JP2018065907A - タイヤトレッド用ゴム組成物の製造方法およびタイヤ - Google Patents

タイヤトレッド用ゴム組成物の製造方法およびタイヤ Download PDF

Info

Publication number
JP2018065907A
JP2018065907A JP2016204458A JP2016204458A JP2018065907A JP 2018065907 A JP2018065907 A JP 2018065907A JP 2016204458 A JP2016204458 A JP 2016204458A JP 2016204458 A JP2016204458 A JP 2016204458A JP 2018065907 A JP2018065907 A JP 2018065907A
Authority
JP
Japan
Prior art keywords
group
silica
modified
sbr
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016204458A
Other languages
English (en)
Inventor
栄 大窪
Sakae Okubo
栄 大窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2016204458A priority Critical patent/JP2018065907A/ja
Publication of JP2018065907A publication Critical patent/JP2018065907A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】シリカと相互作用を持つ官能基により変性された変性スチレンブタジエンゴム(SBR)および当該変性SBR以外のゴム成分を含むにもかかわらず、全ゴム成分中にシリカを均一に分散させることができるゴム組成物の製造方法を提供すること。
【解決手段】シリカと相互作用を持つ官能基により変性された変性SBRおよび前記変性SBR以外のゴム成分、シリカおよびシランカップリング剤を含有するタイヤトレッド用ゴム組成物を、前記変性SBR以外のゴム成分、シリカの一部または全部、およびシランカップリング剤の一部または全部を混練りする工程1、ならびに工程1で得られた混練物、前記変性SBR、シリカの残部、およびシランカップリング剤の残部を混練りする工程2を含むタイヤトレッド用ゴム組成物の製造方法。
【選択図】なし

