TW201035505A - Solar radiation collection systems - Google Patents

Solar radiation collection systems Download PDF

Info

Publication number
TW201035505A
TW201035505A TW098110012A TW98110012A TW201035505A TW 201035505 A TW201035505 A TW 201035505A TW 098110012 A TW098110012 A TW 098110012A TW 98110012 A TW98110012 A TW 98110012A TW 201035505 A TW201035505 A TW 201035505A
Authority
TW
Taiwan
Prior art keywords
radiation
collection
application
scope
light
Prior art date
Application number
TW098110012A
Other languages
Chinese (zh)
Inventor
Tricia Liu
Original Assignee
Bucky Solar Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bucky Solar Inc filed Critical Bucky Solar Inc
Priority to TW098110012A priority Critical patent/TW201035505A/en
Publication of TW201035505A publication Critical patent/TW201035505A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Abstract

Systems including devices for collecting radiation, such as from the sun, without tracking, are disclosed. The devices are able to collect radiation incident from different directions. In one version, the devices have a three-dimensional collecting surface that directs light to an inner radiation receiver. The collecting surface may collect radiation coming from directions above a local or visible horizon, such as from the sky, or from substantially any direction. The collecting surface may have a frame supporting faces for concentrating light onto a radiation receiver. A reflecting dish or concave element may be provided below the radiation receiver for reflecting radiation to the radiation receiver. The radiation receiver may generate electricity from the collected radiation, directly through photovoltaic means or indirectly by heating a fluid that is directed to a turbine-generator. The radiation receiver may be used to heat a fluid for another purpose, such as providing hot water or desalination.

Description

201035505 、發明說明: 【發明所屬之技術領域】 目前披露的資料有關太陽輻射的收集和轉換成為其他 形式的能源。 【先前技獨1】 來自太陽的輻射可用於提供電力和熱能等能源的形 式,改進收集方法和充分利用現有太陽能輻射是很重要 的。多種太陽能收集系統已經研發出來以收集或集中太陽 輻射。 其中一些太陽能能源系統是固定的,如太陽能電池板 安裝在固定位置。並將收集面放置在一個面對太陽在白天 及不同季節預計的移動方向,能收集到最多太陽能的明顯 位置。在北半球,可保持一致指向南方,反之亦然,在南 半球指向北方。 太陽能電池面板,放在與太陽垂直的方向的更有效。 同理,能集中太陽的入射光的太陽能系統一般會設計成對 準太陽的明顯位置聚焦。太陽在白天及季節性移動位置, 將減少太陽能電池板功效,也會造成任何聚光器聚焦的偏 差。 其他太陽能聚光系統需要追蹤器,使他們收集的表面 和聚焦設備,能追蹤太陽日移及季移的位置變化。追蹤通 常需要可移動零件,這就需要更多的費用以及維護。增加 開支是不可取的。需要維修也是不可取的,因為消費者喜 201035505 歡免維修產品及技術,會期望太陽能產品及技術,也能免 維護。 因此,希望提供更好的靜態被動式,無追蹤器方式收 集及集中太陽輻射。 【發明内容】 一個披露的目的是提供,能提高太陽能利用率的輻射 收集設備。 另一個目前彼露的目的是,提供能自各方向收集太陽 能輻的輻射收集設備。 另一個目前披露的目的是,提供能將太陽能輻射集中 到一個既定位置的輻射收集設備。 另一個目前披露的目的是,提供能被動地收集太陽能 的輻射收集設備,不使用需移動的器材。 另一個目前披露的目的是,提供使用經濟材料的收集 0 太陽能輪射設備。 另一個目前彼露的目的是,提供便攜式的收集太陽能 輻射設備,可在缺乏傳統發電設施的偏遠地區使用。 另一個目前披露的目的是,提供收集太陽能輻射設 備,供應爐具,烤肉器,照明等裝置,免費又無汙染的能 源,特別是邊遠地區。 另一個目前彼露的目的是,提供可簡易安裝的太陽能 輻射收集設備。 另一個目前披露的目的是,提供可用於電動汽車充電 5 201035505 的太陽能輻射收集設備。 另一個目前披露的目的是,提供可用於不同載具的太 陽能輻射收集設備。 另一個目前披露的目的是,提供可用於不同建築物的 太陽能輻射收集設備。 另一個目前披露的目的是,減少大型發電廠土地使用 量及需要長距離輸電設施,在需要用電的地點提供當地由 太陽輻射發電的設備是必要的。 另一個目前彼露的目的是,是提供替代能源,以取代 汽油和其他石油衍生物。 另一個目前披露的目是,是提供與建築物一體化的聚 光系統。 從下面的詳細說明,所附圖式,以及申請專利主張, 會進一步解釋以上這些和其他目的,及目前披露的目的之 功能和優勢。 【實施方式】 圖一〜三描述一個包括收集設備10的收集裝置1,該 收集裝置包括收集框架Π及在收集框架中輻射接收器收 20 ° 該收集設備10有收集表面12。收集表面12,設定為 可收集來自不同方向的太陽輻射,並將收集的輻射導至輻 射接收器20。輻射接收器20,設定為可收集來自上方和下 方的太陽輻射和環境韓射,如圖一太陽光徑示範圖所示。 201035505 收集表面設定為,可收集來自不同方向的大多數太陽輻射。 收集表面12如圖一所示,一般為球面。收集表面12 包括由眾多透鏡切面30組成。每個透鏡切面30包含一個 或多個透鏡,可以接受太陽輻射,集中在收集裝置10的焦 聚點,一個或多個透鏡的焦聚點最好是在收集框架11的中 心,輻射接收器20就在透鏡切面30眾多透鏡的焦聚點或 在其鄰近。 每個透鏡切面30可以集中一定範圍的太陽輻射至輻射 接收器20上,因為收集表面12,由眾多面對不同方向的透 鏡切面30所組成,不論太陽在天空中什麼位置,一個或多 個透鏡切面30可以將太陽射線焦中到輻射接收器20。因 此,該裝置1不需要安裝成面對任何特定的方向,只需是 一般水平。所以只需將這該裝置放置在一水平面上即可達 到上述目標。 當然,裝置1應放在一個位置,樹木和建築物不會妨 礙太陽白天從裝置通過。 收集設備10的結構類似碳六十的巴克明斯特富勒烯分 子結構,這是一個堅固及美觀的造型。收集表面12有三十 二個多面體的切面,即二十個六角切面和十二個五角切 面。全部或大部分多面體切面,由用透鏡切面30組成,形 成收集表面12的多面體。收集框架11則類似碳-六十巴克 明斯特富勒烯分子(也稱為“布基球”)碳原子之間的共 價鍵結構。 透鏡切面30可為是由聚(甲基丙烯酸甲酯)(有機玻 7 201035505 璃=成的非>圼耳透鏡,這是—個光學級丙稀酸類聚 的:脂=_,為羅門哈斯公司的專利商標。這種透鏡: -中=數字3Ga標示。另外,透鏡切面可能由簡單 凸透鏡,組成-個蜂窩結構。這種雙凸透鏡透二: 構在圖一中以數字30b標示。 、兄、〜 還有另-種透鏡切面是-個全像透鏡(以數字 不)。收集表面12可包括任何30a,鳥和施透 & 組合。收集表面也可以只包括—種透鏡⑽I,—= 切面30b或只有一種透鏡切面3〇e。這也說明,透^鏡 3〇可為,任城«巾錄鼓陽㈣#魏錢鏡H面 當輪射是自透鏡切面30上,不同入射角度進入時 在透鏡切面30的外面加上反向散光片’錄反向散光片在 九十-有更詳細地描述。反向散光片可修正太陽輻射的; 射角度,使透鏡聚焦而不偏焦,(但因目前所用材質己 進,可能也會降低透光度)。另外,1斜角度二氧化〜 米棒組成的防反射塗層(或其它防反料層),可以適用; 透鏡切面30的外面,以減少光反射損失。是弗雷德舒例 和他的研究小組,在紐約倫斯勒理工學院特洛伊的新考 現,以減少反射損失,並允許更多的太陽輕射,都可以3 過透鏡切面30。 順帶說明,反向散光片或一層防反射塗層,可以適用 於本申請中其他有透㈣面的裝置,這些透鏡切面導太陽 輻射至離其不遠的的輕射接收器。 輕射接收器20,是由收集框架u延伸出來的支柱桿 201035505 13支撐,位於收集設備10的中心焦聚點附近。 在圖一和圖四中,呈立方體形的輻射接收器20正在收 集太陽能發電。輻射接收器5的形狀就像在圖1和4。或者, 也可以有球21的形狀,如圖五。 無論形狀,輻射接收器20或21的覆蓋材料,是光電 太陽能材料,用以轉換太陽能為電能。光電材料可為平板 晶片22,或薄膜光電材料印刷成可撓式薄膜23,抑或染料 敏化太陽能電池可撓式薄膜(GrStzell晶片),該薄膜附加 到一個球形底層結構。染料敏化太陽能電池薄膜將能夠吸 收的任何方向的太陽輪射。另外’薄膜光電材料或染料敏 化太陽能薄膜,可以直接濺積到底層結構。兩種方式皆可 用於立方體輻射接收器20,但薄膜的版本較容易加覆在球 形輻射接收器21。 光電材料22或23可為蹄化録’二構化铜蘇/钟化蘇/ 錯的三層晶片,或銅銦砸化鎵,石西化錯,也可採用其他光 電材料’例如砍或有機染料敏化材料。先進的光電材料, 更有效,但也更加昂貴。該裝置1收集太陽輻射並集中在 少量光電材料上,以便降低昂貴光電材料的使用數量。 輻射接收器20或21所產生的電力,會經由通過一個 或多個桿13中的電線25,至設備10外使用。在圖一中, 電線25連接到變流器55。其他選擇是,電線25可以連接 到電池或其他儲存系統,或直接與設備,如照明設備連接。 輻射接收器20或21將需要散熱,以保持光電伏材料 22 (或23)在一個最佳溫度,如攝氏25度。過熱的光電材 9 201035505 料22 (或23)是不可取的。一個冷卻光電材料22的系統 或方法40,不意於圖一。載冷卻水或其他冷卻劑液體(如 乙醇和水混合时劑,如乙二醇)的水箱41,裝在接收加 熱過的水或冷卻劑液體的水箱42上。管43將水箱41接至 三通閥46。 二通閥46也以管道44接到輻射接收器2〇和管道45 至水箱42。三通閥46’擺在第—的位置,允許水或其他冷 卻液流量自水箱41流_射接收器2G。在第二個位置,闊 門46中斷流量至水箱w,容許水或其他冷卻液流量自幸昌射 接收器2 0流到水箱4 2。在第三的位置,間門* 6個中斷從 輻射接收器20流入或流出。熱電偶(未顯示)檢測到輻射 接收器2 0的溫度。控制電路(未顯示)感應職射接收器 2 〇的溫度而移動目4 6至三個不同位置,以保持最佳溫度。 冷卻系統40具可進-步提供加熱熱水或其他冷卻劑, 可用於其他目的,如熱水系統的熱水來源。其他冷卻輕射 接收器20 (或21)的方法,諸如再循環系統中,冷卻液通 魏集設備H)外部賴交換器,再循環回收集設備1〇;或 安裝冷卻風扇在輻射接收器20内。 加如曰圖六,收集框架n,由互扣的塑朦框架Μ形成。框 条最好不妨礙光。透明且塗有防反射塗層。該框架μ ^目反兩㈣直向凹溝槽(Η型),接收透鏡3g可捺入固 定在該框架中。該框架在多面體的頂點聯接。塑料接頭15 的突出捍16’插入到三個框架14相應的頂端凹槽内 设備10的組裝極簡便,因為框架14,接頭15,和收率2 10 201035505 鏡30,可從一個工具包取出,用手即可組裝。在收集設備 1〇頂部和底部的兩佩线鏡3Q,將有^、孔,讀插入棒 13m兄了 ’裝置i ’可f個打散裝箱方式,運輸 至需要使用該裴置1的場所位時組楚。 該收集太陽輻射設備1,進一步包括一個表面反射組 件,其形式為盤50,内有-反射面51。收集設備1〇伸出 的桿13,聯接至反射盤50中間,最好是在反射盤%打洞 再被插入。在收集設備1〇安裝在桿13,在反射面51的上 方,使太陽輻射,從反射表面51反射到,收集設備1〇下 部或半球底部的收集表面12上。腿52焊接或以其他方式 連接到反射盤50 ’支持反射盤穩定在安裝位置。反射盤5〇 一個可能的形狀為被截斷的抛物面,一個球的一部分或任 何其他形狀’可將太陽輻射反射到收集表面12上。 圖七和圖八描述了一個裝置,收集太陽輻射裝置6〇, 包括一個收集設備62,由底座65支撐在反射盤64以上。 Q 收集設備62和圖1所示的收集設備10是一樣的收集單位, 反射盤64和圖1所示的反射盤5〇類似,但改用為海水淡 化用。取代輻射接收器或21,為一個輻射收集中空球體 66,位於收集透鏡祁的焦聚點附近。 幸昌射收集中空球體66,設定為可收集來自上方和下方 的太陽輻射和環境輻射,如圖七太陽光徑示範圖所示。 e 將海水72導至中空球體66底部’供應海水給中 空球體66。收集透鏡表面68,聚集太陽輻射至中空球體 66 ’將其中海水蒸發,再由管70將海水補充至中空球體 11 201035505 66。此外’海水淡化剩餘的 海水稀釋。 肘破不斷導入的新 除了海水,該裝置60可淡 置6。與海水結合。但也可用來處;:然:處將裝 區和在緊急情況時,通常乾導w木的水。在偏遠地 置這將是特财用讀用水的來_缺乏,此農 中空球體66可由玻璃塗黑製成。或 有卓越的熱料龍,並錢有伙塗層❿^鋼合金, 裂置60料空賴66水位,㈣錢 。 水位高74平高,海水自動會在中^夕的海 日守,自動由管70補水;—個方 ^ 66水位低 ,。底部,降低安置在至水位高溝裡料, 胺骑壁乃,防止海水浸泡設備。實降上…古利用擋水 :’海水U可能需要一個中間蓄水 ::潮沙和海 控制機制,以維持中空球體6 6内—個固、Τ、—個反饋 ,⑽下’其他海水一二其 其他可供應海水至中空球體66的 66裂有檢測水平的傳感琴,洛海水座乃去為’在中空球體 接故到低水位信號I;::::2内幫浦控制電路, 管%將中空球體66内蒸氣送至冷凝器77 (示意 D圖八),從水蒸汽凝結成水,再送至水箱Μ。因 圖九描述了一個收集太陽輻射裂置8〇,包括— 82 ’由底座85支稽在反射盤81以上。收集設傷^ 201035505 類似圖一收集設備10,反射盤81類似圖一的反射盤50, 但改用為製作生化柴油用;將植物油或其他合適的前身液 體加熱,如動物脂肪;與驗液經轉I旨化反應,製成生化柴 油燃料。植物油或其他合適的前身液體及鹼液送入容器 90。輻射收集中空球體,自太陽輻射熱能吸熱並通過管84 傳遞熱量至容器90,該管最好是銅和外加絕緣保護,容器 90其中植物油或其他合適的前體液體,加熱後轉化為生化 柴油和甘油。中空球體86類似圖七及圖八的中空球體66, 生化柴油和甘油被收集在容器90。甘油密度比生化柴油 高,會沉澱到容器90底部,並經由底部的龍頭先放出;然 後生化柴油再被抽出。 圖十至十五,描述收集太陽輻射發電,供照明用的裝 置。在圖十中,收集太陽輻射的裝置100,包括一個收集設 備102和反射盤104,類似圖一收集設備10及反射盤50。 反射盤104顯示有一個扇形的邊緣,如圖八。這純粹是用 於裝飾目的,並不是必需的。輻射接收器106内含有收集 設備102,該設備有光電晶片,通過電線供電(未顯示), 給一個或多個,安裝在收集透鏡110外緣的發光環108。發 光環108,可由發光二極管製成。該裝置100,安裝在一個 有液壓系統的燈柱112上,以便向廣大範圍,提供照明。 該液壓系統可將裝置100降下,以便清潔維修。 另外一種光源設備,可利用光感應器控制機械操作; 天黑後,光感應器探測不到光子,將光源設備與輻射接收 器106互換位置,利用裝置100,反向將位於中心焦點的光 13 201035505 、:方向’如法國科學家菲涅爾,首先將其發明的菲 塔上使用同理,·天亮後,光感應器^ 開始白天收及太陽輻射的工作。 夏 裝置100下有—個裝有電池的電池舱⑽ 黑後提供發光請或其他光源設備發光電力存; 二光開關’调先器’定時器等,可控制發光環】08何 時焭以及有多少光,但圖十未列出。 圖十一中,收集太陽韓射的裝置120,包括-個收隼机 備122和!射盤124,類似圖一收集設備1〇,及反射盤5二 輻射接收器126内含有收集設備122,該設備有光電, 通過電線供電(未顯示),給—個或多個,安裳在曰 130外緣的發光修發光環128,可由發光二極管制兄 該裝置12〇’安裝在-個短的燈柱132上,可為庭園= 較近地面的範圍,提供照明。 輻射接收器106下有— 存電能;天黑後提供發光環 使其發光。開關’調光器, 何時以及有多少光,但圖十 個裝有電池的電池艙129,可儲 12 8或其他光源設備發光電力, 定時器等,可控制發光環128 一未列出。 圖十二中’收木太陽輻射的裝置140,包括—個收隼 備M2,類似圖-收集設帛1〇,反射表面144震在收: 備140下。收集設備Η2内幸_妾收器(未顯示: 晶片組成,通過電線供電(未顯示),給-個或多個,安 在收集透鏡15G外緣的發光環148。發光環148,可由& 14 201035505 二極管製成。該裝置140,由柱152安骏在燈座154上,反 射表面144位於燈座154的上表面。 裝置140下有一個裝有電池的電池艙ι54,可儲存電 能,天黑後提供發光環148或其他光源設備發光電力,使 其發光。開關,調光器,定時器等,可控制發光環1〇8何 時以及有多少光,但圖十二未列出。 圖十二中’收集太1%輕射的裝置16〇,包括一個收集設 〇 備162,類似圖一收集設備10,反射表面164位於石柱172 上表面,定位在收集設備160下。收集設備162内輻射接 收器(未顯示)’由光電晶片組成,通過電線供電(未顯示), 給一個或多個,安裝在收集透鏡17〇外緣的發光環168,提 供照明。發光環168,可由發光二極管製成。收集設備162 安裝在石柱172上。 裝置160下石柱172内,有—個裝有電池的電池艙 169,可儲存電能;天黑後提供發光環168或其他光源設備 ❹ 發光電力,使其發光。開關,調光器,定時器等,可控制 發光環168何時以及有多少光,但圖十三未列出。 圖十四中,收集太陽輻射的裝置180,包括一個收集設 備182,類似圖一收集設備1〇。收集設備内輻射接收 器(未顯示),由光電晶片組成,通過電線供電(未顯示), 給一個或多個’安裝在收集透鏡19〇外緣的發光環188,提 供照明。發光環188 ’可由發光二極管製成。骏置18〇是密 封防水的’因其為中空’可浮在水面’成為泳池燈。水面 成為反射表面184,將反射光至收集設備182上。 15 201035505 裝置180中,有—個裝有電池的電池艙,可儲存電能; 天黑後提供發光環188或其他光源設備發光電力,使其發 光。開關,調光器,定時器等,可控制發光環188何時以 及有多少光,但圖十四未列出。 圖十五中,收集太陽輻射的裝置200,包括—個收集設 備202,類似圖一收集設備1〇。反射盤204裝在收集設備 202下。收集设備202内轄射接收器(未顯示),由光電晶 片組成’通過電線供電(未顯示)’給反射盤204下的燈208。 裝置200安裝在一個有液壓系統的燈柱210上。 裝置120下’有一個裝有電池的電池艙209,位於燈柱 210的底座内’可儲存電能;天黑後提供發燈208或其他光 源設備發光電力,使其發光。開關,調光器,定時器等, 可控制燈208何時以及有多少光,但圖十五未列出。 裝置200由電線214提供充電站212電力,電力供應 站212有一個電池艙,可容納電池211,用於電動汽車充電。 圖十〜十五,只能提供少數裝置1的可能版本,用之提 供照明和電力用於電動汽車充電。反射表面的位置和形 狀’支柱,電池和開關地點,以及其他組件可有很大差異。 此外’其他傳統的照明設備也可使用電力裝置產生的電 力’如燈泡和日光燈,只要插座,變流器和其他應有裝配 齊全。 圖十六描述了一個收集太陽輻射的裝置220。每個裝置 包含一個收集設備222,類似如圖一的收集設備1〇,一個 反射盤224類似反射盤5。圖十七是裝置220 —個剖面圖。 16 201035505 收集設備222内的輻射接收器225為中空球形。輻射 接收器325底部有管’以便獲得安裝在支柱226上的收集 設備222,提供的空氣。連接的支柱226是管狀,通到反射 盤224,讓空氣進入收集設備222。 管道228輸送經輻射接收器225加熱的空氣,至它可 能被使用的一個地方。在圖十六,是用於一個中央電站 230,熱空氣用於驅動渦輪發電機連接(未顯示)。熱空氣 也可用於房子暖氣用等等。圖十八,顯示了 一個數組陣列 〇 或電廠240,收集太陽輻射設備242。該裝置240包括一個 包括一個收集設備244和反射盤2佔’類似圖一收集設備 10,及反射盤50。數組陣列或電廠240電是一個數組裝置 240的組合,如圖一裝置1所示。 收集設備244中的輻射接收器(未顯示),如圖一所示。 輻射接收器包含光電晶片,由電纜245連接起來,再通過 電力電纜246,提供至中央電站250,輸送電力給一個電網 ❹ (未顯示)。收集設備244需是大型裝置,如在3米範圍内 (大約10英尺),4米(約20英尺)直徑,最好有個變流 器,以便提供交流電至中央電力站250。 圖十九和二十描述,數組陣列或電廠260。電力陣列 260是一種’在圖十八所示陣列240的變化運用,陣列260 包括用收集太陽輻射的設備262。每個設備262類似如圖一 所示的收集設備10,並裝有變流器(未顯示在圖十九和二 十)。 設備262圖示為裝在直線地基265上。其他安排是可 17 201035505 月b的’但目前示範的是直線。4組設備262裝在直線地基 265上’之間是一個反射器266。反射器266是四面弧面金 子塔形’每一弧面’反射光線到各自面對的設備262。 圖十九的設備262,需冷卻管268輸送冷卻液,至其中 幸虽射接收器264,以保持光電晶片不過熱,每個設備262 的交流電,由電纜270連接起來,再通過電力電纜272,提 供至需用電場所。 3又備262直徑可為3至6米(約1〇到2〇英尺),但該 設備可能有其他的直徑。 地基265可能是一個水泥地或其他材料製成。它可以 女裝在地面或一座建築物的屋頂上。它也可以製成有浮力 的結構浮在水上。 圖二十 二十四,描述一個收集太陽輻射裝置280, °亥裂置包括一個收集設備282,這是圖一所示收集設備 的個另一個變化運用。收集設備282有收集框架284,支撐 眾多個透鏡切面288。 收集框架284及透鏡切面288,紐成收集表面290 ;如 圖二十一和二十四所示,透鏡切面288有兩個形狀:六角 形透鏡面288a和288b五角形288b。288a和288b可以是 任何透鏡,能將太陽輻射聚集在,收集表面29〇内太陽輻 射接收器295上。透鏡切面288可為可撓式的材料,如聚 氣乙烯(PVC) ’或由一個堅硬材料如聚曱基丙烯酸甲酯。 收集設備282安裝在,一個上有反射面294的平板292 上。輻射接收器295位於收集設備282的焦點中心,由支 18 201035505 柱262支押 Α Λ 將電流導 牙。自輻射接收器295引出的電線298, 至輻射接收器282之外。 二圖:十一是輻射接收器295更詳細的說明,和後面圖 I、、、σ的幸田射接收器390,具有相同結構。輻射接收器 ^ 、八匕樣式也可使用,如圖二十三的輻射接收器287, 匕具f如®三十五的輜轉收器41Q —樣結構。這些輕射 接收器具有内部冷卻系統,*依賴於外部來㈣冷卻劑。201035505, invention description: [Technical field to which the invention pertains] The information currently disclosed relates to the collection and conversion of solar radiation into other forms of energy. [Previous technology 1] Radiation from the sun can be used to provide energy and other energy sources, and it is important to improve collection methods and make full use of existing solar radiation. A variety of solar energy collection systems have been developed to collect or concentrate solar radiation. Some of these solar energy systems are fixed, such as solar panels installed in fixed locations. The collection surface is placed in an apparent position that faces the sun's expected movement in the day and in different seasons, collecting the most solar energy. In the northern hemisphere, it can be consistently pointed to the south, and vice versa, pointing north in the southern hemisphere. Solar panel panels are more effective in the direction perpendicular to the sun. Similarly, solar systems that concentrate the incident light of the sun are typically designed to focus on the apparent position of the sun. The sun's movement during daytime and seasonal shifts will reduce solar panel efficiency and will also cause any focus of the concentrator to be out of focus. Other solar concentrating systems require a tracker that allows them to collect surface and focusing equipment that can track changes in the sun's daily and seasonal shifts. Tracking often requires removable parts, which requires more expense and maintenance. It is not advisable to increase spending. It is not advisable to need repairs, because consumers like 201035505 will be happy to repair products and technologies, and they will expect solar products and technology to be maintenance-free. Therefore, it is desirable to provide a better static passive, non-tracker method to collect and concentrate solar radiation. SUMMARY OF THE INVENTION One object of the disclosure is to provide a radiation collection device that can increase solar energy utilization. Another current goal is to provide a radiation harvesting device that collects solar energy radiation from all directions. Another presently disclosed object is to provide a radiation collecting device that concentrates solar radiation to a predetermined location. Another current disclosure aims to provide a radiation collection device that passively collects solar energy without using equipment that needs to be moved. Another current disclosure is to provide a collection of 0 solar-powered launching equipment using economical materials. Another current goal is to provide portable, solar-powered collection equipment that can be used in remote areas where traditional power generation facilities are lacking. Another current disclosure aims to provide solar radiation equipment, stoves, broilers, lighting, and other free, non-polluting energy sources, especially in remote areas. Another current goal is to provide a solar radiation collection device that can be easily installed. Another presently disclosed object is to provide a solar radiation collection device that can be used for electric vehicle charging 5 201035505. Another presently disclosed object is to provide a solar radiation collection device that can be used for different vehicles. Another presently disclosed object is to provide solar radiation collection equipment that can be used in different buildings. Another current disclosure aims to reduce land use in large power plants and to require long-distance transmission facilities, and it is necessary to provide local solar radiation-generating equipment at locations where electricity is needed. Another current goal is to provide alternative energy sources to replace gasoline and other petroleum derivatives. Another current disclosure is to provide a concentrating system that is integrated with the building. These and other objects, as well as the functions and advantages of the presently disclosed objects, are further explained in the following detailed description, the drawings, and the claims. [Embodiment] Figures 1 to 3 describe a collecting device 1 including a collecting device 10, which includes a collecting frame and a radiation receiver 20 in the collecting frame. The collecting device 10 has a collecting surface 12. The collection surface 12 is configured to collect solar radiation from different directions and direct the collected radiation to the radiation receiver 20. The radiation receiver 20 is configured to collect solar radiation from above and below and ambient heat, as shown in the solar light path diagram. 201035505 The collection surface is set to collect most of the solar radiation from different directions. The collection surface 12 is shown in Figure 1, and is generally spherical. The collection surface 12 includes a plurality of lens cuts 30. Each lens section 30 includes one or more lenses that can receive solar radiation concentrated at the focal point of the collection device 10, preferably at the center of the collection frame 11, the radiation receiver 20 Just at or near the focal point of the lens of the lens section 30. Each lens section 30 can concentrate a range of solar radiation onto the radiation receiver 20 because the collection surface 12 is comprised of a plurality of lens sections 30 facing different directions, regardless of where the sun is in the sky, one or more lenses The facet 30 can focus the sun rays into the radiation receiver 20. Therefore, the device 1 does not need to be installed to face any particular direction, but only at a general level. So simply place the device on a level surface to achieve the above goals. Of course, the device 1 should be placed in a position where trees and buildings do not interfere with the passage of the sun from the device during the day. The structure of the collection device 10 is similar to the carbon sixty-six Buckminster fullerene molecular structure, which is a strong and aesthetically pleasing shape. The collection surface 12 has thirty-two polyhedral sections, that is, twenty hexagonal sections and twelve pentagonal sections. All or most of the polyhedral section, consisting of a lens section 30, forms a polyhedron of the collection surface 12. The collection frame 11 is similar to the covalent bond structure between carbon atoms of carbon-sixty grams of münster fullerene molecules (also referred to as "bucket balls"). The lens section 30 can be made of poly(methyl methacrylate) (organic glass 7 201035505 glass = non-> ear lens, which is an optical grade acrylic acid group: fat = _, for Rohma The company's patented trademark. This lens: - Medium = number 3Ga mark. In addition, the lens section may consist of a simple convex lens, a honeycomb structure. This lenticular lens is shown in Figure 1 by the number 30b. Brother, ~ and another type of lens section is a holographic lens (not numbered.) The collection surface 12 can include any combination of 30a, bird and penetration & the collection surface can also include only a lens (10) I, = cut surface 30b or only one lens cut surface 3〇e. This also shows that the through mirror 3〇 can be, Rencheng «Women drum Yang (four) #魏钱镜 H surface when the shot is from the lens cut surface 30, different incidence When the angle enters, the reverse astigmatism sheet is recorded on the outside of the lens section 30. The reverse astigmatism sheet is described in more detail. The reverse astigmatism sheet can correct the solar radiation; the angle of incidence is used to focus the lens without focusing. (but because the materials used at present are already in progress, they may also be reduced Luminosity. In addition, an anti-reflective coating (or other anti-reflective layer) composed of an oblique angle of oxidized ~ meter rod can be applied; the outer surface of the lens section 30 is used to reduce the light reflection loss. His research team, a new test at Troyes Institute of Technology in Troy, New York, to reduce reflection losses and allow more sun to shine, can be 3 through the lens section 30. By the way, reverse astigmatism or a layer of defense The reflective coating can be applied to other transmissive devices in the present application, which face the solar radiation to a light-emitting receiver not far from it. The light-emitting receiver 20 is extended by the collecting frame u. The strut rod 201035505 13 is supported, located near the central focal point of the collection device 10. In Figures 1 and 4, the cube-shaped radiation receiver 20 is collecting solar power. The shape of the radiation receiver 5 is as in Figure 1 and 4. Alternatively, there may be a shape of the ball 21, as shown in Fig. 5. Regardless of the shape, the covering material of the radiation receiver 20 or 21 is a photovoltaic solar material for converting solar energy into electrical energy. The wafer wafer 22, or the thin film photovoltaic material, is printed as a flexible film 23, or a dye-sensitized solar cell flexible film (GrStzell wafer) attached to a spherical underlying structure. The dye-sensitized solar cell film will be capable of being absorbed. The sun is fired in any direction. In addition, the thin film photovoltaic material or dye-sensitized solar film can be directly splashed onto the underlying structure. Both methods can be used for the cube radiation receiver 20, but the film version is easier to cover the spherical radiation. Receiver 21. Photoelectric material 22 or 23 may be a three-layer wafer of 'two-structured copper/sodium/sodium sulphide/wrong, or copper indium gallium arsenide, oresitized, and other optoelectronic materials may be used, for example. Chopped or organic dye sensitized materials. Advanced optoelectronic materials are more effective but also more expensive. The device 1 collects solar radiation and concentrates on a small amount of photovoltaic material in order to reduce the amount of expensive photovoltaic material used. The power generated by the radiation receiver 20 or 21 is used outside the device 10 via the wires 25 in one or more of the bars 13. In Fig. 1, the electric wire 25 is connected to the current transformer 55. Alternatively, the cord 25 can be connected to a battery or other storage system or directly to a device such as a lighting device. The radiation receiver 20 or 21 will need to dissipate heat to maintain the photovoltaic material 22 (or 23) at an optimum temperature, such as 25 degrees Celsius. Overheated photovoltaic material 9 201035505 Material 22 (or 23) is not advisable. A system or method 40 for cooling photovoltaic material 22 is not intended to be shown in FIG. A water tank 41 carrying cooling water or other coolant liquid (e.g., a mixture of ethanol and water, such as ethylene glycol) is placed in a water tank 42 that receives heated water or coolant liquid. The tube 43 connects the water tank 41 to the three-way valve 46. The two-way valve 46 is also connected to the radiation receiver 2A and the conduit 45 to the water tank 42 by a conduit 44. The three-way valve 46' is placed in the first position to allow water or other coolant flow to flow from the water tank 41 to the receiver 2G. In the second position, the wide door 46 interrupts the flow to the water tank w, allowing water or other coolant flow to flow from the Hurricane Receiver 20 to the water tank 42. In the third position, the door*6 interruptions flow in or out of the radiation receiver 20. A thermocouple (not shown) detects the temperature of the radiation receiver 20. The control circuit (not shown) senses the temperature of the service receiver 2 and moves the target 46 to three different positions to maintain the optimum temperature. The cooling system 40 provides step-by-step heating of hot water or other coolant that can be used for other purposes, such as hot water sources for hot water systems. Other methods of cooling the light-emitting receiver 20 (or 21), such as in a recirculation system, a coolant supply device H) an external bleed exchanger, recirculating back to the collection device 1 〇; or installing a cooling fan at the radiation receiver 20 Inside. As shown in Figure 6, the collection frame n is formed by interlocking plastic frame frames. The frame is best not to obstruct the light. Transparent and coated with an anti-reflective coating. The frame is in the opposite direction (two) straight concave grooves (Η type), and the receiving lens 3g is detachably fixed in the frame. The frame is joined at the vertices of the polyhedron. The projections 16' of the plastic joint 15 are inserted into the corresponding top end grooves of the three frames 14 and the assembly of the device 10 is extremely simple, since the frame 14, the joint 15, and the yield 2 10 201035505 mirror 30 can be removed from a kit , can be assembled by hand. At the top and bottom of the collection device 1 两 two line mirrors 3Q, there will be ^, holes, read insert rod 13m brother 'device i' can be f-packed and transported to the location where the device 1 needs to be used Time group Chu. The collecting solar radiation device 1 further includes a surface reflecting member in the form of a disk 50 having a reflecting surface 51 therein. The rod 13 of the collecting device 1 is extended to the middle of the reflecting plate 50, preferably by inserting a hole in the reflecting plate. The collecting device 1 is mounted on the rod 13 above the reflecting surface 51 to cause solar radiation to be reflected from the reflecting surface 51 to the collecting surface 12 of the bottom of the collecting device 1 or the bottom of the hemisphere. The legs 52 are welded or otherwise connected to the reflective disk 50' to support the reflective disk in a stable position. Reflector disk 5 〇 A possible shape is a truncated paraboloid, a portion of a ball or any other shape 'reflecting solar radiation onto the collecting surface 12. Figures 7 and 8 depict a device for collecting solar radiation devices 6A including a collection device 62 supported by a base 65 above the reflective disk 64. The Q collecting device 62 is the same collecting unit as the collecting device 10 shown in Fig. 1. The reflecting plate 64 is similar to the reflecting plate 5〇 shown in Fig. 1, but is used for desalination. Instead of the radiation receiver or 21, a hollow sphere 66 is collected for a radiation, located near the focal point of the collection lens. Xingchang Shot collected hollow spheres 66, which were set to collect solar radiation and ambient radiation from above and below, as shown in the example of the solar path in Figure 7. e Lead seawater 72 to the bottom of hollow sphere 66 to supply seawater to hollow sphere 66. The lens surface 68 is collected, collecting solar radiation to the hollow sphere 66' to evaporate the seawater therein, and the water is replenished by the tube 70 to the hollow sphere 11 201035505 66. In addition, the seawater is desalinated to dilute the remaining seawater. Newly introduced by the elbow, except for seawater, the device 60 can be lighted up to 6. Combined with sea water. But it can also be used;;:: The water will be installed in the area and in the case of an emergency. In the remote place, this will be the lack of water for reading. The hollow sphere 66 can be made of black glass. Or there is an excellent hot material dragon, and the money has a coating ❿ ^ steel alloy, cracking 60 material empty lag 66 water level, (four) money. The water level is 74 high, and the seawater will automatically be in the middle of the sea, and the water will be automatically replenished by the pipe 70; the square water level is low. At the bottom, lower the lining placed in the high ditch to the water level, and the amine rides the wall to prevent the seawater soaking equipment. Actually descending... ancient use of water retaining: 'Seawater U may need an intermediate storage:: tide sand and sea control mechanism to maintain the hollow sphere 6 6 - solid, Τ, - a feedback, (10) under 'other sea water one 2. Other sensory pianos that can supply seawater to hollow sphere 66 with a detection level, and the seawater seat is to control the circuit in the hollow sphere to the low water level signal I;::::2. The tube % sends the vapor in the hollow sphere 66 to the condenser 77 (schematic D Fig. 8), condenses from water vapor into water, and sends it to the tank Μ. As shown in Figure IX, a collection of solar radiation splits is included, including -82' being supported by the base 85 above the reflective disk 81. Collection of injuries ^ 201035505 Similar to Figure 1 collection device 10, the reflector disk 81 is similar to the reflector disk 50 of Figure 1, but used for the production of biodiesel; heating vegetable oil or other suitable precursor liquid, such as animal fat; and test solution Turn to I to make a biochemical diesel fuel. Vegetable oil or other suitable precursor liquid and lye are fed to container 90. The radiation collects the hollow spheres, absorbs heat from the solar radiant heat and transfers heat through the tube 84 to the vessel 90, which is preferably protected by copper and external insulation, and the container 90 wherein the vegetable oil or other suitable precursor liquid is heated and converted to biodiesel and glycerin. The hollow sphere 86 is similar to the hollow sphere 66 of Figures 7 and 8, and biodiesel and glycerin are collected in the vessel 90. The glycerin density is higher than that of biodiesel and will settle to the bottom of the vessel 90 and be discharged first through the faucet at the bottom; the biodiesel is then withdrawn. Figures 10 through 15 depict devices for collecting solar radiation for power generation. In Fig. 10, the apparatus 100 for collecting solar radiation includes a collecting device 102 and a reflecting plate 104, similar to the collecting device 10 and the reflecting plate 50. Reflector disk 104 is shown with a fan shaped edge as shown in FIG. This is purely for decorative purposes and is not required. The radiation receiver 106 contains a collection device 102 having an optoelectronic wafer that is powered by wires (not shown), one or more of the illumination rings 108 mounted on the outer edge of the collection lens 110. The illuminating ring 108 can be made of a light emitting diode. The apparatus 100 is mounted on a lamp post 112 having a hydraulic system to provide illumination over a wide range of areas. The hydraulic system can lower the device 100 for cleaning and maintenance. Another light source device can control the mechanical operation by using a light sensor; after the dark, the light sensor can not detect the photon, the light source device is interchanged with the radiation receiver 106, and the device 100 is used to reverse the light at the center focus 13 201035505,: Direction 'As French scientist Fresnel, first use the same invented on the Fita, and after dawn, the light sensor ^ began to work on solar radiation during the day. Under the summer device 100, there is a battery compartment with a battery (10). After the black, it provides illumination or other light source equipment to emit light. The two light switch 'tune up' timer can control the light ring. Light, but Figure 10 is not listed. In Figure 11, the device 120 for collecting solar radiation, including a receiving machine 122 and! The shooting wheel 124, like the collecting device 1〇, and the reflecting plate 5, the radiation receiver 126 contains a collecting device 122, which has photoelectric electricity, is powered by wires (not shown), gives one or more, and The illuminating light-emitting ring 128 on the outer edge of the 曰130 can be mounted on a short lamp post 132 by a light-emitting diode device, which can provide illumination for the garden = near the ground. The radiation receiver 106 has - stored electrical energy; after dark, an illumination ring is provided to cause it to illuminate. The switch 'dimmer, when and how much light, but the ten battery compartments 129 with batteries, can store 12 8 or other light source devices, power, timers, etc., can control the light ring 128 is not listed. In Fig. 12, the device 140 for collecting solar radiation includes a receiving device M2, similar to the drawing-collecting device, and the reflecting surface 144 is shocked under the receiving device 140. Collecting device Η2 inside 幸 妾 ( (not shown: wafer composition, powered by wire (not shown), give one or more, illuminating ring 148 attached to the outer edge of collecting lens 15G. illuminating ring 148, can be & 14 201035505 Diode made. The device 140 is mounted on the lamp holder 154 by the column 152, and the reflective surface 144 is located on the upper surface of the lamp holder 154. The battery 140 has a battery compartment ι54 under the device 140 for storing electrical energy. After the black, the light-emitting ring 148 or other light source device is provided to emit light to cause it to emit light. Switches, dimmers, timers, etc., can control when and how much light is emitted by the light-emitting ring 1〇8, but not shown in FIG. The second unit 'collects a device that is too lightly ignited 1%, including a collection device 162, similar to the collection device 10, and the reflective surface 164 is located on the upper surface of the stone column 172, positioned under the collection device 160. The radiation within the collection device 162 A receiver (not shown) is comprised of optoelectronic wafers that are powered by wires (not shown) and provide illumination to one or more of the illumination rings 168 mounted on the outer periphery of the collection lens 17. The illumination ring 168 can be made of light emitting diodes. to make The collection device 162 is mounted on the stone column 172. Inside the stone column 172 of the device 160, there is a battery compartment 169 with a battery for storing electrical energy; after the dark, an illumination ring 168 or other light source device is provided to illuminate the light to cause it to emit light. Switches, dimmers, timers, etc., can control when and how much light is emitted by the illumination ring 168, but not shown in Figure 13. In Figure 14, the device 180 for collecting solar radiation includes a collection device 182, similar to Figure 1. A collection device, a collection of radiation receivers (not shown), consisting of optoelectronic wafers, powered by wires (not shown), providing illumination to one or more of the illumination rings 188 mounted on the outer periphery of the collection lens 19 The illuminating ring 188' can be made of a light-emitting diode. The 置 18 〇 is sealed and waterproof 'because it is hollow 'can float on the water' to become a pool light. The water surface becomes a reflective surface 184 that will reflect light onto the collecting device 182. 201035505 In the device 180, there is a battery compartment with a battery, which can store electrical energy; after the dark, the illumination ring 188 or other light source device is provided to emit light to make it emit light. , timer, etc., can control when and how much light is emitted by the light ring 188, but not shown in Fig. 14. In Fig. 15, the device 200 for collecting solar radiation includes a collecting device 202, similar to the collecting device 1 The reflective disk 204 is mounted under the collection device 202. The collection device 202 has a receiver (not shown) that is composed of a photovoltaic wafer that is powered by a wire (not shown) to the lamp 208 under the reflective disk 204. It is mounted on a lamp post 210 with a hydraulic system. Under the device 120, there is a battery compartment 209 with a battery, which is located in the base of the lamp post 210 to store electrical energy; after the dark, a light 208 or other light source device is provided to emit light. Electricity, making it glow. Switches, dimmers, timers, etc., can control when and how much light 208, but not shown in Figure 15. Device 200 provides power to charging station 212 by electrical line 214, which has a battery compartment that houses battery 211 for charging the electric vehicle. Figures 10 to 15 provide only a few possible versions of the device 1 for providing lighting and electricity for charging the electric vehicle. The location and shape of the reflective surface, the pillars, the battery and switch locations, and other components can vary widely. In addition, other traditional lighting devices can also use the power generated by electrical devices, such as light bulbs and fluorescent lamps, as long as the sockets, converters and other components are fully assembled. Figure 16 depicts a device 220 for collecting solar radiation. Each device includes a collection device 222, similar to the collection device 1 of Figure 1, and a reflective disk 224 is similar to the reflective disk 5. Figure 17 is a cross-sectional view of the apparatus 220. 16 201035505 The radiation receiver 225 within the collection device 222 is a hollow sphere. The bottom of the radiation receiver 325 has a tube ' to obtain the collection device 222 mounted on the struts 226, providing air. The connected struts 226 are tubular and open to the reflective disk 224 for air to enter the collection device 222. The conduit 228 delivers air heated by the radiation receiver 225 to a location where it may be used. In Figure 16, it is for a central power station 230 where hot air is used to drive a turbine generator connection (not shown). Hot air can also be used for house heating and more. Figure 18 shows an array array 〇 or power plant 240 that collects solar radiation equipment 242. The apparatus 240 includes a collection device 244 including a collection device 244 and a reflective disk 2, and a reflective disk 50. The array array or power plant 240 is a combination of array devices 240, as shown in Figure 1. A radiation receiver (not shown) in the collection device 244 is shown in FIG. The radiation receiver contains optoelectronic wafers that are connected by a cable 245 and then supplied via power cable 246 to a central power station 250 for delivering power to a grid (not shown). The collection device 244 needs to be a large unit, such as within 3 meters (about 10 feet), 4 meters (about 20 feet) in diameter, and preferably has a current transformer to provide alternating current to the central power station 250. Figures 19 and 20 depict an array array or power plant 260. Power Array 260 is a variation of the array 240 shown in Figure 18, which includes a device 262 for collecting solar radiation. Each device 262 is similar to the collection device 10 shown in Figure 1 and is equipped with a current transformer (not shown in Figures 19 and 20). Device 262 is illustrated as being mounted on a linear foundation 265. Other arrangements are available at 17 201035505 b' but the current demonstration is a straight line. Between the four sets of devices 262 mounted on the linear foundation 265 is a reflector 266. The reflector 266 is a four-sided arcuate gold-tower shaped 'each arc' that reflects light to the respective facing device 262. The apparatus 262 of Fig. 19 requires the cooling tube 268 to deliver the cooling liquid, to which the receiver 264 is forcibly irradiated to keep the photovoltaic wafer from overheating, and the alternating current of each device 262 is connected by the cable 270 and then through the power cable 272. Provided to the place where electricity is needed. 3 The 262 can be 3 to 6 meters in diameter (about 1 to 2 feet), but the device may have other diameters. Foundation 265 may be made of a concrete floor or other material. It can be worn on the ground or on the roof of a building. It can also be made into a buoyant structure that floats on the water. Figure twenty-four, depicting a collection solar radiation device 280, which includes a collection device 282, which is another variation of the collection device shown in Figure 1. Collection device 282 has a collection frame 284 that supports a plurality of lens sections 288. The frame 284 and the lens section 288 are collected to form a collection surface 290; as shown in Figures 21 and 24, the lens section 288 has two shapes: a hexagonal lens surface 288a and a 288b pentagon 288b. 288a and 288b can be any lens that concentrates solar radiation on the solar radiation receiver 295 in the collection surface 29〇. The lens section 288 can be a flexible material such as polyethylene (PVC) or a rigid material such as polymethyl methacrylate. The collection device 282 is mounted on a plate 292 having a reflective surface 294 thereon. The radiation receiver 295 is located at the center of the focus of the collection device 282, and the current is guided by the branch 2020 35 262 262 。. The wire 298 drawn from the radiation receiver 295 is outside the radiation receiver 282. Figure 2: Eleven is a more detailed description of the radiation receiver 295, and the Koda Shot Receiver 390 of Figures I, , and σ, which have the same structure. The radiation receiver ^, gossip style can also be used, such as the radiation receiver 287 of Figure 23, the cooker f such as the thirty-five 辎 transponder 41Q-like structure. These light-emitting receivers have an internal cooling system, * depending on the external (four) coolant.

