の間の屋根面に積もった雪の下面が融雪水によって融カされる。ヒー トパイプ枝管とヘッダ管の上の屋根雪は早く融けるので、屋根雪はヒートパイプ枝管 とヘッダ管で切り出されたような四角形状の複数のブロック状に分割される。そして、 屋根雪を重力に逆らって上部で支えていた引張力が切れて各ブロックが自由になり 、それぞれが滑り出して滑落するので、屋根雪を除去することができる。なお、屋根に 降った雪は積もると直ちに融カされてブロック状に分割され、締め固まる前に屋根か ら滑落していくため、屋根力も落下する雪は通常の降雪と大差ない程度の柔らかさな ので、人の歩行や車の走行の妨げになることはなく人に怪我等をさせるおそれもない (2) Since a plurality of heat pipe branch pipes arranged substantially in parallel are arranged substantially perpendicular to the slope direction of the roof or fence, first, the top of the heat pipe branch pipe and the header pipe having a high temperature are arranged. The snow piled up on the roof is melted and the melted water flows along the roof along the roof slope. Therefore, the lower surface of the snow piled on the roof between the heat pipe branches is melted by the melted water. He Since the roof snow on the top pipe branch pipe and header pipe melts quickly, the roof snow is divided into a plurality of rectangular blocks cut out by the heat pipe branch pipe and header pipe. And, the tensile force that supported the roof snow against the gravity was cut off, and each block became free, and each of them began to slide and slide down, so that the roof snow can be removed. The snow that falls on the roof is immediately melted and divided into blocks and slides down from the roof before it is compacted, so the snow that falls also has a softness that is not much different from normal snowfall. Therefore, it does not hinder people from walking or driving, and there is no risk of injury to people.
(3)複数のヒートパイプ枝管を、屋根や庇の設置面を広くカバーするようにヘッダ管 力 分岐させて 、るので、ヘッダ管の長さが短くても屋根や庇の広 、面積をヒートパ イブ枝管で加温できるため、ヘッダ管を短くすることができる。このため、ヘッダ管に 貫設又は添設された熱源管の長さも短くすることができ、屋根に配設される熱源管の 経路が短くなり管摩擦抵抗が小さくなるので、熱媒体を送るポンプは出力の小さなも ので済み、ポンプの駆動はわずかなエネルギーで済みランニングコストを低下させる ことができる。 (3) Since the header pipes are branched so that multiple heat pipe branch pipes cover the installation surface of the roof and fence, the area of the roof and fence can be increased even if the header pipe length is short. The heater pipe can be heated, so the header pipe can be shortened. For this reason, the length of the heat source pipe penetrating or attached to the header pipe can be shortened, the path of the heat source pipe arranged on the roof is shortened, and the pipe friction resistance is reduced. Since it requires only a small output, driving the pump requires little energy and can reduce running costs.
[0006] ここで、ヒートパイプとしては、略平行に配設した複数のヒートパイプ枝管の片側に ヘッダ管を配設したもの、ヘッダ部を中心に左右にヒートパイプ枝管を配設したもの、 ヒートパイプ枝管の両側にヘッダ管を配設したもの等を用いることができる。  Here, as the heat pipe, a header pipe is provided on one side of a plurality of heat pipe branch pipes arranged substantially in parallel, and a heat pipe branch pipe is provided on the left and right with the header portion as the center. It is possible to use a heat pipe branch pipe provided with header pipes on both sides.
ヘッダ管やヒートパイプ枝管の内壁の全部又は一部に所定の厚さや深さを有する ウィックを設けることができる。ウィックとしては、焼結金属,金網,金属繊維,ガラス繊 維,多数の細い溝等が用いられる。ウィックを設けることで、ヘッダ管がヒートパイプ枝 管より高い位置に配置された場合でも、ヒートパイプ枝管で凝縮した作動流体を、毛 細管現象を利用してヘッダ管まで戻して蒸発させることができドライアウトが発生する のを防止できる。  A wick having a predetermined thickness or depth can be provided on all or part of the inner wall of the header pipe or the heat pipe branch pipe. As the wick, sintered metal, wire mesh, metal fiber, glass fiber, and many thin grooves are used. By providing a wick, even when the header pipe is positioned higher than the heat pipe branch pipe, the working fluid condensed in the heat pipe branch pipe can be returned to the header pipe using the capillary phenomenon to evaporate. Can be prevented from occurring.
[0007] ヘッダ管やヒートパイプ枝管は、屋根面への伝熱面積を広げるため、上面が平らに なるように、ヘッダ管やヒートパイプ枝管の長手方向に直交する断面を略方形状、略 矩形状、略三角状、略長円状、略半円状に形成するのが好ましい。なお、断面が略 円形状のヘッダ管やヒートパイプ枝管を用いる場合は、上面に平板を溶接等で固着 すれば、上面が平らなヘッダ管やヒートパイプ枝管を用いる場合と同様に、屋根面へ の伝熱面積を広げることができる。 [0007] The header pipe and the heat pipe branch pipe have a substantially rectangular cross section perpendicular to the longitudinal direction of the header pipe and the heat pipe branch pipe so that the upper surface is flattened in order to increase the heat transfer area to the roof surface. It is preferably formed in a substantially rectangular shape, a substantially triangular shape, a substantially oval shape, or a substantially semicircular shape. If a header pipe or heat pipe branch pipe with a substantially circular cross section is used, a flat plate is fixed to the upper surface by welding or the like. If this is the case, the heat transfer area to the roof surface can be expanded in the same way as when using a header pipe or heat pipe branch pipe with a flat top surface.
[0008] ヘッダ管やヒートパイプ枝管の材質としては、銅製,ステンレス製,アルミニウム製, マグネシウム製,チタン製等の金属製等が用いられる。  [0008] The material of the header pipe and the heat pipe branch pipe is made of copper, stainless steel, aluminum, magnesium, titanium, or other metal.
ヒートパイプには、 HCFC— 141bや 142bの HCFC系溶剤, HFC134a等の— 30 °C前後まで凍結しな!ヽ不凍性の作動流体が封入されて!、る。  HCFC—141b and 142b HCFC solvents, HFC134a, etc.—freeze up to around 30 ° C in the heat pipe! RU
[0009] 熱源管の材質としては、銅製,ステンレス製,アルミニウム製,マグネシウム製,チタ ン製等の金属製等が用いられる。 [0009] As the material of the heat source pipe, copper, stainless steel, aluminum, magnesium, titanium, or other metal is used.
熱源管に導入してヘッダ管を加熱する熱媒体としては、地中熱で加温されて年間 を通してほぼ一定の水温に保たれた井戸水,温泉水,地下水等を用いることができ る。また、河川水、工場や家庭力もの排水も用いることができる。また、地中熱や排水 等で加温された不凍液等も用いることができる。これらの地中熱や排水等の排熱を利 用した熱媒体を熱源管に導入することで、熱媒体を加温するボイラ等の熱源が不要 になるので、ランニングコストを低減させることができる。  Well water, hot spring water, groundwater, etc. that are heated by geothermal heat and maintained at a constant temperature throughout the year can be used as the heat medium that is introduced into the heat source pipe and heats the header pipe. In addition, river water, wastewater from factories and households can be used. In addition, antifreeze liquid heated by geothermal heat or drainage can be used. By introducing a heat medium that uses waste heat such as underground heat or wastewater into the heat source pipe, a heat source such as a boiler that heats the heat medium becomes unnecessary, so the running cost can be reduced. .
熱源管はヘッダ管に貫設又は添設させるが、貫設させるのが好ましい。ヘッダ管に 熱源管を貫設させた場合、熱媒体の熱は、熱源管の壁面を通してヒートパイプの作 動流体に伝えられるが、ヘッダ管に熱源管を添設させた場合は、熱源管の壁面とへ ッダ管の壁面とを通してヒートパイプの作動流体に伝熱されるので、損失が生じるか らである。  The heat source pipe is penetrated or attached to the header pipe, but is preferably penetrated. When the heat source pipe is inserted through the header pipe, the heat of the heat medium is transferred to the working fluid of the heat pipe through the wall surface of the heat source pipe, but when the heat source pipe is added to the header pipe, the heat source pipe This is because heat is transferred to the working fluid of the heat pipe through the wall surface and the wall surface of the header pipe, resulting in loss.
[0010] ヒートパイプ枝管は屋根や庇の勾配方向と略直交して、屋根の勾配方向に対し 60 〜90° 好ましくは 70〜90° の角度で交わるように配置される。配置の角度が 70° 小さくなるにつれ、ヒートパイプ枝管の上の屋根雪の融雪水は、屋根面をヒートパイプ 枝管に沿って流れ易くなり、ヒートパイプ枝管の周囲の雪だけが融けて軒先まで貫通 する雪洞が形成され、雪洞の周囲の雪は屋根の上に残り雪が次々に堆積して締め 固められ除雪できなくなる傾向がみられる。角度が 60° より小さくなると、この傾向が 著しくなるため特に好ましくない。  [0010] The heat pipe branch pipes are arranged so as to intersect at an angle of 60 to 90 °, preferably 70 to 90 ° with respect to the gradient direction of the roof, substantially perpendicular to the gradient direction of the roof or fence. As the placement angle decreases by 70 °, the snow melt from the snow on the heat pipe branch becomes easier to flow along the heat pipe along the heat pipe, and only the snow around the heat pipe branch melts. A snow cave that penetrates to the eaves is formed, and the snow surrounding the snow cave tends to remain on the roof, and the snow accumulates one after another to be compacted. When the angle is smaller than 60 °, this tendency becomes remarkable, which is not preferable.
[0011] 本発明の請求項 2に記載の発明は、請求項 1に記載の屋根や庇の融雪構造であつ て、前記ヒートパイプ枝管の各々の両端部が、間隔をあけて配設された 2本の前記へ ッダ管の各々に連通した構成を有している。 [0011] The invention according to claim 2 of the present invention is the snow melting structure of the roof or the fence according to claim 1, wherein both ends of each of the heat pipe branch pipes are arranged with a space therebetween. To two of the above It has a configuration communicating with each of the pipe tubes.