Description

本発明は、タイヤトレッド用ゴム組成物の製造方法、および該製造方法で製造されたゴム組成物により構成されたタイヤトレッドを有するタイヤに関する。
近年のタイヤトレッド用ゴム組成物は、ウェットグリップ性と転がり抵抗特性を両立するため、シリカと相互作用を持つ官能基により変性された変性ゴム、シリカおよびシランカップリング剤を含有するゴム組成物とすることが主流となっている。
しかし、前記変性ゴムおよび他のゴム成分を含むゴム成分、シリカならびにシランカップリング剤を含有するゴム組成物とする場合、大量のシリカを一度に混練するとシリカが凝集し、シリカの分散性が悪化するという問題がある。また、全ゴム成分とシリカとを同時に混練すると前記変性ゴム中に多くのシリカが偏在し、シリカの分散性が悪化するという問題がある。なお、シリカの分散性が悪化すると、期待されるゴム物性が十分に発揮されない。
特許文献1には、末端が変性されたスチレンブタジエンゴムとシリカとの混練方法が記載されているが、末端が変性されたスチレンブタジエンゴムに対するシリカの分散性の向上が検討されているに過ぎず、他のゴム成分に対するシリカの分散については考慮されていない。また、ゴム成分を2回以上の混練工程に分けて投入することについても考慮されていない。
特開2011−213954号公報
本発明は、シリカと相互作用を持つ官能基により変性された変性スチレンブタジエンゴム(SBR)および当該変性SBR以外のゴム成分を含むにもかかわらず、全ゴム成分中にシリカを均一に分散させることができるゴム組成物の製造方法を提供することを目的とする。
すなわち、本発明は、シリカと相互作用を持つ官能基により変性された変性SBRおよび前記変性SBR以外のゴム成分を含むゴム成分100質量部に対して10〜150質量部のシリカ、およびシリカ100質量部に対して1〜20質量部のシランカップリング剤を含有するタイヤトレッド用ゴム組成物の製造方法であり、
前記変性SBR以外のゴム成分、シリカの一部または全部、およびシランカップリング剤の一部または全部を混練りする工程1、ならびに
工程1で得られた混練物、前記変性SBR、シリカの残部、およびシランカップリング剤の残部を混練りする工程2を含むタイヤトレッド用ゴム組成物の製造方法に関する。
前記変性SBR以外のゴム成分が、BR、未変性SBRおよび前記変性SBR以外の変性SBRからなる群から選ばれる少なくとも1種以上のゴム成分のみからなるゴム成分であることが好ましい。
また、本発明は前記いずれかの製造方法で製造されたゴム組成物により構成されたトレッドを有するタイヤに関する。
本発明のゴム組成物の製造方法によれば、シリカと相互作用を持つ官能基により変性された変性SBRおよび前記変性SBR以外のゴム成分を含むにもかかわらず、全ゴム成分中にシリカが均一に分散したゴム組成物を製造することができる。
本発明は、シリカと相互作用を持つ官能基により変性された変性SBRおよび前記変性SBR以外のゴム成分を含むゴム成分100質量部に対して10〜150質量部のシリカ、およびシリカ100質量部に対して1〜20質量部のシランカップリング剤を含有するタイヤトレッド用ゴム組成物の製造方法であり、前記変性SBR以外のゴム成分、シリカの一部または全部、およびシランカップリング剤の一部または全部を混練りする工程1、ならびに工程1で得られた混練物、前記変性SBR、シリカの残部、およびシランカップリング剤の残部を混練りする工程2を含むことを特徴とする。
ゴム成分
本発明に係るゴム成分は、シリカと相互作用を持つ官能基により変性された変性SBRを含むことを特徴とする。本発明における「シリカと相互作用を持つ官能基により変性された変性SBR」とは、SBRの主鎖中もしくは主鎖の少なくとも一方の末端、または主鎖中および末端にシリカと相互作用を持つ官能基を有するSBRである。より具体的には、例えば、SBRの少なくとも一方の末端を窒素、酸素、およびケイ素からなる群より選択される少なくとも1種の原子を含む官能基を有する化合物(変性剤)で変性された末端変性SBRや、主鎖に前記官能基を有する主鎖変性SBRや、主鎖および末端に前記官能基を有する主鎖末端変性SBR等が挙げられる。
前記変性SBRを構成するSBRとしては特に限定されず、乳化重合により得られる乳化重合SBR(E−SBR)、溶液重合により得られる溶液重合SBR(S−SBR)などが挙げられる。
前記変性剤としては、例えば、アミノ基、アミド基、アルコキシシリル基、イソシアネート基、イミノ基、イミダゾール基、ウレア基、エーテル基、カルボニル基、カルボキシル基、ヒドロキシル基、ニトリル基、ピリジル基などの官能基を有する変性剤が挙げられる。なかでも、下記式(1)で表される化合物を変性剤として変性させた変性SBRが、低燃費性、破壊強度および耐亀裂成長性に優れるという理由から好ましい。
Figure 2018065907
前記式(1)で表される化合物において、R1、R2およびR3は、同一もしくは異なって、アルキル基、アルコキシ基、シリルオキシ基、アセタール基、カルボキシル基(−COOH)、メルカプト基(−SH)またはこれらの誘導体を表す。
前記アルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、t−ブチル基などの炭素数1〜4のアルキル基などが挙げられる。
前記アルコキシ基としては、例えば、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、t−ブトキシ基などの炭素数1〜8のアルコキシ基(好ましくは炭素数1〜6、より好ましくは炭素数1〜4)などが挙げられる。なお、アルコキシ基には、シクロアルコキシ基(シクロヘキシルオキシ基などの炭素数5〜8のシクロアルコキシ基など)、アリールオキシ基(フェノキシ基、ベンジルオキシ基などの炭素数6〜8のアリールオキシ基など)も含まれる。
前記シリルオキシ基としては、例えば、炭素数1〜20の脂肪族基、芳香族基が置換したシリルオキシ基(トリメチルシリルオキシ基、トリエチルシリルオキシ基、トリイソプロピルシリルオキシ基、ジエチルイソプロピルシリルオキシ基、t−ブチルジメチルシリルオキシ基、t−ブチルジフェニルシリルオキシ基、トリベンジルシリルオキシ基、トリフェニルシリルオキシ基、トリ−p−キシリルシリルオキシ基など)などが挙げられる。
前記アセタール基としては、例えば、−C(RR’)−OR”、−O−C(RR’)−OR”で表される基を挙げることができる。前者としては、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、イソプロポキシメチル基、t−ブトキシメチル基、ネオペンチルオキシメチル基などが挙げられ、後者としては、メトキシメトキシ基、エトキシメトキシ基、プロポキシメトキシ基、i−プロポキシメトキシ基、n−ブトキシメトキシ基、t−ブトキシメトキシ基、n−ペンチルオキシメトキシ基、n−ヘキシルオキシメトキシ基、シクロペンチルオキシメトキシ基、シクロヘキシルオキシメトキシ基などが挙げられる。
1、R2およびR3は、ゴム組成物の低発熱性およびゴム強度が好適に両立できるという点から、アルコキシ基が好ましく、メトキシ基がより好ましい。
前記式(1)で表される化合物において、R4およびR5は、同一もしくは異なって、水素原子またはアルキル基を表す。
4およびR5のアルキル基としては、例えば、前記アルキル基と同様の基を挙げることができる。
4およびR5は、ゴム組成物の低発熱性およびゴム強度が好適に両立できるという点から、アルキル基が好ましく、炭素数1〜3のアルキル基がより好ましく、炭素数1〜2のアルキル基がさらに好ましく、メチル基が最も好ましい。