,圖一十四中收集框架284,充氣管283由可撓式的材料 製,,如聚氯乙烯。充氣管283可由腳踏打氣筒充氣。充 氣管283相互聯接,密封,使空氣或其他氣體,從中流通。 將空氣或其他氣體通過—個人口(未顯示)打進充氣管加 中,所有管將膨脹,從而支撐起收集框架284。透鏡切面 288,可用超音波焊接或類似方法與充氣管283相互聯接。 該裴置280,尤其是重量輕,易攜帶,適野外使用。 圖一十五,一個收集太陽輻射的裝置300,是圖二十一 〜二十四個—個變化運用。主要的區別在於的收集表面训 的結構,碳奈米管的形狀’ _各有半球布基球封口,也 將在圖四十中採用。圖二十六〜三十’第二種太陽輻射收隹 裝置320,包括一個收集設備330。收集設備33〇,包括: 個收集框架331’在此框架331中的輻射接收器34〇。收集 框架331 A由互鎖的方式組成,在圖—的細部圖,圖六中' 有詳細的猫述。收集設備330有一個收集表面。收集表 面332是設定收集從本地或可見地平線(在這種情況;广 當地的地轉是指反射盤355上方邊緣)上面的太陽輕射, 19 201035505 集中該輻射到輻射接收器340。收集表面332與前述裝置不 同,並不延伸至輻射接收器340的下方,因此,無法集中 來自下方的輻射,至輻射接收器340。 收集框架331和收集表面332,為半球表面。收集表面 332包括多個透鏡切面334。每個透鏡切面334包含一個或 多個透鏡,可以接受並集中太陽輻射,至收集設備330的 聚焦中心。 收集表面332的聚焦中心,應在收集框架331半球底 部,平面的中心或附近。輻射接收器340應在透鏡切面334 的聚焦中心。 透鏡切面334,每個透鏡切面,面對某一範圍的入射 光,將之收集到輻射接收器340。由於收集表面332,面對 不同的方向的透鏡切面334,無論太陽在天空中什麼位置, 始終有一個或多個透鏡切面334,可以集中吸收太陽光到輻 射接收器340。 圖二十六,收集設備的結構,類似碳六十巴克明斯特 富勒烯分子的半球結構,這是一個堅固和美觀的結構。收 集表面334有十六多面體切面,即四個完整的六角切面, 六個切半的六角切面,和六個五角切面。全部或大部分多 面體的切面裝有透鏡切面,透鏡切面334各切面,對應多 面體形狀,在適當位置應有適當的切面,組成收集表面 332。收集框架331則類似,碳六十巴克明斯特富勒烯分子 共價鍵的半球結構。 透鏡切面334可為一個聚曱基丙烯酸曱酯的菲涅耳透 20 201035505In Fig. 14, the frame 284 is collected, and the inflation tube 283 is made of a flexible material such as polyvinyl chloride. The inflation tube 283 can be inflated by a foot pump. The gas filling tubes 283 are coupled to each other and sealed to allow air or other gas to flow therethrough. Air or other gas is pumped through the personal port (not shown) into the inflation tube, and all of the tubes will expand to support the collection frame 284. The lens section 288 may be coupled to the inflation tube 283 by ultrasonic welding or the like. The device 280 is especially lightweight, easy to carry, and suitable for field use. Figure fifteen, a device 300 for collecting solar radiation, is a twenty-four to twenty-four-variation application. The main difference is the structure of the collection surface training, the shape of the carbon nanotubes _ each with a hemispherical buckyball seal, which will also be used in Figure 40. Figure 26 - 30' second solar radiation harvesting device 320 includes a collection device 330. The collection device 33A includes: a collection receiver 331' in the frame 331 of the radiation receiver 34A. The collection frame 331A is composed of interlocking patterns, and in the detailed view of the figure, in Fig. 6, there is a detailed description of the cat. Collection device 330 has a collection surface. The collection surface 332 is set to collect solar radiation from the local or visible horizon (in this case; the wide local ground refers to the upper edge of the reflective disk 355), 19 201035505 concentrating the radiation to the radiation receiver 340. The collection surface 332 is different from the aforementioned device and does not extend below the radiation receiver 340, and therefore, the radiation from below cannot be concentrated to the radiation receiver 340. The collection frame 331 and the collection surface 332 are hemispherical surfaces. Collection surface 332 includes a plurality of lens cuts 334. Each lens section 334 includes one or more lenses that receive and concentrate solar radiation to the focus center of collection device 330. The center of focus of the collection surface 332 should be at the bottom of the hemisphere of the collection frame 331, at or near the center of the plane. Radiation receiver 340 should be at the center of focus of lens section 334. A lens section 334, each lens section, faces a range of incident light and collects it into a radiation receiver 340. Due to the collection surface 332, facing the lens section 334 in different directions, regardless of where the sun is in the sky, there is always one or more lens sections 334 that can concentrate the absorption of sunlight into the radiation receiver 340. Figure 26. The structure of the collection device, similar to the hemispherical structure of the carbon sixty-six-gram münster fullerene molecule, is a sturdy and aesthetically pleasing structure. The collection surface 334 has sixteen polyhedral sections, namely four complete hexagonal sections, six half cut hexagonal sections, and six pentagonal sections. The facets of all or most of the polyhedron are provided with lens cuts, and the facets of the facets 334, corresponding to the shape of the polyhedron, should have appropriate cuts in place to form the collecting surface 332. The collection frame 331 is similar to the hemispherical structure of the covalent bond of the carbon sixty-six-gram münster fullerene molecule. The lens section 334 can be a Fresnel transparent phthalate acrylate 20 201035505

鏡。在圖二十六中以數字334a樟干s L ^ ^ 不。另外,透鏡切面可能 甶間早眾多的微型雙凸透鏡,組 Π ^ - ^ 、、成—個蜂窩結構。這種雙 凸巧鏡透鏡結構在圖中以數字334 i77r§, Β 加外私不。逛有另一種透鏡 切面疋一個全像透鏡,以數字33 X. . y c知不。收集表面334可 I括任何334a,334b和334c透鐘如am + 口 切面的組合。收集表面 也了以,、包括一種透鏡切面33 七体右 種透鏡切面334b或只 有一種透鏡切面334c。這也說%,& ^ ^透鏡切面334可為,任mirror. In Figure 26, the number 334a is dried s L ^ ^ no. In addition, the lens section may have many micro lenticular lenses in the early days, and the group Π ^ - ^ , into a honeycomb structure. This double convex lens structure is shown in the figure by the number 334 i77r§. There is another lens in the face, a holographic lens, with the number 33 X. . y c know. Collection surface 334 can include any combination of 334a, 334b, and 334c clocks such as am + port cuts. The collection surface is also comprised of a lens section 33, a seven-body right lens section 334b or only one lens section 334c. This also says that %, & ^ ^ ^ lens section 334 can be,

1句木中且收集太陽歸的透鏡或透鏡⑽。 幸畐射接收器340在收集設備33〇聚焦中心的附近,由 陽Γ 1延伸的桿335支樓。輕射接收器340收集太 =亚發電。輕射接收器的34〇,可有圖—輻射接收器Μ 的形狀和結構,外部表面,包括光電晶片343。 圖一十七,將圖二十六中的輕射接收器34〇放大。它 ,似圖五中的輕射接收器2卜圖二十八則類似圖四中的輕 射接收器20。 輻射接收器340 (或341)所產生的電力,將通過在一 個或多個桿335中的電線358,傳輸到裝置32()外部使用。 在圖二十六,電線358連接到一個變流器359。其他選擇 ^,電線358可以連接到電池或其他存儲系統,或直接到 设備,如圖十〜十五的照明設備。 :土 =射接收器340將需要散熱,以保持光電材料在一個 =幻皿度。圖二十六展示—種光電晶片水冷式散熱的系統 或方法345。栽冷卻水或其他冷卻劑液體的水箱342,裝在 接收加熱過的水或冷卻劑液體的水箱344上。管346將水 21 201035505 箱342接至三通閥348。 三通閥348也以管道350接到輻射接收器34〇和管道 352至水箱344。三通閥348,擺在第—的位置,允許水或 其他冷卻液流量自水342流到輻射接收器34〇。在第二個位 =,閥門348中斷流量至水箱342’容許水或其他冷卻液流 i自幸田射接收器340流到水箱344。在第三的位置,閥門 3=8中斷從輻射接收器34〇流入或流出。熱電偶(未顯示) 檢測到輻射接收器34〇的溫度。控制電路(未顯示)感應 到輻射接收器340的溫度,而移動閥348至三個不同位置, 以保持最佳溫度。 冷卻系統345具可進一步提供加熱熱水或其他冷卻 劑,可用於其他目的,如熱水系統的熱水來源。其他冷卻 輻射接收器340的方法,諸如再循環系統中,冷卻液通過 收集設備330外部的熱交換器,再循環囘收集設備33〇;或 氣冷式’安裴冷卻風扇在輻射接收器340内。 如圖六,及上述,收集框架331是由塑膠組件互鎖組 成。該收集太陽輻射設備320’進一步包括一個反射盤355, 内有一反射面356。收集設備320伸出的桿335,聯接至反 射盤355中間,在反射盤355上打洞再被插入。使太陽輻 射反射到收集設備340。 收集框架331有一周邊支架336,將收集表面332半球 底部,各透鏡切面334下端的邊固定,周邊支架336如圖 六中的框架組件14,是互鎖組件,可以快速組合。周邊支 架336也用支架337,連接到反射盤355的周邊環356。支 22 201035505 架337 ’周邊支架336,環356界定出透明多邊形窗戶338。 窗戶338可插入支架337,周邊支架330的插槽;所以該窗 戶可自支架337,周邊支架336拆裝;窗戶338可放在反射 盤355上。 囪戶348最好是由透明亞克力,塗有防反射塗層,或 其他板材可以讓光通過,傳輸光到反射盤355上者,也可 使用。如〇型圈封條,矽膠等,可使用在支架337,周邊 〇 支架336,反射盤355和窗戶338的接頭處,使灰塵,雨, 露,雪其他大氣中元素,不會積在反射盤355或進入自收 集設備320下方進入。腿357以焊接或其他方式連接到反 射盤355 ’支持反射盤在安裝地安放。 圖三十一和三十二,描述一個收集太陽輻射的裝置 360,包括一個收集設備362和反射盤364,是和圖二十六 的收集設備330和反射盤335 一樣的,但改用來海水淡化。 原先幸田射接收器340由一個收集太陽輻射的中空球體366 〇 取代,該球體位於透鏡切面368焦聚中心附近。透鏡切面 368可包括任何菲涅耳透鏡面368A,雙凸透鏡36訃,全像 透鏡368c的組合,或其他任何可以收集和集中光能的透鏡 切面。 管376將海水372導至中空球體366底部,供應海水 給球體366。收集透鏡表面368,聚集太陽輻射至中空球體 366,將其中海水蒸發,再由管376將海水補充至中空球體 366。 中空球體366可由玻璃塗黑製成。另外也可為銅或銅 23 201035505 合金,有卓越的熱傳導特性,並覆蓋有吸收塗層的外表面。 圖三十-,裝置360將球體366,與隔在擋水牆外的海 水372,水位高374平高,海水自動會在中空球體Μ6水位 低時,自動由管376補水;圖三十一和三十二,球體 女裝方法類似圖七和圖八的裝置6 〇。 其他可供應海水至中空球體366的方法為,在中空球 體366裝有檢测水平的傳感器,當海水庫372内幫浦控制 電路,接收到低水位信號後’經由管道補水。 官378將中空球體366内瘵氣送至冷凝器377(示意於 圖),從水蒸汽凝結成水,再送至水箱379,儲為淡水。 圖二十二〜三十六,描述一個收集太陽輻射的裝置 380,包括一個收集設備382,輻射接收器39〇和一個氣球 400。其目的是攜帶方便。 收集設備382類似,圖二十六〜三十的收集設備33〇 ; 收集設備382上半部是半球形,在其底部有凹面向上的氣 球400反射輻射。收集設備382有收集框架383和收集表 面384’類似收集設備33〇的收集框架331和收集表面%2。 收集表面384,收集從本地或可見地平上面的太陽輻射,在 這種情況下,當地的地平線是指氣球上方圓環4〇1。 —透鏡切面384由透鏡切面m'组成,透鏡切面可包括, 菲淫耳透鏡切© 386A,蜂綠雙凸透鏡·,全像透鏡 撤的組合,或其他任何透鏡切面,可以«和集中光能 至輻射接收器390。透鏡切面386由可換式的聚氯乙稀製 成,以便充氣。 24 201035505 收集設備382位於氣球上方。充氣氣球400,充氣 後,它的底部呈碗4〇2的形狀;氣球糊底部4q 面 L 2内面’可加鐘銀金屬笛或塑料薄膜 塗層,成為反射面403。氣球·本身可為高丹 用pvc或尼龍布製成。氣球_ #上部環面401,一= 透明’允許光線進入,並由氣球彻底部術❾反射^面1 sentence in the wood and collect the lens or lens of the sun (10). Fortunately, the radiation receiver 340 is in the vicinity of the focus center of the collection device 33, and the pole 335 is extended by the popula 1. Light shot receiver 340 collects too = sub-power. The light-emitting receiver's 34 turns may have the shape and structure of the radiation receiver ,, and the outer surface, including the photovoltaic wafer 343. Figure 17. The light-emitting receiver 34A in Figure 26 is enlarged. It, like the light-light receiver 2 in Figure 5, is similar to the light-emitting receiver 20 in Figure 4. The power generated by the radiation receiver 340 (or 341) will be transmitted to the outside of the device 32() via the wires 358 in one or more of the bars 335. In Figure 26, the wire 358 is connected to a current transformer 359. Other options ^, wire 358 can be connected to a battery or other storage system, or directly to the device, as shown in Figure 10 ~ 15 lighting equipment. : Soil = Shot Receiver 340 will need to dissipate heat to maintain the optoelectronic material at a = illusion. Figure 26 shows a system or method 345 for water-cooled heat dissipation of photovoltaic wafers. A water tank 342 for cooling water or other coolant liquid is placed on the water tank 344 that receives the heated water or coolant liquid. Tube 346 connects water 21 201035505 tank 342 to three-way valve 348. The three-way valve 348 is also coupled to the radiation receiver 34A and the conduit 352 to the water tank 344 by conduit 350. The three-way valve 348, in the first position, allows water or other coolant flow from the water 342 to the radiation receiver 34A. At the second bit =, valve 348 interrupts flow to tank 342' to allow water or other coolant flow i to flow from tanker 340 to tank 344. In the third position, valve 3 = 8 interrupts flowing in or out of the radiation receiver 34. A thermocouple (not shown) detects the temperature of the radiation receiver 34A. A control circuit (not shown) senses the temperature of the radiation receiver 340 and moves the valve 348 to three different positions to maintain the optimum temperature. The cooling system 345 can further provide heated hot water or other coolant that can be used for other purposes, such as a hot water source for the hot water system. Other methods of cooling the radiation receiver 340, such as in a recirculation system, the coolant passing through a heat exchanger external to the collection device 330, recirculating back to the collection device 33A; or an air-cooled 'amplifier cooling fan within the radiation receiver 340 . As shown in Figure 6, and above, the collection frame 331 is composed of interlocking plastic components. The collection solar radiation device 320' further includes a reflective disk 355 having a reflective surface 356 therein. A rod 335 extending from the collecting device 320 is coupled to the middle of the reflecting plate 355, and a hole is formed in the reflecting plate 355 to be inserted. The solar radiation is reflected to the collection device 340. The collecting frame 331 has a peripheral bracket 336 for fixing the bottom of the collecting surface 332 hemisphere, and the lower end of each lens cutting plane 334 is fixed. The peripheral bracket 336 is the interlocking assembly of the frame assembly 14 in FIG. The peripheral bracket 336 is also coupled to the peripheral ring 356 of the reflective disk 355 by a bracket 337. Branch 22 201035505 A 337 'peripheral bracket 336, the ring 356 defines a transparent polygonal window 338. The window 338 can be inserted into the bracket 337, the slot of the peripheral bracket 330; so the window can be detached from the bracket 337, the peripheral bracket 336; the window 338 can be placed on the reflective disk 355. Hbone 348 is preferably made of a transparent acrylic, coated with an anti-reflective coating, or other sheets that allow light to pass through and transmit light to reflective disk 355. Such as 〇-type ring seals, silicone rubber, etc., can be used in the bracket 337, the peripheral 〇 bracket 336, the reflection plate 355 and the window 338 joint, so that dust, rain, dew, snow, other atmospheric elements, will not accumulate in the reflector 355 Or enter under the self-collection device 320 to enter. The legs 357 are welded or otherwise attached to the reflector disk 355' to support the reflective disk at the mounting location. Figures 31 and 32 depict a device 360 for collecting solar radiation, including a collection device 362 and a reflective disk 364, which are identical to the collection device 330 and the reflective disk 335 of Figure 26, but are adapted for use with seawater. Lighten. The original Koda Receiver 340 was replaced by a hollow sphere 366 收集 that collects solar radiation, which is located near the focal center of the lens section 368. Lens section 368 can include any combination of Fresnel lens face 368A, lenticular lens 36讣, holographic lens 368c, or any other lens section that can collect and concentrate light energy. Tube 376 directs seawater 372 to the bottom of hollow sphere 366 to supply seawater to sphere 366. The lens surface 368 is collected, collecting solar radiation to the hollow sphere 366, evaporating the seawater therein, and replenishing the seawater to the hollow sphere 366 by the tube 376. The hollow sphere 366 can be made of glass black. It can also be copper or copper 23 201035505 alloy, which has excellent heat transfer properties and is covered with an outer surface of the absorbing coating. Figure 30 - The device 360 will align the sphere 366 with the seawater 372 outside the water retaining wall, the water level is 374, and the seawater will automatically replenish water by the tube 376 when the water level of the hollow sphere Μ6 is low; Thirty-two, the ball women's method is similar to the device of Figure 7 and Figure 8. Other methods of supplying seawater to the hollow sphere 366 are to mount a sensor with a detection level in the hollow sphere 366, and when the pump control circuit in the sea reservoir 372 receives the low water level signal, the water is replenished via the pipeline. The officer 378 sends the helium gas in the hollow sphere 366 to the condenser 377 (shown in the figure), condenses it from water vapor into water, and sends it to the water tank 379 for storage as fresh water. Figures 22 through 36 illustrate a device 380 for collecting solar radiation, including a collection device 382, a radiation receiver 39A, and a balloon 400. Its purpose is to carry it conveniently. The collecting device 382 is similar to the collecting device 33 of Figures 26 to 30; the upper portion of the collecting device 382 is hemispherical, and the balloon 400 having a concave upward facing surface reflects radiation. The collecting device 382 has a collecting frame 383 and a collecting frame 331 of a collecting surface 384' similar to the collecting device 33, and a collecting surface %2. The surface 384 is collected to collect solar radiation from the local or visible ground, in which case the local horizon refers to the ring above the balloon 4〇1. The lens section 384 is composed of a lens section m', and the lens section may include, a Philippine lens cut © 386A, a bee green lenticular lens, a holographic lens withdrawal combination, or any other lens section, which can be used to concentrate light energy to Radiation receiver 390. The lens section 386 is made of a replaceable polyvinyl chloride for inflation. 24 201035505 Collection device 382 is located above the balloon. The inflatable balloon 400, after being inflated, has a bottom shape of a bowl 4 〇 2; the inner surface of the balloon paste 4q face L 2 can be coated with a silver silver metal flute or a plastic film to form a reflecting surface 403. The balloon itself can be made of pvc or nylon cloth for Gao Dan. Balloon _ # upper torus 401, one = transparent 'allows light to enter, and is completely reflected by the balloon

403’反射該光線到,在氣球儀的聚焦中心的輕射接收器 390。 氣球400必須在其底部4〇2固定。環4〇6以焊接或枯 接劑或類似方式聯結至底部術,由錯釘術^在地面。 =他方式確保氣球400固定在地面也可接受。例如,鄕 裱可以掛鉤或綁結錨釘方式固定在地面。 氣球4 00上部的環面4 〇〗,支撐收集設備3 82和軤射接 收器390。由透鏡切面386 *反射表面4〇3封的光^,將 會將輻射接收器390加熱,最好不要接觸氣球伽 環面401。 ' 支柱389支撐輻射接收器39〇,高於氣球4〇〇上半部環 面4〇1 ’使之不接觸氣球400的上部環面4〇1。支柱389 一 端接在氣球400上半部,環面4〇1的表面扣環4〇5,另一端 接在的射接收器390,途經收集設備382。所以支柱389 一 般是透明材質製成,如透明塑料管。 收集射備382連接氣球4〇〇到上半部環面4〇1。收集射 備3幻和氣球400内部是互通的。輕射接收器39〇外部為 25 201035505 光電材料’以下的圖三十四和三十五有更詳細的討論。電 線398連接輻射接收390到變流器399。電線398可提供電 池電源,照明襞置,充電裝置,或任何其他設備電源。 裝置380很容易搭建,只要將氣球4〇〇充滿空氣或其 他氣體。即可使該裝置形成如圖三十三和三十六所示的形 狀。輻射接收器390散熱設備(下面討論),排放的熱空氣 會增加在氣球4〇〇的空氣壓力,可協助維持氣球4〇〇膨脹。 氣球400和收集射備382的溫度,將比周圍的環境溫度高; 會四向散熱’直到兩種溫度一致。 圖三十四,裝置380的輻射接收器39〇。輻射接收器 390通常是立方體。其六個外壁為光電晶片391。側壁a% 從頂端牆面393分開,以增加四個窗戶394通風,允許空 氣在輻射接收器390中,流通進出達到散熱的目的。四支 柱395連接側牆362及頂端牆面393。一個底面(未顯示) 連接在侧壁392。輻射接收器390立方體内層,最好由鋁合 金製成,其他材料也是可以接受的,如果他們有高導熱性 的特色,如氧化鈹。 頂端牆面393在它的四個角落與支柱389相接。頂端 牆面393大於側壁362’以便其邊緣超出側壁,使反射表面 403反射的輻射,能打到頂層牆體393的雙面光電晶片 391 ’這將導致這些晶片吸收更多的太陽輻射。 輻射接收器390内,最好包含一個散熱設備,如圖六 十六和六十七所示;以保持光電晶片391在適當的溫度。 例如馬達運轉風扇使空氣流通。熱傳感器(未顯示)驅動 26 201035505 馬達,以來自輻射接收器390外壁的光電晶片391,或自輻 射ί收器410外壁412的光電薄膜,由電線398 (未顯示) 輸給電力,使馬達通電。該散熱設備類似一個CPU冷卻用 设備。 圖三十五描述了裝置380的另一種輻射接收設備 410。輻射接收器41〇有一個中空的球體412。它的外表面 塗有光電壓膜413。 Ο ^支柱389連接到環414 ’從而連接到球體412。此附件 最好疋不疋永久性的,使支柱389可以移除,以拆卸裝置 環414創造丁一個通風孔415,允許空氣進入和離開 萄射接收器410,達到球體412的散熱目的。 圖三十七〜三十九描述一個收集太陽輻射 由—個收集設備422,輻射接收器43^個=二 成。主要重點是便攜。 〇 射接收11 設定為’從上方和下方接收陽光和周 陽光的照射模式見圖三十七所示。輕射接收器43〇 、過電線432.將電流送到變流器434。 丄圖二十七〜三十九的收集裝置422,和圖三十三〜三十 的收集裝置382,大致上是相同的。 一同樣,輻射接收器430實質上是與圖三十三,彡十四 =三十六相同的輻射接收器39〇。請參考先前的收赛設備 和輻射接收器390。 、軋泉440從上看下來為方形,有六個外牆在其邊緣接 縫,—頂層牆面442,四面外壁444和底部446。在负層牆 27 201035505 面442,外壁444和底部446,一個不透氣材料,如高丹尼 爾數氣球用PVC或尼龍布。氣球440是用空氣,其他氣體 或液體(例如水)充滿,以便展示應有的形狀,如圖三十七。 氣球440包含一個内壁450,接縫在頂層牆面442和侧 牆444連結的邊線上。内壁450的形狀,在氣球440充氣 後,會使其凹面向上。如圖三十七所示,這種形狀是通過 内部八片三角片452,一般是焊接或接縫形成内壁450,内 壁450再由頂層牆面442和側牆444連結的邊線吊起。此 外,内部線454使内壁450與氣球440的四角相接。 内壁450上部表面是一個銀面反射表面456。反射表面 凹面向上,將光自輻射接收器430下方反射上去。頂層牆 面442是由透明材料組成,以使光線通過到反射表面上。 收集設備430在氣球440的頂部牆面442上。輻射接 收器430是由桿431支撐。氣球440在其四角441有環443, 用錨釘445可將其固定在地面。其他固定方式,如附著到 一個較低的表面,如連結錫釘固定在一個較低的表面。氣 球440頂層牆面體442和側壁444相連處,加上工業用的 拉鍊半邊447,如圖三十九。拉鍊半邊447可與其他類似裝 置氣球440相應的拉鍊半邊447拉和,將數組的裝置420 連成一個密密麻麻方形陣列。 圖四十〜四十三,描述一個收集太陽輻射裝置450,包 括一個收集設備470;收集設備470包括一個收集框架471 和在收集框架471内的輻射接收器480。收集設備470有一 個收集表面472。收集表面472設定為收集不同方向的太陽 28 201035505 輻射,和集中輻射到輻射接收器48〇。 收集框架471和收集表面472為管形,兩頭為半球封 口。收集表面472包括多個透鏡切面474。每個透鏡切面 474,包含-個或多個透鏡,收集太陽輻射,聚焦在收隹机 :::内中心軸475上一個或多個透鏡的聚焦點應:: 接^中—心軸475上。輻射接收器·位於或接近透鏡切面 474 ’母一透鏡的聚焦點中心軸475上。 〇 每個透鏡切面474可以集中—定範_太陽輻射 射接收器·上,因為收集表面472,由眾多面對不同方: 的透鏡切面474所組成。相對輕射接裝置46〇的位置^ 不論太陽在天空中什麼位置,一個或多個透鏡切面销可 以將太陽射線焦中到輻射接收器48〇。 太、圖四十所示,收集設備47〇的收集框架471,類似碳 奈米管’左右兩頭為碳-六十巴克明斯特富勒烯分子半球= 口的共價鍵結構’這I種堅固和美觀的結構。透鏡切面 〇 可為任何能夠集中且收集太陽輻射的透鏡或透鏡系 統,如菲涅耳透鏡(以數字474a標示)。另外,微型雙凸 透鏡,組成一個蜂窩結構(以數字474b標示)。或—個全 像透鏡(以數子474c標示)。收集表面472可包括任何 334a’334b和334c透鏡切面的組合。收集表面也可以只包 括一種透鏡切面474a’一種透鏡切面474b或只有一種透鏡 切面474c。這也說明,透鏡切面474可為,任何能夠收集 且集中太陽輻射的透鏡或透鏡系統。 輻射接收器480位於或接近透鏡切面474,每一透鏡的 29 201035505 聚焦點中心軸475上。由自收集框架471延伸出來的兩根 支柱482支撐。支柱482由透明丙烯酸材料製成。 輻射接收器480收集太陽能發電。在圖四十,四十二403' reflects the light to a light-emitting receiver 390 at the center of focus of the balloon. The balloon 400 must be fixed at its bottom 4〇2. Ring 4〇6 is joined to the bottom by welding or a ligation agent or the like, and is placed on the ground by a stud. = The way he ensures that the balloon 400 is fixed to the ground is also acceptable. For example, 鄕 裱 can be hooked or tied to the anchor to fix it to the ground. The torus 4 of the upper portion of the balloon 4 00 supports the collection device 3 82 and the radiation receiver 390. The light enclosed by the lens section 386 * reflecting surface 4 〇 3 will heat the radiation receiver 390, preferably not the balloon gamma surface 401. The struts 389 support the radiation receiver 39A, which is higher than the upper half of the balloon 4〇〇4〇1' so as not to contact the upper annulus 4〇1 of the balloon 400. The struts 389 are terminated at the upper half of the balloon 400, the surface fasteners 4〇5 of the annulus 4〇1, and the other end of the receiver 390, passing through the collection device 382. Therefore, the pillar 389 is generally made of a transparent material such as a transparent plastic tube. The collection projecter 382 connects the balloon 4 to the upper half of the annulus 4〇1. The collection of the 3 illusion and the interior of the balloon 400 are interoperable. The light-emitting receiver 39 is externally 25 201035505 Photoelectric material 'The following figures 34 and 35 have a more detailed discussion. Wire 398 connects the radiation receiving 390 to the converter 399. Wire 398 can provide battery power, lighting, charging, or any other device power. The device 380 is easy to set up as long as the balloon 4 is filled with air or other gases. The device can be formed into a shape as shown in Figs. 33 and 36. The radiation receiver 390 heat sink (discussed below), the hot air that is vented will increase the air pressure at the balloon 4 to assist in maintaining the balloon 4 〇〇 expansion. The temperature of the balloon 400 and the collection jet 382 will be higher than the ambient temperature; it will dissipate in four directions until the two temperatures are consistent. Figure 34. Radiation receiver 39 of device 380. Radiation receiver 390 is typically a cube. Its six outer walls are optoelectronic wafers 391. The side walls a% are separated from the top wall 393 to increase the ventilation of the four windows 394, allowing air to circulate in and out of the radiation receiver 390 for heat dissipation purposes. The four posts 395 connect the side wall 362 and the top wall 393. A bottom surface (not shown) is attached to the side wall 392. The inner layer of the radiation receiver 390 cube, preferably made of aluminum alloy, is also acceptable if other materials have high thermal conductivity characteristics such as yttrium oxide. The top wall 393 is joined to the post 389 at its four corners. The top wall 393 is larger than the side wall 362' so that its edge extends beyond the side wall so that the radiation reflected by the reflective surface 403 can strike the double-sided photovoltaic wafer 391' of the top wall 393 which will cause the wafers to absorb more solar radiation. Within the radiation receiver 390, a heat sink is preferably included, as shown in Figures 66 and 67; to maintain the photovoltaic wafer 391 at an appropriate temperature. For example, the motor operates a fan to circulate air. A thermal sensor (not shown) drives the 26 201035505 motor, with a photovoltaic wafer 391 from the outer wall of the radiation receiver 390, or a photovoltaic film from the outer wall 412 of the radiation receiver 410, which is powered by wire 398 (not shown) to energize the motor. . This cooling device is similar to a CPU cooling device. Another radiation receiving device 410 of device 380 is depicted in FIG. The radiation receiver 41 has a hollow sphere 412. Its outer surface is coated with a photovoltage film 413. The 支柱 ^ struts 389 are connected to the ring 414 ' to be connected to the sphere 412. Preferably, the attachment is non-permanent such that the post 389 can be removed to create a venting aperture 415 for the disassembly device ring 414 to allow air to enter and exit the receiver 410 for heat dissipation of the ball 412. Figures 37 to 39 describe a collection of solar radiation by a collection device 422, radiation receiver 43 ^ = 20%. The main focus is on portability. 〇 Receiver 11 is set to 'Receive sunlight and sun from above and below. See Figure 37 for the illumination mode. The light receiver 43 、 and the overcurrent 432. send current to the converter 434. The collecting device 422 of Figs. 27 to 39 and the collecting device 382 of Figs. 33 to 30 are substantially the same. Again, the radiation receiver 430 is essentially the same radiation receiver 39〇 as Figure 33, 彡14 = 36. Please refer to the previous game and radiation receiver 390. The rolling spring 440 is square from the top, and six outer walls are seamed at its edges, a top wall 442, a four-sided outer wall 444 and a bottom 446. On the negative wall 27 201035505 face 442, outer wall 444 and bottom 446, a gas impermeable material, such as a high Denier number balloon with PVC or nylon cloth. Balloon 440 is filled with air, other gases or liquids (e.g., water) to show the desired shape, as shown in Figure 37. The balloon 440 includes an inner wall 450 that is seamed on the side line where the top wall 442 and the side wall 444 are joined. The shape of the inner wall 450, after the balloon 440 is inflated, will have its concave surface facing up. As shown in Fig. 37, the shape is formed by inner eight triangular pieces 452, generally welded or seamed to form an inner wall 450, and the inner wall 450 is then hoisted by the edge line connecting the top wall 442 and the side wall 444. In addition, inner wire 454 interfaces inner wall 450 with the four corners of balloon 440. The upper surface of the inner wall 450 is a silver reflective surface 456. The reflective surface is concavely facing upward to reflect light from below the radiation receiver 430. The top wall 442 is comprised of a transparent material to allow light to pass over the reflective surface. Collection device 430 is on top wall 442 of balloon 440. Radiation receiver 430 is supported by rod 431. The balloon 440 has a ring 443 at its four corners 441 which can be secured to the ground with anchors 445. Other fixing methods, such as attaching to a lower surface, such as a connecting tin nail, are fixed on a lower surface. The gas ball 440 top wall body 442 is joined to the side wall 444, and the industrial zipper half 447 is attached, as shown in Fig. 39. The zipper half 447 can be pulled with the corresponding zipper half 447 of other similar device balloons 440 to join the array of devices 420 into a dense array of squares. Figures 40 to 43 depict a collection solar radiation device 450, including a collection device 470; the collection device 470 includes a collection frame 471 and a radiation receiver 480 within the collection frame 471. Collection device 470 has a collection surface 472. The collection surface 472 is configured to collect the sun 28 201035505 in different directions, and concentrate the radiation to the radiation receiver 48 〇. The collection frame 471 and the collection surface 472 are tubular in shape with a hemispherical seal at both ends. Collection surface 472 includes a plurality of lens cuts 474. Each lens section 474, comprising one or more lenses, collects solar radiation, focusing on the central axis 475 of the harvester::: the focal point of one or more lenses should: :: connect the mandrel - on the mandrel 475 . Radiation Receiver - Located at or near the focal plane central axis 475 of the lens section 474 'parent-lens. 〇 Each lens section 474 can be concentrated—the stator _ solar radiation receiver. The collection surface 472 is composed of a plurality of lens sections 474 facing different sides. Position of the relatively light hitting device 46A ^ Regardless of the position of the sun in the sky, one or more lens cut pins can focus the sun rays into the radiation receiver 48. As shown in Fig. 40, the collection frame 471 of the collection device 47 is similar to the carbon nanotube tube 'the left and right ends are carbon-six-bark münster fullerene molecular hemisphere = covalent bond structure of the mouth' Rugged and beautiful structure. Lens section 〇 can be any lens or lens system that concentrates and collects solar radiation, such as a Fresnel lens (indicated by numeral 474a). In addition, miniature lenticular lenses form a honeycomb structure (indicated by numeral 474b). Or a holographic lens (indicated by the number 474c). Collection surface 472 can include any combination of 334a' 334b and 334c lens cuts. The collection surface may also comprise only one lens section 474a' of a lens section 474b or only one lens section 474c. This also means that the lens section 474 can be any lens or lens system capable of collecting and concentrating solar radiation. Radiation receiver 480 is located at or near lens section 474, 29 201035505 focus point central axis 475 of each lens. Supported by two struts 482 extending from the collection frame 471. The post 482 is made of a transparent acrylic material. Radiation receiver 480 collects solar power. In the picture forty, forty two

