JP2018047423A - 静電粉体塗装方法 - Google Patents

静電粉体塗装方法 Download PDF

Info

Publication number
JP2018047423A
JP2018047423A JP2016184323A JP2016184323A JP2018047423A JP 2018047423 A JP2018047423 A JP 2018047423A JP 2016184323 A JP2016184323 A JP 2016184323A JP 2016184323 A JP2016184323 A JP 2016184323A JP 2018047423 A JP2018047423 A JP 2018047423A
Authority
JP
Japan
Prior art keywords
powder
particles
mass
resin
powder coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016184323A
Other languages
English (en)
Inventor
吉田 聡
Satoshi Yoshida
聡 吉田
阿形 岳
Takeshi Agata
岳 阿形
三上 正人
Masato Mikami
正人 三上
吉野 進
Susumu Yoshino
進 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2016184323A priority Critical patent/JP2018047423A/ja
Publication of JP2018047423A publication Critical patent/JP2018047423A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

【課題】粉体塗料に帯電を与える方法が摩擦帯電方式、及び、コロナ帯電方式のいずれの方法であっても、被塗装物に静電付着せず回収された粉体塗料を再利用するときに生じる、塗装膜の平滑性の変動を抑制する静電粉体塗装方法を提供すること。【解決手段】熱硬化性樹脂及び熱硬化剤を含み、粉体粒子を有し、アンモニウムイオン量が、0.01mg/L以上0.60mg/L以下である粉体塗料を噴霧して、前記粉体塗料を被塗装物に静電付着させる工程と、前記被塗装物に静電付着した前記粉体塗料を加熱して、塗装膜を形成する工程と、を有し、前記被塗装物に静電付着した前記粉体塗料における前記粉体粒子の粒径5μm以下の粒子の体積割合D5cと、噴霧前の前記粉体塗料における前記粉体粒子の粒径5μm以下の粒子の体積割合D5oとが、式:D5o×0.80≦D5c≦D5o×1.20の関係を満たす静電粉体塗装方法。【選択図】なし

Description

本発明は、静電粉体塗装方法に関する。
近年、粉体塗料を利用した粉体塗装の技術は、塗装工程における揮発性有機化合物(VOC)排出量が少なく、しかも塗装後、被塗装物に付着しなかった粉体塗料を回収し、再利用できることから、地球環境の面で注目されている。このため、粉体塗料については、種々のものが研究されている。
特許文献1には、「体積平均粒子径が3〜30μmに設定されかつ膜形成性樹脂を主要成分とする粉体からなり、粉体は、体積平均粒子径の1/5以下の粒子径の粉体を5質量%以下の割合で含む粉体塗料。」が開示されている。
特許文献2には、「結着樹脂および硬化剤を含有する粉体粒子と、無機微粉体とからなる粉体塗料であって、粉体粒子の平均粒子径が5〜20μmである粉体塗料。」が開示されている。
特許文献3には、「塗料粉体が平均粒径が0.01〜2μmの重合体微粒子を含む平均粒径が3〜70μmの会合粒子からなることを特徴とする粉体塗料」が開示されている。