この構成により、請求項 1で得られる作用に加え、以下のような作用が得られる。 (1)ヒートパイプ枝管の各々の両端部が、 2本のヘッダ管の各々に連通しているので 、ヘッダ管の熱源管に熱媒体を流してヘッダ管に熱を伝えると、ヘッダ管内の作動流 体の蒸発とヒートパイプ枝管での凝縮に伴う潜熱の授受により熱を放出するが、この 熱の授受が 2本のヘッダ管の各々で行われるので、ヒートパイプの温度斑をさらに少 なくすることができ、屋根面に面した雪をさらに斑なく融かすことができる。  With this configuration, in addition to the operation obtained in claim 1, the following operation can be obtained. (1) Since both ends of each of the heat pipe branch pipes communicate with each of the two header pipes, when a heat medium is passed through the heat source pipe of the header pipe to transfer heat to the header pipe, Heat is released by the transfer of latent heat that accompanies the evaporation of the working fluid and the condensation in the heat pipe branch pipe, but this heat transfer is performed in each of the two header pipes, further reducing the temperature spots on the heat pipe. It can be eliminated, and the snow facing the roof surface can be melted even further.
[0012] 本発明の請求項 3に記載の発明は、請求項 1又は 2に記載の屋根や庇の融雪構造 であって、前記ヘッダ管及び前記ヒートパイプ枝管の長手方向に直交する断面が略 矩形状、略方形状、略三角状、略長円状、略半円状の内のいずれかに形成され上 面が平坦で幅広に形成された構成を有して 、る。 [0012] The invention according to claim 3 of the present invention is the snow melting structure of the roof or fence according to claim 1 or 2, wherein a cross section perpendicular to a longitudinal direction of the header pipe and the heat pipe branch pipe is provided. The upper surface is formed in any one of a substantially rectangular shape, a substantially rectangular shape, a substantially triangular shape, a substantially oval shape, and a substantially semicircular shape, and the upper surface is flat and wide.
この構成により、請求項 1又は 2で得られる作用に加え、以下のような作用が得られ る。  With this configuration, in addition to the effects obtained in claim 1 or 2, the following actions can be obtained.
(1)ヘッダ管及びヒートパイプ枝管の断面が略矩形状、略方形状、略三角状、略長 円状、略半円状の内のいずれかに形成され上面 (伝熱面)が平坦で幅広に形成され て 、るので、ヘッダ管とヒートパイプ枝管の遠赤外線放射板との伝熱面を大きくするこ とができ、屋根面との熱伝達効率を高めることができる。  (1) The header pipe and the heat pipe branch pipe have a substantially rectangular cross section, a substantially square shape, a substantially triangular shape, a substantially oval shape, or a substantially semicircular cross section, and a flat upper surface (heat transfer surface). Therefore, the heat transfer surface between the header pipe and the far-infrared radiation plate of the heat pipe branch pipe can be increased, and the heat transfer efficiency with the roof surface can be increased.
[0013] ここで、ヘッダ管及びヒートパイプ枝管の長手方向に直交する断面を略矩形状又は 略方形状にすると、ヘッダ管とヒートパイプ枝管の外周の 4面を平らにすることができ るので、ヒートパイプの熱を伝えるアルミニウム製等で形成された熱分散部材をヒート パイプ枝管の間に嵌め込む場合、熱分散部材の側面とヒートパイプ枝管の側壁とを 面接触させて接触面積を広くすることができ、熱分散部材との熱交換効率を高めるこ とができる。また、ヘッダ管及びヒートパイプ枝管の底面も平らに形成されるので、屋 根面板、野路板、瓦棒等の上に安定に設置することができ施工性に優れ好ましい。  [0013] Here, if the cross section perpendicular to the longitudinal direction of the header pipe and the heat pipe branch pipe is made into a substantially rectangular shape or a substantially rectangular shape, the four outer surfaces of the header pipe and the heat pipe branch pipe can be flattened. Therefore, when a heat dispersion member made of aluminum or the like that transmits heat from the heat pipe is fitted between the heat pipe branch pipes, the side surface of the heat distribution member and the side wall of the heat pipe branch pipe are brought into contact with each other. The area can be increased, and the efficiency of heat exchange with the heat dispersion member can be increased. In addition, since the bottom surface of the header pipe and the heat pipe branch pipe is also formed flat, it can be stably installed on a roof surface board, a field road board, a roof tile, etc., and is excellent in workability.
[0014] 本発明の請求項 4に記載の発明は、請求項 1乃至 3の内いずれか 1に記載の屋根 や庇の融雪構造であって、上面が前記ヒートパイプ枝管及び前記ヘッダ管の上面と 面一乃至はわずかに低く形成され、前記ヒートパイプ枝管の間に配設された熱分散 部材を備えた構成を有して!/ヽる。 この構成により、請求項 1乃至 3の内いずれか 1で得られる作用にカ卩え、以下のよう な作用が得られる。 [0014] The invention according to claim 4 of the present invention is the snow melting structure of a roof or a fence according to any one of claims 1 to 3, wherein an upper surface of the heat pipe branch pipe and the header pipe is provided. It has a configuration that includes a heat dispersion member formed between the heat pipe branch pipes and formed to be flush with or slightly lower than the upper surface! / Speak. With this configuration, in addition to the action obtained in any one of claims 1 to 3, the following action can be obtained.
(1)上面がヒートパイプ枝管及びヘッダ管の上面と面一乃至はわずかに低く形成さ れ、ヒートパイプ枝管の間に熱分散部材が配設されているので、ヒートパイプ枝管及 びヘッダ管を介して熱分散部材の上面全体で屋根面へ確実に熱伝達させることがで きる。  (1) The upper surface is formed to be flush with or slightly lower than the upper surfaces of the heat pipe branch pipe and the header pipe, and the heat dispersion member is disposed between the heat pipe branch pipes. Heat can be reliably transferred to the roof surface over the entire upper surface of the heat distribution member via the header pipe.
(2)熱分散部材の側面とヒートパイプ枝管やヘッダ管の側壁とを接触させ、ヒートパイ プの熱を熱分散部材に伝えて放熱面積を広くすることができ、屋根面の温度斑を小 さくすることができる。  (2) The side surface of the heat dissipating member and the side wall of the heat pipe branch pipe or header pipe can be brought into contact with each other to transfer heat from the heat pipe to the heat dissipating member so that the heat radiation area can be widened and the temperature unevenness on the roof surface is reduced. It can be done.
(3)ヒートパイプ枝管及びヘッダ管の上面と熱分散部材の上面とが略面一に形成さ れるので、ヒートパイプと熱分散部材とを面状のパネルのように取り扱うことができ、屋 根面をヒートパイプと熱分散部材の全面で支持できるので、雪の重みで屋根面が変 形したり割れたりするのを防止できる。  (3) Since the upper surface of the heat pipe branch pipe and header pipe and the upper surface of the heat dissipating member are substantially flush, the heat pipe and the heat dissipating member can be handled like a planar panel. Since the root surface can be supported by the entire surface of the heat pipe and the heat dispersion member, it is possible to prevent the roof surface from being deformed or cracked by the weight of snow.
[0015] ここで、熱分散部材としては、銅製,ステンレス製,アルミニウム製,マグネシウム製 ,チタン製等の金属製、モルタル,コンクリート等の無機材料製等で形成されたもの が用いられる。特に、銅製,ステンレス製,アルミニウム製,マグネシウム製,チタン製 等の金属製で形成されたものが、熱伝導率が大きく好適である。  [0015] Here, as the heat dispersion member, a member made of copper, stainless steel, aluminum, magnesium, titanium or other metal, mortar, concrete or other inorganic material is used. In particular, those made of metal such as copper, stainless steel, aluminum, magnesium, titanium, etc. are suitable because of their high thermal conductivity.
[0016] 熱分散部材は、上面がヒートパイプ枝管及びヘッダ管の上面と面一乃至はわずか に低く形成されるが、具体的には、熱分散部材の上面の高さとヒートパイプ枝管及び ヘッダ管の上面の高さとの差は、 0〜lmm好ましくは 0〜0. 5mmであるのが好適で ある。高さの差が 0. 5mmより大きくなるにつれ、ヒートパイプ枝管及びヘッダ管と熱 分散部材の段差のために雪の重みで屋根面がヒートパイプ枝管やヘッダ管のエッジ 部分で変形したり穴が開き易くなる傾向がみられる。 1mmより大きくなるとこの傾向が 著しくなるため、特に好ましくない。  [0016] The heat dissipating member is formed so that the upper surface thereof is flush or slightly lower than the upper surfaces of the heat pipe branch pipe and the header pipe. The difference from the height of the upper surface of the header pipe is preferably 0 to 1 mm, preferably 0 to 0.5 mm. As the height difference becomes larger than 0.5 mm, the roof surface is deformed at the edge of the heat pipe branch pipe or header pipe due to the weight of the snow due to the step between the heat pipe branch pipe and header pipe and the heat dispersion member. There is a tendency for holes to easily open. Since this tendency becomes remarkable when it is larger than 1 mm, it is not particularly preferable.
[0017] 本発明の請求項 5に記載の融雪装置は、請求項 1乃至 4の内いずれか 1に記載の 屋根や庇の融雪構造で用いる融雪装置であって、前記ヒートパイプと、前記熱源管 に接続され地盤中に形成した孔部から集熱した不凍液を循環させるループ配管と、 を備えた構成を有している。 この構成により、以下のような作用が得られる。 [0017] A snow melting device according to claim 5 of the present invention is the snow melting device according to any one of claims 1 to 4, wherein the snow melting device is used in a snow melting structure of a roof or a fence, wherein the heat pipe and the heat source are used. And a loop pipe that circulates the antifreeze collected from the hole formed in the ground connected to the pipe. With this configuration, the following effects can be obtained.
(1)年間を通じて約 15〜 17°C前後と安定した温度の地中熱で不凍液を 13°C程度 に加温し、この不凍液を熱源管に循環させるので、ヒートパイプや屋根面を 2°C程度 に加温して融雪に利用でき、熱媒体の不凍液を加熱するための特別なエネルギーを 必要とせず安全で省エネルギー性に優れる。  (1) The antifreeze is heated to about 13 ° C with geothermal heat at a stable temperature of about 15-17 ° C throughout the year, and this antifreeze is circulated through the heat source pipe. It can be heated to about C and used for melting snow, and it does not require special energy to heat the antifreeze liquid of the heat medium and is safe and energy-saving.