前記式(1)で表される化合物において、nは整数を表す。nはゴム組成物の低発熱性およびゴム強度が好適に両立できるという点から、1〜5の整数が好ましく、2〜4の整数がより好ましく、3がさらに好ましい。nが0の場合はケイ素原子と窒素原子との結合が困難であり、また、nが6以上の場合は変性剤としての効果が薄れる傾向がある。
変性剤によるSBRの変性方法としては、特公平6−53768号公報、特公平6−57767号公報等に記載されているジエン系ゴム変性方法等、従来公知の手法を用いることができる。例えば、SBRと変性剤とを接触させればよく、調製した重合体溶液中に変性剤を投入して反応させる方法等が挙げられる。
前記変性SBRの結合スチレン量は、十分なグリップ性能を得るという観点から、5質量%以上が好ましく、7質量%以上がより好ましい。また、前記変性SBRの結合スチレン量は、低燃費性の観点から30質量%以下が好ましく、26質量%以下がより好ましい。なお、本明細書におけるSBRの結合スチレン量は、1H−NMR測定により算出される値である。
本発明に係るゴム成分は、前記変性SBR以外のゴム成分を含む。前記変性SBR以外のゴム成分としては、通常のトレッド用ゴム組成物に用いられるゴム成分であれば特に限定されず、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、未変性SBR、前記SBR以外の変性SBR、スチレンイソプレンブタジエンゴム(SIBR)、エチレンプロピレンジエンゴム(EPDM)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)などが挙げられる。これらのジエン系ゴムは単独で用いてもよく、2種以上を組み合わせて用いてもよい。なかでも、本発明の効果をより良好に発揮できるという理由から、前記変性SBR以外のゴム成分は、BR、未変性SBR、および前記変性SBR以外の変性SBRからなる群から選ばれる少なくとも1種以上のみからなるゴム成分とすることが好ましい。
前記BRとしては、ハイシス1,4−ポリブタジエンゴム(ハイシスBR)、1,2−シンジオタクチックポリブタジエン結晶を含むブタジエンゴム(SPB含有BR)、末端および/または主鎖が変性された変性BR、スズ、ケイ素化合物などでカップリングされた変性BR(縮合物、分岐構造を有するものなど)などの各種BRを用いることができる。
前記ハイシスBRとは、シス1,4結合含有率が90質量%以上のブタジエンゴムである。このようなハイシスBRとして、例えば、JSR(株)製のBR730、日本ゼオン(株)製のBR1220、宇部興産(株)製のBR130B、BR150Bなどが挙げられる。
前記SPB含有BRは、1,2−シンジオタクチックポリブタジエン結晶が、単にBR中に結晶を分散させたものではなく、BRと化学結合したうえで分散しているものが挙げられる。このようなSPB含有BRとしては、宇部興産(株)製のVCR−303、VCR−412、VCR−617などが挙げられる。
末端および/または主鎖が変性された変性BRとしては、前記変性SBRと同様に、シリカと相互作用を持つ官能基により変性された変性BRなどが挙げられる。
前記スズ、ケイ素化合物などでカップリングされた変性BRとしては、リチウム開始剤により1,3−ブタジエンの重合をおこなったのち、スズ化合物を投入することにより得られ、さらに変性BR分子の末端がスズ−炭素結合で結合されたスズ変性BRなどが挙げられる。このようなスズ変性BRとしては、例えば、日本ゼオン(株)製のBR1250Hなどが挙げられる。
これらの各種BRの中でも、耐摩耗性の向上効果が高いという理由からハイシスBRを用いることが好ましい。
前記未変性SBRとしては、前述の乳化重合により得られる乳化重合SBR(E−SBR)、溶液重合により得られる溶液重合SBR(S−SBR)が挙げられる。また、前記変性SBR以外の変性SBRとしては、前述の変性剤以外の変性剤により、主鎖および/または末端が変性された変性SBRなどが挙げられる。
シリカ
前記シリカは特に限定されず、タイヤ工業において一般的なものを使用することができる。例えば、乾式法シリカ(無水ケイ酸)、湿式法シリカ(含水ケイ酸)などが挙げられるが、シラノール基が多いという理由から、湿式法シリカが好ましい。
シリカの窒素吸着比表面積(N2SA)は、破壊強度の観点から40m2/g以上が好ましく、50m2/g以上がより好ましく、100m2/g以上がさらに好ましく、130m2/g以上が特に好ましく、160m2/g以上が最も好ましい。また、シリカのN2SAは、低燃費性や加工性の観点から500m2/g以下が好ましく、300m2/g以下がより好ましく、250m2/g以下がさらに好ましく、200m2/g以下が特に好ましい。なお、本明細書におけるシリカのN2SAは、ASTM D3037−81に準じてBET法で測定される値である。
シリカの合計含有量(全投入量)は、低燃費性およびウェットグリップ性の観点からゴム成分100質量部に対して10質量部以上であり、20質量部以上が好ましく、30質量部以上がより好ましく、40質量部以上がさらに好ましい。また、シリカの合計含有量は、充填剤のゴム成分への分散性や加工性の観点から150質量部以下であり、120質量部以下がより好ましく、100質量部以下がさらに好ましい。
シランカップリング剤
シランカップリング剤としては、従来公知のシランカップリング剤を用いることができ、例えば、ビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビス(2−トリエトキシシリルエチル)テトラスルフィド、ビス(4−トリエトキシシリルブチル)テトラスルフィド、ビス(3−トリメトキシシリルプロピル)テトラスルフィド、ビス(2−トリメトキシシリルエチル)テトラスルフィド、ビス(4−トリメトキシシリルブチル)テトラスルフィド、ビス(3−トリエトキシシリルプロピル)トリスルフィド、ビス(2−トリエトキシシリルエチル)トリスルフィド、ビス(4−トリエトキシシリルブチル)トリスルフィド、ビス(3−トリメトキシシリルプロピル)トリスルフィド、ビス(2−トリメトキシシリルエチル)トリスルフィド、ビス(4−トリメトキシシリルブチル)トリスルフィド、ビス(3−トリエトキシシリルプロピル)ジスルフィド、ビス(2−トリエトキシシリルエチル)ジスルフィド、ビス(4−トリエトキシシリルブチル)ジスルフィド、ビス(3−トリメトキシシリルプロピル)ジスルフィド、ビス(2−トリメトキシシリルエチル)ジスルフィド、ビス(4−トリメトキシシリルブチル)ジスルフィド、3−トリメトキシシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、3−トリエトキシシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、2−トリエトキシシリルエチル−N,N−ジメチルチオカルバモイルテトラスルフィド、2−トリメトキシシリルエチル−N,N−ジメチルチオカルバモイルテトラスルフィド、3−トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3−トリエトキシシリルプロピルベンゾチアゾールテトラスルフィド、3−トリメトキシシリルプロピルメタクリレートモノスルフィドなどのスルフィド基を有するシランカップリング剤;3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、2−メルカプトエチルトリメトキシシラン、2−メルカプトエチルトリエトキシシランなどのメルカプト基を有するシランカップリング剤;ビニルトリエトキシシラン、ビニルトリメトキシシランなどのビニル基を有するシランカップリング剤;3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−(2−アミノエチル)アミノプロピルトリエトキシシラン、3−(2−アミノエチル)アミノプロピルトリメトキシシランなどのアミノ基を有するシランカップリング剤;γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルメチルジメトキシシランなどのグリシドキシ系のシランカップリング剤;3−ニトロプロピルトリメトキシシラン、3−ニトロプロピルトリエトキシシランなどのニトロ系のシランカップリング剤;3−クロロプロピルトリメトキシシラン、3−クロロプロピルトリエトキシシラン、2−クロロエチルトリメトキシシラン、2−クロロエチルトリエトキシシランなどのクロロ系のシランカップリング剤;などが挙げられる。