1 口四十三中的輻轄射接收器480,形狀為一個中空圓形I 官,左右兩頭半球封口。輻射接收器48〇可為一個絕緣 料,如玻璃。 輻射接收器480,覆蓋有光電材料486,將太陽能轉換 為,能。光電材料可為太陽能晶片或一個可撓式的薄膜,、 覆盍在組成㈣接㈣48G的介質材料内殼上。光電材料 如圖四十〜四十三所示的形歧,多接面三五族化合物半導 體太陽能電池,價格貴,但有高轉換效率燃且尚在增 中。輪射接收器480所產生的電力,電線487穿過一個 多個支枝482,將電力輸出至收集裝置47〇外使用。在圖四 十’電線487連接到一個變流器。另外,電線術可 連接到電域其他儲存系統,或直接供電給電力設 照明設備。 如 輻射接收器將需要散熱,以保持光電材料偏 一個最佳溫度,如攝氏25度。過熱的光電材料傷是不 取的。-個冷卻光電材料486的系統或方法49〇,示意 四十。载冷卻水或其他冷卻劑液體的水箱491,裝在接收加 熱過的水或冷卻劑液體的水箱492上。管视將水箱491 接至三通閥496。 二通闊496也以管道494 495至水箱492。三通閥496, 接到輻射接收器480和管道 擺在第一的位置,允許水或 30 201035505 ft冷卻液流量自水箱491流到輻射接收器。在第二個 中斷流量至水箱491’容許水或其他冷卻液 洲·里自輻射接收器480流到水箱492。 视個中斷從輕射接收_流入或流=:置_關 檢測到輻射接收器480的溫度。控制電了去 ,4不 到輻射接收器2。的溫度’而移動二 以保持最佳溫度。 至二料R位置, Ο Ο ^系統物具可進一步提供加熱熱水或其他冷卻 用於其他目的,如熱水系統的熱水來源。其他冷卻 彻的方法,諸如再循環系統中,冷卻液通過 收集故備470外部的熱交換器,再循環同收 安裝冷卻風扇在輻射接收器480内。 ” 〃 ^口圖一〜六的裝置一’及更詳細的圖六顯示,收集框 借1’由互扣的塑膠組件14組成。收集太陽輻射權設 步包括一個反射槽有一内反射面5。卜槽遍 轴475對齊475’是凹面向上,向上反射光至輕射 ^ 。自收集框架471延伸出來的兩根支柱似,連 槽娜,最好是被插人反射槽5形成的洞内。 480纟支柱482安裝在上述反射面5〇ι上方,使 射,自反射表面則至收集設備47〇的收集表面仍 下:或底部上。腿502焊接或以其他方式連接到反射槽 )υυ,支持反射槽500坐在放置它地面上。 =四十-’顯示了-個放大的部分輻射接收器彻,其 電材料486為方型晶片,由電線489連接在輕射接收 31 201035505 器480上。光電材料晶片’可能有不同形狀和格式。 圖四十四和四十五描述了一個收集太陽輻射的裝置 510’包括一個收集設備512和反射槽514類似收集設備470 和反射槽500,見圖四十〜四十三,但改為海水淡化用。 原先的輪射接收器480 ’由一個收集太陽輻射的中空管 520取代,該管位於透鏡切面516焦聚中心附近。管522 將海水524導至中空管520底部,供應海水給中空管52〇。 收集透鏡表面516,聚集太陽輻射至中空管520,將其中海 水蒸發,再由管522將海水補充至中空管520。中空管520 可由玻璃塗黑製成。另外也可為銅或銅合金,有卓越的熱 傳導特性’並覆蓋有吸收塗層的外表面。 圖四十四和四十五,裝置510將中空管520,與隔在擋 水牆外的海水524,水526平高,海水自動會在中空管52〇 水位低時,自動由管522補水; 其他可供應海水至中空管520的方法為,在中空管% 裝有檢測水平的傳感器,當海水庫524内幫浦控制電路 接收到低水位信號後,經由管道補水。 管528將中空管520内蒸氣送至冷凝器529 (示意戈 圖)’攸水条况凝結成水,再送至水箱53〇,儲為淡水。 圖四十六描述了一個陣列54〇,數組收集裝置55〇, 有相同的-般結構’見_十〜四十三的收集設備47〇,^ 圖四十四〜四十五的收集設備512。收餘置MO最好安丨 在表面552以上’可以是一個地面,—個平台,屋頂, 類似。收集裝置別平行湘1放時可考慮純,例如 32 201035505 在北半球總方向是應該面對真正的南方。 反射設備554裝在表面552以上,在相鄰收集裝置550 之間。反射設備554是長條狀,側面大約為像棱鏡的三角 形截面,上為有反光材料的凹面向上反射表面556,以反射 光線到相鄰的收集裝置550。 相鄰的收集裝置550框架558相連,為透明丙烯酸材 料,不會干擾光源通過。框架558和反射設備554相連, D 使裝置550裝在表面552以上,有更多的支持。表面552 表好疋油漆或鋪有一層反光塗料,可反射更多的光至裝置 550。在每個收集裝置550 ,有輻射接收器56〇,接收自收 集裝置550所收集的光。輻射接收器56〇的結構可為圖四 十〜四十二所不的輻射接收器48〇,即其外表面貼有光電材 料用於發電另外’也可為圖四十四和四十五所示管Wo管 狀的輻射接收器560,流體在管中加熱脫鹽淡化或提供加熱 液體。為簡化圖四十六,在一般情況下需要的輔助設備如 〇 管道,水箱,冷卻系統等未顯示在内。 圖四十六所示輕射接收器560,由支柱562支揮架在表 面552上。輻射接收器560’ 一般安裝在收集裝置55〇的長 軸上’他們將能夠自收集設備接收光線,如前述的輕射接 收器480或輻射接收管520。 圖四十七,顯示了一個收集太陽輻射的裝置570,包括 收集設備580和反射盤590。該裝置570設備顯示半剖面, 揭露它的内部。收集設備580 —般是球形,並包括眾多反 射導光筒582,將反射光導入,在收集設備580中心的輕射 33 201035505 接收器575。反射導光筒582由三個以上牆面584組成,反 射導光筒582自收集設備580中心發散出去,從一個小孔 583在内至大孔585朝外。牆面584鋪在收集設備58,自 中心發出的發散線上。牆面584覆有反光材料,如鋁薄膜, 鋁板,鏡面真空金屬化塗層的塑料或金屬板。食品包裝業 用的聚對苯二甲酸乙二醇醋(雙向拉伸聚酯薄膜)塗铭薄 膜’已量產價廉又能反射99%的陽光,包括紅外光範圍, 可用來為表面覆膜。另外’牆面584可用鑛銀製鏡方式生 產’一個眾所周知的過程。 圖四十七’眾多大開口 585造成一個測圓頂的外觀。 其他形狀的反射導光筒582可被採用。例如,反射導光筒 三角形的開π,可組成二十面體。反射導光筒各有三面牆 和相同的形狀。其他可能使用的形狀,如十二面體,巴^ 球’奈米碳管,巴基環等等。反射導光筒的外界或外部: 可為如前所述的透鏡切面,如裝置i的收集設備Μ。另外, 為遮播潮濕和灰塵進入導光筒。可在導光筒Μ 透明面板。 a 此外,其他反射導光筒也可使用,如複合㈣面聚光 器。輻射接收器575,可為類似的前述細接收器,如圖一。 圖47所示的輻射接收器575 &含光電材料。如果幸畐射接收 器575塗層為光電材料,需有冷卻系統,例如,裝置一的 設備,但圖四十七未顯示。另外’輕射接收器仍,可改為 加熱液體,例如水,生物柴油先身油,或加熱海水,以引 起相變’將有益於海水的淡化。 34 201035505 收集設備580由支柱588安裝在反射盤590以上。該 支柱588可由合金製成,盤590可由金屬合金或塑料製成。 電線577穿過從輻射接收器575伸出的支柱585後,將電 流提供至變流器579。電線577也可供應電流或直流電的電 力至其他設備’如電池。 支柱588安裝在反射盤590以。反射盤590和裝置1 的反射盤50 ’是同樣的方式及相同材料的。反射盤59〇, 其凹面向上的表面包含一個反射塗層592,將反射太陽光到 一個或多個反射導光筒582。反射盤590安裝在腿594上。 裝置570的收集設備580’可以接收來自任何方向的陽 光。由於裝置1和其他收集太陽輻射裝置如上所述,不需 要安裝在任何特定的方向,除了是一般水平。將該設備放 置在個普遍水平面570上,即可實現。 圖四十八和〜圖四十九描述了一個收集太陽輻射裝置 60〇’重量輕,易於装設。裝置6〇〇包括一個充氣氣球61〇。 圖不的充氣氣球610顯示類似圖一的形狀,碳六十的巴克 明斯特富勒烯分子’以充氣管613組合六角形切面611和 五角形切面612。氣球610用腳踏筒充氣,氣體通過管道 604到桅杆606將充氣管613充氣。由充氣管613充氣支撐 氣球610。 在此充氣法中,由切面611和切面612組成的氣球 610 ’不是由空氣或其他進入該氣球内膛。而是將切面611 和切面612的充氣管充氣。但也可用此另外方法充氣。然 而’空氣可自切面611和切面612的縫隙漏出,因為需要 35 201035505 考慮散熱要求。 氣辑由繫賴連接到掩杆6〇6。在 606的底部,顯示一個未充氣的氣球6丨〇。 丁 v桅杆 圖四十九為其=個六角型形切面⑴的剖面圖。五 角形切面㈣六角型形切面611,結構是類似:五 個面都包括-個透明的表層614,奸在全像透鏡:― 刪618是安裝在表層614和全像透鏡邮之間,圖四 十八示意此種三層結構8。全像透鏡616設定為接 層6H的光線,反射/折射該光線,導至光電層618發電表 棱鏡太陽能科技公司已開發出—種此裝置,該公司彻全 像透鏡集中人射㈣的專利披露,為羅森堡的美國專利 6274_和5877874的和艾菲安美國專利傷您等披露, 納入本申請供參考’是法律允許的。 接線(未顯不)自切面611和切面612收集電流,並 將其傳遞到電線605。該電線的電流通到變流器6〇7。氣球 610在切面611和切面612的接頭空隙處,裝有透氣孔,允 許空氣通過進出氣球610,達到冷卻的目的。光電層618 需要冷卻,維持較大的效率,已在前述過原因。 氣球610可能有其他形狀,無法--圖示。此外,氣 球不需要如圖四十八有一個普遍球形。例如,它可能是半 球狀,並安放在一個平面上,如屋頂。在無法取得反射盤 的場合,為了提高設備6〇〇的效率,反射表面6〇3可置於 氣球610下方。可見圖四十八,鍍鋁聚脂薄膜是目前首選, 重罝輕和部署簡易,或將表面漆成白色就供應一個最簡單 36 201035505 的反射面。 圖五十顯禾了個收集太陽輻射625,類似圖四十八收 集太1%輪射裝置620。它不同於氣球,為碳奈米管的形 狀,如圖四十六的收集設備550。氣球625有一個更氣動外 形,適用於多風的天氣。氣球625可從桅杆627像旗幟或 分泊飛船飛揚。裝置600,在氣球625之下的反射面626, 將提鬲裝置625的效率,如圖五十所示,從氣球625下方 反射光到625下部。The spokes receiver 480 of the mouth of the forty-three is shaped as a hollow circular I-junction, and the left and right hemispheres are sealed. The radiation receiver 48 can be an insulating material such as glass. The radiation receiver 480 is covered with a photovoltaic material 486 to convert solar energy into energy. The optoelectronic material can be a solar wafer or a flexible film, and is covered on the inner shell of the dielectric material constituting (four) (four) 48G. Photoelectric materials As shown in the fortieth to forty-threeth, the multi-contact tri-five compound semiconductor solar cells are expensive, but have high conversion efficiency and are still increasing. The electric power generated by the receiver 480 is rotated, and the electric wire 487 passes through a plurality of branches 482, and the electric power is output to the collecting device 47 for use. In Figure 40, the wire 487 is connected to a converter. In addition, wirework can be connected to other storage systems in the electrical domain or directly to electrical lighting equipment. For example, the radiation receiver will need to dissipate heat to keep the optoelectronic material at an optimum temperature, such as 25 degrees Celsius. Overheated photovoltaic material damage is not acceptable. A system or method for cooling the photovoltaic material 486, 示意, indicates forty. A water tank 491 carrying cooling water or other coolant liquid is placed in a water tank 492 that receives heated water or coolant liquid. The tank 491 is connected to the three-way valve 496. The two-way wide 496 also has a pipeline of 494 495 to the water tank 492. A three-way valve 496, coupled to the radiation receiver 480 and the conduit in a first position, allows water or 30 201035505 ft of coolant flow to flow from the water tank 491 to the radiation receiver. The second interrupted flow to tank 491' allows water or other coolant to flow from radiator receiver 480 to tank 492. Depending on the interruption, the light is received from the light source _ inflow or stream =: set_off The temperature of the radiation receiver 480 is detected. The control is gone, 4 is not to the radiation receiver 2. The temperature ' moves twice to maintain the optimum temperature. To the second material R position, the Ο 系统 ^ system tool can further provide heating hot water or other cooling for other purposes, such as hot water source of hot water system. In other methods of cooling, such as in a recirculation system, the coolant passes through a heat exchanger external to the collection 470, and the recirculation is installed in the radiation receiver 480.装置 ^口图一至六的装置一' and more detailed Figure 6 shows that the collection frame by 1' consists of interlocking plastic components 14. The collecting solar radiation weighting step includes a reflecting groove having an inner reflecting surface 5. The groove 475 is aligned 475' with the concave surface facing upward, and the light is reflected upward to the light beam. The two pillars extending from the collecting frame 471 are similar, and the groove is preferably inserted into the hole formed by the reflecting groove 5. The 480-inch struts 482 are mounted above the reflective surface 5〇, such that the self-reflecting surface is still below the collection surface of the collection device 47〇: or on the bottom. The legs 502 are welded or otherwise connected to the reflective grooves) The reflective trough 500 is supported to sit on the ground. = forty-'shows - an enlarged portion of the radiation receiver, the electrical material 486 is a square wafer, and the wire 489 is connected to the light beam receiving 31 201035505 480 Photovoltaic material wafers 'may have different shapes and formats. Figures 44 and 45 depict a device 510' for collecting solar radiation comprising a collection device 512 and a reflection trough 514 similar to collection device 470 and reflection trough 500, see forty~ Forty-three, but for desalination. The original launch receiver 480' is replaced by a hollow tube 520 that collects solar radiation, which is located near the focal center of the lens section 516. The tube 522 directs the seawater 524 to the center. At the bottom of the empty tube 520, seawater is supplied to the hollow tube 52. The lens surface 516 is collected, the solar radiation is collected to the hollow tube 520, the seawater is evaporated therein, and the seawater is replenished to the hollow tube 520 by the tube 522. The hollow tube 520 It can be made of black coated glass. It can also be copper or copper alloy with excellent heat transfer characteristics and covered with the outer surface of the absorbing coating. Figure 44 and 45, device 510 will hollow tube 520, and The seawater 524 outside the water retaining wall, the water 526 is flat, and the seawater will automatically be replenished by the pipe 522 when the water level of the hollow pipe 52 is low; other methods for supplying seawater to the hollow pipe 520 are hollow Tube % is equipped with a sensor for detecting the level. When the pump control circuit in the sea reservoir 524 receives the low water level signal, it replenishes water via the pipe. The pipe 528 sends the steam in the hollow tube 520 to the condenser 529 (schematic map). The water condition is condensed into water and sent to the water tank 5 3〇, stored as fresh water. Figure 46 depicts an array 54〇, array collection device 55〇, has the same general structure 'see _ ten ~ forty-three collection equipment 47 〇, ^ Figure forty four ~ Forty-five collection equipment 512. Retaining the MO is best installed on the surface 552 'can be a ground, a platform, roof, similar. The collection device can be considered pure when parallel, such as 32 201035505 The general direction of the northern hemisphere is to face the true south. The reflecting device 554 is mounted above the surface 552 between adjacent collection devices 550. The reflecting device 554 is elongated, the sides are approximately triangular prisms like prisms, and there is reflection on the surface. The concave surface of the material faces the reflective surface 556 to reflect light to an adjacent collection device 550. Adjacent collection devices 550 are connected to frame 558 and are transparent acrylic materials that do not interfere with the passage of light sources. Frame 558 is coupled to reflective device 554, which has device 550 mounted above surface 552 for additional support. The surface 552 is painted or coated with a layer of reflective paint that reflects more light to the device 550. At each collection device 550, there is a radiation receiver 56 that receives the light collected by the collection device 550. The structure of the radiation receiver 56A can be a radiation receiver 48A of the forty to forty-two of the figure, that is, the outer surface of the radiation receiving material is used for power generation, and the same can be used for the fourteenth and forty-fiveth. A tubular tubular radiation receiver 560 is shown in which the fluid is heated to desalinate or provide a heated liquid. In order to simplify Figure 46, auxiliary equipment such as 管道 pipes, water tanks, cooling systems, etc., which are generally required, are not shown. The light-emitting receiver 560 shown in Fig. 46 is slid on the surface 552 by the support 562. The radiation receivers 560' are typically mounted on the long axis of the collection device 55'. They will be able to receive light from the collection device, such as the aforementioned light-emitting receiver 480 or radiation receiving tube 520. Figure 47 shows a device 570 for collecting solar radiation, including a collection device 580 and a reflective disk 590. The device 570 device displays a half section revealing its interior. The collection device 580 is generally spherical and includes a plurality of reflective light guides 582 that direct the reflected light into a light source 33 201035505 receiver 575 at the center of the collection device 580. The reflective light guide 582 is comprised of three or more wall surfaces 584 that are divergent from the center of the collection device 580, from one aperture 583 to the large aperture 585. Wall 584 is placed on collection device 58, from the center of the divergent line. The wall 584 is covered with a reflective material such as an aluminum film, an aluminum plate, a mirror vacuum metallized coating of plastic or a metal plate. Polyethylene terephthalate (biaxially oriented polyester film) Tuming film for food packaging industry has been mass-produced and can reflect 99% of sunlight, including infrared light range, can be used for surface coating . In addition, the 'wall 584 can be produced by means of silver or silver mirrors' is a well-known process. Figure 47. The numerous large openings 585 create the appearance of a dome. Other shapes of reflective light guides 582 can be employed. For example, the opening π of the reflective light guide triangle can form an icosahedron. The reflective light guides each have three walls and the same shape. Other shapes that may be used, such as dodecahedron, ba ^ ball 'nano carbon tube, bucky ring, etc. Reflecting the outside or outside of the light guide: It may be a lens cut as previously described, such as the collection device of device i. In addition, to allow moisture and dust to enter the light guide. Available in the light guide Μ transparent panel. a In addition, other reflective light guides can be used, such as composite (quad) concentrators. The radiation receiver 575 can be a similar thin receiver as described above, as shown in FIG. The radiation receiver 575 & shown in Figure 47 contains a photovoltaic material. If the coating 575 is coated as a photovoltaic material, a cooling system, such as device one, is required, but Figure 46 does not show. In addition, the 'light-light receiver' can still be changed to heat the liquid, such as water, biodiesel precursor oil, or heating sea water to cause phase change, which will benefit the desalination of seawater. 34 201035505 The collection device 580 is mounted above the reflective disk 590 by posts 588. The post 588 can be made of an alloy and the disc 590 can be made of a metal alloy or plastic. After the wire 577 passes through the post 585 extending from the radiation receiver 575, current is supplied to the current transformer 579. The wire 577 can also supply current or direct current power to other devices such as batteries. The post 588 is mounted on the reflective disk 590. The reflective disk 590 and the reflective disk 50' of the device 1 are in the same manner and of the same material. Reflective disk 59A, the concavely facing surface includes a reflective coating 592 that will reflect sunlight to one or more of the reflective light guides 582. Reflector disk 590 is mounted on leg 594. The collection device 580' of device 570 can receive sunlight from any direction. Since the device 1 and other collecting solar radiation devices are as described above, they do not need to be installed in any particular direction except for the general level. This can be achieved by placing the device on a universal level 570. Figure 48 and ~ Figure 49 depict a collection of solar radiation devices 60 〇 'lightweight and easy to install. The device 6〇〇 includes an inflatable balloon 61〇. The illustrated inflatable balloon 610 shows a shape similar to that of Fig. 1, and a carbon sixty-buckucker fullerene molecule ' combines a hexagonal section 611 and a pentagonal section 612 with an inflation tube 613. The balloon 610 is inflated with a pedal and the gas inflates the inflation tube 613 through the conduit 604 to the mast 606. The balloon 610 is inflated by the inflation tube 613. In this inflation method, the balloon 610' consisting of the cut surface 611 and the cut surface 612 is not entered by the air or the like. Instead, the inflated tubes of the cut surface 611 and the cut surface 612 are inflated. However, this additional method can also be used to inflate. However, the air can leak from the gap between the cut surface 611 and the cut surface 612 because it requires 35 201035505 to consider the heat dissipation requirement. The gas series is connected to the masking rod 6〇6 by the tie. At the bottom of 606, an uninflated balloon 6 is displayed. D. v 图 Figure 49 is a cross-sectional view of a hexagonal section (1). Pentagonal section (4) Hexagonal section 611, the structure is similar: all five sides include a transparent surface layer 614, in the holographic lens: ― 618 is installed between the surface layer 614 and the hologram lens, Figure 48 This three-layer structure 8. The hologram lens 616 is set to illuminate the light of the layer 6H, and reflects/refracts the light to the photovoltaic layer 618. The power generation prism has been developed by the solar energy technology company, and the company fully discloses the patent disclosure of the lens concentrated human shot (4). For the disclosure of US Patent Nos. 6274_ and 5877874 of Rosenberg and Effie US Patent, please refer to this application for reference 'is permitted by law. Wiring (not shown) collects current from slice 611 and slice 612 and passes it to wire 605. The current of this wire leads to the converter 6〇7. The balloon 610 is provided with a venting opening at the joint gap of the cut surface 611 and the cut surface 612 to allow air to pass through the balloon 610 for cooling purposes. Photovoltaic layer 618 requires cooling to maintain greater efficiency, which has been the cause for the foregoing. Balloon 610 may have other shapes and cannot be shown. In addition, the gas ball does not need to have a universal sphere as shown in Figure 48. For example, it may be hemispherical and placed on a flat surface, such as a roof. In the case where the reflecting plate cannot be obtained, in order to improve the efficiency of the device 6, the reflecting surface 6〇3 can be placed under the balloon 610. As shown in Figure 48, aluminized polyester film is currently the first choice, light weight and easy to deploy, or the surface is painted white to provide a simple 36 363535 reflective surface. Figure 50 shows a collection of solar radiation 625, similar to Figure 48. The collection is too 1% of the launching device 620. It is different from the balloon and is in the shape of a carbon nanotube, as shown in the collection device 550 of Fig. 46. Balloon 625 has a more aerodynamic shape for windy weather. The balloon 625 can fly from the mast 627 like a flag or a spacecraft. Apparatus 600, reflecting surface 626 below balloon 625, reflects the efficiency of lifting device 625, as shown in Fig. 50, from below balloon 625 to the lower portion of 625.

圖五十一〜五十六,描述收集太陽輻射裝置630的三個 形狀。裝置630 —般具有面對各方向眾多切面的三維多面 體。該裝置外部表面有光電材料63〇覆蓋,將太陽輻射轉 換成電能。無論太陽的位置,裝置63〇將產生大致相同數 量的電力,因為該裝置㈣有相_外表面,將會面對各 方向。(太陽輻射的強度會有所不同,因為海拔,太陽在天 空的位置’天氣’季節等因素。)因此,沒有特別照顧的 需要1置630不需因為相對於太陽的位置,來調整安裝 位置,裝置630也不需要在白天平頻頻移動位置的。 這些裝置重量很輕,便於攜帶,一個電線(如圖五十 七圖示),從這些裝置導電流到選擇和適當的用途。裝置630 :由—個可撓式的材料組成,要保持其形狀,-則由於1 =有保持原狀的雜,財就是像—個氣球 成 基本上固定的三維形狀。光電材料覆蓋在 :==。光電材料最好是-個可換式的薄膜,可能 堵如+㈣元料_,或銅錮靴鎵,魏錫。揚 37 201035505 陽的美國專利6566153和6576975,關於有機半導體製造過 程,披露形成薄膜半導體的方法。所披露的美國專利 6566153和6576975,特此納入參考,為法律所允許的。染 料敏化太陽能電池薄膜將能夠吸收的任何方向的太陽輻 射。薄膜光電材料或染料敏化太陽能薄膜,可以直接藏積 到底層結構。薄膜光電材料是可以用印刷,機械沖壓和油 壓沖壓,藏積,黏貼,光造型(光固化,Stereolithography) 各種方法覆蓋在該裝置可撓的外表面。 圖五十一和圖五十二,收集太陽輻射裝置630的第一 種形狀630a。裝置630a,由十二個五角形632和二十個六 角形634組成,以超聲波焊接或粘合劑或其他任何適當的 方法,在其邊緣相連,如圖五十二所示,形成一個可以被 充氣的結構。經組裝,折疊,黏成一個三維的形式,或以 打氣筒充空氣或其他液體到它的内部,像一個足球或“布 基球。光電材料所產生的電流將由電線6 31導出裝置 630a。 圖五十三和圖五十四,收集太陽輻射裝置630的第二 種形狀630b。裝置630b由十二片眼型片636組成球體,以 超聲波焊接或粘合劑或其他任何適當的方法,在其邊緣相 連,如圖五十四所示,形成一個可以被充氣的結構。經組 裝,折疊,黏成一個三維的形式,或以打氣筒充空氣或其 他液體到它的中央腔,像一個沙灘球。 圖五十五和圖五十六,收集太陽輻射裝置630的第一 種形狀630c。裝置630c由二十片三角片638組成二十面 38 201035505 體’以超聲波焊接或粘合劑或其他任何適當的方法,在其 邊緣相連’如圖五十六所示,形成一個可以被充氣的結構。 經組裝’折疊,黏成一個三維的形式,或以打氣筒充空氣 或其他液體到它的中央腔,像一個二十面體。 圖五十一,圖五十三和圖五十五,形狀630a,630b和 63〇c充氣後’圖中各個裁片632,634,636和638,將可 以¥曲或形成各形狀表面的部分,圖中二維圖示,無法顯 示其曲面。Figures 51 through 56 depict three shapes for collecting solar radiation device 630. Device 630 typically has a three-dimensional polyhedron that faces a plurality of sections in all directions. The exterior surface of the device is covered by a photovoltaic material 63 that converts solar radiation into electrical energy. Regardless of the position of the sun, the device 63 will produce substantially the same amount of power because the device (4) has a phase-outer surface that will face each direction. (The intensity of solar radiation will vary, because of altitude, the location of the sun in the sky, the 'weather' season, etc.) Therefore, there is no need for special care. 1 Set 630 does not need to adjust the installation position because of the position relative to the sun. The device 630 also does not need to be moved at a flat frequency during the day. These devices are lightweight and easy to carry, and a wire (as shown in Figure 57) flows from these devices to the selected and appropriate use. Device 630: consists of a flexible material that maintains its shape, - because 1 = there is a miscellaneous miscellaneous, the money is like a balloon into a substantially fixed three-dimensional shape. Photoelectric materials are covered in :==. The photoelectric material is preferably a replaceable film, which may be blocked such as + (four) element material _, or copper ankle boots gallium, Wei Xi. U.S. Patent Nos. 6,565,153 and 6,576,975, the disclosure of which are incorporated herein by reference. The disclosures of U.S. Patent Nos. 6,566,153 and 6,,576,975, the disclosures of which are incorporated herein by reference. The dye-sensitized solar cell film will be able to absorb solar radiation in any direction. Thin film photovoltaic materials or dye-sensitized solar films can be directly deposited into the underlying structure. Thin film optoelectronic materials can be printed, mechanically stamped and hydraulically stamped, deposited, pasted, photo-cured (Stereolithography) by various methods covering the flexible outer surface of the device. Figure 51 and Figure 52 illustrate the first shape 630a of the solar radiation device 630. Device 630a, consisting of twelve pentagons 632 and twenty hexagons 634, joined by ultrasonic welding or adhesive or any other suitable method at their edges, as shown in Figure 52, forming an inflatable Structure. It is assembled, folded, glued into a three-dimensional form, or filled with air or other liquid into its interior with a pump, like a soccer ball or a "boucher ball. The current generated by the optoelectronic material will be led out by wire 6 31 to device 630a. Fifty-three and Figure fifty-four, collecting a second shape 630b of the solar radiation device 630. The device 630b is composed of twelve eye-shaped sheets 636 which are formed by ultrasonic welding or adhesive or any other suitable method. The edges are connected, as shown in Figure 54, forming a structure that can be inflated. After assembly, folding, sticking into a three-dimensional form, or filling the air or other liquid into its central cavity with a pump, like a beach ball Figure 55 and Figure 56, the first shape 630c of the solar radiation device 630 is collected. The device 630c is composed of twenty triangular pieces 638 composed of twenty faces 38 201035505 body 'with ultrasonic welding or adhesive or any other The appropriate method, connected at its edges, as shown in Figure 56, forms a structure that can be inflated. Assembled 'folded, glued into a three-dimensional form, or filled with a pump Or other liquid to its central cavity, like an icosahedron. Figure 51, Figure 53 and Figure 55, shape 630a, 630b and 63〇c after inflation' each piece 632,634 , 636 and 638, will be able to bend or form part of the surface of each shape, the two-dimensional illustration in the figure, can not display its surface.