特開平10−231446号公報 特開平8−170032号公報 国際公開第1995/025145号公報
本発明の課題は、熱硬化性樹脂及び熱硬化剤を含み、粉体塗料であって、被塗装物に静電付着した粉体塗料における粉体粒子の粒径5μm以下の粒子の体積割合D5cと、噴霧前の粉体塗料における粉体粒子の粒径5μm以下の粒子の体積割合D5oとが、式:D5c<D5o×0.80、又は式:D5o×1.20<D5cの関係を満たす粉体塗料において、粉体塗料0.5gを30±1℃の範囲のイオン交換水100g中に投入し、超音波分散器により30分間分散した後ろ過した、ろ液中のアンモニウムイオン量が0.01mg/L未満であるか、0.60mg/Lを超える場合に比して、粉体塗料に帯電を与える方法が摩擦帯電方式、及び、コロナ帯電方式のいずれの方法であっても、被塗装物に静電付着せず回収された粉体塗料を再利用するときに生じる、塗装膜の平滑性の変動を抑制する静電粉体塗装方法を提供することである。
上記課題は、以下の手段により解決される。
請求項1に係る発明は、
熱硬化性樹脂及び熱硬化剤を含み、粉体粒子を有し、粉体塗料0.5gを30±1℃の範囲のイオン交換水100g中に投入し、超音波分散器により30分間分散した後ろ過した、ろ液中のアンモニウムイオン量が、0.01mg/L以上0.60mg/L以下である粉体塗料であって、帯電した粉体塗料を噴霧して、前記粉体塗料を被塗装物に静電付着させる工程と、
前記被塗装物に静電付着した前記粉体塗料を加熱して、塗装膜を形成する工程と、
を有し、
前記被塗装物に静電付着した前記粉体塗料における前記粉体粒子の粒径5μm以下の粒子の体積割合D5cと、噴霧前の前記粉体塗料における前記粉体粒子の粒径5μm以下の粒子の体積割合D5oとが、式:D5o×0.80≦D5c≦D5o×1.20の関係を満たす静電粉体塗装方法。
請求項2に係る発明は、
前記被塗装物に静電付着した前記粉体塗料における前記粉体粒子の粒径5μm以下の粒子の体積割合D5cと、噴霧前の前記粉体塗料における前記粉体粒子の粒径5μm以下の粒子の体積割合D5oとが、式:D5o×0.90≦D5c≦D5o×1.10の関係を満たす請求項1に記載の静電粉体塗装方法。
請求項3に係る発明は、
噴霧前の前記粉体塗料における前記粉体粒子の体積平均粒径が、3μm以上10μm以下である請求項1又は請求項2に記載の静電粉体塗装方法。
請求項4に係る発明は、
噴霧前の前記粉体塗料における前記粉体粒子の平均円形度が、0.96以上である請求項1〜請求項3のいずれか1項に記載の静電粉体塗装方法。
請求項5に係る発明は、
噴霧前の前記粉体塗料が、外部添加剤として、アミノ基を有するシラン化合物を含む無機酸化物粒子を有する請求項1〜請求項4のいずれか1項に記載の静電粉体塗装方法。
請求項6に係る発明は、
噴霧前の前記粉体塗料における前記粉体粒子が、ポリエステル樹脂を含有する請求項1〜請求項5のいずれか1項に記載の静電粉体塗装方法。
請求項1、3、4、5、又は6に係る発明によれば、粉体塗料0.5gを30±1℃の範囲のイオン交換水100g中に投入し、超音波分散器により30分間分散した後ろ過した、ろ液中のアンモニウムイオン量が0.01mg/L未満であるか、0.60mg/Lを超える場合に比して、粉体塗料に帯電を与える方法が摩擦帯電方式、及び、コロナ帯電方式のいずれの方法であっても、被塗装物に静電付着せず回収された粉体塗料を再利用するときに生じる、塗装膜の平滑性の変動を抑制する静電粉体塗装方法が提供される。
請求項2に係る発明によれば、被塗装物に静電付着した粉体塗料における粉体粒子の粒径5μm以下の粒子の体積割合D5cと、噴霧前の粉体塗料における粉体粒子の粒径5μm以下の粒子の体積割合D5oとが、式:D5c<D5o×0.90、又は式:D5o×1.10<D5cの関係を満たす場合に比べ、粉体塗料に帯電を与える方法が摩擦帯電方式、及び、コロナ帯電方式のいずれの方法であっても、被塗装物に静電付着せず回収された粉体塗料を再利用するときに生じる、塗装膜の平滑性の変動を抑制する静電粉体塗装方法が提供される。