メルカプト基を有するシランカップリング剤としては、特に限定されず、例えば、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、2−メルカプトエチルトリメトキシシラン、2−メルカプトエチルトリエトキシシラン、下記式(1)で示される結合単位Aと下記式(2)で示される結合単位Bとを含むシランカップリング剤等が挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なお、本明細書において、メルカプト基を有するとは、SH基を有することを意味する。また、メルカプト基を有するシランカップリング剤と共に、メルカプト基を有さないシランカップリング剤(例えば、ビス(3−トリエトキシシリルプロピル)テトラスルフィド等)を使用してもよい。
なかでも、下記式(2)で示される結合単位Aと下記式(3)で示される結合単位Bとを含むシランカップリング剤が好ましい。該シランカップリング剤を含有することにより、ビス(3−トリエトキシシリルプロピル)テトラスルフィド等の従来タイヤ用ゴム組成物が含有するスルフィド系のシランカップリング剤に比べて、より低燃費性、ウェットグリップ性および耐摩耗性が向上する。
Figure 2018065907
Figure 2018065907
式(2)、(3)中、R6は水素、ハロゲン、分岐もしくは非分岐の炭素数1〜30のアルキル基、分岐もしくは非分岐の炭素数2〜30のアルケニル基、分岐もしくは非分岐の炭素数2〜30のアルキニル基、または該アルキル基の末端の水素が水酸基もしくはカルボキシル基で置換されたものを示す。R7は分岐もしくは非分岐の炭素数1〜30のアルキレン基、分岐もしくは非分岐の炭素数2〜30のアルケニレン基、または分岐もしくは非分岐の炭素数2〜30のアルキニレン基を示す。R6とR7とで環構造を形成してもよい。
前記構造のシランカップリング剤は、結合単位Aと結合単位Bを有するため、ビス−(3−トリエトキシシリルプロピル)テトラスルフィドなどのポリスルフィドシランに比べ、加工中の粘度上昇を抑制することができる。これは結合単位Aのスルフィド部分がC−S−C結合であるため、テトラスルフィドやジスルフィドに比べ熱的に安定であることから、ムーニー粘度の上昇が少ないためと考えられる。
また、結合単位Aと結合単位Bを有するため、3−メルカプトプロピルトリメトキシシランなどのメルカプトシランに比べ、スコーチ時間の短縮が抑制される。これは結合単位Bはメルカプトシランの構造を持っているが、結合単位Aの−C715部分が結合単位Bの−SH基を覆うためポリマーと反応しにくく、スコーチが発生しにくいためと考えられる。そのため、耐摩耗性の悪化を防止でき、低燃費性、ウェットグリップ性、耐摩耗性をバランスよく向上できる。
本発明の効果がより良好に得られるという点から、前記構造のシランカップリング剤において、結合単位Aの含有量は、30モル%以上が好ましく、50モル%以上がより好ましい。また、結合単位Aの含有量は、99モル%以下が好ましく、90モル%以下がより好ましい。結合単位Bの含有量は、5モル%以上が好ましく、10モル%以上がより好ましい。また、結合単位Bの含有量は、65モル%以下が好ましく、55モル%以下がより好ましい。結合単位AおよびBの合計含有量は、95モル%以上が好ましく、98モル%以上がより好ましく、100モル%がさらに好ましい。なお、結合単位A、Bの含有量は、結合単位A、Bがシランカップリング剤の末端に位置する場合も含む量である。結合単位A、Bがシランカップリング剤の末端に位置する場合の形態は特に限定されず、結合単位A、Bを示す式(2)、(3)と対応するユニットを形成していればよい。
6のハロゲンとしては、塩素、臭素、フッ素などが挙げられる。
6の分岐もしくは非分岐の炭素数1〜30のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、へキシル基、へプチル基、2−エチルヘキシル基、オクチル基、ノニル基、デシル基等が挙げられる。該アルキル基の炭素数は、1〜12が好ましい。
6の分岐もしくは非分岐の炭素数2〜30のアルケニル基としては、ビニル基、1−プロペニル基、2−プロペニル基、1−ブテニル基、2−ブテニル基、1−ペンテニル基、2−ペンテニル基、1−ヘキセニル基、2−ヘキセニル基、1−オクテニル基等が挙げられる。該アルケニル基の炭素数は、2〜12が好ましい。
6の分岐もしくは非分岐の炭素数2〜30のアルキニル基としては、エチニル基、プロピニル基、ブチニル基、ペンチニル基、ヘキシニル基、へプチニル基、オクチニル基、ノニニル基、デシニル基、ウンデシニル基、ドデシニル基等が挙げられる。該アルキニル基の炭素数は、2〜12が好ましい。
7の分岐もしくは非分岐の炭素数1〜30のアルキレン基としては、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ヘプタデシレン基、オクタデシレン基等が挙げられる。該アルキレン基の炭素数は、1〜12が好ましい。
7の分岐もしくは非分岐の炭素数2〜30のアルケニレン基としては、ビニレン基、1−プロペニレン基、2−プロペニレン基、1−ブテニレン基、2−ブテニレン基、1−ペンテニレン基、2−ペンテニレン基、1−ヘキセニレン基、2−ヘキセニレン基、1−オクテニレン基等が挙げられる。該アルケニレン基の炭素数は、2〜12が好ましい。
7の分岐もしくは非分岐の炭素数2〜30のアルキニレン基としては、エチニレン基、プロピニレン基、ブチニレン基、ペンチニレン基、ヘキシニレン基、へプチニレン基、オクチニレン基、ノニニレン基、デシニレン基、ウンデシニレン基、ドデシニレン基等が挙げられる。該アルキニレン基の炭素数は、2〜12が好ましい。
前記構造のシランカップリング剤において、結合単位Aの繰り返し数(x)と結合単位Bの繰り返し数(y)の合計の繰り返し数(x+y)は、3〜300の範囲が好ましい。この範囲内であると、結合単位Bのメルカプトシランを、結合単位Aの−C715が覆うため、スコーチタイムが短くなることを抑制できるとともに、シリカやゴム成分との良好な反応性を確保することができる。
前記構造のシランカップリング剤としては、例えば、Momentive社製のNXTZ30、NXT−Z45、NXT−Z60等を使用することができる。これらは、単独で用いてもよく、2種以上を併用してもよい。
その他の配合剤
本発明に係るタイヤトレッド用ゴム組成物には、前記成分以外にも、従来ゴム工業で使用される配合剤、例えば、シリカ以外の補強用充填剤、可塑剤、老化防止剤、酸化防止剤、ステアリン酸、ワックス、加硫剤、加硫促進剤、などを適宜配合することができる。
シリカ以外の補強用充填剤としては、カーボンブラック、炭酸カルシウム、アルミナ、クレー、タルクなど、従来からタイヤ用ゴム組成物において用いられているものを配合することができる。なかでも、カーボンブラックが補強性および耐摩耗性に優れるという理由から好ましい。
カーボンブラックとしては特に限定されず、GPF、FEF、HAF、ISAF、SAF等、タイヤ工業において一般的なものを使用でき、単独で用いても、2種以上を併用してもよい。