D 圖五十七顯示了一個收集太陽輻射裝置640,包含圖五 十一的收集裝置630a和反射盤642。收集裝置630a由柱 646,安裝在在適當的距離以外的反射盤642上,該盤有凹 面向上的反射面644。反射盤642可設計形狀類裝置1的反 射盤50。裝置630a可收集直接從太陽和從反射表面644 反射的太陽輻射。電線631從收集裝置63〇a傳輸電力至變 流器645。電線631也可輸出直流電力至其他設備,如電池 〇 等。另外,收集裝置630a可能被暫時懸吊在上述任何反射 表面上,包括反射平面。它也可為裝置63〇1)和63〇c,而不 是收集裝置630a。 圖五十八〜六十,描述了一個太陽能收集板66(^太陽 月匕收集板660 ’有一個平台670,上表面672上安裝的是數 組收集設備680。圖五十八,每個收集設備68〇是一個裝置 1收集設備10的半球狀。可以被認為是收集設備1〇,上半 部收集設備;包括收集框架,一個收集表面,和透鏡切面, 透鏡切面由收集框架支撐,組成收集表面。每個收集設備 39 201035505 _收集光至光電晶片690,晶片69〇位於故隹設備透鏡切 面的焦點,在收集設備680之下,平纟67〇的收辱井⑽ 内。印刷電路板691將各個光電晶片69〇争連,導電至收 集板660外使用。印刷電路板,可用杜邦的銀導電油墨絲 網印刷而成。 該平台670形成為-個板,提供了支撑結構 ,容數組 收集設備680安裝在上表面672上,此外選有一個傳熱系 統。傳熱系統包括一個多元化的管道安裝在平台67〇中或 其上表面672上。 弧面金字塔反射器678,在平台670的上表面672上, 相鄰的每四組收集設備680之間安裝或最好與平台一體成 型,以反射入射太陽輻射到鄰近的收集設備68〇。弧面金字 塔反射器678四個面有一個拋物凹面。該平台67〇,見圖五 十八〜六十,有12個收集設備680,安排在四列和三排, 每兩列收集設備680中,有兩個弧面金字塔反射器678。 圖五十九在圖六十的剖面圖,顯示光電晶片690是如 何安裝在吸熱塊692上,下有是散熱水管676。吸熱塊692 可為氧化鈹,具有良好的導熱性和電絕緣的電介質,只導 熱而不導電;光電晶片690從散熱管道676散熱。或者, 也可能是氧化銘材質。收集設備680收集太陽輻射至光電 晶片690 ’其中熱能部分自光電晶片690傳至吸熱塊692。 塊692用此餘熱,將水管676的水加熱。 當太陽輻射偏焦,不集中在光電晶片690,塊692將直 接獲得偏焦的太陽輻射。被加熱並吸收紅外輻射的塊692, 201035505 將此額外的熱量魏到冷魏。在冬季反向操作,加熱的 冷卻劑(如熱水),可自水管676將塊692加熱,收集設備 〇自塊692 ’取得熱g氣,可導致積聚在收集設備哪上 的任何冰雪融化’才不會隔阻太陽姉進人收集設備_。 冷部液在管道676被加熱,由循環系統帶走。一個傳感器 (未顯示)和反饋電路(未顯示)調節循環冷卻劑,以保 ΟD Figure 57 shows a collection solar radiation device 640 comprising a collection device 630a and a reflection disk 642 of Figure 51. The collecting device 630a is mounted by a column 646, on a reflecting disk 642 outside the appropriate distance, the disk having a concave upwardly facing reflecting surface 644. The reflecting plate 642 can design the reflecting plate 50 of the shape-like device 1. Device 630a can collect solar radiation that is reflected directly from the sun and from reflective surface 644. The electric wire 631 transmits power from the collecting device 63A to the converter 645. The wire 631 can also output DC power to other devices such as a battery pack. Additionally, collection device 630a may be temporarily suspended from any of the reflective surfaces described above, including the reflective plane. It can also be devices 63〇1) and 63〇c instead of collecting device 630a. Figures 58 to 60, depicting a solar collector panel 66 (^Sun Moonlight collection plate 660' has a platform 670, mounted on the upper surface 672 is an array collection device 680. Figure 58, each collection device 68〇 is a hemispherical shape of the device 1 collecting device 10. It can be considered as a collecting device 1〇, an upper half collecting device; including a collecting frame, a collecting surface, and a lens cut surface, and the lens cut surface is supported by the collecting frame to form a collecting surface Each collection device 39 201035505 _ collects light onto the optoelectronic wafer 690, which is located at the focus of the lens facet of the device, under the collection device 680, within the smashing well (10) of the 纟 67〇. The printed circuit board 691 will Each of the optoelectronic wafers 69 is electrically connected to the outside of the collecting plate 660. The printed circuit board can be screen printed with DuPont's silver conductive ink. The platform 670 is formed as a plate, providing a supporting structure, and an array collecting device The 680 is mounted on the upper surface 672 and is further provided with a heat transfer system. The heat transfer system includes a plurality of tubes mounted in the platform 67 or on the upper surface 672. The tower reflector 678 is mounted on the upper surface 672 of the platform 670 between adjacent four sets of collection devices 680 or preferably integrally formed with the platform to reflect incident solar radiation to adjacent collection devices 68. The pyramid reflector 678 has a parabolic concave surface on four sides. The platform 67 is shown in Fig. 58 to 60, and there are 12 collecting devices 680 arranged in four rows and three rows, each of the two columns of collecting devices 680, Two curved pyramid reflectors 678. Figure 59 is a cross-sectional view of Fig. 60 showing how the photovoltaic wafer 690 is mounted on the heat absorbing block 692, and the lower heat absorbing water pipe 676. The heat absorbing block 692 can be yttrium oxide, having The good thermal conductivity and electrically insulating dielectric are only thermally conductive and not electrically conductive; the optoelectronic chip 690 dissipates heat from the heat dissipating conduit 676. Alternatively, it may be an oxidized material. The collecting device 680 collects solar radiation to the optoelectronic wafer 690 'where the thermal energy is partially self-conducting Wafer 690 is passed to heat absorbing block 692. Block 692 uses this residual heat to heat the water of water tube 676. When solar radiation is out of focus, not concentrated on photovoltaic wafer 690, block 692 will directly obtain defocused solar radiation. Block 692, 201035505, which heats and absorbs infrared radiation. This additional heat is applied to the cold. In the winter, reverse operation, heated coolant (such as hot water), can heat block 692 from water pipe 676, collecting equipment from the block 692 'Getting hot g gas, which can cause any ice and snow to accumulate on the collection equipment' will not block the sun from entering the collection equipment. The cold liquid is heated in the pipe 676 and taken away by the circulation system. One sensor (not shown) and feedback circuit (not shown) to regulate the circulating coolant to protect

G 持光電晶片_的溫度,以維持其效率。光電晶片是一個 二結光電晶片切太陽能電池,最好的溫 77華氏度。純料㈣,果是水,錢度時 可齡被發送至第二次太陽能熱m將其進—步加妖 ㈣⑽華氏度),這是加州能源委員會咖 豕庭熱水使用溫度。 :六十一〜六十七顯示,不同變化的圓頂形收集太陽輻 =。圖六十一〜六十三描述全部或部分圓頂形收集太陽 輕射震置彻。圖六十四〜六十七圖插述全部或部分圓頂形 收集太陽㈣裝置730。圓頂形收集太陽輻射w包 括一個收集射備術’由-群三壁反射導光筒遗的組成, 將入射光集中到輻射接收器710。 圖六十三,是-個三壁反射導光筒7〇2 部圖;每一個内壁剔為反射面。入射光自反射導光 的朝外開π 706進入’反射至面朝中夫輻射接收器71〇的 内口寫。收集射備則的三壁反射導光筒搬,相互田比鄰 成為。三壁反射導光筒7G2的朝外開口寫類似於 部分的網格球頂。光從任何方向來,彳自一個或多個反射 41 201035505 導導至輻射接收器。輻射接收it 71G,見圖六 十八十—自上有太陽能電池的塊712、叙成,最好是三 結光電晶片7H。塊712,最好是由氧化鈹(Be〇)製成, ^為它與電絕緣’導熱係數高於任何其他非金屬除鑽石, 實際上超過了某些金屬,並具有較高的溶點。另外,氧化 、(,1〇)炭化々或其他合適的吸熱材料,有類似特徵皆 可被採用塊m安裝在水箱川上,它從冷卻系統爪 接收流動的冷卻劑。正如在圖—〜三的裝置—,光電晶片應 保Γ過熱’以便更有效地運作,避免損壞。冷卻系統718 ,自管道716 ’提供冷卻劑718到冷卻槽714。冷卻劑然後自 官這715 ’傳出冷卻槽714至水箱717。裝置700也可以採 用其他冷卻系統,如I置73G,描述如下。 收集射備701由夕卜辟±二士 田外壁720支持,最好是在一個水平位 f ’以便收集射備701可以接收從天空任何-點來的太陽 ⑽^、、 罩 罩7〇5—般是透明的,太 …f、過’但不包括水分,灰塵和其他污染。圓頂罩 =最好,塗上防反光材料。電線722傳輸電流自、 714至穩壓器阳。直接電流通過縣器723至電池72片 7 725,或到—個變流器726,再連接到插座728。心 =因此可儲存魏(電池724) ’並提^ 座725)或交流電電(插座728)。 (揷 0、十四,、十七,描述了一個 置,裝請包括,-個收集射備731=Γ射數 樓單位750的頂部,有-個底板-。支撑單位 42 201035505 754 ’使裝置730可以移動。收集射備73卜包括一群田比鄰 的複合撤物面聚光器732’聚集太陽輻射至輻射接收器 740。在圖六十六的剖面圖可以看出,複合拋物面聚光器 732,有拋物線形反射牆734。入射光自反射導光筒乃2朝 外開口 736進入,反射至朝中央輕射接收器74〇的内口 738。艾德蒙光學’美國的許多製造商之―,生產這樣的複 合拋物面聚光器。另一種版本的收集器732,是由一個放大 〇 細在,有鏡面太陽能捕捉器的太陽驗㈣統,披露於, 科柏的美國專利6881893,法律允許在此提出供讀者參考。 收集射備731的的複合拋物面聚光器732,相互毗鄰, 並組成一個常見的圓頂結構,由外壁75〇支撐。透明罩735 由收集射備731支撐。罩735 一般是透明的;罩735最好 是塗上防反光材料。 圖六十六〜六十七,輻射收集器73〇。包括安裝在底板 752上,載有光電晶片的板塊742,該晶片最好是三結光電 ❹ 晶片744。塊742,最好是由氧化鈹(BeO)的或氧化鋁(A10), 碳化矽或其他合適的吸熱材料。742塊是安裝在空氣冷卻裝 置746上。空氣冷卻裝置746有一個馬達和風扇,類似電 腦的中央處理單元冷卻器。正如圖六十一〜六十三的裝置 70〇’光電晶片應避免過熱,以便更有效地運作,避免損壞。 裝置730可以採用其他的冷卻系統,如上述裝置7〇〇的冷 卻系統718,或襞置1的冷卻系統4〇。集光漏斗739位於 輻射接收器740的輻射接收器以上,收集射備731下。它 有一個鏡面上表面同複合拋物面聚光器732,其目的是引導 43 201035505 聚光器732收集的輻射’自其内出光孔738到塊742。 圖六十四〜六十七,未詳示光電晶片所生電流的儲存和 使用’只在圖六十四和六十七中,各顯示一個電源插座 748。圖六十一,顯示為此目的,可用於裝置730的各種合 適的叹備。遠裝置730是便播式,能夠提供直流電和交流 電的電力需要。 圖六十八〜七十一,顯示另一種有能力從上空收集太陽 %射的裝置。這裝置與建築結合,是-個集中光電建築-趟化(BICPV)的例子。圖六十八〜七十一描述的全部或部分〇 吹集裝置760,安裝在建築75〇的屋頂751上。收集裝置 /Ο,的一般形狀像一個圓頂或半球’由一群相連的三壁反射 導光筒762組成;自外向内焦點集中,如圖六十一〜六十三 的裝置700。另外,收集裝置76〇可採收集裝置73〇的結構, 見圖六十四〜六十七或收集裝置68〇,見圖五十八〜六十。 如圖七十’建築750的屋頂751凹進,並有一個面向 坡置760傾斜的女兒牆752斜坡。斜坡752上油漆或襯有◎ &射塗層’以反射光回到收集裝置760。由於屋頂是凸面圓 屋頂751住在可收集雨水和其他降水量。排水管753, 將雨水排出屋頂751。水箱754收集從屋頂751的排水。 圖七十一為—部細節剖面圖,反射導光筒762傳輸光 到均光器764。均光器764是一種光學設備,將來自反射導 光同的入射光擴散均勻,最好的結果是與太陽能板766垂 4 °如果下面是高效率三結光電晶片,均光器764可以省 略。因在這種情況下,需要極少量光電晶月,他們可能有 44 201035505 一個夠小的區域,將是反射導光筒762的焦點所在 太陽能板篇供應電力儲存或直接用於建築物。相 關的電力設備儲存和分配,如電線,變流器,電池等雖沒 有在圖六十八〜七十一具體顯示,但可理解是需要的。 ΟG holds the temperature of the photovoltaic wafer to maintain its efficiency. The optoelectronic wafer is a two-junction photo-wafer solar cell with a best temperature of 77 degrees Fahrenheit. Pure material (four), the fruit is water, when the money is available, the age is sent to the second solar heat m to add it to the demon (four) (10) Fahrenheit), which is the California Energy Commission's hot water use temperature. : Sixty-one to sixty-seven shows that different variations of the dome shape collect the sun spokes =. Figures 61 to 63 describe all or part of the dome-shaped collection of the sun. Figure 66-67 shows the full or partial dome-shaped collection of the sun (4) device 730. The dome-shaped collection of solar radiation w includes a collection of shots consisting of a group of three-walled reflective light guides that concentrate the incident light onto a radiation receiver 710. Figure 63 shows a 7-section of a three-walled reflective light guide; each inner wall is a reflective surface. The incident light is opened from the outwardly directed π 706 of the reflected light into the inner port of the reflective radiation receiver 71. The three-walled reflection light guides that collect the shots are moved to each other. The outwardly facing opening of the three-walled reflective light guide 7G2 writes a portion of the grid dome. Light from any direction, from one or more reflections 41 201035505 Guided to the radiation receiver. The radiation receiving it 71G, see Fig. 68, is a block 712, a semiconductor, and a triple junction photovoltaic chip 7H. Block 712, preferably made of beryllium oxide (Be), is electrically insulating from it. The thermal conductivity is higher than any other non-metallic diamond except for certain metals and has a higher melting point. Alternatively, oxidized, (1) tantalum carbide or other suitable heat absorbing material, with similar features, can be mounted on the tank by block m, which receives the flowing coolant from the cooling system jaws. As in the device of Figure -3, the optoelectronic chip should be overheated to operate more efficiently and avoid damage. Cooling system 718 provides coolant 718 from conduit 716' to cooling tank 714. The coolant then passes from the official 715' to the cooling tank 714 to the water tank 717. The apparatus 700 can also employ other cooling systems, such as I-set 73G, as described below. The collection shot 701 is supported by the Xipupu ± Ershitian outer wall 720, preferably at a horizontal position f' so that the collection shot 701 can receive any sun from the sky - (10) ^, , hood 7 〇 5 - It is transparent, too...f, too' but does not include moisture, dust and other pollution. Dome cover = best, coated with anti-reflective material. Wire 722 carries current from 714 to the regulator anode. The direct current passes through the county 723 to the battery 72, 7 725, or to a converter 726, which is then connected to the outlet 728. Heart = Therefore it is possible to store Wei (battery 724) 'and 725) or AC (socket 728). (揷0, XIV, XVII, describes a set, install please include, - collect the shot 731 = the top of the unit 750, there is a bottom plate - support unit 42 201035505 754 'make the device The 730 can be moved. The collection jet 73 includes a group of adjacent subsurface concentrator 732' to collect solar radiation to the radiation receiver 740. As seen in the cross-sectional view of Fig. 66, the composite parabolic concentrator 732 There is a parabolic reflector wall 734. The incident light enters from the reflective light guide 2 toward the outer opening 736 and is reflected to the inner port 738 towards the central light-emitting receiver 74. Edmund Optics's many manufacturers in the United States - The production of such a composite parabolic concentrator. Another version of the collector 732 is made up of a magnifying glass, a solar detector with a mirrored solar trap (4), disclosed in Cooper's US Patent 6,881,893, the law allows This is for the reader's reference. The composite parabolic concentrator 732 of the collection 731 is adjacent to each other and constitutes a common dome structure supported by the outer wall 75. The transparent cover 735 is supported by the collection 731. The cover 735 is preferably coated with an anti-reflective material. Figure 66-67, the radiation collector 73A. The plate 742 is mounted on the bottom plate 752 and carries the photovoltaic chip. It is a triple junction photodiode wafer 744. Block 742 is preferably made of beryllium oxide (BeO) or alumina (A10), tantalum carbide or other suitable heat absorbing material. Block 742 is mounted on air cooling unit 746. Air cooling The device 746 has a motor and a fan, similar to the central processing unit cooler of the computer. As shown in Fig. 61 to 63, the device should avoid overheating to operate more efficiently and avoid damage. The device 730 can be used. Other cooling systems, such as the cooling system 718 of the above-described device 7〇〇, or the cooling system 4〇 of the device 1. The collecting funnel 739 is located above the radiation receiver of the radiation receiver 740, and collects the shooting device 731. It has a The surface of the mirror surface is the same as the compound parabolic concentrator 732, the purpose of which is to guide the radiation collected by the concentrator 732 from 43 201035505 from the inner light exit hole 738 to the block 742. Figure sixty four to sixty-seven, not shown in detail. The storage and use of streams is shown in Figures 64 and 67, each of which shows a power outlet 748. Figure 61 shows various suitable sighs that can be used for device 730 for this purpose. Far device 730 is It can be used to provide the power requirements of DC and AC. Figure 68 to 71 shows another device capable of collecting the sun's shot from the sky. This device is combined with the building and is a concentrated photoelectric building. Examples of BICPV. All or part of the blow-off device 760 described in Figures 68-71 is mounted on a roof 751 of a building 75. The collecting device/Ο, generally shaped like a dome or hemisphere 'Composed of a group of connected three-walled reflective light guides 762; concentrated from the outside to the inside, as shown in Figure 61 to 63. In addition, the collecting device 76 can take the structure of the collecting device 73〇, see Fig. 64~67 or the collecting device 68〇, see Fig. 58~60. As shown in Figure 70, the roof 751 of the building 750 is recessed and has a parapet 752 slope facing the slope 760. The ramp 752 is painted or lined with a <&coating' to reflect light back to the collection device 760. Since the roof is convex, the roof 751 lives in collectable rainwater and other precipitation. A drain pipe 753 discharges rainwater from the roof 751. The water tank 754 collects drainage from the roof 751. Figure 71 is a detailed cross-sectional view of the reflective light guide 762 that transmits light to the homogenizer 764. The homogenizer 764 is an optical device that diffuses incident light from the same reflected light, and the best result is 4° with the solar panel 766. If the underside is a high efficiency triple junction photovoltaic wafer, the homogenizer 764 can be omitted. Because in this case, a very small amount of photocells are required, they may have 44 201035505 A small enough area that will be the focus of the reflective light guide 762. The solar panels are supplied with electricity for storage or used directly in buildings. Related power equipment storage and distribution, such as wires, converters, batteries, etc., are not specifically shown in Figures 68 to 71, but are understood to be needed. Ο

冷卻罐768附在板766下。如前所述,如果 他們不過熱會更有效地運作’避免損壞。冷郤罐768接收 冷卻劑,最好是水,類似圖六十一所示的冷卻系統7〗8。冷 卻罐768可供應熱水供水系統,該大廈75〇的冷卻液是水。 冷卻罐的溫度最好保持在25攝氏度(77華氏度),此水將 被發送到輔助太陽能熱水系統,加熱到71攝氏度(16〇華 氏度)供給一般家庭熱水使用。一個油壓控制的蓋門77〇, 可以關閉建築750内的反射導光筒762。在電力和 1 或熱水沒 有扁要日可,(如長期旅行,遠遊在外)可以關閉收集裝置 760。蓋門770有一個反射的上表面,位於均光器764以上, 它可以不讓收集裝置760收集的光通過,反向反射回天空; 是一個可在開放的位置(如圖七十一)和關閉位置的液壓 系統(未顯示),最好可自室内監控。裝置76〇可用於提供 電力和熱水。一個建築可裝置多個裝置76〇,可裝在面陽的 側牆和屋頂。 圖七十二顯示了一個建築78〇,安裝多個收集設備 785,在其屋頂782和側牆784上。圖七十二的收集設備 785,可以是圖六十八〜七十一所示裝置75〇,圖六十四〜六 十七所示裝置730,圖六十一〜六十三所示裝置700的任一 結構,或圖五十八〜六十收集裝置的巴基圓頂。可增建反光 45 201035505 金字塔和反光遮陽篷,來反射更多太陽輻射到收集設備 785。 圖七十三〜七十四描述了一個裝置,收裝置設備800。 裝置設備800如圖七十三,設計為淡化水,如海水,又同 時發電。該裝置類似一個微型的水循環系統,但加快了週 期的進程,收集集中太陽輻射來淡化海水和發電。管道802 輸入水源給該裝置800。裝置800如安裝成與海的水平同 高,將可節省能源;使鍋爐管804的水與海平面同高,假 設水源是海水,海水將由地心引力拉進入锅爐管804。環形 的鍋爐管804可用任何透明的材料製成,如玻璃或壓克力, 也可為金展,最好塗上吸光收材料。鍋爐管804由奈米管 形狀的收集環806包圍,具有透鏡切面808如同以前類似 型的收集裝置,如圖一的裝置10。採用圖四十奈米管收集 裝置470,可想像被拉長成長串奈米管,兩端接合形成一個 環。該透鏡切面808由收集框架810支撐。奈米管收集環 806收集和集中光到鍋爐管804。聚焦的光加熱鍋爐管 804,將其中的水蒸發成蒸汽。由此產生的蒸汽自鍋爐管 804,通過蒸汽管道812至渦輪發電機814,推動渦輪814 發電。 在渴輪814的某片和渴輪室的牆壁和天化板5都覆有 熱能晶片或新的奈米天線,將熱輻射的蒸汽直接轉換為直 流或父流電力。熱能晶片或新的奈米天線可以移除並吸收 蒸汽的熱能。蒸汽將被冷卻成水珠,成為淡化的淡水。渦 輪814喷出蒸汽,冷卻成淡水收集至水箱816。食水是裝置 46 201035505 800 —種寶責的士志 〜生屋’另一個是從渦輪發電機814的電力。 圓頂818伤你、、证±λ 立於4輪發電機814之上,在收集環806的 中間。圓頂818古 y ΰ有一個收集表面,類似圖一〜六的裝置1。 士 在其收集透鏡的焦點處,是一光電晶片820 可產生直級毛電力。光電晶片82〇最好是高效率的三結光 電曰曰^。在圓頂818的下部822外壁,晝或鋪有反光膜, 鍍鋁薄膜,以反射光到碳奈米管收集環80ό。 〇 奈米管收集環806位於反射盤8;24之上,該盤具有半 固甜甜圈或一個麵包圈的外觀。反射盤824反射了太陽輻 射到礙奈米管收集環806,然後集中到銷爐管804。 圖七十五〜八Η---顯示各種車輛配備有收集和集中輻 射的設備。收集設備830包括圖二十四裝置390的收集設 備400 ’為半個修改過的奈米管;集光至内部輻射接收器(未 顯示)。修改過的奈米管收集設備600頗為流線型,可安裝 在不同的乘具,設備圖七十五的旅行拖車840和汽車845, Ο 圖七十六的活動房車850,圖七十七船舶855,圖七十八小 λ車860 ’圖七十九巴士 865,圖八十輕執火車870和圖八 十一飛機875。這些圖僅僅是具有代表性的乘具,裝有收集 設備830。 圖八十二〜八十四,描述製出三維太陽輻射集光器的步 驟。這一過程的步驟包括在平面材料上印製了一層可撓式 電光薄膜,切割該材料成乘具或結構(如建築物)的各面 切片,安裝線路,和貼切片至乘具或結構如建築物。 圖八十二顯示了一個電腦製圖機880正在印製薄膜至 47 201035505 平面材料881。美國惠普有適當的喷墨電腦製圖機/割字 機,可用於此一目的。平面材料8 81最好是聚氯乙婦薄膜, 背面有自黏背膠。平面材料經喷墨喷灑一層半導體層,這 個喷施過程是眾所周知的。例如,楊陽美國專利6566153 和6576975,關於有機半導體製造設備的過程。披露的美國 專利6566153和6576975特此納入參考,為法律所允許的。 半導體層為光電薄膜。在下一步,平面材料881被送入割 字機886,將平面材料881切割為切片882。電腦製圖機880/ 割字機886,可能是同一台機器上作出適當改裝使用。 圖八十三顯示了割字機886自平面材料881切割為切 片882。切片882的形狀最好是採用繪圖輔助設計軟體,以 便很容易產生並加載指示至割字機886中。切片882依將 要覆蓋的表面,有多個不同輪廓。 圖八十四,切片882覆蓋至車888,自圖右看到,電線 883將光電材料的的電極,依適當的電力接至電池885。切 片882將覆蓋至車888。有自黏背膠的切片882會膠粘在該 車輛888。車輛888將是一個三維收集太陽輻射的設備,在 白天將電提供一個電池885。其他三維物體,如圖八十五的 建築物890,可以裝備光電薄膜切片892如上述。切片892 切成建築物890所有適用的表面,除了收集設備896,其透 鏡切頭無法利用,他們需要收集太陽輻射和集中它至輻射 接收器。 圖八十六〜九十,描述了一個收集太陽輻射的裝置 900,包括一個收集設備901和收集反射碟920。收集設備 48 201035505 9〇1所依據的原則 * 一個熱力發動機,甘、國物理學家克魯克斯的輕射計’這是 面,另-面相對3 :中轉子葉片上有―面域色或摩光表 露於光,造成轉^色表面’放置在—個低密度空間’暴 退,而光面推W旋轉。找色侧轉子葉片會被光源逼 原理見更詳盡的卜f。輻料自轉子的㈣而被冷卻。其 此供讀者泉考,在巴雷的美國專利441_5,披露於Cooling tank 768 is attached to plate 766. As mentioned earlier, if they are not too hot, they will work more efficiently to avoid damage. The cooling tank 768 receives the coolant, preferably water, similar to the cooling system 7-8 shown in Figure 61. The cooling tank 768 can supply a hot water supply system, and the 75 〇 coolant of the building is water. The temperature of the cooling tank should preferably be maintained at 25 degrees Celsius (77 degrees Fahrenheit). This water will be sent to the auxiliary solar water heating system and heated to 71 degrees Celsius (16 degrees Fahrenheit) for general domestic hot water use. A hydraulically controlled door 77 〇 can close the reflective light guide 762 within the building 750. There is no day in the electricity and 1 or hot water (for long-term travel, long-distance travel), the collection device 760 can be turned off. The door 770 has a reflective upper surface above the leveler 764, which prevents the light collected by the collecting device 760 from passing back and back to the sky; it is openable (as shown in Figure 71) and The hydraulic system (not shown) in the closed position is preferably self-monitoring. Device 76 can be used to provide electricity and hot water. A building can accommodate multiple units 76〇, which can be mounted on the side walls and roof of the face. Figure 72 shows a building 78〇 with multiple collection devices 785 mounted on its roof 782 and side wall 784. The collecting device 785 of FIG. 72 may be a device 75 shown in FIGS. 68 to 71, a device 730 shown in FIGS. 64 to 67, and a device 700 shown in FIGS. 61 to 63. Either structure, or Figure BVIII ~ 60 collection device of the Baki dome. Additional reflections can be added 45 201035505 Pyramid and reflective awnings to reflect more solar radiation to the collection equipment 785. Figures 73 through 74 describe a device for receiving device 800. The device 800 is designed to dilute water, such as seawater, as shown in Figure 73, and simultaneously generate electricity. The unit resembles a miniature water circulation system, but speeds up the cycle and collects concentrated solar radiation to dilute seawater and generate electricity. Pipe 802 inputs water to the device 800. If the device 800 is installed at the same level as the sea, energy will be saved; the water in the boiler tube 804 is at the same height as the sea level, assuming that the water source is sea water, and the sea water will be drawn into the boiler tube 804 by gravity. The annular boiler tube 804 can be made of any transparent material, such as glass or acrylic, or gold, preferably with a light absorbing material. Boiler tube 804 is surrounded by a nanotube-shaped collection ring 806 having a lens section 808 as in the prior type of collection device, such as apparatus 10 of FIG. Using the forty-nano tube collecting device 470, it is conceivable that the elongated tube is elongated and joined at both ends to form a ring. The lens section 808 is supported by the collection frame 810. The nanotube collection ring 806 collects and concentrates light onto the boiler tube 804. The focused light heats the boiler tube 804, evaporating the water therein into steam. The resulting steam from boiler tube 804, through steam line 812 to turbine generator 814, drives turbine 814 to generate electricity. The wall of the thirsty wheel 814 and the wall and the weathering plate 5 of the thirsty wheel chamber are covered with a thermal chip or a new nano antenna to directly convert the heat radiated steam into direct current or parental power. Thermal chips or new nano-antennas remove and absorb the thermal energy of the steam. The steam will be cooled into water droplets to become desalinated fresh water. The turbine 814 ejects steam and is cooled to fresh water for collection to the water tank 816. The water is the device 46 201035505 800 — The kind of treasures of the taxis ~ The homes are the other from the power of the turbine generator 814. The dome 818 hurts you, and the λ is standing above the 4-wheel generator 814, in the middle of the collection ring 806. The dome 818 ancient y ΰ has a collection surface, similar to the device 1 to 1-6. At the focus of its collection lens, an optoelectronic wafer 820 produces direct-level hair power. The photovoltaic wafer 82 is preferably a highly efficient three junction photoelectric device. On the outer wall of the lower portion 822 of the dome 818, a sputum or a reflective film, an aluminized film is applied to reflect light to the carbon nanotube collection ring 80 ό.奈 The nanotube collection ring 806 is located above the reflective disk 8; 24, which has the appearance of a semi-solid donut or a bagel. Reflector disk 824 reflects solar radiation to the barrier tube collection ring 806 and is then concentrated to pin tube 804. Figure 75 – Eight Diagrams – shows that various vehicles are equipped with equipment for collecting and concentrating radiation. The collection device 830 includes the collection device 400' of the apparatus of Fig. 24 as a half modified cell; the light is collected to an internal radiation receiver (not shown). The modified nanotube collection device 600 is quite streamlined and can be installed in different rides, equipment map 75 travel trailer 840 and car 845, Ο Figure 76 active car 850, Figure 77 ship 855 Figure seventy-eight small λ car 860 'Figure seventy-nine bus 865, Figure eighty light train 870 and eighty-one aircraft 875. These figures are merely representative of the rides and are equipped with collection devices 830. Figures 88 to 84 illustrate the steps for producing a three-dimensional solar radiation concentrator. The steps of this process include printing a layer of flexible electro-optic film on a flat material, cutting the material into slices of various surfaces of a harness or structure (such as a building), installing wires, and slicing to a harness or structure such as building. Figure 82 shows a computer graphics machine 880 printing a film to 47 201035505 flat material 881. HP has a suitable inkjet computer graphics/cutting machine for this purpose. The flat material 8 81 is preferably a polyvinyl chloride film with a self-adhesive backing on the back. The planar material is sprayed with a layer of semiconductor by ink jet, and this spraying process is well known. For example, Yang Yang U.S. Patents 6,565,153 and 6,576,975, relate to the process of manufacturing organic semiconductor devices. U.S. Patent Nos. 6,566,153 and 6,576,975, the disclosures of which are hereby incorporated herein by reference. The semiconductor layer is a photovoltaic film. In the next step, the planar material 881 is fed into a cutter 886 which cuts the planar material 881 into a slice 882. Computer graphics machine 880 / cutting machine 886, may be appropriate modification on the same machine. Figure 83 shows the cutting machine 886 cutting from the planar material 881 into a cut piece 882. The shape of the slice 882 is preferably a drawing aid design software so that the indication is easily generated and loaded into the cutter 886. Slice 882 has a plurality of different contours depending on the surface to be covered. In the eighty-fourth, the slice 882 is overlaid onto the car 888. As seen from the right, the wire 883 connects the electrodes of the photovoltaic material to the battery 885 with appropriate power. Slice 882 will cover vehicle 888. A slice 882 with self-adhesive backing will be glued to the vehicle 888. Vehicle 888 will be a three-dimensional device that collects solar radiation and provides a battery 885 during the day. Other three-dimensional objects, such as building 890 of Figure 85, may be equipped with a photovoltaic film slice 892 as described above. Section 892 is cut into all applicable surfaces of building 890, except for collection device 896, whose lens cuts are not available, they need to collect solar radiation and concentrate it to the radiation receiver. Figures 86 to 90 depict a device 900 for collecting solar radiation, including a collection device 901 and a collection reflector 920. Collection equipment 48 201035505 9〇1 According to the principle * A heat engine, Gan, the national physicist Crookes light meter 'This is the face, the other side is opposite 3: The middle rotor blade has a "face color" Or the matte light is exposed to the light, causing the rotating surface to 'place in a low-density space' to retreat, while the smooth surface pushes W to rotate. Looking for the color side rotor blades will be forced by the light source principle to see more detailed information. The spokes are cooled from the (four) of the rotor. This is for the reader's spring test, disclosed in US Patent 441_5 of Barre,