以下、本発明の一例である実施形態について詳細に説明する。
<静電粉体塗装方法>
本実施形態に係る静電粉体塗装方法は、熱硬化性樹脂及び熱硬化剤を含み、粉体粒子を有し、粉体塗料0.5gを30±1℃の範囲のイオン交換水100g中に投入し、超音波分散器により30分間分散した後ろ過した、ろ液中のアンモニウムイオン量が、0.01mg/L以上0.60mg/L以下である粉体塗料であって、帯電した粉体塗料を噴霧して、前記粉体塗料を被塗装物に静電付着させる工程(以下「付着工程」と称する。)と、前記被塗装物に静電付着した前記粉体塗料を加熱して、塗装膜を形成する工程(以下「焼付工程」と称する)と、を有する。
そして、被塗装物に静電付着した粉体塗料(以下「付着粉体塗料」とも称する)における粉体粒子(以下「付着粉体粒子」とも称する)の粒径5μm以下の粒子の体積割合D5cと、噴霧前の粉体塗料(以下「噴霧前粉体塗料」とも称する)における粉体粒子(以下「噴霧前粉体粒子」とも称する)の粒径5μm以下の粒子の体積割合D5oとが、式:D5o×0.80≦D5c≦D5o×1.20の関係を満たす。
なお、粉体塗料は、粉体粒子に着色剤を含まない透明粉体塗料(クリア塗料)、及び粉体粒子に着色剤を含む着色粉体塗料のいずれであってもよい。
本実施形態に係る静電粉体塗装方法では、上記手法により、粉体塗料に帯電を与える方法が摩擦帯電方式、及び、コロナ帯電方式のいずれの方法であっても、被塗装物に静電付着せず回収された粉体塗料を再利用するときに生じる、塗装膜の平滑性の変動を抑制する。その理由は、次のように推測される。
従来、静電粉体塗装方法では、例えば、コロナガン、トリボガン、ベルガン等の静電粉体塗装機等を利用して、粉体塗料を噴霧する。そして、噴霧された粉体塗料のうち、被塗布物に静電付着しなかった粉体塗料は、回収されて、再度、再利用される。この再利用には、回収した粉体塗料単独で再利用する場合と、回収した粉体塗料を噴霧前(未使用)の粉体塗料と混合して再利用する場合とがある。
しかし、塗装膜の平滑性は、粉体塗料の粉体粒子に含む熱硬化性樹脂の溶融性等に影響を受けるが、被塗布物に静電付着した粉体塗料の粉体粒子の粒径にも影響を受ける。つまり、粒径に応じて、粉体粒子の溶融性が変化し、塗装膜の平滑性も変動する。
被塗装物に静電付着せず回収された粉体塗料(以下「回収粉体塗料」とも称する)における粉体粒子(以下「回収粉体粒子」とも称する)の粒径5μm以下の粒子の体積割合と、噴霧前(未使用)の粉体塗料における粉体粒子の粒径5μm以下の粒子の体積割合とが大きく異なると、被塗装物に静電付着せず回収された粉体塗料を再利用して、静電粉体塗装したとき、塗装膜の平滑性の変動が生じる。
特に、粒径5μm以下の粒子(つまり微粉)の体積割合が異なると、粉体塗料が被塗装物に静電付着したとき、粗粉間に存在する微粉の存在率に違いが生じ、静電付着した粉体塗料全体の溶融性にも違いが生じるため、塗装膜の平滑性への影響が大きくなる傾向がある。これに伴い、塗装膜の平滑性の変動も大きくなる傾向がある。
そこで、付着粉体粒子の粒径5μm以下の粒子の体積割合D5cと、噴霧前粉体粒子の粒径5μm以下の粒子の体積割合D5oとが、式:D5o×0.80≦D5c≦D5o×1.20の関係を満たすようにする。この関係を満たすとは、付着粉体粒子の粒径5μm以下の粒子の体積割合D5cと、噴霧前粉体粒子の粒径5μm以下の粒子の体積割合D5oと、の変化がない又は少ないことを意味する。つまり、噴霧前粉体粒子の粒径5μm以下の粒子の体積割合D5oに近い状態で、粉体塗料が被塗布物に静電付着することを意味している。そして、噴霧前粉体粒子の粒径5μm以下の粒子の体積割合D5oに近い状態で、粉体塗料を被塗布物に静電付着させると、被塗装物に静電付着しなかった回収粉体塗料における回収粉体粒子の粒子5μm以下の粒子の体積割合も、噴霧前粉体粒子の粒径5μm以下の粒子の体積割合D5oとの変化がない又は少なくなる。これにより、静電付着した噴霧前粉体塗料全体と回収粉体塗料全体との間で、溶融性の違いが生じ難くなる。