カーボンブラックを含有する場合の含有量は、十分な補強性を確保するという観点からゴム成分100質量部に対して、5質量部以上が好ましく、10質量部以上がより好ましい。また、カーボンブラックの含有量は、低燃費性や加工性の観点から50質量部以下が好ましく、40質量部以下がより好ましい。
前記加硫剤としては特に限定されず、タイヤ工業において一般的なものを使用できる。本発明の効果が良好に得られるという点からは、硫黄が好ましく、粉末硫黄がより好ましい。また、硫黄は他の加硫剤と併用してもよい。他の加硫剤としては、例えば、田岡化学工業(株)製のタッキロールV200、フレキシス社製のDURALINK HTS(1,6−ヘキサメチレン−ジチオ硫酸ナトリウム・二水和物)、ランクセス社製のKA9188(1,6−ビス(N,N’−ジベンジルチオカルバモイルジチオ)ヘキサン)などの硫黄原子を含む加硫剤や、ジクミルパーオキサイドなどの有機過酸化物などが挙げられる。
加硫剤を含有する場合の含有量は、低燃費性を確保するためゴム成分100質量部に対して0.7質量部以上が好ましく、1.0質量部以上がより好ましい。また、加硫剤の含有量は、破壊強度の低下抑制およびブルーミング防止の観点から2.2質量部以下が好ましく、2.0質量部以下がより好ましい。加硫剤の含有量が前記範囲内であると、良好な引張強度、耐摩耗性および耐熱性が得られる。
前記加硫促進剤としては特に限定されず、タイヤ工業において一般的なものを使用できる。例えば、2−メルカプトベンゾチアゾール、ジベンゾチアジルジサルファイド、N−シクロヘキシル−2−ベンゾチアジルスルフェンアミドなどのチアゾール系加硫促進剤;テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィドなどのチウラム系加硫促進剤;N−シクロヘキシル−2−ベンゾチアゾールスルフェンアミド、N−t−ブチル−2−ベンゾチアゾールスルフェンアミド、N−オキシエチレン−2−ベンゾチアゾールスルフェンアミド、N−オキシエチレン−2−ベンゾチアゾールスルフェンアミド、N,N’−ジイソプロピル−2−ベンゾチアゾールスルフェンアミドなどのスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジンなどのグアニジン系加硫促進剤などが挙げられる。なかでも、ゴム弾性率と加工性との両立という観点から、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤が好ましく、特に低燃費性と他のゴム物性とのバランスに優れるという理由からグアニジン系加硫促進剤が特に好ましい。
グアニジン系加硫促進剤としては、1,3−ジフェニルグアニジン、1,3−ジ−o−トリルグアニジン、1−o−トリルビグアニド、ジカテコールボレートのジ−o−トリルグアニジン塩、1,3−ジ−o−クメニルグアニジン、1,3−ジ−o−ビフェニルグアニジン、1,3−ジ−o−クメニル−2−プロピオニルグアニジンなどが挙げられる。なかでも反応性が高いという理由から、1,3−ジフェニルグアニジン、1,3−ジ−o−トリルグアニジンおよび1−o−トリルビグアニドがより好ましい。
加硫促進剤を含有する場合の含有量は、ゴム弾性率の低下や破壊特性の低下を抑制することができるという理由から、ゴム成分100質量部に対して、0.1質量部以上が好ましく、0.2質量部以上がより好ましい。また、加硫促進剤の含有量は、5質量部以下が好ましく、3質量部以下がより好ましい。
タイヤトレッド用ゴム組成物の製造方法
本発明のタイヤトレッド用ゴム組成物の製造方法は、シリカと相互作用を持つ官能基により変性された変性SBR以外のゴム成分、シリカの一部または全部、およびシランカップリング剤の一部または全部を混練りする工程1、ならびに工程1で得られた混練物、シリカと相互作用を持つ官能基により変性された変性SBR、シリカの残部、およびシランカップリング剤の残部を混練りする工程2を含むことを特徴とする。各工程は公知の混練機を用いることができ、例えば、バンバリーミキサーやニーダー、オープンロールなどが挙げられる。
工程1および工程2を含む混練工程で得られた未加硫ゴム組成物は、さらに加硫剤などと混練りする工程3および加硫工程などを行い、本発明に係るタイヤトレッド用ゴム組成物を製造することができる。
工程1
工程1では、シリカと相互作用を持つ官能基により変性された変性SBR以外のゴム成分、シリカの一部または全部、およびシランカップリング剤の一部または全部を混練りする。この工程では、シリカおよびシランカップリング剤と反応性が高いシリカと相互作用を持つ官能基により変性された変性SBRを投入する工程2に先駆け、比較的反応性が低い前記変性SBR以外のゴム成分およびシリカを、シランカップリング剤と混練りすることにより、前記変性SBR以外のゴム成分、シリカおよびシランカップリング剤による結合を促進することができる。これにより、シリカの凝集や前記変性SBR以外のゴム成分の凝集を抑制することができ、さらにはゴム組成物中の配合剤の分散性も向上するため、耐摩耗性、低燃費性、ウェットグリップ性および操縦安定性に優れたタイヤトレッド用ゴム組成物を製造することが可能となる。
工程1における混練りの排出温度は、シリカと相互作用を持つ官能基により変性された変性SBR以外のゴム成分、シリカおよびシランカップリング剤による結合を十分に促進することができるという理由から、160〜170℃が好ましく、162〜167℃がより好ましい。
工程1における混練時間は特に限定されないが、シリカが良好に分散した混練物を効率良く得られるという理由から、2.0〜4.0分が好ましく、2.5〜3.5分がより好ましく、2.7〜3.2分がさらに好ましい。
工程1における混練機の回転数は、より良好なカーボン分散性が得られるという理由から、30〜60rpmが好ましい。また、工程1における充填率は、シリカ等の薬品の分散性に優れるという理由から、65〜80%が好ましい。
工程1におけるシリカの投入量は、シランカップリング剤との反応効率、シリカの分散性および耐摩耗性の観点から、シリカの全投入量の20質量%以上が好ましく、30質量%以上がより好ましい。また、工程1におけるシリカの投入量は、より良好なシリカ分散性が得られるという理由から、シリカの全投入量の80質量%以下が好ましく、70質量%以下がより好ましい。
工程1におけるシランカップリング剤の投入量は、変性SBR以外のゴム成分およびシリカとの反応を十分なものとするという観点から、工程1におけるシリカの投入量100質量部に対して3質量部以上が好ましく、4質量部以上がより好ましい。また、工程1におけるシランカップリング剤の投入量は、コストの増加に見合ったシリカの分散効果の観点から、工程1におけるシリカの投入量100質量部に対して10質量部以下が好ましく、9質量部以下がより好ましい。
工程1では、変性SBR以外のゴム成分、シリカおよびシランカップリング剤以外の配合剤を投入しても良い。なかでも、シリカ以外の補強用充填剤は、分散性の観点から、工程1で投入することが好ましい。
工程2
工程2では、工程1で得られた混練物、シリカと相互作用を持つ官能基により変性された変性SBR、シリカの残部、およびシランカップリング剤の残部を混練りする。前記変性SBRはシリカの取り込みおよびシランカップリング剤との反応性に優れるため、工程1の後の工程2で混練を行っても、十分に反応が起こり、加工性に優れ、耐摩耗性、低燃費性、ウェットグリップ性および操縦安定性に優れたタイヤトレッド用ゴム組成物を製造することが可能となる。
工程2における混練りの排出温度は、変性SBR、シランカップリング剤およびシリカによる結合を十分に促進することができるという理由から、135〜155℃が好ましく、145〜155℃がより好ましい。排出温度が155℃を超える場合は、シート生地不良が発生する傾向がある。
工程2における混練時間は特に限定されないが、より良好なシリカ分散性を確保できるという理由から、1〜4分が好ましく、2〜3分がより好ましい。