相互交織螺旋形律允許的。轉子903最好包括兩個 4c; ΩΛ , a± 。片904和905,固定在上端圓板906。圓 在軸907上。可旋轉軸907相連到旋轉傳動設備, 通過/、扭力使在發電機/真空維護設備9H)中的-個交流發 電機發電。葉片904有-個深色面9〇4a和淺色面904b。葉 片905有一個深色面905a和淺色面905b。在深色面904a 和905a最好是印刷薄膜光電材料,如此除了溫差導致轉子 903旋轉產生交流電力外,葉片也吸取太陽輻射產生直流電 力。淺色面904b和905b最好為鏡面。 發電機/真空維護設備910連接到下方反射盤920,轉 子903在反射盤920上方。轉子901周圍是光學用透明和 密閉罩905。反射盤920反射光線,通過覆罩9〇5到轉子 903,以增加轉子903收光能力;反射盤920有3個裝有輪 子的腿922,承受巢置900的重量。輪923接觸安裝裝置 900的表面,如地面,造就裝置900可容易移動。 圖九十一是一個收集光輻射裝置93〇的解析圖。該裝 置930,不運轉也不瞄準,能夠接收多方向的輻射,並集中 至適當的接收器。在圖九十一,該裝置930能夠集中太陽 49 201035505 幸田射至光電晶片和熱能或紅外輻射至熱能轉換材料上。 裝置93〇有反向散光片接收多方向的輪射,如示範光 線940 ’使匕成為更接近平行光與反向散光片932呈垂直角 度。反向散光片,可機械沖壓和油壓沖壓其微結構在聚合 物薄膜上,例如由加利福尼亞州派拉蒙市的波前技術公 司。也可於聚光透鏡如菲涅爾透鏡,射出成型的模具加上 該微結構。 、 現在’平行光輻射導到一個全像衍射光柵934,根據其 輻射頻率分導至不同區域。全像透鏡934導可見光輻射, 到輻射接收器950的光電晶片952上。輻射光顯示為示範 光942。光電晶片952吸收可見光光輻射來發電。全像衍射 光柵934也會導紅外輻射到輻射接收器950的底板954上。 紅外輻射顯示為示範光944。底板954吸收紅外線輻射,將 熱量傳遞給液體’如水。底板954板材954還會吸收光電 晶片952的餘熱。多數光電晶片952吸收的光輻射,將不 被用於光電生產電力,反而會在光電晶片952產生熱能。 光電晶片952的溫度應保持在攝氏25度,如前面所述。因 此,該底板954提供了一種保持光電晶片952適當溫度的 方法,在其吸熱能量限額内,消除光電晶片952多餘的熱 量。底板954可有任何的形狀,無須如圖九十一為圓形。 底板954可設為氣冷式,下面會提到,或熱交換系統 (未顯示在圖九十一)或任何其它合適的種類,如圖一和 圖五十八所不。首選的底板954最好是由氧化鈹(Be〇),由 於其車越的熱傳導。另一種選擇為奈米天線,這種材料不 50 201035505 但可吸收紅外輻射,還進一步利用此餘熱產生電流。 圓九十二,顯示了輻射接收器950另一個版本96〇的 透視圖。輻射接收器960,包括一個光電晶片962。一個絕 緣材料的板塊964’上有光電晶片962下有底板%6,導熱 不導電。 光電晶片可為石夕或三結晶片。高效率的三結光電晶片 相k於矽光電晶片,只需極小面積而有同樣的輸出電力。 板塊964的首選材料是氧化鈹964,理由如前所述。 板塊964會將矽光電晶片的熱量導至底板966。底板 966的首選材料,是銅或紹合金。正如圖九十三,底板gw 的政熱縛片968在光電晶片962的反面。散熱金屬片968 造成底板966散熱至四周環境中。如尚需額外的冷卻,可 增加一個風扇系統’使散熱鰭片968周圍的空氣流通。一 種現成的中央處理器(CPU)的冷卻裝置可採用。三結光電晶 片可以接收集中光能。有些三結光電晶片可納數百成千太 陽的光能,轉換為電力。據報導,目前最大的矽容忍光能 少於300太陽,而三結光電晶片可以接收3〇〇〇太陽。在高 倍數集光情況下,必需採用一個更強大的冷卻系統,例如 水或其他液體冷卻系統如前所述。 圖九十四和九十五’描繪用於發電和熱水的面板970。 面板970由數組收集光輻射設備971組成陣列,具有在圖 九十一所示裝置930的結構’可見圖九十五剖面圖。每個 設備971有反向散光片972’全像透鏡973,光電晶片974, 導熱塊975 ’如圖九十二和圖九十二,和底板976。裝置971 51 201035505 = 的冷卻劑’最好是水’因為“取彳 〇 後有k备用途。面板97〇可以自身收集和使用輻射.不需 跟每移位,來保持垂直輕射的來源,如太陽,儘管如已知 的太陽能電池板’面板970本應導至在適當的方位。但因 為反向散光片972可修正光進行的方向,另外,或者作為 替代個由斜肖度1氧化;奈;^棒組成的防反射塗層(^ 其它防反射塗層),可能會被用來減少反射損失。 在極5¾情況下,如果反向散光片和防反射塗層皆無法 取得,光電晶片974可採用染料敏化太陽能電池(DSSC), 也稱為Gratzel晶片,它可以吸收任何方向的太陽輻射。事 只上’這種類型的太陽能電池,甚至可以吸收室内照明光。 面板970也可使用集光設備,如圖五十八收集設備68〇的 巴基圓頂,圖六十一收集太陽輻射裝置700,圖六十四收集 太陽輻射裝置730等皆可骏在設備971之上。裝置971成 為這些收集裝置的輻射接收器。 圖九十六顯示了 一所房子的太陽能收集系統,供應 光,熱。結構980 (圖九十六是一所房子)的屋頂982,有 第一個收集太陽輻射裝置984和第二個收集太陽輻射裝置 988。第一個收集太陽輕射裝置984,如圖六十一裝置700, 具有相同的總體結構,但可能有其他結構,如圖五十八收 集設備680。第二個收集太陽輻射裝置988,是半圓桶狀太 陽能收集設備’一般具有半圓筒形,也可為任何上述太陽 52 201035505 輻射收集形式。半圓桶狀太陽能收集裝置在圖一百六和一 百七中,被圖示為一建築物的屋頂。第一個裝置984具有 工具986’如全像透鏡或棱鏡(稍後介紹)分割所收集的光, 分為可見光和紅外輻射。紅外輻射,可轉化為熱量,由一 個導熱電纜990,是銅管外包絕緣聚氣乙烯組成,導至炊爐 992。可見光(不含紫外光)由傳送光纜994導至照明設備 996 (不用電照明)c>第二個裝置988收集太陽輻射的光, 〇 由光纜994導至照明設備996。其餘所收集的光由裝置988 内的光電晶片轉換為電能,並由電線998輸送電力,供應 結構980。 心 圖九十七顯示了 一個太陽能供輸能源的戶外烤肉器 1〇〇〇。一個巴基圓頂型的太陽輻射收集裝置1〇〇2,具有銅 製的輻射接收器1004,最好是一個中空球體由所收集的光 加熱。輻射接收器1004經由熱導體,最好的形式是銅管由 聚氯乙烯絕緣(未顯示在圖九十七),連接至烤肉器1〇〇〇 〇 上方爐頭1006和烤肉器1〇〇〇爐内部烤箱(圖九十七未顯 示)。烤肉器1〇〇〇爐前的控制樞紐1〇〇8控制多少熱量傳遞 到爐頭1006 ’如下面圖九十九和一百1〇〇顯示,並提供開 關功能。 烤肉器1000旁邊有一個照明設備1010,設計類似圖十 五的照明设備。烤肉1 1000,可配備有提供備用的傳統電 力加熱設備,以便在陰天及夜間使用。 圖九十八顯示了一個便攜式太陽能供能源的戶外烤肉 器1020。這是一個露天燒烤版本的烤肉器1〇〇〇,減去内部 53 201035505 烤相’更便於攜帶。-個巴基圓頂型的太㈣射收集裝置 1022有韓射接收器1()24,奴—個中找體由所收集^光 加熱。輻射接收器1024經由熱導體1〇28傳到 上_叫烤肉器胃前的控制二 多少熱量傳遞到爐頭1026,如下面圖九十九 示,並提供關功能。 圖九十九和一百,描述爐頭1〇4〇,如圖九十七烤肉器 1000的爐頭1006和圖九十七烤肉器1〇2〇的爐頭1〇26。每 個爐頭1040有兩套同心圓迴圈1042和1〇44,最好由銅製 成。迴圈1042和1〇44互相套排,越往中心則同心圓直徑 遞減。第一個導熱條1046連接到迴圈1〇42的底面,第二 導熱條1048連接到迴圈1044的底面。使用者操作控制樞 紐(見圖九十七和九十七)來連接一個或兩個的導熱條1〇46 和1048,全開或半開,取決於需要多少熱量供烹調。 圖一百〇一,描述了一個收集太陽輻射的示意圖 1050。該裝置1050能夠將收集到的太陽輻射分開,將太陽 紫外線輻射,可見光和紅外輻射,用於不同的裝置。該裝 置有收集設備1052,收集太陽輻射並將其發送到一個全像 衍射光栅透鏡或三角棱鏡丨〇54。收集設備可以是任何半球 形或圓頂收集設備,如前所述。甚至是一個單向收集單位 (在這種情況下必須使用跟踪器)。 全息透鏡(棱鏡)1054上有紫外線反射板1056和紅外 線反射板1058 ’與透鏡在一斜交界處1060相接。圖一〇一 和一〇二,其中紅外線由示範紅外線1062代表,將被衍射 54 201035505 分光出來反射至,紅外線反射板1058,再以熱管1064導該 紅外光,用於熱引擎或加熱水。圖一〇一和一〇二,其中 紫外線由不範紫外線1066代表,將被衍射分光出來反射 至,紫外線反射板1056,然後反射至内有鏡面内襯的管道 1068,導引該紫外線,使用在各種用途,例如激活燈管内 的螢光氣體照明用,消毒和發電使用,例如,奥地連公司 的奈米矽粒子光電晶片吸收紫外線發電。 圖一〇一和一〇二,其中可見光由示範光線1062代 u 表’將通過透鏡1054導至光電晶片1072,用來發電。如前 所述,如聚光至光電晶片,需加裝散熱設備;在圖一〇一 中’光電晶片1072下有散熱器1074,類似一般現成中心處 理器的散熱設備。 圖一百〇三,描述了 一個收集太陽輻射的示意圖 1080。該裝置1〇8〇能夠分開集中的太陽輻射,然後導不同 波長的光至適當波長接收器發電。 〇 裳置有收集設備1082,收集太陽輻射並將其發送 到全像衍射光栅透鏡1084。該設備1082,可以是任何半球 形或圓頂收集設備,如前所述。甚至是一個單向收集單位 (在這種情況下必須使用跟踪器)。透鏡1()84能夠分開收 集的太陽輻射,成不同波長的光,如圖一百〇三示範射線 1086,1〇9〇,1094和1098,然後導不同波長的光至適當波 長接收器1088,1092,1096和11〇〇發電。光學棱鏡或其 它衍射光柵’可代替該全像衍射光柵透鏡1〇84。第一組的 波長為高能量的能差,即波長為300奈米至約680奈米(相 55 201035505 當於具有光子能量範圍内約3.2電子伏特(eV)至約1.88電 子伏特)。適當的接收器可為一個磷化銦鎵光電晶片。第二 組的波長為中間能量的能差,即波長為680奈米至約900 奈米(相當於具有光子能量範圍内的約1.5EV至約1.4電 子伏特)。適當的接收器可為一個銦鎵砷光電晶片。第三組 的波長將在低能量的的能差,即波長為900奈米到1800奈 米(相當於具有光子能量範圍内的約1.1EV至約0.7電子 伏特)。適當的接收器可為一個鍺,銻化鎵,或磷化銦光電 晶片。第四組波長在紅外線能量範圍,即波長為3微米至 15微米。適當的接收器可為紅外光奈米天線;微康庭能公 司開發出來,它轉換紅外輻射並將其轉換為交流電。熱電 晶片,例如因奈可公司,熱音壓電晶片原先由猶他大學開 發出來。及能源芯片公司的量子隧道芯片。另外一組的波 長可以被分離出來,並用來產生電流,範圍是紫外線下, 如波長小於380奈米,可利用到前述的納米矽粒子光電晶 片發電。 圖一百〇四,描述了一個圖一百〇三的另一個版本, 收集太陽輻射的示意圖1010。該裝置1010的收集設備 1112,收集太陽輻射並將其發送到,一個高色差菲涅耳透 鏡1114。該設備1112,可以是任何半球形或圓頂收集設備, 如前所述。甚至是一個單向收集單位(在這種情況下必須 使用跟踪器)。高菲涅耳透鏡色差能夠分開收集的太陽輻 射,成不同波長的光,如圖一百〇四示範射線1116,1120, 1124和1128,然後導不同波長的光至適當波長接收器 56 201035505 1118, 1122, 1126和1130發電。圖一百◦四示範射線1116, 1120,1124 和 1128 與接收器 1118,1122,1126 和 1130 ; 對應圖一百〇三示範射線1086,1090,1094和1098與10 接收器,1088,1092,1096 和 1100。 圖一百〇五,描述了 一個收集太陽輻射的示意圖 1110。該裝置1110為三色棱鏡,可配合圖一百〇三和圖一 百〇四的收集太陽輻射設備,分開收集的太陽輻射為不同 波長的光,紅,藍和綠。 分色棱鏡是一種光棱鏡,可以分離入射光成兩個不同 波長的光束。它們通常是由一個或多個玻璃棱鏡,上有分 色光學鍍膜,取決於光的波長,有選擇性地反射或傳送光。 也就是說,在某些曲面棱鏡可作為彩色濾光片。在許多光 學儀器,可被用作分光器。 三色棱鏡1110是兩個分色棱鏡的組合,即3個棱鏡組 件1114,1116和1118,適當的分色光學鍍膜,用於分離入 射光1112為紅色,綠色和藍色光束,分別由1120,1122 和1124代表。這些光束將被引導至合適的波長接收器。例 如,紅色光束1120可用於催促番茄快熟和藍色光束1124 可用於植物,造成豌豆芽吐芽更快。另外,藍色光束1124 可以用來照射藻類生物燃料的催化爐,提高轉換效率。綠 色光束1122,可用在太陽能晶片發電或其他用途。 圖一百〇六,描繪另一個集中光電建築一體化的例 子。房子1130和附加車庫1140,屋頂為收集太陽輻射射 備。這房子Π30有半圓桶屋頂收集太陽輻射射備1132。該 57 201035505 車庫有一個半球形屋頂收集太陽輻射射備1142。半圓桶屋 頂收集射備1132和半球形屋頂太陽能集熱器1142,可任何 建築物,其中的收集表面從本地或可見地平線以上,接收 太陽輻射,如前所述。在圖一百〇六的半球形屋頂太陽能 集熱器1142,類似圖六十八的收集設備760。半圓桶屋頂 收集太陽輻射設備1132就像是收集設備760,但長而圓的 形狀類似半圓桶,更適合覆蓋一個長的矩形屋頂。兩個屋 頂1132和1142將有透明的面板,覆蓋安裝了鏡面内壁的 反射導光筒,以防灰塵和雨水。屋頂1132和1142被包圍 在女兒牆護欄1132和1142,具有内部反射斜坡如前所述, 類似圖七的建築750所示。 圖一百〇七,描繪了一個建築物1190,有菲涅耳圓頂 收集設備1192作為其屋頂。菲涅耳圓頂收集設備1192,收 集太陽輻射供暖供水,發電,提供爐火(如圖九十六〜一百 的太陽能爐具)等等。 圖一百〇八,描述了一個大廈1200,有巴基圓頂收集 設備1202作為其屋頂。該巴基圓頂結構類似前述收集設備 331 ;收集太陽輻射供暖供水,發電,提供爐火爐具,等等。 圖一百〇九,描述了一個具有建築物1210,碳奈米管 收集設備1212作為其屋頂。該碳奈米管結構類似前述收集 設備830 ;收集太陽輻射供暖供水,發電,提供爐火爐具, 等等。結構類型的奈米管收集設備1212像收集設備收集 830,收集太陽輻射供暖供水,發電,提供爐火爐具,等等。 圖一百一十,是一個紫外線輻射提取系統的示意圖 58 201035505 ΟInterwoven with the spiral law allows. The rotor 903 preferably includes two 4c; Ω Λ , a ± . Sheets 904 and 905 are secured to the upper end circular plate 906. The circle is on the shaft 907. The rotatable shaft 907 is connected to the rotary transmission device to generate electric power by an AC generator in the generator/vacuum maintenance device 9H by /, torque. The blade 904 has a dark side 9〇4a and a light side 904b. The blade 905 has a dark side 905a and a light side 905b. Preferably, the dark faces 904a and 905a are printed film optoelectronic materials such that in addition to the temperature difference causing the rotor 903 to rotate to produce alternating current power, the blades also draw solar radiation to produce direct current. The light colored faces 904b and 905b are preferably mirrored. Generator/vacuum maintenance device 910 is coupled to lower reflective disk 920 with rotor 903 above reflective disk 920. Around the rotor 901 is an optical transparent and hermetic cover 905. The reflective disk 920 reflects light through the cover 9〇5 to the rotor 903 to increase the light receiving capability of the rotor 903; the reflective disk 920 has three legs 922 with wheels that bear the weight of the nest 900. The wheel 923 contacts the surface of the mounting device 900, such as the ground, and the device 900 can be easily moved. Figure 91 is an analytical diagram of a collection of optical radiation devices 93A. The device 930, which does not operate or is aimed, is capable of receiving radiation in multiple directions and is concentrated to an appropriate receiver. In Figure 91, the device 930 is capable of concentrating the sun 49 201035505 Koda to the photovoltaic wafer and thermal or infrared radiation to the thermal energy conversion material. The device 93 has a reverse astigmatism sheet that receives multiple directions of rotation, such as the exemplary light ray 940' which causes the 匕 to be closer to the parallel light at a perpendicular angle to the inverse astigmatism sheet 932. The reverse astigmatism sheet can be mechanically stamped and hydraulically stamped onto the polymeric film, such as the wavefront technology company of Paramount, California. It is also possible to incorporate a molded mold with a concentrating lens such as a Fresnel lens. Now, the parallel light radiation is directed to a hologram diffraction grating 934 which is directed to different regions according to its radiation frequency. The hologram lens 934 directs visible radiation onto the optoelectronic wafer 952 of the radiation receiver 950. The radiant light is shown as exemplary light 942. Photovoltaic wafer 952 absorbs visible light radiation to generate electricity. The hologram diffraction grating 934 also directs infrared radiation onto the bottom plate 954 of the radiation receiver 950. Infrared radiation is shown as exemplary light 944. The bottom plate 954 absorbs infrared radiation and transfers heat to a liquid such as water. The bottom plate 954 plate 954 also absorbs the residual heat of the photovoltaic wafer 952. The optical radiation absorbed by most of the optoelectronic wafers 952 will not be used to produce electricity by optoelectronics, but instead will generate thermal energy in the optoelectronic wafer 952. The temperature of the optoelectronic wafer 952 should be maintained at 25 degrees Celsius as previously described. Thus, the backplane 954 provides a means of maintaining the proper temperature of the optoelectronic wafer 952, eliminating excess heat from the optoelectronic wafer 952 within its endothermic energy limit. The bottom plate 954 can have any shape and does not need to be circular as shown in FIG. The bottom plate 954 can be air-cooled, as will be mentioned below, or a heat exchange system (not shown in Figure 91) or any other suitable type, as shown in Figures 1 and 58. The preferred bottom plate 954 is preferably made of beryllium oxide (Be〇) due to the heat transfer from the car. Another option is a nano-antenna, which is not 50 201035505 but absorbs infrared radiation and further uses this residual heat to generate current. Round ninety-two shows a perspective view of another version 96 of the radiation receiver 950. Radiation receiver 960 includes an optoelectronic wafer 962. A plate 964' of an insulating material has a bottom plate %6 under the photovoltaic wafer 962, and the heat conduction is not conductive. The photovoltaic wafer can be a stone or a triple crystal. The high-efficiency three-junction photocells have the same output power in a very small area. The preferred material for plate 964 is yttrium oxide 964 for the reasons set forth above. The plate 964 conducts heat from the germanium photovoltaic wafer to the bottom plate 966. The preferred material for the bottom plate 966 is copper or slag alloy. As shown in Fig. 93, the thermal seal 968 of the bottom plate gw is on the reverse side of the photovoltaic wafer 962. The heat sink metal 968 causes the bottom plate 966 to dissipate heat to the surrounding environment. If additional cooling is required, a fan system can be added to circulate air around the fins 968. A cooling device for an off-the-shelf central processing unit (CPU) can be employed. The triple junction photovoltaic wafer can receive concentrated light energy. Some three-junction photovoltaic cells can convert hundreds of thousands of solar energy into electricity. According to reports, the largest 矽-tolerance light energy is less than 300 sun, and the three-junction photo-wafer can receive 3 〇〇〇 sun. In the case of high multiples, it is necessary to use a more powerful cooling system, such as water or other liquid cooling systems as described above. Figures 94 and 95 depict panel 970 for power generation and hot water. The panel 970 is comprised of an array of array-collecting optical radiation devices 971 having a nine-fifth cross-sectional view of the structure of the device 930 shown in FIG. Each device 971 has a reverse diffuser 972' holographic lens 973, an optoelectronic wafer 974, a thermally conductive block 975' as shown in Fig. 92 and Fig. 92, and a bottom plate 976. Device 971 51 201035505 = The coolant 'preferably water' because it has a ready-to-use purpose. The panel 97 can collect and use radiation itself. It does not need to follow each shift to maintain the source of vertical light. Like the sun, although the solar panel 'panel 970 as it is known should be guided to the proper orientation, the reverse astigmatism sheet 972 can correct the direction in which the light is proceeding, or alternatively, as an alternative, by oblique slant 1; Anti-reflective coating (^ other anti-reflective coating) composed of rods may be used to reduce reflection loss. In the case of poles, if both the reverse diffuser and the anti-reflective coating are not available, the photovoltaic wafer The 974 can use a dye-sensitized solar cell (DSSC), also known as a Gratzel wafer, which absorbs solar radiation in any direction. It can only be used on this type of solar cell, and can even absorb indoor illumination. Panel 970 can also be used. The light collecting device, as shown in Fig. 58, collects the Baki dome of the device 68, the solar radiation device 700 is collected in Fig. 61, and the solar radiation device 730 is collected on the device 971. The 971 becomes the radiation receiver for these collection devices. Figure 96 shows a solar collector system for a house that supplies light and heat. The structure 980 (Figure 96 is a house) has a roof 982, with the first collection The solar radiation device 984 and the second collection solar radiation device 988. The first collection solar light device 984, as shown in Figure 61, has the same overall structure, but may have other structures, as shown in Figure 58. Apparatus 680. The second collection solar radiation device 988 is a semi-circular barrel-shaped solar energy collection device 'generally having a semi-cylindrical shape, and may also be in the form of any of the above-mentioned solar 52 201035505 radiation collection. The semi-circular barrel-shaped solar energy collection device is shown in Figure 16. One hundred and seven, illustrated as the roof of a building. The first device 984 has a tool 986' such as a holographic lens or prism (described later) that divides the collected light into visible and infrared radiation. It can be converted into heat, consisting of a heat-conducting cable 990, which is made up of copper tube and insulated poly-ethylene, which is led to the furnace 992. The visible light (excluding ultraviolet light) is transmitted by light. Cable 994 leads to illumination device 996 (without electrical illumination) c> second device 988 collects solar radiation, which is directed by fiber optic cable 994 to illumination device 996. The remaining collected light is converted to electrical energy by the optoelectronic wafer within device 988. And the electric power is supplied by the wire 998 to supply the structure 980. The heart diagram of the seventy-seventh shows an outdoor barbecue device for solar energy for energy transmission. A bucky dome type solar radiation collecting device 1〇〇2 has A copper radiation receiver 1004, preferably a hollow sphere, is heated by the collected light. The radiation receiver 1004 is via a thermal conductor, preferably in the form of a copper tube insulated by polyvinyl chloride (not shown in Figure 97). Connected to the top of the oven 1100 and the oven 1 of the roaster 1 (not shown in Figure 97). The control unit 1 〇〇 8 in front of the broiler controls how much heat is transferred to the burner head 1006 ’ as shown in the figure below, ninety-nine and one hundred and one ,, and provides a switch function. Next to the barbecue 1000 is a lighting device 1010 designed to resemble the lighting device of Figure 15. Grilled meat 1 1000, can be equipped with a spare conventional electric heating device for use on cloudy days and nights. Figure 98 shows a portable outdoor energy source 1020 for solar energy. This is an open-air barbecue version of the broiler 1 〇〇〇, minus the interior 53 201035505 grilled phase 'more convenient to carry. - A Baki dome type (four) shot collection device 1022 has a Hane receiver 1 () 24, and the slave is heated by the collected light. The radiation receiver 1024 is transferred to the upper portion of the roasting device via the thermal conductor 1 〇 28. How much heat is transferred to the burner head 1026, as shown in Figure 99 below, and provides a shut-off function. Figure ninety-nine and one hundred, depicting the burner head 1〇4〇, as shown in Figure 97, the burner head 1006 of the roasting machine 1000 and the burner head 1〇26 of the figure nineteen seventeen roasting device. Each burner head 1040 has two sets of concentric circles 1042 and 1 〇 44, preferably made of copper. The loops 1042 and 1〇44 are nested with each other, and the concentric circle diameter decreases as it goes to the center. The first thermal strip 1046 is connected to the bottom surface of the loop 1 〇 42 and the second thermal strip 1048 is connected to the bottom surface of the loop 1044. The user operates the control hub (see Figures 97 and 97) to connect one or both of the thermal strips 1〇46 and 1048, either fully open or half open, depending on how much heat is required for cooking. Figure 101 shows a schematic 1050 for collecting solar radiation. The device 1050 is capable of separating the collected solar radiation, using solar ultraviolet radiation, visible light and infrared radiation for different devices. The device has a collection device 1052 that collects solar radiation and sends it to a holographic diffraction grating lens or triangular prism 丨〇54. The collection device can be any hemispherical or dome collection device as previously described. Even a one-way collection unit (in this case a tracker must be used). The holographic lens (prism) 1054 has an ultraviolet reflecting plate 1056 and an infrared reflecting plate 1058' attached to the lens at an oblique boundary 1060. Figure 1 and Figure 2, wherein the infrared light is represented by the exemplary infrared light 1062, will be reflected by the diffraction 54 201035505, reflected to the infrared reflector 1058, and then guided by the heat pipe 1064 for the heat engine or heated water. Figure 1 and Figure 2, in which the ultraviolet light is represented by the non-UV 1066, will be diffracted and reflected to the ultraviolet reflector 1056, and then reflected to the mirrored inner liner 1068, guiding the ultraviolet light, used in Various uses, such as activation of fluorescent gas illumination in lamps, disinfection and power generation, for example, Austrian's nano-particle photoelectric wafers absorb ultraviolet light. Figure 1 and Figure 2, in which visible light is directed to the optoelectronic wafer 1072 through the lens 1054 by the exemplary light 1062, which is used to generate electricity. As mentioned above, if concentrating to the optoelectronic wafer, a heat dissipating device is required; in the middle of the figure, there is a heat sink 1074 under the photovoltaic wafer 1072, which is similar to the heat dissipating device of a general off-the-shelf central processor. Figure 103 shows a schematic diagram of collecting solar radiation 1080. The device is capable of separating concentrated solar radiation and then directing light of different wavelengths to a suitable wavelength receiver for power generation. A squirrel is provided with a collection device 1082 that collects solar radiation and sends it to a hologram diffraction grating lens 1084. The device 1082 can be any hemispherical or dome collecting device as previously described. Even a one-way collection unit (in this case a tracker must be used). Lens 1() 84 is capable of separately collecting the collected solar radiation into different wavelengths of light, such as the exemplary ray 1086, 1〇9〇, 1094 and 1098, and then directing different wavelengths of light to the appropriate wavelength receiver 1088, 1092, 1096 and 11 〇〇 power generation. An optical prism or other diffraction grating ' can replace the hologram diffraction grating lens 1 〇 84. The first set of wavelengths is a high energy energy difference, i.e., a wavelength of from 300 nanometers to about 680 nanometers (phase 55 201035505 when having a photon energy range of about 3.2 electron volts (eV) to about 1.88 electron volts). A suitable receiver can be an indium gallium phosphide optoelectronic wafer. The second set of wavelengths is the energy difference of the intermediate energy, i.e., the wavelength is from 680 nanometers to about 900 nanometers (equivalent to about 1.5 EV to about 1.4 electron volts in the photon energy range). A suitable receiver can be an indium gallium arsenide photovoltaic wafer. The third set of wavelengths will have a low energy energy difference, i.e., a wavelength of from 900 nanometers to 1800 nanometers (equivalent to about 1.1 EV to about 0.7 electron volts in the photon energy range). A suitable receiver can be a germanium, gallium antimonide, or indium phosphide optoelectronic wafer. The fourth set of wavelengths is in the infrared energy range, i.e., the wavelength is from 3 microns to 15 microns. A suitable receiver can be an infrared light nanos antenna; developed by Microconductor, which converts infrared radiation and converts it to alternating current. Thermoelectric wafers, such as Innaco, have been originally produced by the University of Utah. And the quantum chip chip of the energy chip company. The other set of wavelengths can be separated and used to generate current in a range of ultraviolet light, such as a wavelength of less than 380 nm, which can be used to generate electricity from the aforementioned nano-germanium particle photovoltaic wafer. Figure 1-4 shows another version of Figure 100, a schematic 1010 of collecting solar radiation. The collection device 1112 of the device 1010 collects and transmits solar radiation to a high color Fresnel lens 1114. The device 1112 can be any hemispherical or dome collecting device as previously described. Even a one-way collection unit (in this case a tracker must be used). The high Fresnel lens chromatic aberration is capable of separately collecting the solar radiation into different wavelengths of light, as shown in the four hundred and four exemplary rays 1116, 1120, 1124 and 1128, and then directing different wavelengths of light to the appropriate wavelength receiver 56 201035505 1118, 1122, 1126 and 1130 generate electricity. Figure 104 shows the ray 1116, 1120, 1124 and 1128 with the receivers 1118, 1122, 1126 and 1130; corresponding to the figure 1-3 demonstration ray 1086, 1090, 1094 and 1098 and 10 receivers, 1088, 1092, 1096 And 1100. Figure 1-5 depicts a schematic 1110 for collecting solar radiation. The device 1110 is a three-color prism that can be used in conjunction with the collection of solar radiation devices of Figures 1 and 3, and separately collects solar radiation of different wavelengths of light, red, blue and green. A dichroic prism is a light prism that separates incident light into two beams of different wavelengths. They are usually made up of one or more glass prisms with a color separation optical coating that selectively reflects or transmits light depending on the wavelength of the light. That is to say, some curved prisms can be used as color filters. In many optical instruments, it can be used as a beam splitter. The trichromatic prism 1110 is a combination of two dichroic prisms, namely three prism assemblies 1114, 1116 and 1118, and a suitable dichroic optical coating for separating the incident light 1112 into red, green and blue beams, respectively, by 1120, Representatives of 1122 and 1124. These beams will be directed to a suitable wavelength receiver. For example, the red beam 1120 can be used to urge the tomato to ripen and the blue beam 1124 can be used on plants, causing the pea shoots to spit faster. In addition, the blue light beam 1124 can be used to illuminate the catalytic furnace of the algae biofuel to improve conversion efficiency. The green light beam 1122 can be used for solar chip power generation or other purposes. Figure 106 shows an example of another integrated photovoltaic building integration. House 1130 and additional garage 1140, the roof is for collecting solar radiation. This house Π 30 has a semi-circular barrel roof to collect solar radiation shots 1132. The 57 201035505 garage has a hemispherical roof to collect solar radiation shots 1142. The semi-circular barrel roof top collection shot 1132 and the hemispherical roof solar collector 1142 can be used in any building where the collection surface receives solar radiation from above the local or visible horizon, as previously described. The hemispherical roof solar collector 1142 in Fig. 106 is similar to the collecting device 760 of Fig. 68. Semi-circular roof The solar radiation collection unit 1132 is like a collection device 760, but the long round shape resembles a semi-circular barrel and is more suitable for covering a long rectangular roof. The two roofs 1132 and 1142 will have transparent panels covering the reflective light guides with mirrored inner walls to prevent dust and rain. Roofs 1132 and 1142 are enclosed in parapet barriers 1132 and 1142, with internal reflective slopes as previously described, similar to building 750 of Figure 7. Figure 107 shows a building 1190 with a Fresnel dome collection device 1192 as its roof. Fresnel dome collection equipment 1192, collecting solar radiant heating water supply, generating electricity, providing fire (as shown in Figure 96 ~ 100 solar stove) and so on. Figure 100 shows a building 1200 with a Baki dome collection device 1202 as its roof. The Baki dome structure is similar to the aforementioned collection device 331; collecting solar radiant heating water, generating electricity, providing a stove, and the like. Figure 109 shows a roof with a building 1210, a carbon nanotube collection device 1212. The carbon nanotube structure is similar to the aforementioned collecting device 830; collecting solar radiant heating water supply, generating electricity, providing a furnace stove, and the like. A structural type of nanotube collecting device 1212 collects 830 like a collecting device, collects solar radiant heating water, generates electricity, provides a stove for cooking, and the like. Figure 110 is a schematic diagram of an ultraviolet radiation extraction system 58 201035505 Ο