(2)不凍液を循環させるポンプが停止した場合でも、不凍液が熱源管等の内部で凍 結するのを防止することができる。  (2) Even when the pump that circulates the antifreeze liquid stops, it is possible to prevent the antifreeze liquid from freezing inside the heat source pipe or the like.
[0018] ここで、地盤中に形成した孔部から集熱するには種々の地中採熱素子を用いること ができ、例えば、地下 10〜50m程度まで打ち込んだケーシング内に熱媒体を満たし たパイプを配設したボアホールや、螺旋状等のパイプ等で形成された地中熱交換器 を用いることができる。ボアホールは二重管タイプ、 U字管タイプ等のいずれも用いる ことができる。  [0018] Here, various underground heat collecting elements can be used to collect heat from the hole formed in the ground. For example, the casing filled in about 10 to 50m underground is filled with the heat medium. It is possible to use a borehole in which a pipe is disposed, a ground heat exchanger formed of a spiral pipe or the like. Boreholes can be either double tube type or U tube type.
ボアホール内のパイプや地中熱交^^と熱源管とを、断熱材で被覆された輸送管 で接続しループ配管を形成する。不凍液は、ボアホールや地中熱交換器のパイプ内 、輸送管内、熱源管内のループ配管内を満たしてとぎれることがないようにしておく。 これにより、ループ配管に簡単なポンプを配設すれば、少ない揚程で不凍液を容易 にボアホール力も屋根まで上げることができる。  A pipe in the borehole or underground heat exchange and a heat source pipe are connected by a transport pipe covered with a heat insulating material to form a loop pipe. Make sure that antifreeze does not break up in the boreholes, underground heat exchanger pipes, transport pipes, and loop pipes in the heat source pipes. As a result, if a simple pump is installed in the loop piping, the antifreeze can be easily raised to the roof with a small lift.
[0019] 熱源管には熱媒体として、エチレングリコール,プロピレングリコール,酢酸カリウム 水溶液等の不凍液が循環される。 [0019] An antifreeze such as ethylene glycol, propylene glycol, or aqueous potassium acetate solution is circulated in the heat source pipe as a heat medium.
[0020] 本発明の請求項 6に記載の発明は、請求項 5に記載の融雪装置であって、前記ル ープ配管に密閉式の膨張タンクが接続された構成を有して ヽる。  [0020] The invention according to claim 6 of the present invention is the snow melting device according to claim 5, having a configuration in which a closed expansion tank is connected to the loop pipe.
この構成により、請求項 5で得られる作用に加え、以下のような作用が得られる。 (1)膨張タンクがループ配管内に充填された不凍液の熱膨張 ·収縮に伴う容積変化 を緩衝するので、ループ配管内が不凍液で満たされるため、簡単なポンプを配設し て少ない揚程で不凍液を屋根まで上げることができる。  With this configuration, in addition to the operation obtained in claim 5, the following operation can be obtained. (1) Since the expansion tank absorbs the volume change caused by the thermal expansion and contraction of the antifreeze liquid filled in the loop pipe, the loop pipe is filled with the antifreeze liquid. Can be raised to the roof.
発明の効果  The invention's effect
[0021] 以上のように、本発明の屋根や庇の融雪構造及び融雪装置によれば、以下のよう な有利な効果が得られる。 請求項 1に記載の発明によれば、 [0021] As described above, according to the snow melting structure and the snow melting apparatus of the roof and the fence of the present invention, the following advantageous effects can be obtained. According to the invention of claim 1,
(1)わずかな温度差があればヘッダ管力 ヒートパイプ枝管へ多量の熱を短時間で 運ぶことができ、ヘッダ管とヒートパイプ枝管との温度差をほとんどゼロにすることがで き、温度斑がほとんど生じない屋根や庇の融雪構造を提供することができる。  (1) If there is a slight temperature difference, the header pipe power can carry a large amount of heat to the heat pipe branch pipe in a short time, and the temperature difference between the header pipe and the heat pipe branch pipe can be made almost zero. In addition, it is possible to provide a snow melting structure of a roof or a kite that hardly causes temperature spots.
(2)屋根等に降った雪は、積もると直ちにヒートパイプ枝管とヘッダ管の熱で融カされ てブロック状に分割され、締め固まる前の柔らかな状態のうちに屋根から滑落してい くため、歩行や走行の妨げになったり怪我等をさせたりすることもなく安全に屋根雪を 滑落させて除去することができる除雪性に著しく優れた屋根や庇の融雪構造を提供 することができる。  (2) Snow that falls on the roof, etc. is immediately melted by the heat of the heat pipe branch pipe and header pipe and divided into blocks, and then slides down from the roof in a soft state before compaction. Therefore, it is possible to provide a snow melting structure for roofs and reeds that is remarkably excellent in snow removal performance that can safely slide down and remove snow without hindering walking or running or causing injury. .
(3)ヘッダ管力 複数のヒートパイプ枝管を分岐させているので、ヘッダ管に貫設又 は添設された熱源管の長さも短くすることができ、屋根に配設される熱源管の経路が 短くなり管摩擦抵抗力 、さくなるので、熱媒体を送るポンプは出力の小さなもので済 み、ポンプの駆動はわずかなエネルギーで済みランニングコストの小さな屋根や庇の 融雪構造を提供することができる。  (3) Header pipe force Since multiple heat pipe branch pipes are branched, the length of the heat source pipe penetrating or attached to the header pipe can be shortened, and the heat source pipe installed on the roof can be shortened. Since the path is shortened and the pipe friction resistance is reduced, the pump that sends the heat medium needs only a small output, and the pump needs little energy to provide a roof and snow melting structure with low running cost. Can do.
[0022] 請求項 2に記載の発明によれば、請求項 1の効果に加え、  [0022] According to the invention of claim 2, in addition to the effect of claim 1,
(1)ヒートパイプの温度斑をさらに少なくすることができ、屋根面に面した雪を斑なく 融かすことができる融雪斑の少ない屋根や庇の融雪構造を提供することができる。  (1) It is possible to provide a heat melting structure of a roof or a fence with less snow melting spots that can further reduce the temperature spots of the heat pipe and can melt the snow facing the roof without any spots.
[0023] 請求項 3に記載の発明によれば、請求項 1又は 2の効果に加え、  [0023] According to the invention of claim 3, in addition to the effect of claim 1 or 2,
(1)伝熱面積を大きくすることができ、熱交換効率に優れた屋根や庇の融雪構造を 提供することができる。  (1) The heat transfer area can be increased, and a snow melting structure for roofs and fences with excellent heat exchange efficiency can be provided.
(2)屋根面板、野路板、瓦棒等の上に安定に設置することができ施工性に優れた屋 根や庇の融雪構造を提供することができる。  (2) It is possible to provide a snow melting structure for roofs and roofs that can be stably installed on roof panels, field road boards, roof tiles, etc., and has excellent workability.
[0024] 請求項 4に記載の発明によれば、請求項 1乃至 3の内いずれか 1の効果にカロえ、  [0024] According to the invention of claim 4, the effect of any one of claims 1 to 3 is reduced.
(1)ヒートパイプ枝管及びヘッダ管力 屋根面へ確実に熱伝達させることができ融雪 斑の少ない屋根や庇の融雪構造を提供することができる。  (1) Heat pipe branch pipe and header pipe force Heat can be reliably transferred to the roof surface, and a snow melting structure of a roof or a fence with few snow spots can be provided.
(2)熱分散部材の側面とヒートパイプ枝管やヘッダ管の側壁とを接触させて放熱面 積を広くすることができ、屋根面の温度斑を小さくすることができ融雪斑の少な 、屋 根や庇の融雪構造を提供することができる。 (3)ヒートパイプと熱分散部材とを面状のパネルのように取り扱うことができ、屋根面を ヒートパイプと熱分散部材の全面で支持できるので、雪の重みで屋根面が変形したり 穴が開き易くなるのを防止し耐久性に優れた屋根や庇の融雪構造を提供することが できる。 (2) The side surface of the heat distribution member and the side wall of the heat pipe branch pipe or header pipe can be brought into contact with each other to increase the heat radiation area, to reduce the temperature spot on the roof surface, and to reduce the snow melting spot. A snow melting structure of roots and ridges can be provided. (3) The heat pipe and heat dissipating member can be handled like a planar panel, and the roof surface can be supported by the entire surface of the heat pipe and heat dissipating member. It is possible to provide a snow melting structure of a roof and a kite that is prevented from being easily opened and has excellent durability.
[0025] 請求項 5に記載の発明によれば、  [0025] According to the invention of claim 5,
(1)熱媒体を加熱するための特別なエネルギーを必要とせず安全で省エネルギー 性に優れた融雪装置を提供することができる。  (1) It is possible to provide a snow melting device that does not require special energy for heating a heat medium and is safe and excellent in energy saving.
(2)不凍液を循環させるポンプが停止する不測の事態が発生した場合でも、不凍液 が熱源管等の内部で凍結するのを防止することができ、不凍液を再循環させれば直 ぐに融雪を再開することができるメンテナンス性に優れた融雪装置を提供することが できる。  (2) Even in the unlikely event that the pump that circulates antifreeze liquid stops, the antifreeze liquid can be prevented from freezing inside the heat source pipe, etc., and if the antifreeze liquid is recirculated, snow melting will resume immediately. It is possible to provide a snow melting device with excellent maintainability.
[0026] 請求項 6に記載の発明によれば、請求項 5の効果に加え、  [0026] According to the invention of claim 6, in addition to the effect of claim 5,
(1)膨張タンクがループ配管内に充填された不凍液の熱膨張 ·収縮に伴う容積変化 を緩衝するので、ループ配管内が不凍液で満たされるため、簡単なポンプを配設し て少ない揚程で不凍液を屋根まで上げることができる融雪装置を提供することができ る。  (1) Since the expansion tank absorbs the volume change caused by the thermal expansion and contraction of the antifreeze liquid filled in the loop pipe, the loop pipe is filled with the antifreeze liquid. It is possible to provide a snow melting device that can raise the roof to the roof.
図面の簡単な説明  Brief Description of Drawings
[0027] [図 1]実施の形態 1における融雪装置を家屋の屋根に設置した融雪構造を示す一部 破断斜視図  [0027] FIG. 1 is a partially broken perspective view showing a snow melting structure in which the snow melting apparatus in the first embodiment is installed on the roof of a house.