工程2における混練機の回転数は、効率的にゴムを可塑化し、より良好なシリカ分散性を確保できるという理由から、30〜60rpmが好ましい。また、工程2における充填率は、シリカ等の薬品の分散性に優れるという理由から、65〜80%が好ましい。
工程2におけるシリカの投入量は、変性SBRとシリカとの結合によるタイヤ性能向上の観点から、シリカの全投入量の20質量%以上が好ましく、30質量%以上がより好ましい。また、工程1におけるシリカの投入量は、より良好なシリカ分散性の観点からシリカの全投入量の80質量%以下が好ましく、70質量%以下がより好ましい。
工程2におけるシランカップリング剤の投入量は、未加硫ゴム組成物のロール密着の防止という観点からは、工程2におけるシリカの投入量100質量部に対して5質量部以上が好ましく、6質量部以上がより好ましい。また、コストの増加に見合ったシリカの分散効果という観点から、工程2におけるシリカの投入量100質量部に対して10質量部以下が好ましく、9質量部以下がより好ましい。
工程2では、シリカと相互作用を持つ官能基により変性された変性SBR以外のゴム成分、シリカおよびシランカップリング剤以外の配合剤を投入しても良い。なかでも、シリカと相互作用を持つ官能基により変性された変性BRを配合する場合は、シリカとの反応性が高く、各ゴム成分へのシリカの分散性が向上するという理由から、工程2で投入することが好ましい。
工程3
工程3は工程2で得られた混練物を冷却などした後、加硫剤および加硫促進剤を含む加硫系薬剤を投入してオープンロールなどで混練りし、未加硫ゴム組成物を得る工程である。なお、工程2で得られた混練物の粘度が高い場合は、この混練物を再度混練りする再練工程を行った後に工程3に供することが好ましい。
工程3における混練りの排出温度は、加硫剤および加硫促進剤の分散性、生地不良の観点から、90〜120℃が好ましく、90〜110℃がより好ましい。排出温度が120℃を超える場合は、加硫が開始してしまう恐れがある。
工程3における混練時間は特に限定されないが、1〜30分が好ましく、1〜4分がより好ましい。また、工程3における混練機の回転数は、混練物の発熱を抑えるという観点から、20〜45rpmが好ましい。
なお、本発明では、前記各工程を前記温度範囲で実施することが好適であるが、工程2の混練開始時の温度や工程3の混練開始時の温度を前記温度範囲に調整するために、工程1と工程2との間、および、工程2と工程3との間に、冷却工程を導入することとしてもよい。冷却する方法は、特に限定されず、例えば、空気(冷気)との接触により冷却する方法、金属板等に接触させ冷却する方法、水槽で冷却する方法等が挙げられる。また、工程1、工程2で調製されたゴム組成物を次工程の混練開始時の温度になるまで放置して冷却してもよい。
加硫工程
工程3で得られた未加硫ゴム組成物を、公知の方法で加硫することで加硫ゴム組成物を得ることができる。未加硫ゴム組成物の加硫温度は120℃以上が好ましく、140℃以上がより好ましい。また、加硫温度は、200℃以下が好ましく、180℃以下がより好ましい。加硫温度が前記範囲内であると、本発明の効果が良好に得られる。
タイヤトレッド用ゴム組成物およびタイヤ
本発明に係るタイヤトレッド用ゴム組成物は、耐摩耗性、低燃費性、ウェットグリップ性および操縦安定性に優れることから、乗用車用タイヤ、トラック・バス用タイヤ、二輪車用タイヤ、高性能タイヤなどとして好適に用いることができる。
本発明のタイヤは、本発明に係るタイヤトレッド用ゴム組成物を用いて、通常の方法により製造できる。すなわち、本発明の製造方法にて製造したタイヤトレッド用ゴム組成物を、未加硫の段階でタイヤトレッドの形状にあわせて押出し加工し、タイヤ成形機上で他のタイヤ部材とともに貼り合わせ、通常の方法にて成形することにより、未加硫タイヤを形成し、この未加硫タイヤを加硫機中で加熱加圧することにより、本発明のタイヤを製造することができる。なお、本発明のタイヤは、空気入りタイヤ、非空気入りタイヤを問わない。
本発明を実施例に基づいて説明するが、本発明は、実施例にのみ限定されるものではない。
以下、実施例および比較例において用いた各種薬品をまとめて示す。
変性SBR1:旭化成(株)製のタフデンE580(シリカと相互作用を持つ官能基により変性された変性SBR)
SBR2:旭化成(株)製のタフデン4850
BR:宇部興産(株)製のBR150B(シス1,4結合含有率:97質量%)
シリカ:エボニックデグサ社製のULTRASIL VN3(N2SA:175m2/g)
カーボンブラック:三菱化学(株)製のダイアブラックXR
シランカップリング剤:Hungpai Chemistry社製のHP−1589(ビス(3−トリエトキシシリルプロピル)ジスルフィド)
プロセスオイル:出光興産(株)製のダイアナプロセスオイルAH−24
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛
ステアリン酸:日油(株)製のステアリン酸「椿」
老化防止剤1:大内新興化学工業(株)製のノクラック224(RD、2,2,4−トリメチル−1,2−ジヒドロキノリン重合体)
老化防止剤2:大内新興化学工業(株)製のノクラック6C(N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン)
ワックス:日本精蝋(株)製のオゾエース0355
レジン:Arizona Chemical社製のSYLVARES SA85
硫黄:四国化成工業(株)製の不溶性硫黄(5%オイル含有粉末硫黄)
加硫促進剤1:大内新興化学工業(株)製のノクセラーNS(TBBS、N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド)
加硫促進剤2:大内新興化学工業(株)製のノクセラーD(DPG、1,3−ジフェニルグアニジン)
実施例および比較例
まず、表1に示す配合内容および混練条件に従い未加硫ゴム組成物を製造した。工程1に示す各種薬品を、270Lバンバリーミキサーにて混練りした(工程1)。次に、工程1の混練物および工程2に示す各種薬品を、270Lバンバリーミキサーにて混練りした(工程2)。そして、工程2の混練物および工程3に示す各種薬品を、270Lバンバリーミキサーを用いて混練りし(工程3)、試験用未加硫ゴム組成物を得た。さらに、試験用未加硫ゴム組成物を、165℃15分間加硫し試験用ゴム組成物を得た。得られた試験用未加硫ゴム組成物および試験用ゴム組成物について下記評価を行った。結果を表1に示す。
<シリカ分散>
試験用ゴム組成物の断面をFIB−SEMにより観察し、シリカの分散を確認した。結果は下記の基準で評価した。
○:シリカが各ゴム成分に均等に存在している
△:○と×との間
×:シリカがシリカと相互作用を持つ官能基により変性された変性SBRに偏在している
<転がり抵抗特性>
(株)岩本製作所製の粘弾性スペクトロメーターVESを用いて、温度70℃、初期歪み10%、動歪み2%、周波数10Hzの条件下で各加硫ゴム組成物の損失正接(tanδ)を測定した。tanδの数値が小さいほど低燃費性に優れることを示す。
Figure 2018065907
表1の結果より、シリカと相互作用を持つ官能基により変性された変性SBRおよび前記変性SBR以外のゴム成分、シリカおよびシランカップリング剤を含有するタイヤトレッド用ゴム組成物を、前記変性SBR以外のゴム成分、シリカの一部または全部、およびシランカップリング剤の一部または全部を混練りする工程1、ならびに工程1で得られた混練物、前記変性SBR、シリカの残部、およびシランカップリング剤の残部を混練りする工程2を含む製造方法により製造することにより、シリカの分散性が向上し、転がり抵抗特性に優れたタイヤトレッド用ゴム組成物を製造できることがわかる。