1220,用於建築物。收集設備1222放在建築物1222的屋 頂1223上,玎為任何形式的太陽輻射收集設備如前述’包 括(但不限於)收集設備1192 ’ 1202,〗212如前所述。太 陽輻射示範光1226,第一個鏡子1228水平反射到第二個鏡 子1230。第二個鏡子123〇導太陽輻射向下進入建築物 1222。紫外線過遽器1232去除紫外線,留下可見光部分太 陽輻射穿過,用於室内燈光1234,紅外線部分加熱太陽爐 具,以及建築物1222熱水系統的熱水器。許多變種系統是 可能的。因此,收集到的太陽輻射可見光部分,可用於室 内照明和太陽能光電直流發電。收集的太陽輻射的紅外線 部分,可用於熱水系統,空調,冰箱,太陽能爐具。住宅 因此可配備垂直自我調控系統,每天免費使用太陽輻射於 各種家居用途。 該反射鏡一及二,可增加其數量或用現已低價的塑料 光纜(光學纖維)來傳導;可將太陽輻射自建築物向陽面 導至背陽面,或需要太陽輻射的不同房間,樓層或地下室。 又如亞洲住七區有許多大樓·住戶可將光導至隱密處 曬乾衣被等’避免五顏六色私人物件在開放陽台,造成視 覺汙染。 Η J …%果太陽輻射的裝置 1150,沙灘傘的形式,餐桌1152樹立在桌底站㈣上, 上方有該傘。該裝置⑽内部有輕射接收器(未顯示), ::::備7(Π,如前所述。該錢115〇產生的電力可以 子在-¾池(未顯示)和用於如整# 崎如#^_供1或提供夜間 59 201035505 照明。如同屋頂1132和1142如上所述,裝置1150的反射 導光筒115 6的朝外開口,會有透明面板覆蓋,以防灰塵和 落雨。該裝置1150將成為一個便攜式屋頂,充當保護傘, 保護那些在下的,避免過度日曬雨淋。 圖一百一十二和一百一十三,各別描繪全體及部分, 有收集太陽輻射半奈米管頂1160的高速公路;行車線1180 晝分公路。屋頂1160類似收集射備830,如同前述,裝在 各種車輛屋頂,並有收集框架1162,該框架類似奈米管橫 向切成一半的分子鍵;收集框架支撐透鏡切面1164,收集 太陽輻射至一串,鋪放在頂部底板1168上的光電晶片 1166,直流發電的電力再由電線1170送到變流器1172。 底板1168支持收集框架1162(因此支持透鏡切面 1164)。底板1168由在高速公路1180旁,眾多支柱1174 支撐。底板1168可以由其他支柱方式。底板1168可能沒 有必要,因為光電晶片1166,可由一個別於支持收集框架 1162的獨立框架支撐。 圖一百—h二和一百'—h三中,眾多壓電發電器1181 埋在高速公路1180表層内。透鏡切面1164收集太陽輻射, 已被轉換為電力;由電線1170送到變流器1172。當穿過收 集太陽輻射半奈米管屋頂1160,汽車1182可以在電動汽車 充電站1175充電,或利用微波,通過無線天線發送器1183 充電。眾多壓電發電器1181,分別連接到沿太陽能高速公 路1180旁的無線天線發送盗1183 ’這樣的充電電波’當車 穿過高速公路1180時,透過微波無線傳送到設在車裡的接 60 201035505 收板,如圖一百·—h二和一百·—[三所示。 收集太陽輻射的奈米管半屋頂1160,使用未使用的空 間,不必擔心大都市,找不到土地建築太陽能系統,上述 道路提供電力,同時還提供遮蔭和防雨雪。還可以提供電 力給電動汽車充電站1175。 圖一百—h四,描述了一個有半圓桶屋頂,太陽輻射 收集設備1252的建築物1250,但沒有護攔。圖一百一十 五,描述了 一個山牆屋頂,收集太陽輻射設備1262的建築 物1260。山牆屋頂的太陽輻射收集1262就是半圓桶屋頂太 陽輻射收集設備1252,所不同的是,只是一個尖頂外觀。 雖然以上說明各系統,設備和程序,已經彼露,且描 述了各種上述的描述,無數的變化和替代性的裝置,將由 那些有最先進的技術者提出,考慮此範圍内的專利申請, 該發明或可有其它並非此處具體描述的實行。這些變化和 替代裝置正在研發中,但不會偏離專利申請範圍及發明所 界定的領域。 【圖式簡單說明】 圖一,是第一種太陽輻射收集裝置,光學透鏡收集框 架形狀一,巴基球的透視圖。 圖二,是一個圖一裝置的上方鳥嗽圖。 圖三,是一個圖一裝置的剖面圖。 圖四,是一個圖一裝置内輻射接收器方式一的細部放 大圖。 61 201035505 圖五,是一個圖 大圖 裝置内輻射接收器方式二的細部放 = 個圖—裝置内’收集框架的細部放大圖。 (脫心化一種太陽輻射收集裝置的第二個應用方式 (脫鹽淡化)的透視圖。 八 圖八,是一個圖七裝置的剖面圖。 圖九,是第一種太陽輻射收集裝 (生化燃料生產)的透視圖。應用方式 十五’是第—種太陽輻射收钱置 用方式(㈣和電源)的透視圖。 應 方圖=Λ疋—個第—種太陽輻射收集裝置,第四個應用 J不範採用在第—種街燈的透視圖。 μ 圖十,疋一個第一種太陽韓射收集裝置 用方式,示範採用在庭園燈的透視圖。' 圖十二,是一個第一種太陽輻射收集裝置 弋示範採用在第二種街燈的透視圖。 圖十三,是一個第一種太陽輻射收集裝置 弋示範採用在第三種街燈的透視圖。 圖十四,是一個第一種太陽輻射收集裝置 式示範採用在漂浮水燈的透視圖。 =十五’是一個第一種太陽輻射收集敦置,第四信 乾採用在第四種街燈加路旁充電站的透視圖。 應用方^ ±圖一十’是第一種太陽輕射收集裝置的第五個 式(陣列設備的電廠)的示意圖。 第四個應 第四個應 第四個應 Ο 第四個應 第四個應 62 201035505 圖十六,是一個第一種太陽輻射收集裝置,示範採用 在數組設備陣列排設,共同加熱空氣至—個中央發電 電。 χ 圖十七,是圖十六的一個剖面圖。 圖十八,是-個第-種太陽轄射收钱置,示範採用 數組的設備各自造電’再集送中央電廠。 Ο ❹ 採:二::=二=^^ 圖一十,疋一個圖十九的剖面圖。 用氣,疋—個第—種太陽姉收集裝置,示範採 用為氣球形狀一,巴基球。 下乾抓 圖一十一,疋圖二十一裝置内輻射接收方1 . 部放大圖。 干田町按收盎方式一的細 圖十一,疋圖二十一裝置内 部放大圖。 j恢叹态万式一的細 放二,十四,是圖二十-裝置内接收框架方式二的細部 用為St是種塌射收輪,示範採 圖一十六 5 是一個闻 Λν·* 基幽浮球。 目1二種太陽輕射收集裝置,巴 圖—十七,是圖二+二*姑A 部放大圖。 裝置㈣射接收时式二的細 的細 圖-十八’疋《)二十六裝置内輻射接收器方式 63 201035505 部放大圖。 圖二十九,是圖二十六的鳥嗽圖。 圖三十,是圖二十六的剖面圖。 圖三十一,是第二種太陽輻射收集裝置的第二個應用 方式(脫鹽淡化)的透視圖。 圖三十二,是圖三十一的剖面圖。 圖三十三,是第二種太陽輻射收集裝置,示範採用為 氣球形狀一,巴基幽浮球。 圖三十四,是圖三十三裝置内輻射接收器方式一的細 部放大圖。 圖三十五,是圖三十三裝置内輻射接收器方式二的細 部放大圖。 圖三十六,是圖三十三的剖面圖。 圖三十七,是第二種太陽輻射收集裝置,示範採用為 氣球形狀二,方型巴基幽浮球。 圖三十八,是圖三十七的剖面圖。 圖三十九,是一個將四個圖三十七裝置,以工業用拉 鍊結合起來,呈四方型的鳥瞰圖。 圖四十,是第一種太陽輻射收集裝置,收集框架形狀 二’碳奈米管的透視圖。 圖四Η—,是一個圖四十輻射接收器的細部放大圖。 圖四十二,是圖四十的鳥瞰圖。 圖四十三,是圖四十剖面圖。 圖四十四,是第一種太陽輻射收集裝置,光學透鏡收 64 201035505 集框架形狀二,碳奈米管的第二個應用方式(脫鹽淡化) 的透視圖。 圖四十五,是圖四十四的剖面圖。 圖四十六,是圖四十太陽輻射收集裝置,示範採用數 組共同加熱液體成蒸汽,至一個中央發電廠發電(未顯 示)。 圖四十七,是第三種太陽輻射收集裝置,反射導光筒 收集框架形狀一,三角複眼球的透視圖。 圖四十八,是一個第一種太陽輻射收集裝置,示範採 用為氣球形狀三,甜甜圈巴基球。 圖四十九,是一個圖四十八輻射接收器的細部放大圖。 圖五十,是一個第一種太陽輻射收集裝置,示範採用 為氣球形狀四,魚旗巴基球的透視圖。 圖五十一,是第四種太陽輻射收集裝置,薄膜光電形 狀一,巴基球的透視圖。 圖五十二,是圖五十一平面印刷圖。 圖五十三,是第四種太陽輻射收集裝置,薄膜光電形 狀二,圓球的透視圖。 圖五十四,是圖五十三平面印刷圖。 圖五十五,是第四種太陽輻射收集裝置,薄膜光電形 狀三,二十面體正面圖。 圖五十六,是圖五十五平面印刷圖。 圖五十七,是圖五十一加裝反射盤的透視圖。 圖五十八,是第五種太陽輻射收集裝置,數組半球巴 65 201035505 基球排列成光電平板的透視圖。 圖五十九,是圖五十八輻射接收器和冷卻系統的細部 放大圖。 圖六十,是圖五十九的剖面圖。 圖六十一,是圖一第三種太陽輻射收集裝置,反射導 光筒收集框架形狀二,三角複眼圓頂形裝置的透視圖。 圖六十二,是是圖六十一的剖面圖。 圖六十三,是一個反射導光筒的細部放大圖。 圖六十四,是第三種太陽輻射收集裝置,反射導光筒 收集框架形狀三,圓錐複眼圓頂形裝置的透視圖。圓錐反 射導光筒,光學學名為複合拋物面收集器(CPC)使光線彎曲 進行,聚集至太陽輻射接收器。 圖六十五,是圖六十四的鳥敵圖。 圖六十六,是圖六十四的剖面圖。 圖六十七,是圖六十四的分解圖。 圖六十八,是圖六十一太陽輻射收集裝置,安裝在建 築物屋頂的透視圖。 圖六十九,是圖六十八的鳥晦:圖。 圖七十,是圖六十八的剖面圖。 圖七十一,是圖六十八輻射接收器的細部放大圖。 圖七十二,是圖六十一太陽輻射收集裝置,安裝在建 築物牆壁和屋頂的透視圖。 圖七十三,是第一種太陽輻射收集裝置,光學透鏡收 集框架形狀三,巴基環的透視圖。 66 201035505 圖七十四’是圖七十三的分解圖。 圖七十五〜八十一,是圖四十半管或圖六十—形狀二奈 米管半管’太陽輕射收集裝置安裝在各種乘具上的側面^ 面圖。 —圖七十五’是一個旅行拖車,有一個半管奈米管太陽 幸昌射收集裝置安裝在其車頂。 Ο —圖七十六,是一個大型休閒旅行車,有-個半管太米 官太陽輻射收集裝置安裝在其車頂。 丁 你隹3七十七,是—㈣托艇有-辦管奈米管太陽輕射 收集裝置安裝在其船頂。 圖七十八,是一個小貨車,一 射收集裝置安裝在其車頂。冑奈未管太陽輻 圖七十九,是一個巴士,有一個與 收集裝置安裝在其車頂。 5不米5太陽輕射 有三個半管奈米管太陽輻 有兩個半管奈米管太陽輻 圖八十,是一個輕軌火車 射收集裝置安裝在其車頂。 圖八十一’是一個飛行器 射收集裝置安裝在其車頂。 圖八十二-八十四,是圖五 一 裝置,另一種製作過程的描述亍膜先電太陽輕射收集 字機印製上有光電薄膜的^ 集太陽輻射的褒置。 錄布’包覆三維物體成為收 圖八十二,是一個電腦繪圖儀, 的自黏膠布。 ;^刷有光電薄膜 67 201035505 用於切割有光電薄港 圖,每一面將贴在一 圖八十三,是一個電腦割字機, 的自黏移布乘所需形狀。 圖八十四,是一個切割膠布平面 個汽車車身。 圖八十五,是一個將切割膠布, 示意圖。 復盍在建投物外牆的 =八十六’是第六種太陽輻射收集裝置的透視圖。 ®八十七,是圖八十六的鳥瞰圖。 圖八十八,是圖八十六的側面圖。 圖八十九,是圖八十六的剖面圖。 圖九十,是圖八十六的雙螺旋轉子太陽輕 和馬達發電機的細部放大圖。 裝置 圖九十-’疋-個光學薄膜示意圖,該膜可提高菲淫 耳透鏡對太陽能和紅外光的收集效率。 =九十二,是圖九十—適㈣輻射接收器方式一 敦大圖。 圖九十一,疋圖九十一適用的輕射接收器方式二細部 放大圖’下加散熱紹片。 圖九十四,是圖五十八的輕射接收器二細部放大圖, 收集太陽能可見光和紅外光輻射。 圖九十五,是圖九十四的剖面圖。 圖九十六,是第-種太陽輻射收集裝置的第六個應用 方式Q食烹幻,示範採用為方式―,一間房子的太陽能 收集系統,該系統如何供應照明,烹㈣示意圖。 201035505 圖九十七,是第-種太陽輕射收集裝置的第六個應用 方式(煮食X飪)’不範採用為方式二,太陽能戶外烤肉爐 的透視圖。 圖九十八,是第一種太陽輻射收集裝置的第六個岸用 方式(煮食烹幻,示範採用為方式三,—個便攜式太陽能 戶外烤肉器透視圖。 ❹ 圖九十九,是圖九十七及圖九十八的同心圓加熱迴圈 的細部放大圖。 圖一百,是圖九十七及圖九十八的同心圓加熱迴圈的 剖面圖。 將紫◦一,是分光光學透鏡方式一(棱鏡)如何用 圖兔外㈣紅外光自太陽歸分出,導至不同設備的 Ο 為圓頂形。《種及弟—種场輻射收钱置,形式 意圖圖一百0二,是圖一百〇—的光學透鏡的細部放大示 圖百〇二’是分光光學透鏡方 意圖。示範採 、王俅九柵)不 式為圓頂形。 種太陽幸1射收集裝置,形 示意:。=:’是分光光學透鏡方式三(高色差棱鏡) 形式為_形\|用在第—種及第三種太陽姉收集裝置, 何用二是分光光學透鏡方式四(三色棱鏡),如 …▲光自太陽輻射分出,導至不同設備的示 69 201035505 意圖。 。圖—百〇六,第三種太陽輻射收集褒置,形 圓頂,示範採用在一所房子的屋頂上, T百r闽丄!、 . 加上形式二巴基圓 (1十〜),示祕用在-個車庫屋頂上的透視圖。 圖-百〇七,第一種太陽輻射收集裝置, 广菲淫耳透鏡式同心圓圓頂,示範採用在一 所房子的屋頂上的透視圖。 圖-百〇人’第-種太陽姉收集裝置,光學透鏡收 木框采形狀五,巴基圓頂(巴基球丰找)一 房子屋頂上·㈣。 +球),讀採用在一所 九’第—種太陽騎收集裝置,光學透鏡收 狀六,巴基長圓頂(奈米管半管),示範採用在一 所房子屋頂上的透視圖。 百一十’是一個數面鏡子佈設的導光系統,將收 紅頂㈣的太陽輻射,分送到房屋内不同㈣的透視圖。 圖一百一十一,是圖六十一,第三種 置’示範採用在海灘傘的示意圖。圖—百—十二, 種太陽輻射收钱置,光學透鏡收集㈣形狀六,Γ基長 是圖一百一十二的太陽輻射收集器 圓頂(奈米管半管),示範採用在—條公路上的透視圖。 圖一百--J- 一 -— 充電站的細部放大圖 西百十四,是一房子的透視圖;房子有半圓桶式 屋頂收集太陽輻射射備。 圓裯式 圖一百一十五,是一房子的透視圖丨房子有山頂式屋 201035505 頂收集太陽輻射射備。 【主要元件符號說明】 I 巴基球型收集太陽輻射裝置 10 收集設備 II 收集框架 12 收集表面 13 支柱桿 14 直向凹溝槽(H型)收集框架 15 塑料接頭 16 突出桿 20 方體形輻射接收器 21 球體形輻射接收器 22 光電平板晶片 23 可撓式光電薄膜 25 電線 30 透鏡切面 30a 菲涅爾透鏡 30b 蜂窩結構微型雙凸透鏡 30c 全像透鏡 40 一個冷卻光電材料22的系統或方法 41 冷卻劑液體水箱 42 加熱過的冷卻劑液體水箱 43 水管 71 201035505 44 管道 45 管道 46 三通閥 50 反射盤 51 反射面 52 腿 55 變流器 60 巴基球型收集太陽輻射/海水淡化裝置 62 收集設備 64 反射盤 65 底座 66 輻射收集中空球體 68 收集透鏡 70 進海水水管 72 海水 73 擋水牆 74 水位高 76 送冷卻水管 77 冷凝器 78 淡水水箱 80 巴基球型收集太陽韓射/製作生化柴油用裝置 81 反射盤 82 收集設備 84 絕緣導熱管 72 201035505 85 底座 86 輻射收集中空球體 90 容器 92 龍頭 100 收集太陽輻射的街燈裝置 102 收集設備 104 有裝飾扇形的邊緣反射盤 106 輻射接收器 108 發光環 109 電池艙 110 收集透鏡 112 有液壓系統的燈柱 120 收集太陽輻射的庭園燈裝置 122 收集設備 124 反射盤 126 輻射接收器 128 發光環 129 電池艙 130 收集透鏡 132 庭園燈短燈柱 140 收集太陽輻射的庭園燈裝置 142 收集設備 144 反射表面 148發光環 73 201035505 150 152 154 160 162 164 168 169 170 172 180 182 184 188 190 200 202 204 208 209 210 211 212 214 收集透鏡 燈柱 燈座内有電池艙 收集太陽輻射的庭園燈裝置 收集設備 反射表面 發光環 電池艙 收集透鏡 石柱 收集太陽輻射的泳池燈裝置 收集設備 水面成為反射表面 發光環 收集透鏡 收集太陽輻射的裝置 收集設備 反射盤 燈 電池艙 有液壓糸統的燈柱 電池 電動車充電站 電線 74 201035505 220 收集太陽輻射的發電站裝置 222 收集設備 224 反射盤 225 中空球形的輻射接收器 226 支柱 228 管道 230 收集太陽輻射的發電站裝置 240 數組陣列或電廠 〇 242 收集太陽輻射裝置 244 收集設備 245 電纜 246 電力電纜 248 反射盤 250 中央電站 260 電力數組陣列或電廠 Ο 262 收集太陽輻射的設備 264 輻射接收器 265 直線地基 266 四面弧面金字塔形的反射器 268 冷卻管 270 電纜 272 電力電纜 280 收集太陽輻射的氣球裝置 282 收集設備 75 201035505 283 充氣管 284 收集框架 287 球體型輻射接收器 288 透鏡切面 288a六角形透鏡面 288b五角形透鏡面 290 收集表面 292 平板 294 反射面 295 太陽輻射接收器 296 支柱 298 電線 300 奈米管型收集太陽輻射的裝置 310 收集表面 320 巴基幽浮型太陽輻射收集裝置 330 收集設備 331 互鎖的收集框架 332 收集表面 334 透鏡切面 334a菲涅爾透鏡 334b蜂窩結構微型雙凸透鏡 334c全像透鏡 335 支持柱 336 互鎖組件周邊支架 76 201035505 337 支架 338 周邊環356 341 輻射接收器 342 冷卻劑的水箱 343 光電晶片 344 加熱過的冷卻劑水箱 345 光電晶片水冷式散熱的系統或方法 346 水管 D 348 三通閥 354 周邊環 355 反射盤 356 反射面 357 腿 358 電線 359 變流器 〇 360 裝置 366 中空球體 372 海水 374 水位南 376 海水補水水管 377 冷凝器 378 冷卻管 379 淡水儲水箱 380 收集太陽輻射的裝置 77 201035505 382 收集設備 383 收集框架 384 收集表面 386 透鏡切面 386a菲涅爾透鏡 386b蜂寫結構微型雙凸透鏡 386c全像透鏡 389 透明塑料唐支柱 390 輻射接收器 391 光電晶片 392 輻射接收器侧壁 393 輻射接收器頂端牆面 394 通風窗戶 398 電線 399 變流器 400 巴基幽浮氣球型收集太陽輻射的裝置 401 圓環 402 氣球碗狀底部 403 反射表面 406 扣環 407 錯釘 410 輻射接收器 412 輻射接收器外壁 輻射接收器外壁上的光電薄膜 78 413 201035505 414 接片環 415 通風孔 420 方形巴基幽浮氣球型收集太陽輻射裝置 422 收集設備 430 輻射接收器 431 支撐桿 432 電線 434 變流器 0 440 方形巴基幽浮氣球 441 氣球四角 442 頂層牆面 443 扣環 444 四面外壁 445 Ί苗釘 446 底部 Ο 447 半邊拉鍊 450 内壁 452 三角片 454 内部線 456 銀面反射表面 460 碳奈米管型收集太陽輻射裝置 470 收集設備 471 收集框架 472 收集表面 79 201035505 474 透鏡切面 474a 菲涅爾透鏡 474b 蜂窩結構微型雙凸透鏡 474c 全像透鏡 475 中心軸 480 輻射接收器 482 透明支柱 486 光電材料 487 電線 488 變流器 490 冷卻光電材料486的系統或方法 491 冷卻劑的水箱 492 加熱過的冷卻劑 493 水管 494 管道 496 三通閥 500 反射槽 501 反射面 480 部分輻射接收器 486 方型光電材料 489 電線 510 收集太陽輻射的裝置 512 收集設備 514 反射槽 201035505 516 收集透鏡表面 520 收集太陽輻射的中空管 522 導海水管 524 海水 526 海水水平高 528 水管 529 冷凝器 530 淡水儲水箱 0 540 陣列 550 數組收集裝置 552 表面,可以是一個地面,一個平 554 長條狀反射設備 556 有反光材料的凹面向上反射表面 558 透明框架 560 輻射接收器 562 支柱 570 收集太陽輻射的裝置 575 輻射接收器 577 電線 579 變流器 580 球形收集設備 582 反射導光筒 583 反射導光筒在内小孔 584 反射導光筒内牆面 ,屋頂,或類似 81 201035505 585 反射導光筒朝外大孔 588 支柱 590 反射盤 594 腿 600 巴基氣球型收集太陽輻射裝置 603 反射面 604 通管 605 電線 606 槐杆 607 變流器 610 充氣氣球 611 六角形切面 612 五角形切面 613 充氣管 614 透明的表層 616 全像透鏡 618 光電層 620 收集太陽輻射裝置 625 魚旗奈米管氣球型收集太陽輻射 626 反射面 627 诡杆 630 收集太陽輻射裝置 630a 巴基球形狀 630b 沙灘球形狀 82 201035505 630c二十面體形狀 631 電線 632 五角形切片 634 六角形切片部 636 眼型切片 638 三角切片 640 巴基球形狀收集太陽輻射裝置 642 反射盤 646 柱 644 凹面向上的反射面 645 變流器 660 太陽能收集板 670 平台 672 上表面 674 收集井 676散熱水管 678 弧面金字塔反射器 680 數組收集設備 690 光電晶片 691 印刷電路板 692 吸熱塊 700 全部或部分圓頂形收集太陽輻射裝置 701 收集射備 702 三壁反射導光筒 83 201035505 704 705 706 708 710 712 714 716 718 720 722 723 724 725 726 728 730 731 732 734 735 736 738 739 反射面内壁 透明罩 朝外開口 朝中央的内口 輻射接收器 有太陽能電池的塊 水箱 管道 冷卻系統 外壁 電線 穩壓器 電池 直流供電插座 變流器 交流供電插座 全部或部分圓頂形收集太陽輻射裝置 收集射備 複合拋物面聚光器 拋物線形反射牆 透明罩 導光筒朝外開口 導光筒朝中央的内口 集光漏斗 84 201035505 740 輻射接收器 742 載有光電晶片的板塊 744 二結光電晶片 746 空氣冷卻裝置 748 電源插座 749 外壁 750 建築物 751 屋頂 〇 752 底板 753 排水管 754 滑輪 755 斜坡 756 水箱 760 全部或部分圓頂或半球的收集裝置 762 三壁反射導光筒 〇 764 均光器 766 太陽能板 768 冷卻罐 770 控制的蓋門 780 一個建築 782 屋頂 784 侧牆 785 收集設備 800 奈米環收集裝置設備 85 201035505 802 804 806 808 810 812 814 816 818 820 822 824 830 840 845 850 855 860 865 870 875 880 881 管道 鍋爐管 奈米管形狀的收集環 透鏡切面 收集框架 蒸汽管道 渦輪發電機 淡水收集水箱 圓頂 光電晶片 外壁 反射盤 半個奈米管收集和集中輻射的設備 旅行拖車 汽車 活動房車 船舶 小貨車 巴士 輕軌火車 飛機 電腦製圖機 平面材料 切片 86 882 201035505 883 電線 885 電池 886 電腦割字機 888 車輛 890 建築物 892 光電薄膜切片 896 收集設備 900 收集太陽輻射的裝置 Ο 901 收集設備 902 收集反射碟 903 轉子 904 交織螺旋形葉片 904a 深色面 904b 淺色面 905 交織螺旋形葉片 G 905a 深色面 905b 淺色面 906 上端圓板 907 可旋轉轴 908 光學用透明和密閉罩 910 發電機/真空維護設備 920 反射盤 922 腿 923 輪 87 201035505 930 收集光輻射裝置 934 全像衍射光栅 940 示範光線 944 示範光線 942 示範光線 950 到輻射接收器 952 光電晶片 954 底板 960 輻射接收器 962 光電晶片962 964 絕緣材料的板塊 966 導熱不導電底板 968 散熱鰭片 970 用於發電和熱水的面板 971 收集光輻射設備 972 反向散光片 973 全像透鏡 974 光電晶片 975 導熱塊 976 底板 977 框架 978 印刷電路 978a 負極 978b 正極 88 201035505 979 管道 980 一所房子的太陽能收集系統,供應光,熱 982 屋頂 984 第一個收集太陽輻射裝置 988 第二個收集太陽輻射裝置 986 工具 990 導熱電纜 992 炊爐 G 994 傳送光纜 996 照明設備 998 電線 1000 太陽能供輸能源的戶外烤肉器 1002 巴基圓頂型的太陽輻射收集裝置 1004 銅製的輻射接收器 1006 烤肉器上方爐頭 Ο 1008 爐如的控制框紐 1010 照明設備 1020 便攜式太陽能供能源的戶外烤肉器 1022 巴基圓頂型的太陽輻射收集裝置 1024 中空球體輻射接收器 1026 烤肉器上方爐頭 1028 熱導體 1028 爐前的控制樞紐 1040 烤肉器上方爐頭 89 201035505 1042第一個同心圓迴圈 1044第二個同心圓迴圈 1046第一個導熱條 1048第二個導熱條 1050收集太陽輻射的裝置 1052收集設備 1054全像衍射光柵透鏡或三角棱鏡 1056紫外線反射板 1058紅外線反射板 1060斜交界處 1062示範紅外線 1064熱管 1066示範紫外線 1068内有鏡面内襯的管道 1072光電晶片 1074散熱器 1080收集太陽輻射的裝置 1082收集設備 1084全像衍射光柵透鏡 1086第一組的波長示範射線 1090第二組的波長示範射線 1094第三組的波長示範射線 1098第四組的波長示範射線 1088第一組的波長接收器 90 201035505 1092第二組的波長接收器 1096第三組的波長接收器 1100第四組波長接收器 1010收集太陽輻射的裝置 1112收集設備 1114高色差菲涅爾透鏡 1116第一組的波長示範射線 1120第二組的波長示範射線 〇 1124第三組的波長示範射線 1128第四組的波長示範射線 1118第一組的波長接收器 1122第二組的波長接收器 1126第三組的波長接收器 1130第四組的波長接收器 1110收集太陽輻射的裝置三色棱鏡 q 1112入射光 1114第一個分色棱鏡 1116第二個分色棱鏡 1118第三個分色棱鏡 1120紅色光束 1122藍色光束 1124綠色光束 1130集中光電建築一體化的房子 1132半圓桶屋頂收集太陽輻射射備 91 201035505 1140車庫 1142半球形屋頂收集太陽輻射射備 1190建築物 1192菲涅爾圓頂收集設備 1200大廈 1202巴基圓頂收集設備作為屋頂 1210建築物 1212碳奈米管收集設備為其屋頂 1220紫外線輻射提取系統 1222建築物 1223屋頂 1224收集設備 1226太陽輻射示範光 1228第一個鏡子 1230第二個鏡子 1232紫外線過濾器 1234室内燈光 1150收集太陽輻射的裝置沙灘傘 1152餐桌 1160半奈米管頂收集太陽輻射半奈米管頂裝置 1162收集框架 1164透鏡切面 1166光電晶片 1168頂部底板 92 201035505 1170電線 1172變流器 1174桌底站 1180公路行車線 1174支柱 1175電動汽車充電站 1181壓電發電器 Π82.汽車 D 1183無線天線發送器 1250建築物 1252半圓桶屋頂-太陽輻射收集設備 1260建築物 1262山牆屋頂-收集太陽輻射設備1220, used in buildings. The collection device 1222 is placed on the roof 1223 of the building 1222 and is any form of solar radiation collection device as previously described, including but not limited to, collection device 1192' 1202, 212. The solar radiation demonstrates light 1226, with the first mirror 1228 being horizontally reflected to the second mirror 1230. The second mirror 123 directs solar radiation down into the building 1222. The UV filter 1232 removes ultraviolet light, leaving visible light from passing through the sun, for indoor lighting 1234, infrared heating for the solar stove, and water heater for the building 1222 hot water system. Many variant systems are possible. Therefore, the visible portion of the collected solar radiation can be used for indoor lighting and solar photovoltaic DC power generation. The infrared portion of the collected solar radiation can be used in hot water systems, air conditioners, refrigerators, and solar stoves. The home can therefore be equipped with a vertical self-regulation system that uses solar radiation for free for a variety of home uses every day. The mirrors one and two can increase the number or use the low-cost plastic optical cable (optical fiber) to conduct; the solar radiation can be guided from the sunny side of the building to the back side, or different rooms that require solar radiation. Floor or basement. Another example is that there are many buildings in the Seventh District of Asia. Residents can direct light to intimate places, dry clothes, etc. ‘Encourage colorful personal objects on open balconies, causing visual pollution. Η J ...% solar radiation device 1150, in the form of a beach umbrella, the dining table 1152 is set up at the bottom of the table (four), above the umbrella. The device (10) has a light-emitting receiver (not shown) inside, :::: 7 (Π, as mentioned above. The electricity generated by the 115 〇 can be in the -3⁄4 pool (not shown) and used for #崎如#^_ for 1 or provide nighttime 59 201035505 illumination. As the roofs 1132 and 1142 are as described above, the outwardly opening of the reflective light guide 115 6 of the device 1150 will be covered with a transparent panel to prevent dust and rain. The device 1150 will be a portable roof that acts as a protective umbrella to protect those underneath, avoiding excessive sun and rain. Figures 112 and 113, each depicting the whole and part, have collected solar radiation half The subway tube top 1160 highway; the lane 1180 is divided into highways. The roof 1160 is similar to the collection jet 830, as described above, mounted on various vehicle roofs, and has a collection frame 1162 that is similar to the transverse section of the nanotube. The molecular support; the collection frame supports the lens section 1164, collects solar radiation to a string, and places the photovoltaic wafer 1166 on the top substrate 1168. The DC power is then sent to the converter 1172 by the wire 1170. The bottom plate 1168 supports the collection frame 1162. (The lens section 1164 is thus supported.) The bottom plate 1168 is supported by a plurality of struts 1174 along the highway 1180. The bottom plate 1168 can be supported by other struts. The bottom plate 1168 may not be necessary because the optoelectronic wafer 1166 may be of a different type than the support collection frame 1162. Independent frame support. Figure 100—h 2 and 100′—h three, many piezoelectric generators 1181 are buried in the surface of highway 1180. Lens section 1164 collects solar radiation, which has been converted into electricity; sent by wire 1170 To the converter 1172. When passing through the solar radiation semi-nanotube roof 1160, the car 1182 can be charged at the electric vehicle charging station 1175, or can be charged by the wireless antenna transmitter 1183 using microwaves. A plurality of piezoelectric generators 1181, respectively Connected to the wireless antenna along the solar highway 1180 to send the stolen 1183 'such a charging wave' when the car passes through the highway 1180, wirelessly transmitted through the microwave to the terminal 60 201035505 in the car, as shown in Figure 100 —h two and one hundred—[three. Collect the solar radiation semi-roof 1160, use unused space, don't worry about the metropolis No land-building solar system can be found, which provides electricity while providing shade and rain and snow. It can also provide electricity to the electric vehicle charging station 1175. Figure 100-h four, depicting a roof with a semi-circular barrel, the sun The building 1250 of the radiation collection device 1252, but without the barrier. Figure 115 shows a gable roof that collects the building 1260 of the solar radiation device 1262. The solar radiation collection 1262 of the gable roof is the semicircular roof of the solar radiation The collection device 1252 differs in that it is just a pointed top appearance. Although various systems, devices, and procedures have been described above, and various descriptions of the above are described, numerous variations and alternatives will be presented by those of ordinary skill in the art, The invention may have other implementations than specifically described herein. These changes and alternatives are under development, but do not deviate from the scope of the patent application and the areas defined by the invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a first solar radiation collecting device, an optical lens collecting frame shape, and a perspective view of a buckyball. Figure 2 is a bird's eye diagram above the device of Figure 1. Figure 3 is a cross-sectional view of the apparatus of Figure 1. Figure 4 is a detailed enlarged view of the first embodiment of the radiation receiver in the apparatus of Figure 1. 61 201035505 Figure 5, is a figure Large picture The details of the radiation receiver mode 2 in the device = one figure - the enlarged view of the detail of the collection frame inside the device. (Perspective view of a second application of a solar radiation collection device (desalting desalination). Eight figure eight is a sectional view of a device of Figure 7. Figure IX is the first solar radiation collection device (biofuel) Perspective of production). The application method fifteenth is the first perspective of the solar radiation collection method ((four) and power supply). The square diagram = Λ疋 - the first type of solar radiation collection device, the fourth The application of J is not a perspective view of the first type of streetlight. μ Figure 10, a first type of solar-energy collection device, using a perspective view of the garden lamp. 'Figure 12, is a first type The solar radiation collection device 弋 demonstrates a perspective view of the second type of street light. Figure 13 is a perspective view of a first type of solar radiation collection device used in a third type of street light. Figure 14 is a first type The solar radiation collection device demonstration uses a perspective view of the floating water lamp. = fifteen' is a first type of solar radiation collection, and the fourth letter is used in the fourth streetlight plus a roadside charging station perspective. Party ^ ± Figure 10' is a schematic diagram of the fifth type of solar light collection device (the power plant of the array device). The fourth should be the fourth should be the fourth should be the fourth should be the fourth should be 62 201035505 Figure 16 is a first type of solar radiation collection device. The demonstration uses arrays of array devices to heat the air together to a central power generation. χ Figure 17 is a cross-sectional view of Figure 16. Eight, yes - a first kind of solar arbitrage to collect money, demonstration of the use of array of equipment to build their own electricity to re-send to the central power plant. Ο 采 mining: two:: = two = ^ ^ Figure ten, 疋 a figure ten Sectional view of Nine. Using gas, 疋-a first type of solar raft collection device, the demonstration uses a balloon shape, a buckyball. The bottom is captured in Figure 11. The radiant receiver in the device. Magnified figure of the department. The dry map of the ensemble of the arranging method is shown in the eleventh, and the internal drawing of the device is shown in Fig. 21. The exquisite state of the retracted state is the second and the fourteenth. The detail of the frame mode 2 is used as a kind of collapse shooting wheel, and the demonstration drawing is 16 A Λ ·································································································· -18' 疋") Twenty-six device radiation receiver mode 63 201035505 enlarged view. Figure 29 is a bird's eye diagram of Figure 26. Figure 30 is a cross-sectional view of Figure 26. Figure 31 is a perspective view of a second application of the second solar radiation collection device (desalting desalination). Figure 30 is a cross-sectional view of Figure 31. Figure 33 is a second type of solar radiation collection device. The demonstration uses a balloon shape, a Baki whirlpool. Figure 34 is a detailed enlarged view of the first method of the radiation receiver in the device of Figure 33. Figure 35 shows an enlarged view of the second mode of the radiation receiver in Figure 33. Figure 36 is a cross-sectional view of Figure 33. Figure 37 shows a second type of solar radiation collecting device, which is modeled as a balloon shape and a square Baki floating ball. Figure 38 shows a cross-sectional view of Figure 37. Figure 39 shows a bird's-eye view of a four-part type of four-figure device, which is combined with an industrial zipper. Figure 40 shows the first solar radiation collection device, which collects a perspective view of the frame shape of a two-carbon nanotube. Figure 4 - is a detailed view of a detailed description of the forty radiation receiver. Figure forty-two is a bird's eye view of the forty. Figure forty-three is a cross-sectional view of the forty. Figure 44 is the first solar radiation collection device, optical lens collection 64 201035505 set frame shape two, the second application of carbon nanotubes (desalting desalination) perspective view. Figure 45 is a cross-sectional view of Figure 44. Figure 46 shows the fortieth solar radiation collection device, which demonstrates the use of several groups of co-heated liquids to form steam to a central power plant for power generation (not shown). Figure 47 shows a third solar radiation collecting device, a reflective light guide collecting frame shape, and a perspective view of the triangular compound eye. Figure 48 shows a first solar radiation collection device that is modeled as a balloon shape three, a donut buckyball. Figure 49 shows an enlarged view of the detail of the forty-eighth radiation receiver. Figure 50 is a first solar radiation collection device, demonstrated as a perspective view of a balloon shape four, a fish flag buckyball. Figure 51 is a perspective view of a fourth solar radiation collecting device, a thin film photoelectric shape, and a buckyball. Figure 52 shows the printed map of Figure 51. Figure 53 shows a fourth solar radiation collection device, a thin film photoelectric shape, and a perspective view of the sphere. Figure 54 is a plan print of Figure 53. Figure 55 shows the fourth solar radiation collection device, the photo-electric shape of the film, and the icosahedral front view. Figure 56 is a five-fifth plan print of the figure. Figure 57 shows a perspective view of Figure 51 with a reflector. Figure 59 is the fifth solar radiation collection device, array hemisphere bar 65 201035505 The base ball is arranged into a perspective view of the photoelectric plate. Figure 59 shows a detailed enlarged view of the radiant receiver and cooling system of Figure 58. Figure 60 is a cross-sectional view of Figure 59. Figure 61 shows a perspective view of a third type of solar radiation collecting device, a reflective light guide collecting frame shape 2, and a triangular compound eye dome shaped device. Figure 62 shows a cross-sectional view of Figure 61. Figure 63 shows an enlarged view of a detail of a reflective light guide. Figure 64 shows a perspective view of a third type of solar radiation collecting device, a reflective light guide collecting frame shape three, and a conical compound eye dome shaped device. The cone-reflecting light guide, called the compound parabolic collector (CPC), bends the light and collects it into the solar radiation receiver. Figure 65 shows the bird enemies in Figure 64. Figure 66 is a cross-sectional view of Figure 64. Figure 67 shows an exploded view of Figure VI. Figure 68 shows a perspective view of the sixty-one solar radiation collection device installed on the roof of the building. Figure 69 shows the bird's beak of Figure 68: Figure. Figure 70 is a cross-sectional view of Figure 68. Figure 71 shows an enlarged view of the detail of the sixty-eighth radiation receiver. Figure 72 shows the perspective view of the solar radiation collection device of Figure 61 installed on the walls and roof of the building. Figure 73 shows the first solar radiation collecting device, the optical lens collecting frame shape three, and the perspective view of the bucky ring. 66 201035505 Figure VII is an exploded view of Figure 73. Figure 75 to 88 is a side view of a 40-half tube or a figure 60-shaped two-tube tube half-tube solar light-collecting device mounted on various harnesses. — Figure 75 is a travel trailer with a half-tube nanotube Sun Xingchang shot collection device mounted on its roof. Ο — Figure 76, is a large leisure wagon with a half-pipe Taimi official solar radiation collection device installed on the roof. Ding You 隹 3 seventy-seven, yes - (four) the boat has - the tube of the tube is lightly charged. The collecting device is installed on the top of the ship. Figure 78 shows a small truck with a collection device mounted on the roof of the car. Yannai does not control the sun. Figure 79 is a bus that has a collection device installed on its roof. 5 not meters 5 sun light shots There are three half-tube nanotubes solar radiation There are two half-tube nanotubes solar radiation Figure 80, is a light rail train shooting collection device installed on its roof. Figure VIII is an aircraft launching collection device mounted on its roof. Figure 82-84 is a device of Figure 5, another description of the manufacturing process. The film is first collected by the solar light. The word machine is printed with a photo-film of solar radiation. The recording of the 'three-dimensional object' is a self-adhesive tape of a computer plotter. ^^ Brush with photoelectric film 67 201035505 For cutting with photoelectric thin port map, each side will be attached to a figure 83, which is a computer cutting machine, the self-adhesive cloth is multiplied by the desired shape. Figure eighty-four is a cutting tape flat car body. Figure 85 is a schematic diagram of a cutting tape. Reconstruction of the outer wall of the investment building = 86" is a perspective view of the sixth solar radiation collection device. ® VIII, is a bird's eye view of Figure 86. Figure 88 is a side view of Figure 86. Figure 89 shows a cross-sectional view of Figure 86. Figure 90 shows a detailed enlarged view of the double-helical rotor solar light and motor generator of Figure 86. Device Figure 90 - '疋 - an optical film schematic that enhances the efficiency of solar and infrared light collection by the Philippine lens. = ninety-two, is the figure ninety-suitable (four) radiation receiver mode one big picture. Figure 91, Figure 119 shows the application of the light-light receiver method. Figure 94 shows an enlarged view of the light-emitting receiver in detail in Figure 58 to collect visible light and infrared radiation from the solar energy. Figure IX is a cross-sectional view of Figure 94. Figure 96 shows the sixth application of the first solar radiation collection device. The demonstration uses the solar energy collection system of a house, how the system supplies lighting, and the cooking (4) schematic. 201035505 Figure IX is the sixth application of the first type of solar light collection device (cooking X cooking), which is the second way, the perspective view of the solar outdoor barbecue. Figure 98 shows the sixth shore-based method of the first solar radiation collection device (cooking and cooking, the demonstration is adopted as mode three, a perspective view of a portable solar outdoor barbecue. ❹ Figure 99, is a picture Figure 17 shows a cross-sectional view of the concentric heating loop of Figure 97 and Figure 98. How to use the optical lens method (prism) from the outside of the rabbit (four) infrared light to separate from the sun, leading to the dome of the different equipment. "Plant and brother - seed field radiation collection, form intention map 100 Second, it is a detailed view of the optical lens of the figure 100. The picture is intended to be a spectroscopic optical lens. The model mining, Wang Jujiu grid is not dome-shaped. A kind of solar lucky 1 shooting device, the shape shows: =: 'is a spectroscopic optical lens method three (high color difference prism) in the form of _ shape \ | used in the first and third solar enthalpy collection device, what is the second is the spectroscopic optical lens method four (three color prism), such as ... ▲ light from the sun radiation, leading to the different devices 69 201035505 intention. . Figure - Bailu Six, the third type of solar radiation collection, shaped dome, demonstration on the roof of a house, T hundred r闽丄! , plus the form of the two Baki circle (1 ten ~), the secret is used in the perspective of a garage roof. Figure-Hundreds and Sevens, the first type of solar radiation collection device, the Guangfa ecstasy lens concentric dome, the demonstration uses a perspective view on the roof of a house. Figure-Hundreds of people's first-type solar raft collection device, optical lens collection frame shape five, Baki dome (Baki ball to find) a house roof (4). + ball), read using a nine-first sun riding collection device, optical lens receiving six, Baki long dome (nano tube half pipe), demonstration using a perspective view on a house roof. One hundred and tenth is a light-guide system with several mirrors, which distributes the solar radiation from the red roof (four) to different perspectives in the house. Figure 110 is a diagram of Figure 61. The third type of demonstration uses a beach umbrella. Figure - Hundred - Twelve, a kind of solar radiation collecting money, optical lens collection (four) shape six, the base length is the one hundred and twelve solar radiation collector dome (nano tube half pipe), the demonstration is used in - Perspective view on the road. Figure 100--J-一-- Enlarged view of the charging station Xibai XIV, is a perspective view of a house; the house has a semi-circular barrel roof to collect solar radiation shots. The round figure is one hundred and fifteen, which is a perspective view of a house. The house has a hilltop house. 201035505 The top collects solar radiation shots. [Main component symbol description] I Bucky ball type solar radiation device 10 Collection device II Collection frame 12 Collection surface 13 Strut rod 14 Straight concave groove (H type) collection frame 15 Plastic joint 16 Projection rod 20 Square body radiation reception 21 spherical radiation receiver 22 photovoltaic plate wafer 23 flexible photoelectric film 25 wire 30 lens section 30a Fresnel lens 30b honeycomb structure miniature lenticular lens 30c hologram lens 40 a system or method for cooling photovoltaic material 41 41 coolant Liquid tank 42 Heated coolant liquid tank 43 Water pipe 71 201035505 44 Pipe 45 Pipe 46 Three-way valve 50 Reflector 51 Reflecting surface 52 Leg 55 Converter 60 Bucky ball type collecting solar radiation / seawater desalination device 62 Collection equipment 64 Reflector 65 Base 66 Radiation collecting hollow sphere 68 Collecting lens 70 Inlet seawater pipe 72 Seawater 73 Water retaining wall 74 Water level high 76 Cooling water pipe 77 Condenser 78 Fresh water tank 80 Baki ball type collecting solar radiation / making biodiesel equipment 81 Reflector 82 Collection Device 84 Insulated Heat Pipe 72 201035505 85 Base 86 Radiation Received Hollow sphere 90 Container 92 Faucet 100 Streetlight device 102 for collecting solar radiation Collecting device 104 Edge reflector with decorative sector 106 Radiation receiver 108 Luminous ring 109 Battery compartment 110 Collection lens 112 Lamppost with hydraulic system 120 Garden for collecting solar radiation Light device 122 Collection device 124 Reflector disk 126 Radiation receiver 128 Light ring 129 Battery compartment 130 Collection lens 132 Garden light short light column 140 Garden light device 142 collecting solar radiation Collection device 144 Reflecting surface 148 Light ring 73 201035505 150 152 154 160 162 164 168 169 170 172 180 182 184 188 190 200 202 204 208 209 210 211 212 214 Collecting Lens Lampposts Lampholders with battery compartments for collecting solar radiation Collecting devices Reflecting surfaces Luminous rings Battery compartments Collection Lens columns Collection sun Radiation pool light device collecting equipment water surface becomes reflective surface light ring collecting lens collecting solar radiation device collecting equipment reflecting disk light battery compartment with hydraulic system lamp column battery electric vehicle charging station wire 74 201035505 220 power station device for collecting solar radiation222 Collection equipment 224 Reflecting discs 225 Hollow spherical radiation receivers 226 Pillars 228 Piping 230 Power station installations for collecting solar radiation 240 Array arrays or power plants 〇 242 Collecting solar radiation devices 244 Collecting equipment 245 Cables 246 Power cables 248 Reflecting disks 250 Central power stations 260 Power arrays or power plants 262 262 Equipment for collecting solar radiation 264 Radiation receivers 265 Linear foundations 266 Four-sided curved pyramidal reflectors 268 Cooling tubes 270 Cables 272 Power cables 280 Balloons collecting solar radiation 282 Collection equipment 75 201035505 283 Inflatable tube 284 Collection frame 287 Spherical radiation receiver 288 Lens section 288a Hexagonal lens surface 288b Pentagonal lens surface 290 Collection surface 292 Plate 294 Reflecting surface 295 Solar radiation receiver 296 Pillar 298 Wire 300 Nanotube type device for collecting solar radiation 310 Collection surface 320 Baki sulcus solar radiation collection device 330 Collection device 331 Interlocking collection frame 332 Collection surface 334 Lens section 334a Fresnel lens 334b Honeycomb structure Mini lenticular lens 334c Lens 335 Support post 336 Interlocking assembly Peripheral bracket 76 201035505 337 Bracket 338 Peripheral ring 356 341 Radiation receiver 342 Coolant tank 343 Photovoltaic wafer 344 Heated coolant tank 345 Photovoltaic water cooled cooling system or method 346 Water pipe D 348 3-way valve 354 Peripheral ring 355 Reflector 356 Reflecting surface 357 Leg 358 Wire 359 Converter 〇 360 Installation 366 Hollow sphere 372 Sea water 374 Water level South 376 Sea water hydration water pipe 377 Condenser 378 Cooling pipe 379 Fresh water storage tank 380 Collecting solar radiation Device 77 201035505 382 Collection device 383 Collection frame 384 Collection surface 386 Lens section 386a Fresnel lens 386b Bee writing structure Mini lenticular lens 386c hologram lens 389 Transparent plastic Don 390 Radiation receiver 391 Photovoltaic chip 392 Radiation receiver side wall 393 Radiation Receiver Top Wall 394 Ventilation Window 398 Wire 399 Converter 400 Baki UFO Balloon Type Device for Collecting Solar Radiation 401 Ring 402 Balloon Bowl Bottom 403 Reflecting Surface 406 Buckle 407 Stud 410 Radiation Receiver 412 Radiation reception Photoelectric film on the outer wall of the outer wall of the radiation receiver 78 413 201035505 414 Tab ring 415 Ventilation hole 420 Square Baki UFO balloon type collecting solar radiation device 422 Collection device 430 Radiation receiver 431 Support rod 432 Wire 434 Converter 0 440 Square Baki UFO Balloon 441 Balloon Corner 442 Top Wall 443 Buckle 444 Four Side Wall 445 Miao Nail Nail 446 Bottom Ο Half zipper 450 Inner Wall 452 Triangle 454 Inner Line 456 Silver Reflective Surface 460 Carbon Nanotube Collection Sun Radiation device 470 collection device 471 collection frame 472 collection surface 79 201035505 474 lens section 474a Fresnel lens 474b honeycomb structure miniature lenticular lens 474c hologram lens 475 center axis 480 radiation receiver 482 transparent pillar 486 photoelectric material 487 wire 488 converter 490 System or method for cooling photovoltaic material 486 491 coolant tank 492 heated coolant 493 water pipe 494 pipe 496 three-way valve 500 reflection groove 501 reflection surface 480 partial radiation receiver 486 square photoelectric material 489 wire 510 collecting the sun Radiation device 512 Collection device 514 Reflection groove 201035505 516 Collection lens surface 520 Hollow tube 522 for collecting solar radiation Seawater tube 524 Sea water 526 High sea level 528 Water pipe 529 Condenser 530 Fresh water storage tank 0 540 Array 550 Array collection device 552 Surface , can be a ground, a flat 554 strip-shaped reflective device 556 with a concave facing surface of the reflective material 558 transparent frame 560 radiation receiver 562 pillar 570 device for collecting solar radiation 575 radiation receiver 577 wire 579 converter 580 spherical Collection device 582 Reflective light guide 583 Reflective light guide inside the small hole 584 Reflecting the inner wall of the light guide, roof, or similar 81 201035505 585 Reflective light guide facing the large hole 588 Pillar 590 Reflector 594 Leg 600 Baki Balloon-type collecting solar radiation device 603 Reflecting surface 604 Through-tube 605 Wire 606 Mast 607 Converter 610 Inflatable balloon 611 Hexagonal cut surface 612 Pentagonal cut surface 613 Inflatable tube 614 Transparent surface layer 616 Full-image lens 618 Photoelectric layer 620 Collecting solar radiation device 625 Flag square tube balloon type collecting solar radiation 626 reflecting surface 627 mast 630 collecting solar radiation device 630a bucky ball shape 630b beach ball shape 82 201035505 630c icosahedral shape 631 wire 632 pentagonal slice 634 hexagonal slice part 636 eye type Slice 638 Triangle Slice 640 Bucky Ball Shape Collection Solar Radiation 642 Reflector 646 Column 644 Concave Face Up Reflector 645 Converter 660 Solar Collector 670 Platform 672 Upper Surface 674 Collection Well 676 Cooling Water Pipe 678 Curved Pyramid Reflector 680 Array collection device 690 optoelectronic chip 691 printed circuit board 692 heat absorbing block 700 all or part of dome shaped collecting solar radiation device 701 collecting ray 702 three wall reflecting light guide 83 201035505 704 705 706 708 710 712 714 716 718 720 722 723 724 725 726 728 730 731 732 734 735 736 738 739 Reflective surface inner wall transparent cover outward opening toward the central inner port radiation receiver solar cell block water tank pipe cooling system outer wall wire voltage regulator battery DC power supply socket converter AC power supply Socket all or part of the dome-shaped collection too Radiation device collection beam compound parabolic concentrator parabolic reflector wall transparent cover light guide tube outward opening light guide tube toward the central inner port light collecting funnel 84 201035505 740 radiation receiver 742 plate with photoelectric wafer 744 two junction photoelectric Wafer 746 Air Cooling Unit 748 Power Outlet 749 Outer Wall 750 Building 751 Roof 〇 752 Floor 753 Drain 754 Pulley 755 Slope 756 Water Tank 760 All or part of the dome or hemisphere collection device 762 Three-walled reflection light guide 〇 764 halogen 766 Solar Panel 768 Cooling Tank 770 Controlled Door 780 One Building 782 Roof 784 Side Wall 785 Collection Equipment 800 Nano Ring Collection Device 85 201035505 802 804 806 808 810 812 814 816 818 820 822 824 830 840 845 850 855 860 865 870 875 880 881 Pipe Boiler Tube Tube Nanotube Shape Collection Ring Lens Face Collection Frame Steam Pipe Turbine Generator Fresh Water Collection Tank Dome Photovoltaic Outer Wall Reflector Half Half Tube Collection and Concentrated Radiation Equipment Travel Trailer Car Activity RV Ship Small truck bus light Train airplane computer graphics machine plane material slice 86 882 201035505 883 wire 885 battery 886 computer cutting machine 888 vehicle 890 building 892 photoelectric film slice 896 collection device 900 device for collecting solar radiation 901 collection device 902 collection reflector plate 903 rotor 904 interweaving Spiral blade 904a Dark face 904b Light color face 905 Interlaced spiral blade G 905a Dark face 905b Light color face 906 Upper end circular plate 907 Rotatable shaft 908 Optical transparent and closed cover 910 Generator / vacuum maintenance device 920 Reflector 922 Leg 923 Wheel 87 201035505 930 Collecting Light Radiation Device 934 Full Image Diffraction Grating 940 Demonstration Light 944 Demonstration Light 942 Demonstration Light 950 to Radiation Receiver 952 Photovoltaic Cell 954 Base Plate 960 Radiation Receiver 962 Photovoltaic Chip 962 964 Insulating Material Plate 966 Thermal Conduction Non-conducting backplane 968 Heat sink fins 970 Panels for power generation and hot water 971 Collecting light radiation equipment 972 Reverse astigmatism sheet 973 Full-image lens 974 Photovoltaic wafer 975 Thermal block 976 Base plate 977 Frame 978 Brush circuit 978a negative 978b positive 88 201035505 979 pipe 980 solar energy collection system for a house, supply light, heat 982 roof 984 first collection solar radiation device 988 second collection solar radiation device 986 tool 990 thermal cable 992 furnace G 994 transmission cable 996 lighting equipment 998 wire 1000 solar energy outdoor energy barbecue 1002 bucky dome type solar radiation collection device 1004 copper radiation receiver 1006 roasting top burner Ο 1008 furnace control frame new 1010 lighting Equipment 1020 Portable solar energy outdoor barbecue 1022 Bage dome solar radiation collection device 1024 Hollow sphere radiation receiver 1026 Barbecue top burner 1028 Thermal conductor 1028 Control unit in front of the furnace 1040 Above the oven top 89 8935355 1042 first concentric circle 1044 second concentric circle 1046 first thermal strip 1048 second thermal strip 1050 device for collecting solar radiation 1052 collection device 1054 holographic diffraction grating lens or triangular prism 1056 ultraviolet reflector 105 8 Infrared Reflector 1060 Oblique Junction 1062 Demonstration Infrared 1064 Heat Pipe 1066 Demonstration UV 1068 Inside Mirror Lined Pipe 1072 Photovoltaic Wafer 1074 Heatsink 1080 Collecting Solar Radiation Device 1082 Collecting Device 1084 Whole Image Diffraction Grating Lens 1086 First Group Wavelength Demonstration Ray 1090 Wavelength Demonstration Ray 1094 Third Group Wavelength Demonstration Ray 1098 Fourth Group Wavelength Demonstration Ray 1088 First Group of Wavelength Receiver 90 201035505 1092 Second Group of Wavelength Receiver 1096 Third Group Wavelength Receiver 1100 Fourth Group of Wavelength Receiver 1010 Device for Collecting Solar Radiation 1112 Collection Device 1114 High Color Difference Fresnel Lens 1116 First Group of Wavelength Demonstration Rays 1120 Second Group of Wavelength Demonstration Rays 1124 Wavelength Demonstration of the Third Group Ray 1128 fourth group wavelength demonstration ray 1118 first group wavelength receiver 1122 second group wavelength receiver 1126 third group wavelength receiver 1130 fourth group wavelength receiver 1110 device for collecting solar radiation trichrome prism q 1112 incident light 1114 first dichroic prism 1116 second dichroic prism 1118 third dichroic prism 1120 Color beam 1122 blue beam 1124 green beam 1130 concentrated photoelectric building integrated house 1132 semicircular barrel roof collection solar radiation shot 91 201035505 1140 garage 1142 hemispherical roof collection solar radiation shot 1190 building 1192 Fresnel dome collection equipment 1200 Building 1202 Baki Dome Collection Equipment as Roof 1210 Building 1212 Carbon Nanotube Collection Equipment for Its Roof 1220 UV Radiation Extraction System 1222 Building 1223 Roof 1224 Collection Equipment 1226 Solar Radiation Demonstration Light 1228 First Mirror 1230 Second Mirror 1232 UV Filter 1234 Indoor Light 1150 Collecting Solar Radiation Equipment Beach Umbrella 1152 Dining Table 1160 Half Nano Tube Top Collection Solar Radiation Half Nano Tube Top Device 1162 Collection Frame 1164 Lens Cutting Surface 1166 Photovoltaic Wafer 1168 Top Floor 92 201035505 1170 Wire 1172 converter 1174 table station 1180 road lane 1174 pillar 1175 electric car charging station 1181 piezoelectric generator Π 82. car D 1183 wireless antenna transmitter 1250 building 1252 semicircular barrel roof - solar radiation collection equipment 1260 building 1262 gable Roof - collecting solar radiation equipment