[図 2]実施の形態 1における融雪装置のヒートパイプの平面図  FIG. 2 is a plan view of a heat pipe of the snow melting device in Embodiment 1.
[図 3]実施の形態 1における融雪装置を設置した屋根を垂直方向に切断した屋根の 融雪構造の要部断面図  [Fig. 3] Cross-sectional view of the main part of the snow melting structure of the roof obtained by vertically cutting the roof on which the snow melting device in Embodiment 1 is installed
[図 4]図 3の A— A線における要部断面端面図  [Fig.4] Cross-sectional end view of main part along line A-A in Fig.3
[図 5] (a)変形例の熱分散部材の模式斜視図 (b)変形例の熱分散部材の要部断面 図  [FIG. 5] (a) Schematic perspective view of a heat dispersion member according to a modification.
[図 6]実施の形態 2における融雪装置のヒートパイプの平面図  [Fig. 6] Plan view of heat pipe of snow melting device in embodiment 2.
[図 7]実施の形態 3における融雪装置のヒートパイプの平面図  FIG. 7 is a plan view of a heat pipe of the snow melting device in Embodiment 3.
[図 8]実施の形態 4における融雪装置のヒートパイプを家屋の屋根に設置した融雪構 造の屋根材を除レヽた状態を示す模式斜視図 符号の説明 [FIG. 8] A snow melting structure in which the heat pipe of the snow melting device in the fourth embodiment is installed on the roof of a house. Schematic perspective view showing a state in which the roofing material is removed.
1 融雪装置  1 Snow melting equipment
2, 2a, 2c, 2d ヒー卜ノィプ  2, 2a, 2c, 2d heat noop
3, 3a, 3b ヘッダ管  3, 3a, 3b header tube
4 ヒートパイプ枝管  4 Heat pipe branch pipe
5 熱源管  5 Heat source tube
6 接続管  6 Connection pipe
7 継手  7 Fitting
8 連結管  8 Connecting pipe
10 ボアホーノレ  10 Boa Honoré
11 ケーシング  11 Casing
12 パイプ  12 pipes
13 輸送管  13 Transport pipe
14 ポンプ  14 Pump
15 分岐管  15 branch pipe
16 膨張タンク  16 Expansion tank
20, 20a 家屋  20, 20a house
21 屋根  21 Roof
22 垂木  22 rafters
23 野路板  23 Noji board
24 広小舞  24 Hiro Komai
26 下地材  26 Base material
27 鼻隠  27 Nose cover
28, 28a 熱分散部材  28, 28a Heat dispersion member
28b 断熱材  28b insulation
29 屋根材  29 Roofing material
発明を実施するための最良の形態 [0029] 以下、本発明を実施するための最良の形態を、図面を参照しながら説明する。 (実施の形態 1) BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. (Embodiment 1)
図 1は実施の形態 1における融雪装置を家屋の屋根に設置した屋根の融雪構造を 示す一部破断斜視図であり、図 2は実施の形態 1における融雪装置のヒートパイプの 平面図であり、図 3は実施の形態 1における融雪装置を設置した屋根を垂直方向に 切断した屋根の融雪構造の要部断面図であり、図 4は図 3の A— A線における要部 断面端面図であり、図 5 (a)は熱分散部材の変形例の模式斜視図であり、(b)は変形 例の熱分散部材の要部断面図である。  Fig. 1 is a partially broken perspective view showing a snow melting structure of a roof in which the snow melting device in the first embodiment is installed on the roof of a house, and Fig. 2 is a plan view of a heat pipe of the snow melting device in the first embodiment. Fig. 3 is a cross-sectional view of the main part of the snow melting structure of the roof obtained by cutting the roof on which the snow melting device in Embodiment 1 is installed in the vertical direction. FIG. 5 (a) is a schematic perspective view of a modified example of the heat dissipating member, and FIG. 5 (b) is a cross-sectional view of the main part of the heat dissipating member of the modified example.
図 1にお 、て、 1は家屋 20の切り妻型の屋根 21に設置された実施の形態 1におけ る融雪装置、 2は勾配を有する屋根 21の全面に複数並設された融雪装置 1のヒート パイプ、 5は後述する熱源管、 6は熱源管 5, 5を接続する後述する接続管、 7は並設 されたヒートパイプ 2, 2の熱源管 5, 5に接続された継手、 8は継手 7に接続され並設 されたヒートパイプ 2, 2の熱源管 5, 5間を連結する連結管である。  In FIG. 1, 1 is a snow melting device in the first embodiment installed on a gable roof 21 of a house 20, and 2 is a plurality of snow melting devices arranged in parallel on the entire surface of a roof 21 having a slope. , 5 is a heat source pipe to be described later, 6 is a connection pipe to be described later for connecting the heat source pipes 5 and 5, 7 is a joint connected to the heat source pipes 5 and 5 of the heat pipes 2 and 2, and 8 Is a connecting pipe connecting the heat source pipes 5 and 5 of the heat pipes 2 and 2 connected to the joint 7 in parallel.
10は地盤中に形成された地中採熱素子のボアホール、 11は地下 10〜50m程度 の深さに打ち込まれたケーシング、 12はケーシング内に配設された二重管や U字管 等のパイプ、 13は図示しない断熱材で被覆されパイプ 12と熱源管 5, 5とを接続しル ープ配管を形成する輸送管、 14はループ配管を形成する輸送管 13に配設されたポ ンプ、 15は輸送管 13から分岐された分岐管、 16は下部が分岐管 15に接続され図 示しな!/、ダイヤフラム等で分岐管 15側に熱媒体が収容された密閉式の膨張タンクで ある。熱源管 5,接続管 6,連結管 8,ボアホール 10内のノィプ 12,輸送管 13,ボン プ 14内には、エチレングリコール,プロピレングリコール,酢酸カリウム水溶液等の不 凍性の熱媒体 (不凍液)が、とぎれることがないように充填されており、熱源管 5,接続 管 6,連結管 8,パイプ 12,輸送管 13,ポンプ 14内に充填された熱媒体の膨張 '収 縮に伴う容積変化を膨張タンク 16内の熱媒体で緩衝する。  10 is the borehole of the underground heat collecting element formed in the ground, 11 is a casing driven to a depth of about 10-50m underground, 12 is a double pipe or U-shaped pipe installed in the casing, etc. The pipe 13 is covered with a heat insulating material (not shown) and connects the pipe 12 and the heat source pipes 5 and 5 to form a loop pipe, and 14 is a pump arranged in the transport pipe 13 forming a loop pipe. 15 is a branch pipe branched from the transport pipe 13, and 16 is a closed expansion tank in which the lower part is connected to the branch pipe 15 and not shown! /, And a heat medium is accommodated on the branch pipe 15 side by a diaphragm or the like. . Heat source pipe 5, connecting pipe 6, connecting pipe 8, nozzle 12 in bore hole 10, transport pipe 13, pump 14 in antifreeze heat medium (antifreeze) such as ethylene glycol, propylene glycol, potassium acetate aqueous solution However, the heat source pipe 5, the connection pipe 6, the connection pipe 8, the pipe 12, the transport pipe 13, and the pump 14 are expanded. Is buffered with the heat medium in the expansion tank 16.
[0030] 図 2において、 2は 30°C前後まで凍結しない不凍性の作動流体が封入され並設 されたヒートパイプ、 3, 3は略平行に配設された 2本のヘッダ管、 4は両端部が 2本の ヘッダ管 3, 3の各々に連通し略平行に配設された複数のヒートパイプ枝管である。 本実施の形態においては、ヘッダ管 3,ヒートパイプ枝管 4の長手方向に直交する断 面力 矩形状の同一の大きさに形成されている。 [0030] In FIG. 2, 2 is a heat pipe in which antifreezing working fluid that does not freeze up to around 30 ° C is enclosed, and 3 and 3 are two header pipes arranged in parallel, 4 Is a plurality of heat pipe branch pipes whose both ends communicate with each of the two header pipes 3 and 3 and are arranged substantially in parallel. In the present embodiment, a section perpendicular to the longitudinal direction of the header pipe 3 and the heat pipe branch pipe 4 is used. Surface force It is formed in the same size of a rectangular shape.
5はヘッダ管 3の長手方向に沿って貫設された熱源管であり、ヘッダ管 3の両端部 は熱源管 5の両端の外周壁で封着されている。 6は熱源管 5, 5の端部間を接続する 接続管である。  Reference numeral 5 denotes a heat source pipe penetrating along the longitudinal direction of the header pipe 3, and both end portions of the header pipe 3 are sealed with outer peripheral walls at both ends of the heat source pipe 5. 6 is a connecting pipe that connects between the ends of the heat source pipes 5 and 5.
なお、本実施の形態においてヒートパイプ 2は、ヘッダ管 3が屋根 21の勾配方向に 沿って配置され、ヒートパイプ枝管 4が屋根 21の勾配方向に略直交するように配置さ れている。なお、ヒートパイプ枝管 4は、屋根 21の勾配方向に対する角度を 60〜90 ° 好ましくは 70〜90° の範囲になるように配置することができる。これにより、ヒート パイプ枝管 4の熱で融カされた融雪水が屋根材 29の上を面状に流れるので、従来 のようにヒートパイプ枝管 4の周囲の雪だけが融けて軒先まで貫通する雪洞が形成さ れ、雪洞の周囲の雪が屋根の上に残り締め固められて除雪できなくなるのを防止す ることがでさる。  In the present embodiment, the heat pipe 2 is arranged such that the header pipe 3 is arranged along the gradient direction of the roof 21 and the heat pipe branch pipe 4 is arranged substantially orthogonal to the gradient direction of the roof 21. The heat pipe branch pipe 4 can be arranged so that the angle with respect to the gradient direction of the roof 21 is in the range of 60 to 90 °, preferably 70 to 90 °. As a result, the melted water melted by the heat from the heat pipe branch 4 flows in a plane on the roof material 29, so that only the snow around the heat pipe branch 4 melts and penetrates to the eaves as before. It is possible to prevent a snow cave from being formed, and the snow around the snow cave from remaining on the roof and compacted, making it impossible to remove the snow.
また、ボアホール 10で加温された熱媒体は、輸送管 13内を通って屋根 21に設置 されたヒートパイプ 2の熱源管 5の軒側力も導入され、屋根 21を上り接続管 6を通って 対向する熱源管 5の棟側から下り、継手 7,連結管 8を通って隣接するヒートパイプ 2 の熱源管 5の棟側から入って屋根 21を上り、接続管 6を通って対向する熱源管 5の 棟側から下り、輸送管 13を通ってボアホール 10に還流される。  In addition, the heat medium heated in the bore hole 10 is also introduced into the eaves side force of the heat source pipe 5 of the heat pipe 2 installed on the roof 21 through the transport pipe 13, and goes up the roof 21 through the connecting pipe 6. Down from the ridge side of the opposite heat source pipe 5, through the joint 7, the connecting pipe 8, enter from the ridge side of the heat source pipe 5 of the adjacent heat pipe 2, up the roof 21, and through the connecting pipe 6, the opposite heat source pipe It descends from the 5th building side and returns to the borehole 10 through the transport pipe 13.