Claims (5)

  1. シリカと相互作用を持つ官能基により変性された変性SBRおよび前記変性SBR以外のゴム成分を含むゴム成分100質量部に対して10〜150質量部のシリカ、およびシリカ100質量部に対して1〜20質量部のシランカップリング剤を含有するタイヤトレッド用ゴム組成物の製造方法であり、
    前記変性SBR以外のゴム成分、シリカの一部または全部、およびシランカップリング剤の一部または全部を混練りする工程1、ならびに
    工程1で得られた混練物、前記変性SBR、シリカの残部、およびシランカップリング剤の残部を混練りする工程2を含むタイヤトレッド用ゴム組成物の製造方法。
  2. 前記変性SBR以外のゴム成分が、BR、未変性SBRおよび前記変性SBR以外の変性SBRからなる群から選ばれる少なくとも1種以上のゴム成分のみからなるゴム成分である請求項1記載のタイヤトレッド用ゴム組成物の製造方法。
  3. 前記変性SBRが、結合スチレン量が30質量%以下である請求項1記載のタイヤトレッド用ゴム組成物の製造方法。
  4. 工程2で得られた混練物、加硫剤および加硫促進剤を混練りする工程3を、さらに含む請求項1または2記載のタイヤトレッド用ゴム組成物の製造方法。
  5. 請求項1〜3のいずれか1項に記載の製造方法で製造されたゴム組成物により構成されたトレッドを有するタイヤ。
JP2016204458A 2016-10-18 2016-10-18 タイヤトレッド用ゴム組成物の製造方法およびタイヤ Pending JP2018065907A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016204458A JP2018065907A (ja) 2016-10-18 2016-10-18 タイヤトレッド用ゴム組成物の製造方法およびタイヤ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016204458A JP2018065907A (ja) 2016-10-18 2016-10-18 タイヤトレッド用ゴム組成物の製造方法およびタイヤ