9393

Claims (1)

201035505 七、申請專利範圍: i.一個收集太陽輻㈣統,其中包括至少 置,該太陽韓射收集裝置,包括:—框=太㈣射褒 面,個別收集切割面,面對且收集來自不:別:集切割 線以上的輻射,收集切面將輕射導至^^虽地地平 接收器。 ,、方收木區域的輻射 根據申請專利範圍第1項’其#射接收器由光電材 3. =統圍第1項’其中的輻射接收器含- 4. 該系統根據中請專利範圍第3ji ^二界疋此谷㈣空間 壁為光電材料。圍弟項,輪射接收器外部表⑽ 該系統根據中請專利範圍第4項,射接收器包括 .ί i rt:請f利範圍第5項,其中的冷卻系、:是安幻 壁…二==:使容器一 7·=統根射請專㈣4項,冷㈣統含冷卻管道1 、美供冷部液,自輻射接收器容器進出。 請專利範圍第3項’另含管道提供—種液體至 罕田射接收器内受熱基菸,笸—" 汽’預備下-步被冷卻過程。^ '射接收15導出該痛 9·=統根射請專利範圍第8項,其中的液體是含有一 貝/谷解或懸浮在内的水。 1〇.該系統根據申請專利範圍第9項,其中的液體是海水 94 201035505 U.f系統根據申請專利範圍第3項,另一套管道,包括第一 管提供液體至輕射接收器進行加熱,和第二管將加 體導離輻射接收器。 U·:系統根據申請專利範圍第!項,其中輻射接收器可為一 问導熱性中空球體,另有生化柴油的催化爐及導熱傳輸 線由導熱傳輸線連接中空集熱球體至生化柴油的催化 爐’將熱自集熱球體傳達到生化柴油生產用的催化爐。 〇 13.該系統根據申請專利範圍第!項,其中至少有一個切面含 有至少一片光學透鏡,集中輻射至收集區域。 14.,系統根據申請專利範圍第13項,其中至少有―個透 非 >圼耳透鏡。 15·該系統根據申請專利範圍第13項,其中至少有一 —個雙凸透鏡。 疋 16·該系統根射請專利範㈣13項,其中至少卜切面由— 個複眼型雙凸透鏡組成。 〇 17.該系統根據中請專利範圍第13項,其中至少有—個切面θ 全像透鏡。 疋 α該系統根據申請專利範㈣13項,其中絕大部分每一個切 面包括至少一個透鏡聚光到收集區預域 Κ該系統根射請專利範圍第13項,聚光器包括—個框牟, =架的形式至少有部分Κ克明斯特富勒烯分子(C-60奈 米巴基球)結構組成。 項’聚光器包括一個框架, 頭封口的奈米管結構組成。 2〇.該系統根據申請專利範圍第工 框架的形式有至少有部分是雙 95 201035505 2.該糸統根據申請專利節圍笛1 成。 "判_第1項,收集框架可由充氣管組 22·=ίΓΓΓ申請專利範圍第1項,包括至少一個反射導光 筒接受輕射,導輕射至㈣接t器中—個收集切面有導光 23:=申請專利範園第〜其㈣導光筒類複 艮多孔形在内部各部聯結。 24,=Γ射請專職㈣22項,其巾蘭導光筒一種複 合拋物面收集器(CPC)。 吸 25.: 土統根據申請專利範圍第i項,眾多反射導光筒聯結, 射翻=有一導光筒,導光筒在每—切面接收輻射導至輕 根據申請專利範圍第i項,其中的聚光器收集面進 輕向各方的切面,可接收低於當地地平線方向的 „, w:入射至聚光器表面各切面的輻射聚集至在聚光 态中央的收集區域内,赘杏裴矣 人 地平線的輕射。表面可收集高於或低於當地 根獅請專利範圍第26項,其中收集區域在收集表 圍第26項’進-步包括-反射*位 2 木表面下,將輻射反射回收集表面。 ::統根據申請專利範圍第28項,其中的反射面由一個凹 面向上的反射盤組成。 心:根據申„月專利範圍第26項,其中的收集面收集來自 96 201035505 四面八方的大量輻射。 31. 該系統根據申請專利範圍第26項,其中收集框架由一個巴 克明斯特富勒烯分子(碳-六十奈米巴基球)結構組成。 32. 該系統根據申請專利範圍第26項,其中的收集框架由一個 雙頭束口的奈米管結構組成。 33. 該系統根據申請專利範圍第26項,其中的收集框架由充氣 管組成。 34. 該系統根據申請專利範圍第26項,包括至少一個反射導光 筒,在任一收集切面的導光筒接受輻射並導至輻射接收器。 35. 該系統根據申請專利範圍第34項,其中反射導光筒類複 眼,多孔形在内部各部聯結。 36. 該系統根據申請專利範圍第34項,其中反射導光筒是一種 複合拋物面收集器。 37. 該系統根據申請專利範圍第26項,進一步包括反射導光 筒,每一個切面内接一導光筒,導光筒在切面接收輻射, 各筒底部連接,底部出口將輻射導至輻射接收器。 38. 該系統根據申請專利範圍第1項,進一步包括一反射裝置 低於輻射接收器,適當距離外可將最初無法自收集表面上 收集的入射光,反射回輻射接收器。 39. 該系統根據申請專利範圍第38項,其中的反射裝置是一個 凹面向上的反射盤。 40. 該系統根據申請專利範圍第39項,包括支柱將反射盤與輻 射接收器和收集表面聯結,並支撐在上的輻射接收器和收 集表面。 97 201035505 41. 該系統根據申請專利範圍第38項,輕射接收器由光電材料 組成。 42. ^統根據切專利範圍第%項,其中的赫接收器由中 从體、、且成’内備—種流體,該液體自輻射接收器及反射 物件收集輻射加熱。 43,=統根據申請專利範圍第㈣,包括—個充氣的氣球, 反外壁和底部’其中至少—部分頂部是透明的, 在充氣氣球内,輻射接收器的下方,骑接收器 和收集表面由氣球上面頂層支撐。 至少有一個輻射 其中 44.該系統根據申請專利範圍第43項 收集裝置是一個單一的設備。 其中,反射裝置位於氣 其中,反射裝置反射層 其中’其中氣球自上方 其中’其中氣球自上方 其中,至少有一個輻射 45·該系統根據申請專利範圍第43項 球底部上。 46. 該系統根據申請專利範圍第43項 疋一反光片貼到氣球底部的内侧。 47. 該系統根據申請專利範圍第43項 看,一般為圓形。 48. 該系統根據申請專利範圍第“項 看’一般為長方形。 49. 該系統根據申請專利範圍第43項,Μ, 的太陽謝魅組成,且包括—如= 起來集器和其他氣球太陽輻射收集器連結 外該系統根據申請專利範圍第43項,其中輻射接枚器由光電 98 201035505 材料組成,太陽輻射接收器包括一個變流器自輻射接收器 的光電材料接收電流,其中變流器將自輻射接收器收到的 直流電力,變換成交流電電力。 51. 該系統根據申請專利範圍第1項,進一步由一個收集站和 傳輸管道組成,管道連接太陽能輻射收集器的輻射接收器 至收集站,輻射收集器其中液體經加熱後成蒸汽,由傳輸 管道送至收集站,收集站有一個渦輪機和發電機,蒸汽被 導入渦輪機,推動渦輪葉片旋轉,以提供扭力使渦輪發電 Θ 機供電,渦輪機的葉片可加貼奈米紅外光波長天線的薄 膜,自蒸汽吸其熱能,進一步生產交流電供電;失去部分 熱能的蒸汽可再送至水箱,進一步冷卻為可飲用的蒸餾水。 52. 該系統根據申請專利範圍第51項,其中至少有一個太陽輻 射收集器包括數個相同的太陽輻射收集器,並進一步由輸 送管道將太陽輻射收集器的每個輻射接收器連接至中央電 站,其中流體經輻射收集器加熱後由傳輸通道送至收集站。 q 53.該系統根據申請專利範圍第51項,其中流體是蒸汽。 54. 該系統根據申請專利範圍第2項,進一步包括中央電站, 一個變流器(逆變器),以及第一和第二傳輸線,第一傳輸 線將輻射接收器與變流器連接,第二個傳輸線將變流器與 中央電站連接,即中央電站可收到來自太陽輻射收集器的 交流電力。 55. 該系統根據申請專利範圍第54項,其中至少有一個太陽輻 射收集器包括數個相同的太陽輻射收集器,其中每個太陽 輻射收集器,供應交流電電力至中央電站,再由其供應至 99 201035505 電網。 56:= 康申請專利範圍第2項,其十至少有一個太陽輻 厂器’包括數個相同的太陽輻射收集器,其中,多個 =陽輕,收集器被安褒在一陣列,並進一步包括輸電線 從夕個太陽輪射收集器的輻射接收器,供應直流電至 一變流器。 57.該系統根射請專鄉圍第56項,進—步包括—個冷卻系 、先▲冷部系統包括冷卻劑和管道,向多面太陽輻射收集 =輻射接收器供應冷卻劑,並由f道自多面太陽韓射收 木器移除過熱的冷卻劑。 讥,系統根據申請專利範圍第57項,進一步包括一反射裝置 鄰接多面太陽輕射收集器,以反射入射至該反射裝置的入 射光’將其反射至多面太陽輕射收集器。 59.^統根據申請專利範圍第56項,其中反射裝置反射太陽 -射到多面太陽輻射收集器,至其中至 由此收集表面將太陽輕射導至輕射接收器。木表面 6〇.該系統根據申請專利範圍第59項,其中反射裝置包括至少 2個反射表面’可將人射至反射裝置的太陽輻射反射,立 中’反射裝置反射太_射至少至兩個太陽輻射收集裝置。 ^亥系統根射請專利範圍第6〇項,其中反射裝置反射太陽 :射至多面太陽輻射收集器上至少兩個收集表面,其 收集表面將太陽輕射導至輻射接收器。 砭該系統根據申請專利範圍第^項,其/反射裝置為金字挞 里’包括四個孤面反射面,每—面各自面對四個太陽幸畐射 100 201035505 收集器的收集表面。 63. 該系統根據申請專利範圍第61項,其中反射裝置為棱鏡型 和,包括兩個弧面反射面,每一面各自面對兩個太陽輻射 收集器的收集表面。 64. 該系統根據申請專利範圍第56項,其中多面太陽輻射收集 器中的收集表面,設定可以接收當地地平線上的太陽輻射。 65. 該系統根據申請專利範圍第64項,其中多面太陽輻射收集 器的收集表面,設定可接受任何方向的太陽輻射。 Θ 66.該系統根據申請專利範圍第56項,其中多面太陽輻射收集 器的收集框架,採用巴克明斯特富勒烯分子的巴基球形狀。 67. 該系統根據申請專利範圍第66項,其中多面太陽輻射收集 器的收集框架,採用巴克明斯特富勒烯分子的巴基球形狀。 68. 該系統根據申請專利範圍第56項,其中多面太陽輻射收集 器的收集框架,採用雙頭束口的奈米管形狀。 69. 該系統根據申請專利範圍第68項,其中多面太陽輻射收集 Q 器的收集框架,採用雙頭束口的奈米管形狀。 70. 該系統根據申請專利範圍第56項,其中包括一面板,多面 太陽輻射收集器裝置其上。 71. 該系統根據申請專利範圍第70項,進一步包括一冷卻系統 安裝在面板中,向多面太陽輻射收集器的輻射接收器供應 或移除冷卻劑。 72. 該系統根據申請專利範圍第70項,進一步包括一個安裝在 面板的傳輸線系統,該傳輸線系統,自多面太陽輻射收集 器的輻射接收器收集電力。 101 201035505 201035505 '個或多個器件 73.該系統根據申請專利範圍第1項 是一個單一的設備。 該系統根據申請專利範圍第73項,其中,系統由 的設備組成。 早— 75.該系統根據申請專利範圍第!項,其中包括—個收集 框架的形式如-奈米管環,輻射接收器另形成一個環管,’ 在收集框架中央的收集區域懸空,收集框架的收集表: 引太陽輻射到此輻射接收管。 辱 饥=系統根射請專利範圍第75 ^進―步⑽ρ 部的紐送至㈣接好,該液體被加熱成藏汽, 二官連接雜射接收管至渦輪機,該管將蒸汽提供 =’在陰天或晚上’可在沙灘或土層下埋設水管; 加熱方式獲得条汽,再送至渴輪機繼續不斷發電。 t糸請專利範圍第76項,渦輪機其中包括眾多苹 二r裝在驅動轴;當蒸汽推動葉片時’該渦輪機即』 78=系統根據申請專利範圍第77項,包括一台 、 輪機驅動軸推動。其中#^機、&屑 79兮“ ,、Τ的肩輪發電機產生交流電電力。 ."系統根據申請專利範圍第77 貼奈米紅外光波長天線的薄膜,進輪細葉片可加 熱能,生產交流電供電;失去敎吸其紅外光 水庫,谁^ . 邛刀,、、、月匕的祭况可再送至蓄 80兮 步冷部為可飲用的蒸館水。 ^系統根據申請專利範圍第% 渴輪機室接收蒸汽,失去部分_ ^ :=畜水庫,^ …月b的4〉飞,進一步冷卻為 102 201035505 可飲用的淡水或蒸餾水,該蓄水庫用來冷卻蒸汽和保持冷 卻後的淡水或蒸德水。 81. 該系統根據申請專利範圍第76項,其中的液體是水。 82. 該系統根據申請專利範圍第80項,其中進入輻射接收管的 液體是鹽水,氣體是蒸汽,蓄水庫冷卻蒸汽並儲存成淡水。 83. 該系統根據申請專利範圍第82項,其中的鹽水是海水。 84. 該系統根據申請專利範圍第2項,其中一個或更多的設備 為一台設備,並進一步組成電力照明;該照明設備與光電 D 材料連接,從光電材料電流供應照明。 85. 該系統根據申請專利範圍第84項,其中電力照明包括一個 發光二極管。 86. 該系統根據申請專利範圍第84項,進一步包括電池,與光 電材料和電力照明電燈電線連接,即電池可收取從光電材 料,電力照明可從電池獲得電流供應照明。 87. 該系統根據申請專利範圍第86項,進一步包括電動充電站 Q 與電池連接,該電力充電站可提供汽車充電。 88. 該系統根據申請專利範圍第86項,進一步包括一根支柱供 該設備安裝其上。 89. 該系統根據申請專利範圍第86項,該設備是密封,防水, 以便它可以浮在水中。 90. 該系統根據申請專利範圍第1項,進一步包括反向散光片, 加在收集表面外部至少一個切面上。 91. 該系統根據申請專利範圍第90項,進一步包括反向散光 片,加在收集表面外部至少一個切面上。 103 201035505 92.該系統根據申請專利範圍第1項 — 奈樣組成的防反射塗層(或二 在收集表面外部至少一個切面上。 93·=^據中請專利範圍第92項該系統㈣專利申請. (括祕角度—氧化#奈米棒組成的反射塗層 ,它防反射塗層),加在收集表面外部至少一個切面 94.太陽輻射接收器裝置,包括: -收集框架支撐收集表面從不同的 射’收集表面由眾多依附在收集框架上的收华表 上為全Γ ㈣面"'般為透明的表面’ 之間,m 面積的光電層在表面層和全像透鏡 二-,王像透鏡設將入射輻射導至光電層產生雷泣。 95. 該裝置根料料㈣ 9 机° 面的中間。 貞-中先電層約置於收集 96. ^ΓΓ申請專利範圍第94項,其中收集表面設定接收 來自四面八方的太陽輻射。 4 97. 該裝錄射料鄉㈣96項,進 在收集框架的下方。 〃匕括反先表面 98. Z=rf圍第94項’其中收集框架由可棱式 氣擇據此收集框架可有不充氣平放和第二個充滿 項’其中的收集面無法如收 104 201035505 100. —收集太陽輻射裝置,包括: 收集表面接受所有方向來的輻射,全方位收集表面, 包括透鏡切面以導引入射至透鏡的輻射,臨到一個在收集 表面的聚焦區域内;聚焦區域内有輻射接收器;一反射裝 置在距收集表面的適當位置,可將原先不達收集表面的入 射光反射至收集表面。 101. —個收集電磁輻射的裝置,包括: 發電機有一個輸入傳動轴,一個葉片裝置連接到傳動 軸並有一個輸出的裝置。組成旋轉葉片裝置的葉片,一面 裝配有輻射吸收表面吸收輻射,另一面為反射表面,傳送 輻射能到附近的氣體分子,並傳輸能源,引起他們的振動 並傳遞能量至能源接收裝置,幅射吸收器和反射器的表面 和附近的氣體分子,傳授動能至葉片裝置,負責接收輻 射,其中,能源接收裝置一面有深色輻射能量吸收面,一 面為反射器反光面;至少部分輻射吸收表面包含光電轉換 材料’將入射的太陽輕射轉換成直流電。 102. 該裝置根據申請專利範圍第101項,進一步包含一般是透 明的真空容器,太陽輻射可通過;葉片裝置被固定在容器 内。 103. 該系統根據申請專利範圍第101項,其中葉片是一圍繞中 心軸的雙螺旋形,該軸與發電機的傳動轴平行。 104. 該裝置根據申請專利範圍第101,其中葉片裝置為圍繞中 心軸的兩個交織在一起的螺旋形葉片,與發電機的傳動轴 平行;葉片的輻射能量吸收黑面都朝著同一個方向圍繞輸 105 201035505 出裝置。 105·該裝置根據申請專利範圍第1G2項,進 置,定位在容器的外部,導服射通過容器抵達葉 106. —收集電磁輻射的裝置,包括·· ” 、 =電機有-個輸人傳動轴’―個葉片裝置連接到傳動 車亚有一個輸出的裝置,組成旋轉葉片I置的葉片, 裝=有輕射吸收表面吸收輕射,另—面為反射表面,傳送 輪射能到附近的氣體分子,並傳輸能源,引起他們的振動 量Γ源接收裝置’幅射吸收器和反射器的表面 體分子,傳授動能至葉片裝置1責接收輕 射,其中,能源接收裝置-面有深色輻射能量吸收面,一 射器反光面,:般是在透明的真空容器中,太陽輕 葉片裝置被固定在容11内’反射裝置,定位在 谷益的外部下方,導引輻射通過容器抵達葉片裝置。 107.該裝置根據專利申請106,其中葉片裝置為圍繞中心輛的 兩個交織在一起的螺旋形葉片,與發電機的傳動軸平行。 跳該裝置根據申請專利範圍第107項,其中葉片裝置為圍綠 中心轴的兩個交織在一起的螺旋形葉片,與發電機的傳動 軸千饤,茶片的輕射能量吸收黑面都朝著同 輸出裝置。 阁,"° 109.—收集太陽輻射裝置,包括: 一個從多方向接收輻射的收集表面,導婦至一衍射 設備,該設備將輻射分出第一組波長,導至第一組能量轉 換》又備,再刀出第二組波長至第二能量轉換設備;其中第 106 201035505 -組能源轉換設備能將第一組波長 另一種形式的銥吾·牮 丨刀?田射轉換成 至”八二 源轉換設傷能將第二組波長 至乂邛为輻射轉換成另—種形式的能量。 長 該裝置根據申請專利範園第1Q9項,其 可見光波長,第二組的是紅外光波長。射第組的疋 m.該裝置根射請專利範圍第u 設備由光電材料組成。 ,、中第-組能源轉換 ο ία該裝置根據申請專利範圍第⑴項, 設備是-個板塊,經紅外光照射可加敎。弟—、、“源轉換 ⑴請專利範圍第112項,其中第二組能源轉換 電。〃 l 1紅外光坡長的奈米天線,紅外光照射會發 114:;=Γ利範圍第109項,其中衍射設備分出第 ❹ 下方和第-個區域在同-水平面的第二個區域。第 二個區域被分開,第—組能源轉換設備在第-區第-ί 能源轉換設備在第二區。 、 115. 該=根據申請專利範圍第1〇9項,其中街射設備(高色 =非么耳透鏡)分出第一組波長導至下方第一個區域,再 为出第二域長導至下方和第—寵域在垂直線上的第 -個區域。第—組能源轉換設備在第—聚焦區,第二組能 源轉換設備在第二聚焦區。 116. =裝置根據申請專利範圍第1〇9項,其中透鏡可將入射光 1射再刀出第二組波長至第三能量轉換設備,其中,第 107 201035505 三組能源轉換設備能將第三組波長至少部分輻射轉換成 另一種形式的能量。 117. 該裝置根據申請專利範圍第116項,其中透鏡可將入射光 衍射,再分出第四組波長至第四能量轉換設備,其中,第 四組能源轉換設備能將第四組波長至少部分輻射轉換成 另一種形式的能量。 118. 該裝置根據申請專利範圍第117項,其中第一組的波長屬 高能量的能差組,即波長為>300奈米(納米)<680奈米 (相當於具有光子能量範圍内的約<3.2電子伏特(eV) > 約 1.88 電子伏特)(1 electron volt = 1.60217646 X 10-19 joules) ° 119. 該裝置根據申請專利範圍第118項,其中第一個能量轉換 設備可為填化姻錄光電晶片。 120. 該裝置根據申請專利範圍第118項,其中第二組的波長是 在中間的能差組,即波長為>680奈米,<900奈米(相當 於具有光子能量範圍内的約<1.5 £乂至>約1.4電子伏特)。 121. 該裝置根據申請專利範圍第120項,其中第二組能源轉換 設備可為銦鎵砷光電晶片。 122. 該裝置根據申請專利範圍第120項,其中,第三組的波長 是在低能量的能差組範圍,即波長為>900奈米到<1800奈 米(相當於具有光子能量範圍内的約<1.1 EV至約>0.7電 子伏特)。 123. 該裝置根據申請專利範圍第122項,其中第三能量轉換設 備可為鍺,銻化鎵,或磷化銦光電晶片。 108 201035505 124. 該裝置根據申請專利範圍第122項,其中第四組中的波長 為紅外線能差組範圍,即波長為3微米至15微米。 125. 該裝置根據申請專利範圍第124項,其中第四能量轉換設 備可為紅外光奈米天線,將紅外光轉換成交流電。 126. 該裝置根據申請專利範圍第124項,其中第四能量轉換裝 置可為熱音壓電晶片。 127. 該裝置根據申請專利範圍第124項,其中第四能量轉換裝 置可為量子隧道晶片。 〇 128.該裝置根據申請專利範圍第109項,其中的收集表面是一 個反向散光片,將可能將入射輻射從多個方向改成多為與 收集表面垂直的入射角度。 129. 該裝置根據申請專利範圍第109項,其中衍射設備是全像 透鏡,將入射光分出第一組波長,導至第一組能量轉換設 備;再分出第二組波長至第二能量轉換設備。 130. 該裝置根據申請專利範圍第129項,其中第一組波長多為 Q 可見光,第二組的波長,多為紅外線輻射,第一組能源轉 換設備是一個光電晶片,第二能量轉換設備是一各有良好 的導熱性的底板,而光電池晶片位於板塊中央,全像透鏡 之下。 131. 該裝置根據申請專利範圍第130項,其中的光電晶片與底 板由導熱不導電的化材板塊(鹼土金屬的氧化皱比金屬導 熱快十倍,或價廉的矽脂等)分開。 132. 該裝置根據申請專利範圍第131項,其中的介電材料具有 良好的導熱性能,使光電晶片產生的熱量快速傳送到底 109 201035505 板。 133. 該裝置根據申請專利範圍第114項,其中的光電晶片位於 底板中央。 134. 該裝置根據申請專利範圍第109項,其中衍射設備是一個 全像透鏡。 135. 該裝置根據申請專利範圍第109項,其中衍射設備是一個 衍射光柵。 136. 該裝置根據申請專利範圍第109項,其中衍射設備是一個 菲淫耳透鏡。 137. 該裝置根據申請專利範圍第109項,其中衍射設備是一個 分色棱鏡。 138. 該裝置根據申請專利範圍第109項,其中衍射設備是一個 三色棱鏡。 139. —個過程提供了三維結構,其外層可接受輻射並將該輻射 轉換成電能;其中的步驟:確定三維結構的外部表面形 狀,電腦繪圖軟體可繪出可拗膠布材料需覆蓋外部不同形 狀的切片形狀,再用電腦繪圖機循切片的不同形狀的切片 將薄膜光電層印刷至膠布材料上,另一台電腦割字機將印 有薄膜光電層的切片割出,膠布材料有自黏背膠,將不同 形狀的切片貼上適當部分的外表面,至少三維結構有一部 分外表面已加裝好薄膜光電層。 140. 該過程根據申請專利範圍第139項,進一步步驟是印刷電 路至印有薄膜光電層的可拗式膠布材料。 141. 該過程根據申請專利範圍第139項,進一步步驟是將該組 110 201035505 薄膜光電層設備連接到電池組。 Η2.該過程根據申請專利範 % 有自黏背膠。 *中可拗式膠布材料 143.該過程根據申請專利範圍第139項, 片貼上三維結構外表適當部位的步驟。、5形狀的切 過程根射料鄉_139項,其 乘具。 ,、、、D構疋一輛 ο 145. 該過程根據申請專利範圍第139項,苴 建設物。 "中—、、、隹…構是一個 146. 建築物由牆壁和屋頂組成,—層薄臈光電 147米^薄膜,貼覆在至少四牆之—和屋頂的外部U的奈 147. -姆具的料,㈣縣電層或不㈣長 3 =少部分的外表,其中,光電_或不同波長= 未天線溥膜層產生電流,用於該乘具。 不 ❹ 148. ^亥乘具根據申請專利範圍第147項,其中是一輛汽車的車 149. 一輛乘具,包括:車身, 輕射的設備。 屋頂上裝有可從多方向收集太陽 該乘具根據申請專利範圍第149項,其中太陽幸畐射收集咬 備包括-個框架支撐收集表面,收集表面包括一個多透鏡 切面’將太陽輕射導至收集表面内的焦聚位置,輕射接收 器位該處。 ⑸.該乘具根射請專·圍第15()項該乘具根據專利申請 150 ’其中包含有光電材料的輻射接收器,自透鏡切面收 111 201035505 集的太陽輻射產生電流。 § /、板據申睛專利範圍第149項,其中是陸行車輛的車 身。 153. ^乘具根據中請專利範圍第149項,其中是水行舟船的船 154. 該乘具根據申請專利範圍第⑷項,其巾是空巾飛行器機 1=·該乘具根據申請專利範圍第154項,其中是航天器機身 錢集太陽騎的裝置,包括:—純集的表S 收,、^個氣球’許多平切面在其邊緣結合在—起,形成 薄膜光電材料或不同波長的奈米天線薄膜,永 受器,=射在其邊緣結合在-起形成太陽輻射接 將該其輻射轉換成直流電。 15 7 · 5亥裝置根據申士主奎 -音波烊:二― 聯,使收集表面可維持其氣球形狀。刀面片片緊讀 158. 该裝置根據申請專利範 形成密封不透氣 4 、、中切面片片接聯, 脹,即可保持其氣球^面,5_表面只要維持充氣膨 159. 該裝置根據申請| 五角片及20片丄角圍第156項’其中切面包㈣片 ⑽.該裝置根據^直 接合成布基球形狀。 申明專利範圍第156項,1中 眼型片’接合成沙灘球形狀。、,、中切面包括12片 161.該裝置根據申請 叫圍第156項,其中切面包括20片 112 201035505 相同大小和形狀的三角片,接合成一個二十面體的形狀。 162. 該裝置根據申請專利範圍第156項,進一步包括一個凹面 向上的反射盤,一個支柱支撐持氣球,在形收集表面在反 射盤以上,使入射輻射可能會自反射盤反射到收集表面。 163. 該裝置根據申請專利範圍第162項,其中一個支柱内有電 線將收集表面和反射盤連接,該電線將電流從收集表面經 支柱下傳至反射盤的底部。 164. —個建築物由牆壁和屋頂組成,並進一步包括組成在屋頂 D 安裝收集表面,自多方向收集輻射,導置輻射接收器;其 中輻射接收器包括進一步將太陽輻射分光裝置,將太陽輻 射分離成可見光和紅外光等。 165. 該建築根據申請專利範圍第164項,其中可見光導至光電 晶片發電,用於建築。 166. 該建築根據申請專利範圍第164項,其中可見光導至建築 内照明單位,以提供室内照明。 0 167.該建築根據申請專利範圍第164項,其中紅外光導至中空 導熱金屬球由其吸收熱能,並進一步由一個包在絕緣電鐵 中的銅管線或其他高導熱材料傳送該熱能至室内爐具炊 食用。 168. 該建築根據申請專利範圍第164項,其中紅外光用來加熱 一種液體,並進一步經一個管道傳輸傳輸加熱液體至熱交 換器提供建築空調。 169. 該建築根據申請專利範圍第164項,其中的分光器可進一 步分離出太陽輻射的紫外線部分。 113 201035505 該建築根據申請專利範圍第! 6 導至紫外線波長光電以發電,用於外線部分可 171.該建築根據申請專利範圍第169 糊(光學纖維)導至日光燈,激===可 ,先粉^接產生可見光。可免除先需通電激活日光燈 氧以發紫外線的雙重步驟。 7 ”2. -個爐具,包括:一個太陽輻射收集 自多方向收集太陽輕射並導至一個輕射接收器:提: 輪射接收器的溫度;傳輸管道由高導熱係數: 2係數材料的外套管組成,加熱用設備架在—種:架二 ,經由傳輸管道㈣高導熱係數材料料熱能至該設 備,加熱用設備自傳輸管道獲得熱能加熱。 π該爐具根據申請專利範圍第172項,其中輻射接收器為一 由面導熱係數銅合金製成的中空球體,傳輸管道的的高導 熱係數材料也是銅合金。 。 m.該爐具根據申請專利範圍第m項,進一步包括裝置在爐 具框架上的控制樞紐,可以選擇性地輕合傳輸管道連接到 加熱用設備。 Π5.,爐具根據申請專利範圍第172項,其中加熱用設備包括 第一和第二加熱用次同心圓迴圈套裝並列,並進一步包括 框架上的控制樞紐,可選擇性地連接一個或兩個次同心圓 迴圈至主傳輸管道。 176. δ亥爐具根據申請專利範圍第175項,其中第—和第二組同 〜圓迴圈,各有一組遞減半徑的同心圓迴圈組成;每一組 114 201035505 同心圓迴圈間隔並列。 177. 建築物由牆壁和屋頂組成,其中屋頂包括一個太陽輻射收 集裝置,可自多方向收集太陽輻射並導至一個輻射接收 器,輻射接收器將太陽輻射轉換成有用的能源形式。 178. 該建築根據申請專利範圍第177項,其中的輻射接收器利 用太陽韓射產生電流,用於建築。 179. 該建築根據申請專利範圍第177項,其中的輻射接收器利 用太廣輻射加熱液體,用於建築。 〇 180.該建築根據申請專利範圍第177項,其中的液體是水,建 築物進一步包括一個熱水供應管道系統,自輻射接收器收 到熱水。 181. 該建築根據申請專利範圍第179項,其中的液體,通過室 内管路循環該建築物,提供建築物暖氣。 182. 該建築根據申請專利範圍第177項,其中的收集設備類似 山頂屋頂。 0 183.該建築根據申請專利範圍第177項,其中的收集設備類似 半圓筒狀屋頂。 184. 該建築根據申請專利範圍第177項,其中的輻射接收器用 太陽輻射加熱一種媒介,建設物内炊具用。 185. 該建築根據申請專利範圍第177項,其中的收集設備是菲 涅爾透鏡圓頂。 186. 該建築根據申請專利範圍第177項,其中的收集設備包括 一個收集框架支持有眾多透鏡切面的收集表面,其中的收 集框架,外觀類似半個巴克明斯特富勒烯分子。 115 201035505 187. 該建築根據申請專利範圍第177項,其中的收集設備包括 一個收集框架支持,有眾多透鏡切面的收集表面,其中的 收集框架,外觀類似半個奈米管分子。 188. 該建築根據申請專利範圍第187項,其中的收集框架外 觀,類似半管兩頭束口的奈米管分子。 189. 便攜式太陽輻射收集屋頂,收集框架支撐可自多方向收集 太陽輻射的接受表面,該接受表面有眾多切面,導太陽輻 射到一個由光電材料組成的輕射接收。=. 190. —個收集太陽輻射的高頂懸吊在道路上方,包括一個收集 框架,支撐有眾多透鏡切面的收集表面,自多方向收集太 陽輻射至長串光電晶片產生直流電力;光電晶片再和變流 器連接將直流電轉換為交流電。 191. 該建築根據申請專利範圍第190項,其中的收集框架,外 觀類似半個奈米管分子。 192. 該建築根據申請專利範圍第190項,進一步包括一組路旁 架構,在道路兩側支撐該收集框架,橫跨上述道路。 193. 該建築根據申請專利範圍第190項,進一步包括電動汽車 充電站自變流器獲得電力供應。 194. 一個收集太陽輻射海灘傘,由一個桅杆支撐收集傘面,其 中,有眾多切面的接受表面,可自多方向收集太陽輻射; 該接受表面’導太陽輕射到一個由光電材料組成的輕射接 收器,產生直流供電。 19 5.該海灘傘根據申請專利範圍第194項,進一步包括一個多 方向類複眼輻射聚光器,每一個切面有一個聚光筒,由其 116 201035505 導太陽直接輻射至輻射接收器。 196.該海灘傘根據申請專利範圍第194項,其中聚光筒是一個 反射導光筒,或一個收集太陽輻射海灘傘,由一個桅杆支 撐收集傘面,上有光電薄膜或不同波長的奈米天線薄膜, 產生電力。 ❹ 117201035505 VII. Patent application scope: i. A collection of solar radiation (four) system, including at least the solar absorption device, including: - frame = too (four) shooting surface, individual collection of cutting surface, face and collection from no :Do not: Set the radiation above the cutting line, collect the cut surface and direct the light to the ^^ ground level receiver. , the radiation of the area of the wood harvesting area according to the scope of the patent application of the first item 'its #射接收器 by the photoelectric material 3. = circumspecting the first item' of the radiation receiver containing - 4. The system according to the scope of the patent 3ji ^ Two boundaries 疋 This valley (four) space wall is photoelectric material. The sibling item, the external receiver of the launch receiver (10) The system according to the fourth part of the patent scope, the receiver includes . ί i rt: please f range 5, the cooling system, is the An Fantasy wall... Two ==: Make the container a 7·= unified root injection special (four) 4 items, cold (four) system with cooling pipe 1, the United States for the cold part of the liquid, from the radiation receiver container in and out. Please refer to the third item of the patent scope ‘additional pipeline to provide a liquid to the Hantian radiation receiver in the heated base smoke, 笸-" steam' preparatory down-step cooling process. ^ 'Shooting Receive 15 to derive the pain 9 · = Tong Gen shot the scope of the patent, item 8, where the liquid is water containing a shell / gluten solution or suspension. 1〇. The system according to the scope of claim patent item 9, wherein the liquid is seawater 94 201035505 Uf system according to the third scope of the patent application scope, another set of pipes, including the first pipe to provide liquid to the light-light receiver for heating, and The second tube directs the addition away from the radiation receiver. U·: The system is based on the scope of the patent application! Item, wherein the radiation receiver can be a thermal conductive hollow sphere, and a biodiesel catalytic furnace and a heat conduction transmission line are connected from a hollow heat collecting sphere to a biodiesel catalytic furnace by a heat conduction transmission line to convey the heat from the heat collecting sphere to the biodiesel Catalytic furnace for production. 〇 13. The system is based on the scope of the patent application! And wherein at least one of the cut surfaces includes at least one optical lens that concentrates radiation to the collection area. 14. The system is based on item 13 of the scope of the patent application, at least one of which is not a > ear lens. 15. The system is in accordance with item 13 of the scope of the patent application, wherein at least one of the lenticular lenses is included.疋 16· The system shoots 13 patents (4), at least the face is composed of one compound eye lenticular lens. 〇 17. The system is in accordance with item 13 of the scope of the patent application, wherein at least one of the tangent planes is a holographic lens.疋α The system is based on the application of patent (4) 13 items, most of which include at least one lens concentrating to the collection area. The system is rooted in the 13th patent range, and the concentrator includes a frame. = The form of the frame is composed of at least part of the structure of the gramminster fullerene molecule (C-60 cyano buckyball). The term 'concentrator' consists of a frame, a head-sealed nanotube structure. 2〇. The system is at least partially in the form of the framework of the scope of the patent application. Double 95 201035505 2. This system is based on the application of the patent festival. "Judgement _ Item 1, the collection frame can be applied to the first part of the patent range by the inflatable tube group 22·=ΓΓΓ, including at least one reflective light guide tube to receive light shot, and the light guide is lightly directed to (four) connected to the t-piece. Light Guide 23: = Application for Patent Fanyuan No. ~ (4) Light guide type retanning type of porous body is connected in the internal parts. 24, = Γ射, please full-time (four) 22, its towel blue light guide, a compound parabolic collector (CPC). Suction 25.: According to the i-th item of the patent application scope, many reflective light guide tubes are connected, and the light-emitting tube has a light guide tube, and the light guide tube receives radiation at each-cut surface to lightly according to the i-th item of the patent application scope, wherein The concentrator collects the face into the light side of the face and can receive the „ below the local horizon direction. w: The radiation incident on each face of the concentrator surface gathers into the collection area in the center of the concentrating state. Light shot of the horizon of the monks. The surface can be collected above or below the local lion's patent scope, item 26, where the collection area is under the 26th item of the collection table - step-by-step - reflection * bit 2 under the wooden surface, Reflecting the radiation back to the collecting surface. :: According to the scope of claim 28, the reflecting surface consists of a concave facing upward reflecting disk. Heart: According to the 26th patent range, the collection surface is collected from 96 201035505 A large amount of radiation in all directions. 31. The system is in accordance with Clause 26 of the scope of the patent application, wherein the collection frame consists of a Buckminster fullerene molecule (carbon-sixty nanometer buckyball) structure. 32. The system is in accordance with item 26 of the scope of the patent application, in which the collection frame consists of a double-tube bundle of nanotube structures. 33. The system is in accordance with item 26 of the scope of the patent application, in which the collection frame consists of an inflatable tube. 34. The system according to claim 26, comprising at least one reflective light guide, receives radiation from any of the collecting sections of the light guide and directs it to the radiation receiver. 35. The system is in accordance with item 34 of the scope of the patent application, in which the reflective light guide is a compound eye and the porous shape is connected at the inner part. 36. The system is in accordance with claim 34, wherein the reflective light guide is a compound parabolic collector. 37. The system further comprises a reflective light guide according to the scope of claim 26, each of which is internally connected with a light guide tube, the light guide tube receives radiation on the cut surface, the bottom of each tube is connected, and the bottom outlet conducts radiation to the radiation receiving Device. 38. The system according to Clause 1 of the patent application further includes a reflecting device lower than the radiation receiver, and the incident light that was initially collected from the collecting surface is reflected back to the radiation receiver at an appropriate distance. 39. The system is in accordance with claim 38, wherein the reflecting means is a concave upwardly facing reflecting disk. 40. The system is based on claim 39, and includes a struts that couple the reflector disk to the radiation receiver and the collection surface and support the radiation receiver and collection surface. 97 201035505 41. The system is based on the 38th scope of the patent application and the light-emitting receiver consists of optoelectronic materials. 42. ^ According to the section of the patent scope, the He acceptor consists of a medium-neutral, and a built-in fluid, which collects radiation from the radiation receiver and the reflective object. 43= According to the scope of the patent application (4), including - an inflatable balloon, the anti-outer wall and the bottom 'at least - part of the top is transparent, in the inflatable balloon, below the radiation receiver, riding the receiver and collecting surface by The top support of the balloon above. There is at least one radiation. 44. The system is based on claim 43. The collection device is a single device. Wherein the reflecting means is located in the gas, wherein the reflecting means reflects the layer wherein 'the balloon is from above" wherein the balloon is from above, wherein there is at least one radiation 45. The system is on the bottom of the ball according to item 43 of the patent application. 46. The system is attached to the inside of the bottom of the balloon according to item 43 of the patent application. 47. The system is generally circular in accordance with item 43 of the scope of the patent application. 48. The system is generally rectangular according to the scope of the patent application. 49. The system consists of the sun, according to the scope of the patent application, item 43, and includes - such as = up and other balloon solar radiation The collector is connected to the system according to claim 43 of the scope of the patent application, wherein the radiant receiver is composed of photoelectric 98 201035505 material, and the solar radiation receiver comprises a converter receiving current from the photoelectric material of the radiation receiver, wherein the converter will The DC power received from the radiation receiver is converted into AC power. 51. The system is further composed of a collection station and a transmission pipe according to the first scope of the patent application, and the pipe is connected to the radiation receiver of the solar radiation collector to the collection station. The radiation collector is heated to form a vapor, which is sent to a collection station by a transmission pipe. The collection station has a turbine and a generator. The steam is introduced into the turbine to drive the turbine blades to rotate to provide torque to power the turbine generator. The turbine The blade can be attached with a film of nano infrared wavelength antenna, which is sucked from steam Can further produce AC power; steam that loses part of the heat can be sent to the tank and further cooled to potable distilled water. 52. The system is in accordance with claim 51, at least one of which contains several identical solar radiation collectors. a solar radiation collector, and further each of the radiation receivers of the solar radiation collector is connected to the central power station by a delivery pipe, wherein the fluid is heated by the radiation collector and sent to the collection station by the transmission channel. q 53. The system is patented Scope 51, wherein the fluid is steam. 54. The system according to the scope of claim 2, further comprising a central power station, a converter (inverter), and first and second transmission lines, the first transmission line will radiate The receiver is connected to the converter, and the second transmission line connects the converter to the central power station, ie the central power station can receive AC power from the solar radiation collector. 55. The system is based on claim 54 of the patent scope, at least There is a solar radiation collector that includes several identical solar radiation collectors, each of which has a sun Radiation collector, supplying AC power to the central power station, and then supplying it to the 99 201035505 grid. 56:= Kang applied for patent scope item 2, and at least one of the solar radiators' includes several identical solar radiation collectors , wherein, a plurality of = yang light, the collector is mounted in an array, and further comprising a radiation receiver from the solar radiation collector of the evening sun, supplying direct current to a converter. 57. Please enter the 56th section of the township, including - cooling system, first ▲ cold system including coolant and pipeline, supply to the multi-face solar radiation collection = radiation receiver, and from the multi-faceted sun The wood harvester removes the superheated coolant. 讥, the system according to claim 57, further includes a reflecting device adjacent to the multi-faceted solar light collector to reflect the incident light incident on the reflecting device to reflect it to the multi-faceted sun Light shot collector. 59. According to the 56th scope of the patent application, wherein the reflecting device reflects the sun-shot to the multi-faceted solar radiation collector, to which the solar light is directed to the light-emitting receiver. Wood surface 6〇. The system according to claim 59, wherein the reflecting means comprises at least 2 reflecting surfaces 'reflecting solar radiation from the person to the reflecting device, and the standing 'reflecting device reflecting too at least two Solar radiation collection device. ^Hai System Radiation Request No. 6 of the patent scope, in which the reflecting means reflects the sun: at least two collecting surfaces on the multi-faceted solar radiation collector, the collecting surface directing the sun to the radiation receiver.砭The system is based on the scope of the patent application, and its/reflecting device is in the golden plaque, which includes four orphaned reflecting surfaces, each of which faces each of the four solar panels 100 201035505 collector collecting surface. 63. The system is in accordance with claim 61, wherein the reflecting means is prismatic and comprises two curved reflecting surfaces, each facing each other with a collecting surface of two solar radiation collectors. 64. The system is based on the 56th scope of the patent application, in which the collecting surface in the multi-faceted solar radiation collector is set to receive solar radiation on the local horizon. 65. The system is based on the 64th scope of the patent application, in which the collecting surface of the multi-faceted solar radiation collector is set to accept solar radiation in any direction. Θ 66. The system is in accordance with claim 56, in which the collection frame of the multi-faceted solar radiation collector adopts the buckyball shape of the Buckminster fullerene molecule. 67. The system is based on claim 66, in which the collection frame of the multifaceted solar radiation collector is in the shape of a buckyball of the Buckminster fullerene molecule. 68. The system is based on the 56th scope of the patent application, in which the collection frame of the multi-faceted solar radiation collector is in the shape of a nanotube with a double-ended beam. 69. The system is based on the 68th scope of the patent application, in which the collection frame of the multi-faceted solar radiation collection Q is in the shape of a nanotube with a double-ended beam. 70. The system is based on claim 56, which includes a panel, multi-faceted solar radiation collector device. 71. The system according to claim 70, further comprising a cooling system mounted in the panel to supply or remove coolant to the radiation receiver of the multi-sided solar radiation collector. 72. The system further comprises a transmission line system mounted on the panel according to claim 70, which collects electricity from a radiation receiver of the multi-sided solar radiation collector. 101 201035505 201035505 'One or more devices 73. The system is a single device according to the scope of the patent application. The system is based on the 73rd scope of the patent application, in which the system consists of equipment. Early - 75. The system is based on the scope of the patent application! Items, including - a collection frame in the form of a - nanotube tube ring, a radiation receiver to form a loop tube, 'the collection area in the center of the collection frame is suspended, the collection frame collection table: the solar radiation to the radiation receiving tube . Husband hunger = system root shot please patent range 75 ^ step (10) ρ part of the new to (four) connected, the liquid is heated into a steam, the second official connected to the worm receiving tube to the turbine, the tube will provide steam = ' On cloudy days or at night, water pipes can be buried under the beach or in the soil layer; the heating method is used to obtain the steam, and then sent to the thirteenth turbine to continue to generate electricity.糸 专利 专利 专利 专利 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 . Among them, the #^ machine, & shavings 79兮", the shoulder-wheel generator of the 产生 generates alternating current power. The system is based on the film of the 77th nano-infrared wavelength antenna of the patent application scope, and the fine blades of the wheel can be heated. , production of AC power supply; lost sucking its infrared light reservoir, who ^. Scythe,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The first thirst engine room receives steam, loses part of _ ^ := animal reservoir, ^ ... month b of 4> fly, further cooling to 102 201035505 drinkable fresh or distilled water, the reservoir is used to cool steam and keep cool Fresh water or steamed water. 81. The system is in accordance with Article 76 of the patent application, in which the liquid is water. 82. The system is in accordance with Article 80 of the scope of application, wherein the liquid entering the radiation receiving tube is brine and the gas is steam. The reservoir cools the steam and stores it as fresh water. 83. The system is in accordance with Article 82 of the patent application, in which the brine is seawater. 84. The system is based on item 2 of the scope of the patent application, one or more The device is a device and further constitutes electrical lighting; the lighting device is connected to the photovoltaic D material to supply illumination from the optoelectronic material current. 85. The system is in accordance with claim 84, wherein the electrical lighting comprises a light emitting diode. The system according to claim 84, further includes a battery, connected to the photovoltaic material and the electric lighting electric lamp wire, that is, the battery can be charged from the photoelectric material, and the electric lighting can obtain the current supply illumination from the battery. 