図 3、図 4において、 22は屋根 21の垂木、 23は垂木 22の上に配設された野路板、 24は軒先で垂木 22の上に取り付けられた広小舞、 26は合板,アルミニウム製等で 板状に形成され野路板 23の上面に配置され上面にヒートパイプ 2が載置された下地 材、 27は垂木 22,広小舞 24の軒先の端面に配設された鼻隠、 28は上面がヒートパ イブ枝管 4及びヘッダ管 3の上面と面一乃至はわずかに低くなるようにアルミニウム製 等の伝熱性の板状で形成されヒートパイプ枝管 4, 4とヘッダ管 3, 3の間に嵌め込ま れヒートパイプ枝管 4, 4とヘッダ管 3, 3の熱が伝達される熱分散部材、 29は鋼製,ク ラッド鋼製,ステンレス鋼等の合金鋼製、溶融アルミニウム '亜鉛合金メッキ鋼板 (ガ ルバリウム鋼板)、塗装板材等で形成され、屋根 21の棟からヒートパイプ 2,熱分散部 材 28の上面に敷設された屋根材である。  3 and 4, 22 is a rafter of the roof 21, 23 is a field board installed on the rafter 22, 24 is an eavespiece mounted on the rafter 22, 26 is a plywood, made of aluminum The base material on which the heat pipe 2 is placed on the upper surface of the Noji board 23 formed on the upper surface of the Noji board 23, 27 is the nasal cover placed on the end face of the eaves of the rafter 22, Hirokomai 24, 28 The heat pipe branch pipes 4, 4 and the header pipes 3, 3 are made of a heat conductive plate such as aluminum so that the upper surface is flush with or slightly lower than the upper surfaces of the heat pipe branch pipe 4 and the header pipe 3. Heat dissipating member fitted between the heat pipe branch pipes 4, 4 and header pipes 3, 3 heat transfer, 29 is made of steel, cladding steel, alloy steel such as stainless steel, molten aluminum 'zinc Alloy-plated steel plate (galvalume steel plate), painted plate material, etc. It is a roofing material laid on the upper surface of material 28.
図 5において、 28aはアルミニウム製等の金属製で一面が開口する薄肉で箱状に 形成された変形例の熱分散部材、 28bはグラスウール,ロックウール等の無機繊維系 、ウレタンフォーム,発泡ポリスチレン等の合成樹脂系、木質繊維系等の繊維質等で 形成され熱分散部材 28aの開口部に嵌装された断熱材である。熱分散部材 28aは 断熱材 28bが嵌装された開口を下地材 26側に、平坦面を屋根材 29側にして熱分散 部材 28に代えて配置させることができる。変形例の熱分散部材 28aは薄肉の箱状に 形成されているので軽量ィ匕することができ、また開口部に断熱材 28bが嵌装されてい るので、下地材 26側への放熱を少なくすることができ熱損失を減らすことができる。 以上のように構成された本発明の実施の形態 1における融雪構造及び融雪装置に ついて、以下その使用方法を説明する。 In Fig. 5, 28a is made of a metal such as aluminum, and is a thin-walled box with one side open. The heat dispersion member 28b is formed of an inorganic fiber such as glass wool or rock wool, a synthetic resin such as urethane foam or expanded polystyrene, or a fiber such as a wood fiber, or the like. It is the heat insulating material fitted by the part. The heat dissipating member 28a can be arranged in place of the heat dissipating member 28 with the opening fitted with the heat insulating material 28b on the base material 26 side and the flat surface on the roof material 29 side. The heat dissipating member 28a of the modified example is formed in a thin box shape so that it can be made light in weight, and since the heat insulating material 28b is fitted in the opening, heat radiation to the base material 26 side is reduced. Can reduce heat loss. A method of using the snow melting structure and the snow melting device in Embodiment 1 of the present invention configured as described above will be described below.
ボアホール 10のパイプ 12内の熱媒体は約 15〜17°C前後の地中熱によって 13°C 程度に加温される。加温されたパイプ 12内の熱媒体 (不凍液)を、輸送管 13に配設 されたポンプ 14を駆動して、輸送管 13から屋根 21に設置されたヒートパイプ 2の熱 源管 5の棟側に導入する。熱媒体は熱源管 5の軒側から導入され、屋根 21を上り接 続管 6を通って対向する熱源管 5の棟側から下り、継手 7,連結管 8を通って隣接する ヒートパイプ 2の熱源管 5の棟側力も入って屋根 21を上り、接続管 6を通って対向す る熱源管 5の棟側から下り、輸送管 13を通ってボアホール 10のパイプ 12へ還流され てループ配管内を循環する。ヒートパイプ 2内の凝縮した作動流体は重力でヘッダ管 3の軒側に流下し易 、ため、まず一方のヘッダ管 3の軒側を熱媒体で加熱することで 、熱媒体の保有する熱が一方のヘッダ管 3に与えられてヘッダ管 3内の作動流体がヒ ートパイプ枝管 4及び他方のヘッダ管 3に向力つて蒸発するようになる。作動流体の 蒸気はヒートパイプ枝管 4内を拡散し凝縮して凝縮熱を放出し、ヒートパイプ枝管 4の 壁を通じて熱分散部材 28及び屋根材 29へ放熱する。一方のヘッダ管 3の熱源管 5 を流れた熱媒体は、次に他方のヘッダ管 3の熱源管 5に棟側力 入り、他方のヘッダ 管 3内の作動流体を蒸発させる。これを繰り返し、熱交換し凝縮した作動流体はへッ ダ管 3へ還流され、屋根材 29は表面に積もった雪に放熱して融雪する。融雪では、 始めに温度の高いヒートパイプ枝管 4とヘッダ管 3の上の屋根材 29に積もった雪が融 力され、融雪水は屋根勾配に沿って屋根材 29の表面を流れるので、ヒートパイプ枝 管 4, 4とヘッダ管 3, 3とで囲まれた範囲の屋根材 29に積もった雪の下面が融雪水 によって融カされる。ヒートパイプ枝管 4とヘッダ管 3の上の屋根雪は早く融けるので、 屋根雪はヒートパイプ枝管 4, 4とヘッダ管 3, 3で切り出されたような四角形状の複数 のブロック状に分割される。そして、屋根雪を重力に逆らって上部で支えていた引張 力が切れて各ブロックが自由になり、それぞれが滑り出して滑落するので、屋根雪を 除去することができる。 The heat medium in the pipe 12 of the borehole 10 is heated to about 13 ° C by underground heat of about 15-17 ° C. The heating medium (antifreeze) in the heated pipe 12 is driven by the pump 14 installed in the transport pipe 13 and the building of the heat source pipe 5 of the heat pipe 2 installed on the roof 21 from the transport pipe 13 Introduce to the side. The heat medium is introduced from the eaves side of the heat source pipe 5, goes down the roof 21 through the upstream connecting pipe 6 and descends from the opposite side of the heat source pipe 5 and passes through the joint 7 and the connecting pipe 8 to the adjacent heat pipe 2 Also enters the ridge side force of the heat source pipe 5 and goes up the roof 21, passes through the connecting pipe 6 and descends from the opposite side of the heat source pipe 5 and returns to the pipe 12 of the bore hole 10 through the transport pipe 13 and inside the loop pipe Circulate. The condensed working fluid in the heat pipe 2 is easy to flow down to the eave side of the header pipe 3 due to gravity. Therefore, by first heating the eave side of one header pipe 3 with the heat medium, the heat possessed by the heat medium is reduced. The working fluid in the header pipe 3 is given to one header pipe 3 and evaporates by force toward the heat pipe branch pipe 4 and the other header pipe 3. The working fluid vapor diffuses and condenses in the heat pipe branch pipe 4 to release condensation heat, and dissipates heat to the heat dispersion member 28 and the roof material 29 through the wall of the heat pipe branch pipe 4. The heat medium that has flowed through the heat source pipe 5 of one header pipe 3 then enters the ridge side force into the heat source pipe 5 of the other header pipe 3 and evaporates the working fluid in the other header pipe 3. By repeating this, the working fluid condensed by heat exchange is returned to the header pipe 3, and the roof material 29 dissipates heat to the snow accumulated on the surface and melts. In snow melting, the snow on the roof material 29 on the heat pipe branch pipe 4 and header pipe 3 having a high temperature is first melted, and the snow melt flows on the surface of the roof material 29 along the roof slope. The bottom surface of the snow piled on the roofing material 29 surrounded by the branch pipes 4 and 4 and the header pipes 3 and 3 is snowmelt water. It is melted by. Since the roof snow on the heat pipe branch pipe 4 and header pipe 3 melts quickly, the roof snow is divided into a plurality of rectangular blocks cut out by the heat pipe branch pipe 4, 4 and header pipe 3, 3. Is done. Then, the tensile force that supported the roof snow against the gravity at the upper part is cut off, each block becomes free, and each slides out and slides down, so the roof snow can be removed.
以上のように、本発明の実施の形態 1における屋根の融雪構造は構成されている ので、以下のような作用が得られる。  As described above, since the snow melting structure of the roof according to the first embodiment of the present invention is configured, the following operation is obtained.
(1)ヒートパイプ枝管 4の両端部が、略平行に配設された 2本のヘッダ管 3, 3の各々 に連通しており、熱媒体が一方のヘッダ管 3の熱源管 5から他方のヘッダ管 3の熱源 管 5に流されて、双方のヘッダ管 3内の作動流体を蒸発させるので、ヘッダ管内の作 動流体の蒸発とヒートパイプ枝管での凝縮に伴う潜熱の授受による熱の放出が、 2本 のヘッダ管 3, 3の各々で行われるので、ヒートパイプ 2の温度斑を少なくすることがで き、屋根材 29に面した雪を斑なく融かすことができる。  (1) Both ends of the heat pipe branch pipe 4 communicate with each of the two header pipes 3 and 3 arranged substantially in parallel, and the heat medium is transferred from the heat source pipe 5 of one header pipe 3 to the other. Since the working fluid in both header pipes 3 evaporates when flowing through the heat source pipe 5 of the header pipe 3, the heat generated by the evaporation of the working fluid in the header pipes and the transfer of latent heat accompanying condensation in the heat pipe branch pipes Is discharged in each of the two header pipes 3 and 3, the temperature spots of the heat pipe 2 can be reduced, and the snow facing the roof material 29 can be melted without spots.
(2)屋根材 29に降った雪は、積もると直ちにヒートパイプ枝管 4とヘッダ管 3の熱で融 力されてブロック状に分割され、締め固まる前の柔らかな状態のうちに屋根 21から滑 落していくため、人の歩行や車の走行の妨げになった歩行者に怪我等をさせたりす ることもなく安全に屋根雪を滑落させて除去することができ除雪性に著しく優れる。 (2) The snow that has fallen on the roof material 29 is immediately melted by the heat of the heat pipe branch pipe 4 and the header pipe 3 and divided into blocks, and from the roof 21 in a soft state before being compacted Because it slides down, the roof snow can be safely slid down and removed without causing injuries to pedestrians who have hindered human walking and vehicle travel.