Publications (1)

Publication Number Publication Date
JP2018065907A true JP2018065907A (ja) 2018-04-26

Family

ID=62085733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016204458A Pending JP2018065907A (ja) 2016-10-18 2016-10-18 タイヤトレッド用ゴム組成物の製造方法およびタイヤ

Country Status (1)

Country Link
JP (1) JP2018065907A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019203071A (ja) * 2018-05-23 2019-11-28 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP2020105384A (ja) * 2018-12-27 2020-07-09 Toyo Tire株式会社 タイヤ用ゴム組成物の製造方法
CN113968999A (zh) * 2020-07-24 2022-01-25 中国石油化工股份有限公司 用于鞋底的橡胶组合物及其应用、硫化橡胶及其制备方法和应用以及含有硫化橡胶的鞋底

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019203071A (ja) * 2018-05-23 2019-11-28 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP7119570B2 (ja) 2018-05-23 2022-08-17 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP2020105384A (ja) * 2018-12-27 2020-07-09 Toyo Tire株式会社 タイヤ用ゴム組成物の製造方法
CN113968999A (zh) * 2020-07-24 2022-01-25 中国石油化工股份有限公司 用于鞋底的橡胶组合物及其应用、硫化橡胶及其制备方法和应用以及含有硫化橡胶的鞋底

Similar Documents

Publication Publication Date Title
JP5563419B2 (ja) タイヤ用ゴム組成物、その製造方法及び空気入りタイヤ
US10005893B2 (en) Rubber composition for tire, and pneumatic tire
JP5612597B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP6053495B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP2011144349A (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP2011213988A (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP2017002164A (ja) タイヤトレッド用ゴム組成物の製造方法およびタイヤ
JP5426349B2 (ja) インナーライナー用ゴム組成物及び空気入りタイヤ
JP2019182906A (ja) タイヤ用ゴム組成物および空気入りタイヤ
JP5519259B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP2018065907A (ja) タイヤトレッド用ゴム組成物の製造方法およびタイヤ
JP5643081B2 (ja) タイヤ用ゴム組成物、その製造方法及び空気入りタイヤ
JP2011148904A (ja) クリンチエイペックス又はチェーファー用ゴム組成物及び空気入りタイヤ
JP5507989B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP2019182910A (ja) タイヤ用ゴム組成物および空気入りタイヤ
JP2019182907A (ja) タイヤ用ゴム組成物および空気入りタイヤ
JP5478239B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP5840971B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP7435603B2 (ja) 空気入りタイヤ
JP5992771B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP2011178958A (ja) チェーファー用ゴム組成物及び空気入りタイヤ
JP2014077054A (ja) トレッド用ゴム組成物及び空気入りタイヤ
JP5960575B2 (ja) ゴム組成物の製造方法
JP5507990B2 (ja) ブレーカートッピング用ゴム組成物及び空気入りタイヤ
WO2019193888A1 (ja) タイヤ用ゴム組成物および空気入りタイヤ