87. The system is patented according to the patent. Scope 86 further includes an electric charging station Q connected to the battery, the electric charging station providing car charging. 88. The system further includes a post for mounting the device according to the scope of claim 86. The system is sealed according to the scope of the patent application, item 86, which is sealed and waterproof so that it can float in water. 90. The system further comprises a reverse astigmatism according to the scope of claim 1 and is added to the outside of the collecting surface. The face is 91. The system is based on the 90th item of the patent application. The step comprises a reverse astigmatism sheet applied to at least one of the outer faces of the collecting surface. 103 201035505 92. The system is based on the first application of the patent scope - an anti-reflective coating consisting of a sample (or two at least one outside of the collecting surface) 93·=^ According to the patent scope of the 92nd system (4) patent application. (including the secret angle - oxidation # nanometer rod composed of reflective coating, its anti-reflective coating), added to the outside of the collection surface at least one section 94. A solar radiation receiver device comprising: - a collection frame support collection surface from a different shot 'collection surface consisting of a plurality of embossed watches attached to the collection frame for a full Γ (four) face " The m-area photo-electric layer is in the surface layer and the holographic lens II-, and the king-image lens is arranged to direct incident radiation to the photovoltaic layer to produce a weeping. 95. The root material of the device (4) is in the middle of the machine.贞-中中电层 is placed in the collection 96. ^ΓΓ Patent Application No. 94, in which the collection surface is set to receive solar radiation from all directions. 4 97. 96 items of the projecting materials (4) were placed below the collection frame. 〃匕 反 先 先 98 98. Z = rf circumference 94th item 'where the collection frame is made of prismatic gas according to this collection frame can have non-inflatable flat and second full item' where the collection surface can not be received 104 201035505 100. - Collecting solar radiation devices, comprising: collecting surfaces that receive radiation from all directions, collecting surfaces in all directions, including lens cuts to direct radiation incident on the lens, into a focal region on the collection surface; within the focal region There is a radiation receiver; a reflecting device is positioned at a suitable distance from the collecting surface to reflect incident light that does not reach the collecting surface to the collecting surface. 101. A device for collecting electromagnetic radiation, comprising: a generator having an input drive shaft, a vane device coupled to the drive shaft and having an output device. The blades constituting the rotary vane device are equipped with a radiation absorbing surface for absorbing radiation and the other surface for reflecting surfaces, transmitting radiant energy to nearby gas molecules, and transmitting energy, causing their vibration and transmitting energy to the energy receiving device, and radiation absorption. And the surface of the reflector and nearby gas molecules, imparting kinetic energy to the blade device, which is responsible for receiving radiation, wherein the energy receiving device has a dark radiant energy absorbing surface on one side and a reflector reflecting surface on one side; at least part of the radiation absorbing surface contains photoelectric The conversion material 'converts incident solar light into direct current. 102. The device according to claim 101, further comprising a generally transparent vacuum container through which solar radiation can pass; the blade device being fixed in the container. 103. The system is in accordance with claim 101, wherein the blade is a double helix around the central axis that is parallel to the drive shaft of the generator. 104. The apparatus according to claim 101, wherein the blade means is two intertwined helical blades around the central axis, parallel to the drive shaft of the generator; the radiant energy of the blades absorbs the black faces all in the same direction Around the output 105 201035505 out of the device. 105. The device is placed according to the scope of the patent application, item 1G2, and is positioned outside the container, and the guide is directed through the container to reach the leaf 106. - the device for collecting electromagnetic radiation, including ··, = motor has one input transmission The shaft '--blade device is connected to the transmission vehicle and has an output device, which constitutes the blade of the rotating blade I. The device has a light-absorbing surface that absorbs the light beam, and the other surface is a reflecting surface, and transmits the wheel to the nearby energy. Gas molecules, and transmit energy, causing their vibration amount to Γ source receiving device 'radiation absorber and reflector surface body molecules, imparting kinetic energy to the blade device 1 to receive light shots, wherein the energy receiving device - has a dark color The radiant energy absorbing surface, the reflector reflecting surface, is generally in a transparent vacuum vessel, the solar light blade device is fixed in the cavity 11 'reflecting device, positioned below the outside of the valley, guiding the radiation through the container to the blade 107. The device is in accordance with patent application 106, wherein the blade device is two intertwined helical blades surrounding the center vehicle, flattening with the drive shaft of the generator The device is jumped according to the patent application scope 107, wherein the blade device is two intertwined spiral blades surrounding the green central axis, and the transmission shaft of the generator is milled, and the light energy of the tea piece absorbs the black surface. Towards the same output device. Court, "° 109.—Collect solar radiation devices, including: a collection surface that receives radiation from multiple directions, a guide to a diffractive device that separates the radiation from the first set of wavelengths, To the first group of energy conversions, and then the second group of wavelengths to the second energy conversion device; wherein the 106th 201035505-group energy conversion device can be the first group of wavelengths of another form of 铱吾·牮丨? The field shot is converted to "eight-two source conversion to set the energy of the second set of wavelengths to convert radiation into another form." The device is based on the patent application No. 1Q9, its visible wavelength, and the second group is the infrared wavelength. Shooting the first group of 疋 m. The device is rooted in the patent range. The u device consists of photovoltaic materials. ,, the first group-group energy conversion ο ία The device is in accordance with the scope of the patent application (1), the device is a plate, which can be twisted by infrared light. Brother—,, “Source Conversion (1) Please apply for the 112th scope of the patent, in which the second group of energy conversion electricity. 〃 l 1 Infrared light slope length nano antenna, infrared light irradiation will send 114:; = profit range 109th , wherein the diffractive device is separated from the second region of the same area below the third and the first region is separated. The second region is separated, and the first group of energy conversion devices are in the first region - the energy conversion device is in the second District, 115. According to the scope of patent application No. 1-9, the street shooting equipment (high color = non-alum lens) separates the first group of wavelengths to the first area below, and then the second field. Long to the lower and the first area of the first-north line on the vertical line. The first group of energy conversion devices are in the first focus area, and the second group of energy conversion devices are in the second focus area. 116. = device according to the patent application scope Item 1-9, wherein the lens can shoot the incident light and then cut out the second set of wavelengths to the third energy conversion device, wherein the 107th 201035505 three sets of energy conversion devices can convert at least part of the third set of wavelengths into another a form of energy. 117. The device According to claim 116, wherein the lens can diffract the incident light, and then divide the fourth group of wavelengths to the fourth energy conversion device, wherein the fourth group of energy conversion devices can convert at least part of the fourth group of wavelengths into another A form of energy. 118. The device is in accordance with claim 117, wherein the first set of wavelengths is a high energy energy difference group, ie wavelength > 300 nm (nanometer) <680 nm (equivalent to having a photon energy range) <3.2 electron volts (eV) > approximately 1.88 eV) (1 electron volt = 1.60217646 X 10-19 joules) ° 119. The device is in accordance with claim 118, wherein the first energy conversion device can be filled Avid film optoelectronics. 120. The device is in accordance with claim 118, wherein the wavelength of the second group is the energy difference group in the middle, ie the wavelength is >680 nm, <900 nm (equivalent to about having a photon energy range) <1.5 £乂 to > approximately 1.4 eV). 121. The device is in accordance with claim 120, wherein the second set of energy conversion devices may be indium gallium arsenide photovoltaic wafers. 122. The device is in accordance with the 120th scope of the patent application, wherein the wavelength of the third group is in the range of low energy energy difference groups, ie the wavelength is >900 nm to <1800 nm (equivalent to having a photon energy range) <1.1 EV to about > 0.7 electron volts). 123. The device is in accordance with claim 122, wherein the third energy conversion device can be a germanium, gallium antimonide, or indium phosphide optoelectronic wafer. 108 201035505 124. The device is in accordance with the scope of claim 122, wherein the wavelength in the fourth group is in the range of the infrared energy difference group, that is, the wavelength is from 3 micrometers to 15 micrometers. 125. The device is in accordance with claim 124, wherein the fourth energy conversion device can be an infrared light nanometer antenna that converts infrared light into alternating current. 126. The apparatus is in accordance with claim 124, wherein the fourth energy conversion device is a thermosonic piezoelectric wafer. 127. The device is in accordance with claim 124, wherein the fourth energy conversion device can be a quantum tunnel wafer. 〇 128. The device according to claim 109, wherein the collecting surface is a reverse astigmatism sheet, which will likely change the incident radiation from a plurality of directions into an incident angle perpendicular to the collecting surface. 129. The device according to claim 109, wherein the diffractive device is a holographic lens that splits the incident light out of the first set of wavelengths to the first set of energy conversion devices; and the second set of wavelengths to the second energy Conversion device. 130. The device is in accordance with claim 129, wherein the first group of wavelengths is mostly Q visible light, the second group of wavelengths is mostly infrared radiation, the first group of energy conversion devices is an optoelectronic wafer, and the second energy conversion device is A substrate having a good thermal conductivity, and the photovoltaic cell wafer is located in the center of the plate, under the lens. 131. The device according to claim 130, wherein the photovoltaic wafer and the bottom plate are separated by a thermally conductive non-conductive chemical plate (the oxidized wrinkles of the alkaline earth metal are ten times faster than the metal conduction, or the cheap resin, etc.). 132. The device is in accordance with Article 131 of the patent application, in which the dielectric material has good thermal conductivity, so that the heat generated by the photovoltaic wafer is quickly transferred to the 109 201035505 plate. 133. The device is in accordance with claim 114, wherein the optoelectronic wafer is located in the center of the bottom plate. 134. The device is in accordance with claim 109, wherein the diffractive device is a holographic lens. 135. The device is in accordance with claim 109, wherein the diffraction device is a diffraction grating. 136. The device is in accordance with claim 109, wherein the diffractive device is a Philippine lens. 137. The device is in accordance with claim 109, wherein the diffractive device is a dichroic prism. 138. The device is in accordance with claim 109, wherein the diffractive device is a trichromatic prism. 139. A process provides a three-dimensional structure, the outer layer of which can receive radiation and convert the radiation into electrical energy; the steps of: determining the outer surface shape of the three-dimensional structure, the computer graphics software can draw the different materials of the outer covering material The slice shape, and then use a computer graphics machine to slice the different shapes of the slice to print the film photoelectric layer onto the tape material, and another computer cutting machine cuts the slice printed with the film photoelectric layer, and the tape material has self-adhesive back The glue, the different shape of the slice is attached to the outer surface of the appropriate portion, at least a part of the outer surface of the three-dimensional structure has been attached with a thin film photovoltaic layer. 140. The process is in accordance with Section 139 of the patent application, and a further step is to print the circuit to a squeegee material printed with a thin film photovoltaic layer. 141. The process is based on claim 139, and a further step is to connect the set of 110 201035505 thin film photovoltaic devices to the battery pack. Η 2. This process has a self-adhesive adhesive according to the patent application. *Medium squeegee tape material 143. This process is based on the 139th article of the patent application, the step of attaching the appropriate part of the appearance of the three-dimensional structure. , 5 shape cutting process root shot material township _ 139 items, its ride. , , , and D construct a ο 145. The process is based on the scope of the patent application, item 139, 苴 construction. "中—,、,隹... is a 146. The building consists of walls and roofs—a layer of thin 臈 127m ^ film, attached to at least four walls — and the outer U of the roof of the U. 147. M material, (4) county electrical layer or not (four) long 3 = a small part of the appearance, where photoelectricity _ or different wavelength = no antenna 溥 film layer generates current for the ride. Not ❹ 148. ^Hai travel according to the scope of patent application No. 147, which is a car 149. A ride, including: body, light equipment. The roof is equipped with a sun-collecting device that can collect the sun from multiple directions according to the scope of the patent application No. 149, in which the sun lucky shot collection bite includes a frame support collecting surface, the collecting surface includes a multi-lens cut surface To the focal position in the collection surface, the light receiver is located there. (5). The rider's root shot is required to cover the 15th () item. According to the patent application 150', which contains a photoelectric receiver, the solar radiation generates current from the lens cut surface. § /, the board according to the scope of claim 149, which is the body of the Luhang vehicle. 153. ^The vehicle is in accordance with item 149 of the patent scope, which is the ship of the water boat. 154. The harness is in accordance with item (4) of the patent application scope, and the towel is an empty towel aircraft machine 1=· Patent No. 154, which is a device for the spacecraft body to collect the sun, including: - a purely set watch S, a ^ balloon "many flat cuts are joined at their edges to form a thin film photovoltaic material or Nano-antenna films of different wavelengths, permanent receivers, = shots combined at their edges to form solar radiation to convert their radiation into direct current. 15 7 · 5 Hai device according to the Shenshi main Kui-sonic wave: two-in-one, so that the collecting surface can maintain its balloon shape. The knife blade is closely read 158. The device is sealed according to the patent application form, and the medium cut piece is connected and expanded to maintain the balloon surface. The surface of the 5_ surface is maintained as aeration 159. The device is based on Application | Pentagonal and 20 pieces of horns 156th of which cut bread (four) pieces (10). The device directly synthesizes the shape of the base ball according to ^. Claim 156 of the patent scope, in which the eye-shaped sheet 'joins into a beach ball shape. The mid-section consists of 12 pieces. 161. The device is called the 156th item according to the application, wherein the cut surface comprises 20 pieces of 112 201035505 triangle pieces of the same size and shape, joined into an icosahedron shape. 162. The apparatus according to claim 156, further comprising a concave upward reflecting disk, a support supporting the balloon, the shaped collecting surface being above the reflecting disk, such that incident radiation may be reflected from the reflecting disk to the collecting surface. 163. The device is in accordance with section 162 of the patent application, in which a wire has a wire connecting the collecting surface to a reflector disk that carries current from the collecting surface down the pillar to the bottom of the reflecting disk. 164. A building consists of a wall and a roof, and further comprising a collection surface mounted on the roof D, collecting radiation from multiple directions, and guiding the radiation receiver; wherein the radiation receiver comprises a further solar radiation beam splitting device that radiates solar radiation Separated into visible light, infrared light, and the like. 165. The building is based on Section 164 of the patent application, in which visible light is directed to photovoltaic wafers for power generation. 166. The building is in accordance with section 164 of the scope of the patent application, in which visible light is directed to the interior lighting unit to provide indoor lighting. 0 167. The building is in accordance with claim 164, wherein the infrared light guides to the hollow thermally conductive metal ball from which it absorbs thermal energy and further transfers the thermal energy to the interior by a copper line or other highly thermally conductive material encased in the insulated electric iron. The stove is eaten. 168. The building is in accordance with Section 164 of the patent application, in which infrared light is used to heat a liquid and further transports the heated liquid through a pipe to a heat exchanger to provide a building air conditioner. 169. The building is in accordance with Section 164 of the patent application, in which the spectroscope further separates the ultraviolet portion of the solar radiation. 113 201035505 The building is based on the scope of the patent application! 6 Lead to the ultraviolet wavelength photoelectric to generate electricity, for the external part can be 171. The building is guided to the fluorescent lamp according to the 169th paste (optical fiber) of the patent application scope, and the powder is connected to produce visible light. It eliminates the need for a dual step of energizing the fluorescent lamp to activate the UV light. 7 "2. - A stove, including: a solar radiation collection from multiple directions to collect the sun light and lead to a light-emitting receiver: mention: the temperature of the wheel receiver; transmission pipe by high thermal conductivity: 2 coefficient material The outer casing is composed of a heating device, and the heating device is placed in the same type: the second, through the transmission pipe (four) high thermal conductivity material material heat energy to the device, and the heating device obtains heat energy heating from the transmission pipe. π The furnace is in accordance with the patent application scope 172 The radiation receiver is a hollow sphere made of a surface thermal conductivity copper alloy, and the high thermal conductivity material of the transmission pipeline is also a copper alloy. m. The furnace is further included in the apparatus according to the item m of the patent application scope. The control hinge on the frame of the stove can selectively connect the transfer pipe to the heating device. Π 5. The stove is in accordance with the 172th patent application scope, wherein the heating device includes the first and second heating concentric circles The loop kit is juxtaposed and further includes a control hub on the frame that selectively connects one or two sub-concentric loops to the main transfer conduit. 176. δ海炉具 according to the scope of patent application No. 175, in which the first and the second group of the same ~ circle circle, each with a set of concentric radius of the concentric circle; each group 114 201035505 concentric circle interval juxtaposed 177. Buildings consist of walls and roofs, which include a solar radiation collection device that collects solar radiation from multiple directions and directs it to a radiation receiver that converts solar radiation into a useful form of energy. The building is in accordance with Section 177 of the patent application scope, in which the radiation receiver uses the solar radiation to generate electricity for construction. 179. The building is in accordance with the scope of claim 177, wherein the radiation receiver uses the radiation to heat the liquid. For construction. 〇180. The building is in accordance with Article 177 of the patent application, wherein the liquid is water, and the building further includes a hot water supply piping system that receives hot water from the radiation receiver. 181. The building is patented Scope No. 179, in which the liquid circulates the building through indoor piping to provide heating for the building. 182. The building According to Article 177 of the patent application, the collection equipment is similar to the roof of the mountain. 0 183. The building is based on the 177th patent application scope, and the collection equipment is similar to the semi-cylindrical roof. 184. The building is based on the 177th patent application scope. The radiation receiver uses solar radiation to heat a medium for use in building fixtures. 185. The building is in accordance with Section 177 of the patent application, wherein the collection device is a Fresnel lens dome. 186. The building is based on the scope of the patent application. Item 177, wherein the collection device comprises a collection frame supporting a collection surface having a plurality of lens sections, wherein the collection frame has a appearance similar to a half of a Buckminster fullerene molecule. 115 201035505 187. The building is in accordance with Section 177 of the scope of the patent application, in which the collection equipment comprises a collection frame support, a collection surface with a plurality of lens sections, and a collection frame that looks like a half nanotube molecule. 188. The building is based on the scope of the patent application, item 187, which has a collection frame that resembles a nanotube tube with a half tube at both ends. 189. Portable solar radiation collection roof, collection frame support The collection surface for collecting solar radiation from multiple directions, the receiving surface having a plurality of sections that direct the solar radiation to a light-emitting reception consisting of photovoltaic materials. =. 190. A high-top collection of solar radiation suspended above the road, including a collection frame, supporting a collection surface with a plurality of lens sections, collecting solar radiation from multiple directions to a long string of optoelectronic wafers to generate DC power; Connected to the converter to convert DC power to AC power. 191. The building is based on the scope of the patent application, item 190, which contains a collection frame that looks like a half nanotube molecule. 192. The building is based on Section 190 of the patent application and further includes a set of roadside structures that support the collection frame on both sides of the road across the road. 193. The building is based on Section 190 of the patent application and further includes the electric vehicle charging station receiving power from the converter. 194. A beach umbrella that collects solar radiation, supported by a mast to collect the umbrella surface, wherein there are a plurality of face-receiving surfaces that collect solar radiation from multiple directions; the receiving surface 'lights the sun to a light consisting of photovoltaic materials The receiver is launched to generate DC power. 19 5. The beach umbrella further comprises a multi-directional compound eye radiation concentrator according to the scope of patent application No. 194, each of which has a concentrating cylinder, which is directly radiated by the sun to the radiation receiver. 196. The beach umbrella is in accordance with claim 194, wherein the concentrating tube is a reflective light guide tube, or a beach umbrella for collecting solar radiation, supported by a mast to collect the umbrella surface with a photoelectric film or a nanometer of different wavelengths. The antenna film generates electricity. ❹ 117
TW098110012A 2009-03-26 2009-03-26 Solar radiation collection systems TW201035505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098110012A TW201035505A (en) 2009-03-26 2009-03-26 Solar radiation collection systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098110012A TW201035505A (en) 2009-03-26 2009-03-26 Solar radiation collection systems

Publications (1)

Publication Number Publication Date
TW201035505A true TW201035505A (en) 2010-10-01

Family

ID=44855851

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098110012A TW201035505A (en) 2009-03-26 2009-03-26 Solar radiation collection systems

Country Status (1)

Country Link
TW (1) TW201035505A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI427250B (en) * 2011-07-12 2014-02-21 Univ Nat Pingtung Sci & Tech Buoyancy solar power generator
CN104218876A (en) * 2013-05-30 2014-12-17 王钦戊 Solar light-heat separator and power generation mechanism using light-heat separator
TWI484115B (en) * 2012-08-31 2015-05-11 George Uh-Schu Liau A photovoltaic case
TWI506236B (en) * 2012-08-16 2015-11-01 Atomic Energy Council Solar cell power-saving device
GB2528742A (en) * 2014-05-01 2016-02-03 Richard Wakefield An electrical energy generator
TWI603117B (en) * 2015-01-16 2017-10-21 國立中央大學 Solar energy systems for lighting and thermal-electric power generation
TWI690147B (en) * 2018-12-11 2020-04-01 財團法人國家實驗研究院 Light collecting device and method with power generation and farming crops demand
TWI746521B (en) * 2016-02-22 2021-11-21 美國密西根州立大學 Compound parabolic concentrator, stacked compound parabolic concentrator and method of manufacturing a compound parabolic concentrator having a desired shape

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI427250B (en) * 2011-07-12 2014-02-21 Univ Nat Pingtung Sci & Tech Buoyancy solar power generator
TWI506236B (en) * 2012-08-16 2015-11-01 Atomic Energy Council Solar cell power-saving device
TWI484115B (en) * 2012-08-31 2015-05-11 George Uh-Schu Liau A photovoltaic case
CN104218876A (en) * 2013-05-30 2014-12-17 王钦戊 Solar light-heat separator and power generation mechanism using light-heat separator
CN104218876B (en) * 2013-05-30 2017-07-07 王钦戊 Use the generating mechanism of light heat separator
GB2528742A (en) * 2014-05-01 2016-02-03 Richard Wakefield An electrical energy generator
GB2528742B (en) * 2014-05-01 2017-12-13 Wakefield Richard An electrical energy generator
TWI603117B (en) * 2015-01-16 2017-10-21 國立中央大學 Solar energy systems for lighting and thermal-electric power generation
TWI746521B (en) * 2016-02-22 2021-11-21 美國密西根州立大學 Compound parabolic concentrator, stacked compound parabolic concentrator and method of manufacturing a compound parabolic concentrator having a desired shape
TWI690147B (en) * 2018-12-11 2020-04-01 財團法人國家實驗研究院 Light collecting device and method with power generation and farming crops demand

Similar Documents

Publication Publication Date Title
TW201035505A (en) Solar radiation collection systems
WO2009105587A2 (en) Solar radiation collection systems
US20140366929A1 (en) System and method for solar energy utilization
CA2698367C (en) Concentrated solar system
US7612735B2 (en) Multi-function field-deployable resource harnessing apparatus and methods of manufacture
US7453167B2 (en) Solar windmill
US8378621B2 (en) Integrated systems for harnessing solar and wind energy
US20060193066A1 (en) Concentrating solar power
US9169832B2 (en) Ground high-temperature high-efficiency solar steam electricity-generating device
US10378519B1 (en) Method for generating electrical power using a solar chimney having an inflatable fresnel lens
CN1214222C (en) Solar energy/rain water electricity generating and air conditioning system
WO2006044949A2 (en) Multi-function field-deployable resource harnessing apparatus and method of manufactures
US20160315583A1 (en) Solar water-collecting, air-conditioning, light-transmitting and power generating house
Asif et al. Solar thermal technologies
CN109463017A (en) Interval and the photovoltaic system for continuously recycling light
US20110203636A1 (en) Solar panels for receiving scattered light
CN101561553A (en) System for turning focused sunlight spots into parallel light capable of being transmitted at high density in any direction
US20100186797A1 (en) Solar Leaves and Solar Tree Forest - A Solution for Energy Crisis
WO2017063603A1 (en) Plane-erected wind-solar-electric-heat energy multiplier
RU2199704C2 (en) Heliopower plant
GB2478279A (en) Solar chimney which may re-circulate air
JPH10318122A (en) Generator and lighting device using sunlight
Yadhunath Move off the grid
JP2021534722A (en) Solar energy collector with tree structure
CN1172236A (en) Electric power generating and refrigerating system by using solar energy-semiconductor electric effect of temp difference