(3)ヘッダ管 3及びヒートパイプ枝管 4が矩形状の断面を有して 、るので、ヘッダ管 3 とヒートパイプ枝管 4の外周の 4面を平らにすることができ、屋根材 29との伝熱面積を 大きくすることができる。また、アルミニウム製等で形成された熱分散部材 28をヒート ノイブ枝管 4の間に嵌め込んで、熱分散部材 28の側面とヒートパイプ枝管 4及びへッ ダ管 3の側壁とを面接触させて接触面積を広くすることができ熱交換効率を高めるこ とができる。また、ヘッダ管 3及びヒートパイプ枝管 4の底面が平らに形成されるので、 下地材 26の上に安定に設置することができ施工性に優れる。 (3) Since the header pipe 3 and the heat pipe branch pipe 4 have a rectangular cross section, the four surfaces of the outer periphery of the header pipe 3 and the heat pipe branch pipe 4 can be flattened. The heat transfer area can be increased. In addition, a heat dispersion member 28 made of aluminum or the like is fitted between the heat nove branch pipes 4, and the side surfaces of the heat dispersion member 28 and the side walls of the heat pipe branch pipe 4 and the header pipe 3 are in surface contact. As a result, the contact area can be increased and the heat exchange efficiency can be increased. In addition, since the bottom surfaces of the header pipe 3 and the heat pipe branch pipe 4 are formed flat, the header pipe 3 and the heat pipe branch pipe 4 can be stably installed on the base material 26 and have excellent workability.
(4)上面がヒートパイプ枝管 4及びヘッダ管 3の上面と面一乃至はわずかに低く形成 され、ヒートパイプ枝管 4, 4及びヘッダ管 3, 3の間に配設された熱分散部材 28を備 えて 、るので、ヒートパイプ枝管 4及びヘッダ管 3から屋根材 29へ確実に熱伝達させ ることがでさる。 (5)熱分散部材 28の側面とヒートパイプ枝管 4やヘッダ管 3の側壁とを接触させて、ヒ ートパイプ枝管 4やヘッダ管 3の熱を熱分散部材 28に伝達し放熱面積を広くすること ができ、屋根材 29の温度斑を小さくすることができる。 (4) A heat distribution member disposed between the heat pipe branch pipes 4 and 4 and the header pipes 3 and 3 so that the upper surface is flush with or slightly lower than the upper surfaces of the heat pipe branch pipe 4 and the header pipe 3 Therefore, heat can be reliably transferred from the heat pipe branch pipe 4 and the header pipe 3 to the roofing material 29. (5) The side surface of the heat distribution member 28 and the side wall of the heat pipe branch pipe 4 or header pipe 3 are brought into contact with each other to transfer the heat of the heat pipe branch pipe 4 or header pipe 3 to the heat distribution member 28 to widen the heat radiation area. And the temperature spots on the roofing material 29 can be reduced.
(6)ヒートパイプ枝管 4及びヘッダ管 3の上面と熱分散部材 28の上面とが略面一に形 成されるため、屋根材 29をヒートパイプ 2と熱分散部材 28の全面で支持できるので、 雪の重みで屋根材 29が変形するのを防止できる。また、屋根材 29の上に積もった雪 の重みで、屋根材 29がヒートパイプ枝管 4,ヘッダ管 3,熱分散部材 28に密着するよ うになり熱伝達が良くなり雪を確実に融かすことができる。  (6) Since the upper surface of the heat pipe branch pipe 4 and header pipe 3 and the upper surface of the heat dissipating member 28 are formed substantially flush with each other, the roofing material 29 can be supported on the entire surface of the heat pipe 2 and the heat dissipating member 28. Therefore, it is possible to prevent the roof material 29 from being deformed by the weight of snow. In addition, the weight of the snow accumulated on the roofing material 29 causes the roofing material 29 to come into close contact with the heat pipe branch pipe 4, the header pipe 3, and the heat dispersion member 28, improving heat transfer and reliably melting the snow. be able to.
(7)屋根材 29の軒先の先端力ヒートパイプ枝管 4やヘッダ管 3で温められるので、氷 柱ができるのを防止できる。  (7) Because it is heated by the heat pipe branch pipe 4 and the header pipe 3 at the tip of the eaves of the roof material 29, it is possible to prevent the formation of ice pillars.
また、本発明の実施の形態 1における融雪装置によれば、以下のような作用が得ら れる。  Further, according to the snow melting device in the first embodiment of the present invention, the following operation is obtained.
(1)ヒートパイプ枝管 4の両端部が、略平行に配設された 2本のヘッダ管 3, 3の各々 に連通しているので、ヘッダ管内の作動流体の蒸発とヒートパイプ枝管での凝縮に伴 う潜熱の授受による熱の放出が 2本のヘッダ管 3, 3の各々で行われ、ヒートパイプ 2 の温度斑を少なくすることができ設置面を斑なく融雪できる。  (1) Since both ends of the heat pipe branch pipe 4 communicate with each of the two header pipes 3 and 3 arranged substantially in parallel, evaporation of the working fluid in the header pipe and the heat pipe branch pipe The heat is released by the transfer of latent heat accompanying the condensation of heat in each of the two header pipes 3 and 3, so that the temperature spots on the heat pipe 2 can be reduced and snow can be melted on the installation surface without spots.
(2)地中熱を利用してボアホール 10で熱媒体を加温し、この熱媒体を循環させるの で、ヒートパイプ 2や屋根材 29を 2°C程度に加温して融雪に利用でき、熱媒体を加熱 するための特別なエネルギーを必要とせず安全で省エネルギー性に優れる。  (2) Since the heat medium is heated in the borehole 10 using geothermal heat and this heat medium is circulated, the heat pipe 2 and the roofing material 29 can be heated to about 2 ° C and used for melting snow. It does not require special energy to heat the heat medium, and is safe and excellent in energy saving.
(3)熱源管 5,接続管 6,ボアホール 10内のパイプ 12,輸送管 13,ポンプ 14内に不 凍性の熱媒体がとぎれることがな 、ように充填されて 、るので、簡単なポンプ 14の小 さな駆動力で、ループ配管内の熱媒体をボアホール 10から屋根 21まで上げることが でき省エネルギー性に優れる。  (3) Heat source pipe 5, connecting pipe 6, pipe in bore hole 10, pipe 12, transport pipe 13, pump 14 are filled so that the antifreeze heat medium will not break, so a simple pump With a small driving force of 14, the heat medium in the loop pipe can be raised from the borehole 10 to the roof 21 and is excellent in energy saving.
(4)輸送管 13から分岐された分岐管 15に膨張タンク 16が接続されているので、熱源 管 5,接続管 6,連結管 8,パイプ 12,輸送管 13,ポンプ 14内に充填された熱媒体の 膨張'収縮に伴う容積変化を膨張タンク 16内の熱媒体で緩衝し、熱源管 5,接続管 6 ,連結管 8,パイプ 12,輸送管 13,ポンプ 14内に、熱媒体をとぎれることがないように 充填させることができる。 [0035] ここで、本実施の形態においては、新設の屋根 21にヒートパイプ 2を設置する場合 について説明したが、既設の鋼板ぶき等の屋根にヒートパイプ 2を設置する場合もあ る。この場合は、鋼板等の屋根材の表面に下地材 26を配置して、本実施の形態と同 様にヒートパイプ 2を設置することができる。また、屋根の勾配方向に沿って瓦棒が形 成されている場合は、瓦棒の上や瓦棒の間に瓦棒の高さと略同じ高さのスぺーサを 配置し、スぺーサとスぺーサの間に下地材 26を架設して、本実施の形態と同様にヒ ートパイプ 2を設置する。また直接、瓦棒の上に下地材 26を架設し、その上にヒート ノイブ 2を設置する場合もある。 (4) Since the expansion tank 16 is connected to the branch pipe 15 branched from the transport pipe 13, the heat source pipe 5, the connection pipe 6, the connection pipe 8, the pipe 12, the transport pipe 13, and the pump 14 are filled. The volume change due to expansion and contraction of the heat medium is buffered by the heat medium in the expansion tank 16, and the heat medium is interrupted in the heat source pipe 5, connection pipe 6, connection pipe 8, pipe 12, transport pipe 13, and pump 14. It can be filled so that nothing happens. Here, in the present embodiment, the case where the heat pipe 2 is installed on the newly installed roof 21 has been described, but the heat pipe 2 may be installed on a roof such as an existing steel sheet roof. In this case, the base material 26 can be placed on the surface of a roofing material such as a steel plate, and the heat pipe 2 can be installed as in the present embodiment. If tiles are formed along the roof slope direction, place a spacer with the same height as the tiles on or between the tiles. The base material 26 is installed between the spacer and the spacer, and the heat pipe 2 is installed as in the present embodiment. In some cases, the base material 26 is installed directly on the roof bar, and the heat nove 2 is installed thereon.
また、下地材 26の上に熱分散部材 28を別々に設置する場合について説明したが 、下地材 26と熱分散部材 28とをアルミニウム製等の金属製やコンクリート等で一体に 形成し、一体形成された窪みにヒートパイプ 2のヘッダ管 3及びヒートパイプ枝管 4を 嵌合させる場合もある。これにより、施工性を高めることができるという作用が得られる また、融けた屋根雪が滑り落ちるのを妨げる凸起等を屋根 21の屋根面に設けて、 屋根 21の上で融かす屋根雪の量を多くすることもできる。  In addition, although the case where the heat dispersion member 28 is separately installed on the base material 26 has been described, the base material 26 and the heat dispersion member 28 are integrally formed of metal such as aluminum or concrete, and are integrally formed. In some cases, the header pipe 3 and the heat pipe branch pipe 4 of the heat pipe 2 are fitted into the hollow. As a result, the workability can be improved. In addition, the roof surface of the roof 21 is provided with protrusions that prevent the melted roof snow from sliding down, and the amount of roof snow to be melted on the roof 21 is thereby reduced. You can do more.
また、風呂の残り湯や工場や家庭からの排水の排熱を利用して、ループ配管内を 流れる不凍液を加温することもできる。この場合は、ポンプ 14の下流側の輸送管 13 にジャケットを配設して、排水をジャケットに導入し輸送管 13の管壁を通じてジャケッ ト内の排水と不凍液との熱交換を行い、排水の排熱で不凍液を加温する。これにより 、一時的に不凍液の温度を上げて、排熱で屋根雪を融かすことができ排熱の有効利 用ができる。  It is also possible to heat the antifreeze flowing in the loop piping by using the remaining heat from the bath and the waste heat from the factory and household. In this case, a jacket is provided in the transport pipe 13 downstream of the pump 14, and the wastewater is introduced into the jacket, and heat is exchanged between the wastewater in the jacket and the antifreeze liquid through the pipe wall of the transport pipe 13. Warm the antifreeze with exhaust heat. As a result, the temperature of the antifreeze can be raised temporarily, and the roof snow can be melted by the exhaust heat, so that the exhaust heat can be effectively used.
[0036] (実施の形態 2) [0036] (Embodiment 2)
図 6は実施の形態 2における融雪装置のヒートパイプの平面図である。なお、実施 の形態 1と同様のものは、同じ符号を付して説明を省略する。  FIG. 6 is a plan view of a heat pipe of the snow melting device in the second embodiment. Note that the same components as those in Embodiment 1 are denoted by the same reference numerals and description thereof is omitted.
図中、 2aは実施の形態 2における融雪装置のヒートパイプ、 4aは一端がヘッダ管 3 に連通し略平行に配設された複数のヒートパイプ枝管、 5aはヘッダ管 3の長手方向 に添設されヘッダ管 3と略同一の厚さに形成された熱源管である。  In the figure, 2a is a heat pipe of the snow melting device in the second embodiment, 4a is a plurality of heat pipe branch pipes having one end communicating with the header pipe 3 and arranged substantially in parallel, and 5a is attached in the longitudinal direction of the header pipe 3. It is a heat source pipe that is provided and formed to have substantially the same thickness as the header pipe 3.
以上のように構成された実施の形態 2における融雪装置のヒートパイプ 2aは、へッ ダ管 3が屋根 21の勾配方向に沿って配置され、ヒートパイプ枝管 4aが屋根 21の勾 配方向に略直交するように配置されて実施の形態 1と同様に施工される。 The heat pipe 2a of the snow melting device in the second embodiment configured as described above has a head. The da pipe 3 is arranged along the gradient direction of the roof 21, and the heat pipe branch pipe 4 a is arranged so as to be substantially orthogonal to the gradient direction of the roof 21, and is constructed in the same manner as in the first embodiment.
[0037] 以上のように、本発明の実施の形態 2における融雪装置のヒートパイプは構成され ているので、実施の形態 1に記載した作用に加え、以下のような作用が得られる。[0037] As described above, since the heat pipe of the snow melting device in the second embodiment of the present invention is configured, the following operation is obtained in addition to the operation described in the first embodiment.
(1) 1本のヘッダ管 3にヒートパイプ枝管 4aの一端が連通しておりコンパクトィ匕できる ので、屋根 21が小さな場合等、熱媒体の循環経路を簡略化させることができ施工性 を高めることができる。 (1) Since one end of the heat pipe branch pipe 4a communicates with one header pipe 3 and can be compacted, the circulation path of the heat medium can be simplified when the roof 21 is small, etc. Can be increased.
(2)ヘッダ管 3と略同一の厚さに形成された熱源管 5aを備えているので、熱源管 5a の管壁を通じて熱媒体と屋根材 29とを直接熱交換させることができ、融雪効率を高 めることができる。  (2) Since the heat source pipe 5a formed to have substantially the same thickness as the header pipe 3 is provided, the heat medium and the roof material 29 can be directly exchanged heat through the pipe wall of the heat source pipe 5a, and the snow melting efficiency Can be raised.
[0038] (実施の形態 3)  [0038] (Embodiment 3)
図 7は実施の形態 3における融雪装置のヒートパイプの平面図である。なお、実施 の形態 1と同様のものは、同じ符号を付して説明を省略する。  FIG. 7 is a plan view of the heat pipe of the snow melting device in the third embodiment. Note that the same components as those in Embodiment 1 are denoted by the same reference numerals and description thereof is omitted.
図中、 2bは実施の形態 3における融雪装置のヒートパイプ、 4bは一端がヘッダ管 3 に連通し略平行に配設された複数のヒートパイプ枝管、 4cはヒートパイプ枝管 4bの 他端に連通した均圧管である。  In the figure, 2b is a heat pipe of the snow melting device in Embodiment 3, 4b is a plurality of heat pipe branch pipes with one end communicating with the header pipe 3 and arranged substantially in parallel, and 4c is the other end of the heat pipe branch pipe 4b. It is a pressure equalizing pipe communicating with the.
以上のように構成された実施の形態 3における融雪装置のヒートパイプ 2bは、へッ ダ管 3が屋根 21の勾配方向に沿って配置され、ヒートパイプ枝管 4bが屋根 21の勾 配方向に略直交するように配置されて実施の形態 1と同様に施工される。  In the heat pipe 2b of the snow melting apparatus in Embodiment 3 configured as described above, the header pipe 3 is arranged along the gradient direction of the roof 21, and the heat pipe branch pipe 4b is arranged in the gradient direction of the roof 21. Arranged so as to be substantially orthogonal, and constructed in the same manner as in the first embodiment.
[0039] 以上のように、本発明の実施の形態 3における融雪装置のヒートパイプは構成され ているので、実施の形態 1に記載した作用に加え、以下のような作用が得られる。[0039] As described above, since the heat pipe of the snow melting device in the third embodiment of the present invention is configured, the following operation is obtained in addition to the operation described in the first embodiment.
(1) 1本のヘッダ管 3にヒートパイプ枝管 4bの一端が連通しておりコンパクトィ匕できる ので、屋根 21が小さな場合等、熱媒体の循環経路を簡略化させることができ施工性 を高めることができる。 (1) Since one end of the heat pipe branch pipe 4b communicates with one header pipe 3 and can be compacted, the circulation path of the heat medium can be simplified when the roof 21 is small, etc. Can be increased.
(2)ヒートパイプ枝管 4bの他端に均圧管 4cが連通して 、るので、ヒートパイプ枝管 4b 内の圧力を均一化でき温度斑を少なくすることができる。  (2) Since the pressure equalizing pipe 4c communicates with the other end of the heat pipe branch pipe 4b, the pressure in the heat pipe branch pipe 4b can be made uniform and temperature spots can be reduced.
[0040] (実施の形態 4)  [0040] (Embodiment 4)
図 8は実施の形態 4における融雪装置のヒートパイプを家屋の屋根に設置した融雪 構造の屋根材を除いた状態を示す模式斜視図である。なお、実施の形態 1で説明し たものと同様のものは、同じ符号を付して説明を省略する。 Figure 8 shows snow melting with the heat pipe of the snow melting device in the fourth embodiment installed on the roof of a house. It is a model perspective view which shows the state except the roof material of the structure. Note that components similar to those described in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
図中、 2cは寄せ棟型の家屋 20aの屋根に配置された実施の形態 4における融雪装 置のヒートパイプ、 3a, 3aは棟側に向力つて両方が暫時内側に窄められ間隔が暫時 狭められたヘッダ管である。  In the figure, 2c is the heat pipe of the snow-melting device in Embodiment 4 placed on the roof of the ridge-type house 20a, and 3a and 3a are squeezed inward for a while, and the interval is temporarily A narrowed header tube.
2dは家屋 20aの屋根に配置された実施の形態 4における変形例の融雪装置のヒー トパイプ、 3b, 3bは軒側に向力つて片方が暫時内側に窄められ間隔が暫時狭められ たヘッダ管である。ヒートパイプ 2aのヘッダ管 3a, 3a、ヒートパイプ 2bのヘッダ管 3b, 3bには、略平行に配設された複数のヒートパイプ枝管 4が両端部で連通しており、ヒ ートパイプ枝管 4は屋根の勾配方向と略直交し、屋根 21の勾配方向に対して 60〜9 0° 好ましくは 70〜90° の角度で交わるように配置されている。  2d is the heat pipe of the snow melting device of the modified example in Embodiment 4 arranged on the roof of the house 20a, and 3b and 3b are header pipes that are squeezed to the inside for a while and the interval is temporarily narrowed for a while. It is. The header pipes 3a and 3a of the heat pipe 2a and the header pipes 3b and 3b of the heat pipe 2b are connected to a plurality of heat pipe branch pipes 4 arranged substantially in parallel at both ends, and the heat pipe branch pipe 4 Is substantially orthogonal to the slope direction of the roof, and is arranged so as to intersect with the slope direction of the roof 21 at an angle of 60 to 90 °, preferably 70 to 90 °.
以上のように実施の形態 4における融雪装置のヒートパイプは構成されているので 、屋根の形に応じて屋根の全面に自在に配置することができ、屋根の全面の雪を融 力して除去することができる。  As described above, since the heat pipe of the snow melting device in the fourth embodiment is configured, it can be arranged freely on the entire surface of the roof according to the shape of the roof, and the snow on the entire surface of the roof is melted and removed. can do.
[0041] なお、実施の形態 1乃至 4では屋根の融雪構造について説明したが、同様に、雁 木等の庇にも実施の形態 1乃至 4で説明した融雪装置を設置することで、庇の融雪 構造を提供することができる。 [0041] Although the snow melting structure of the roof has been described in the first to fourth embodiments, similarly, by installing the snow melting device described in the first to fourth embodiments on a fence such as a straw tree, Snow melting structure can be provided.
産業上の利用可能性  Industrial applicability
[0042] 本発明は、屋根や雁木等の庇に積もった雪を融カゝして除去する屋根や庇の融雪構 造及び融雪装置に関し、締め固まる前の柔らかな状態のうちに融カして屋根や庇か ら滑落させることができ、歩行や走行の妨げになったり怪我等をさせたりすることもな く安全に全面の屋根雪を斑なく除去することができ除雪性に著しく優れる屋根や庇 の融雪構造を提供することができ、また、温度斑が小さく設置面の雪を斑なく除去す ることができるとともに、省エネルギー性に優れランニングコストの小さな融雪装置を 提供することができる。 [0042] The present invention relates to a snow melting structure and a snow melting apparatus for roofs and fences that melt and remove snow accumulated on fences such as roofs and firewood, etc., and melts in a soft state before being compacted. The roof can be slid down from the roof or fence, and it can safely remove the entire roof without any hindrance or injury, etc. It is possible to provide a snow melting structure of snow and snow, and to provide a snow melting device that has small temperature spots and can remove snow on the installation surface without any spots and has excellent energy saving and low running cost.

Claims

請求の範囲 The scope of the claims
[1] 屋根や庇に配置されたヒートパイプを備えた屋根や庇の融雪構造であって、  [1] A snow melting structure of a roof or fence with heat pipes arranged on the roof or fence,
前記ヒートパイプが、熱源管が添設若しくは貫設されたヘッダ管と、前記ヘッダ管か ら分岐した複数の略平行に配設されたヒートパイプ枝管と、を有し、前記ヒートパイプ 枝管力 屋根や庇の勾配方向と略直交して配置されていることを特徴とする屋根や 庇の融雪構造。  The heat pipe has a header pipe to which a heat source pipe is attached or penetrated, and a plurality of substantially parallel heat pipe branch pipes branched from the header pipe, and the heat pipe branch pipe A snow melting structure for roofs and fences, which is arranged substantially perpendicular to the slope direction of the roofs and fences.
[2] 前記ヒートパイプ枝管の各々の両端部が、間隔をあけて配設された 2本の前記へッ ダ管の各々に連通して 、ることを特徴とする請求項 1に記載の屋根や庇の融雪構造  [2] The heat pipe branch pipe according to claim 1, wherein both end portions of each of the heat pipe branch pipes communicate with each of the two header pipes arranged at intervals. Snow melting structure of roofs and fences
[3] 前記ヘッダ管及び前記ヒートパイプ枝管の長手方向に直交する断面が略矩形状、 略方形状、略三角状、略長円状、略半円状の内のいずれかに形成され上面が平坦 で幅広に形成されていることを特徴とする請求項 1又は 2に記載の屋根や庇の融雪 構造。 [3] The top surface of the header pipe and the heat pipe branch pipe perpendicular to the longitudinal direction is formed in any one of a substantially rectangular shape, a substantially rectangular shape, a substantially triangular shape, a substantially oval shape, and a substantially semicircular shape. The snow melting structure of a roof or a fence according to claim 1 or 2, characterized in that is flat and wide.
[4] 上面が前記ヒートパイプ枝管及び前記ヘッダ管の上面と面一乃至はわずかに低く 形成され、前記ヒートパイプ枝管の間に配設された熱分散部材を備えていることを特 徴とする請求項 1乃至 3の内 ヽずれか 1に記載の屋根や庇の融雪構造。  [4] The upper surface is formed to be flush with or slightly lower than the upper surfaces of the heat pipe branch pipe and the header pipe, and includes a heat distribution member disposed between the heat pipe branch pipes. The snow melting structure of a roof or a kite according to claim 1, wherein:
[5] 請求項 1乃至 4の内 、ずれか 1に記載の屋根や庇の融雪構造で用いる融雪装置で あって、前記ヒートパイプと、前記熱源管に接続され地盤中に形成した孔部から集熱 した不凍液を循環させるループ配管と、を備えて!/、ることを特徴とする融雪装置。  [5] A snow melting device used in the snow melting structure of a roof or a kite according to any one of claims 1 to 4, from the heat pipe and a hole formed in the ground connected to the heat source pipe. A snow melting device comprising: a loop pipe for circulating the collected antifreeze liquid! /.
[6] 前記ループ配管に密閉式の膨張タンクが接続されていることを特徴とする請求項 5 に記載の融雪装置。  6. The snow melting device according to claim 5, wherein a sealed expansion tank is connected to the loop pipe.
PCT/JP2007/052373 2006-02-10 2007-02-09 Snow melting structure and snow melting device for roof and pent-roof WO2007091680A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007557907A JP4324224B2 (en) 2006-02-10 2007-02-09 Snow melting structure and snow melting device for roof and fence

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-034602 2006-02-10
JP2006034602 2006-02-10

Publications (1)

Publication Number Publication Date
WO2007091680A1 true WO2007091680A1 (en) 2007-08-16

Family

ID=38345272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052373 WO2007091680A1 (en) 2006-02-10 2007-02-09 Snow melting structure and snow melting device for roof and pent-roof

Country Status (2)

Country Link
JP (1) JP4324224B2 (en)
WO (1) WO2007091680A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018660A1 (en) * 2011-07-29 2013-02-07 株式会社ジャスト東海 Heat exchanging unit, and heat absorbing/radiating system using same for solar battery panel
JP2016017648A (en) * 2014-07-04 2016-02-01 沖縄県再エネ技術事業協同組合 Air conditioning system
RU196702U1 (en) * 2019-12-10 2020-03-12 Андрей Викторович Герасимов Device for removing snow and ice formations from the roof of a building
CN111713307A (en) * 2020-05-29 2020-09-29 吴月艳 Green house water treatment collection device based on sleet weather
CN113898132A (en) * 2021-11-04 2022-01-07 江苏彩虹智能公共设施有限公司 Intelligent bus shelter with snow accumulation prevention function

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174622U (en) * 1981-04-30 1982-11-04
JPS57174620U (en) * 1981-04-30 1982-11-04
JPS61198881U (en) * 1985-05-31 1986-12-12
JPS62189245A (en) * 1986-02-17 1987-08-19 小林 忠昭 Snow melting apparatus utilizing ground heat
JPH04261978A (en) * 1991-01-10 1992-09-17 Mitsubishi Electric Corp Melting process device
JPH04261979A (en) * 1991-01-11 1992-09-17 Mitsubishi Electric Corp Melting process device
JPH0594307U (en) * 1991-04-30 1993-12-24 日本エンジニアメイツ株式会社 Snow melting equipment
JP2000274020A (en) * 1999-03-26 2000-10-03 Ig Tech Res Inc House

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174622U (en) * 1981-04-30 1982-11-04
JPS57174620U (en) * 1981-04-30 1982-11-04
JPS61198881U (en) * 1985-05-31 1986-12-12
JPS62189245A (en) * 1986-02-17 1987-08-19 小林 忠昭 Snow melting apparatus utilizing ground heat
JPH04261978A (en) * 1991-01-10 1992-09-17 Mitsubishi Electric Corp Melting process device
JPH04261979A (en) * 1991-01-11 1992-09-17 Mitsubishi Electric Corp Melting process device
JPH0594307U (en) * 1991-04-30 1993-12-24 日本エンジニアメイツ株式会社 Snow melting equipment
JP2000274020A (en) * 1999-03-26 2000-10-03 Ig Tech Res Inc House

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018660A1 (en) * 2011-07-29 2013-02-07 株式会社ジャスト東海 Heat exchanging unit, and heat absorbing/radiating system using same for solar battery panel
JP2016017648A (en) * 2014-07-04 2016-02-01 沖縄県再エネ技術事業協同組合 Air conditioning system
RU196702U1 (en) * 2019-12-10 2020-03-12 Андрей Викторович Герасимов Device for removing snow and ice formations from the roof of a building
CN111713307A (en) * 2020-05-29 2020-09-29 吴月艳 Green house water treatment collection device based on sleet weather
CN113898132A (en) * 2021-11-04 2022-01-07 江苏彩虹智能公共设施有限公司 Intelligent bus shelter with snow accumulation prevention function

Also Published As

Publication number Publication date
JPWO2007091680A1 (en) 2009-07-02
JP4324224B2 (en) 2009-09-02

Similar Documents

Publication Publication Date Title
JP5474884B2 (en) Roof panel with snow melting function and roof panel assembly with snow melting function
WO2007091680A1 (en) Snow melting structure and snow melting device for roof and pent-roof
US20130133858A1 (en) Construction module and a method for manufacturing said module
WO2007091679A1 (en) Snow melting structure and snow melting device for roof
EP0020559A1 (en) Method and arrangement for air condition control in buildings.
JPH11243789A (en) Snow-melting device of house having connected ridges
JP7054083B2 (en) A construction method that uses a heat conductive plate to prevent the roof from freezing with waste heat from heating and melts the snow on the roof.
JPH0354270Y2 (en)
JPS6217252A (en) Snow melting apparatus
JPH09310453A (en) Snow melting roof construction
JP2000139237A (en) Apparatus for melting snow of multi-span greenhouse
CN108486990A (en) Bridge vibration collection of energy ice protection system based on piezoelectric element
JPH0241243Y2 (en)
CN220116935U (en) Cooling regulation and control structure acting on abutment side wall of permafrost region
JPS6038487B2 (en) Snow and ice control device for bridge piers
JPH0311318Y2 (en)
JP2000274020A (en) House
JPH0329485Y2 (en)
JP4974907B2 (en) A road snow melting system using indoor residual heat.
JPH0332689Y2 (en)
JPH0133696Y2 (en)
JPH04292756A (en) Method and device for cooling, heating, snow melting and heat collection by utilization of heat storage in aquifer
JPH0776648B2 (en) Cooling and heating snow-collecting method and device by using heat storage in aquifer
JP2003301571A (en) Snow-melting roof structure
JP2593844Y2 (en) Snow melting equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2007557907

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07708309

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)