また、付着粉体粒子の粒径5μm以下の粒子の体積割合D5cと、噴霧前粉体粒子の粒径5μm以下の粒子の体積割合D5oとが上記関係を満たすとは、噴霧前粉体粒子に過剰に小径な微粉がない又は少ないことも示している。これによっても、静電付着した噴霧前粉体塗料全体と回収粉体塗料全体との間で、溶融性の違いが生じ難くなる。
このため、回収粉体塗料を再利用して、静電粉体塗装したときでも、被塗装物に静電付着した粉体塗料における粉体粒子の溶融性の変化が抑制される。
帯電方式がコロナ方式である場合、コロナガンから空気中に放出された電荷を粉体粒子に付着させることで、粉体粒子の帯電量を制御している。一般には、放電限界電圧が高いことから、マイナス電荷が使われ、粉体粒子もマイナスに帯電する。外部から電荷を与えるコロナ方式は、比較的粉体粒子の表面状態の影響を受けにくい。
一方、摩擦帯電方式は、トリボガン内部の部品と粉体粒子の摩擦によって帯電を付与する。一般的に、内部部品への粉体粒子の付着を防ぐために、内部部品はフッ素系樹脂で構成されているため、粉体粒子はプラスに帯電する。しかし、粉体塗料においては、粉体粒子中の熱硬化性樹脂等に含まれるカルボキシ基等の極性基が、粉体粒子の表面に存在する場合がある。特に、湿式製法により粉体粒子を製造する場合には、製造途中で粉体粒子が水中で安定な形態をとるために、上記極性基が粉体粒子の表面に偏在する場合がある。カルボキシ基等の極性基はマイナス帯電性が強いため、表面にカルボキシ基を有する粉体粒子は、プラスに帯電しにくく、帯電が不安定になりやすい。また、粉体粒子同士の相互帯電も同時に発生するが、粉体粒子間の相互帯電は、粉体粒子表面のカルボキシ基等の極性基の影響を強く受けるため、粉体粒子表面の僅かな違いにより、強くマイナス帯電した粉体粒子が生成される。そのため、粉体塗料に帯電を与える方法が、トリボガンのような摩擦帯電方式である場合には、コロナガンのようなコロナ方式である場合と比較して、粉体粒子間の帯電のばらつきも大きくなる。また、プラス帯電粒子とマイナス帯電粒子による凝集物も発生しやすくなる。
粉体粒子の粒径が小さいほど、トリボガン内部の部材と粉体粒子とが接触しにくくなるとともに、凝集物の凝集力も強くなるため、粉体粒子の中でも粒径の小さいものほど影響を受ける。
結果として、摩擦帯電方式により帯電を行う場合には、D5cとD5oとが上式の関係を満たさなくなり、被塗装物に静電付着せず回収された粉体塗料を再利用したときに、塗装膜の平滑性の変動が生じると推測される。
そこで、本実施形態においては、アンモニアをカルボキシ基等の極性基と相互作用させ、粉体粒子表面に存在するカルボキシ基等にプラスの極性を付与することにより、上述の摩擦帯電方式における帯電変動を抑制し、被塗装物に静電付着せず回収された粉体塗料を再利用したときに、塗装膜の平滑性の変動を抑制する。カルボキシ基等の極性基と相互作用する化合物がアンモニアであれば、後述するpH調整等により、粉体粒子表面に存在するカルボキシ基等の極性が容易に調整される。
具体的には、粉体粒子を含む粉体塗料0.5gを30±1℃の範囲のイオン交換水100g中に投入し、超音波分散器により30分間分散した後ろ過した、ろ液中のアンモニウムイオン量が、0.01mg/L以上0.60mg/L以下となるようにする。
上記アンモニウムイオン量が0.01mg/L以上であれば、粉体粒子の表面に存在しているカルボキシ基等の極性基がアンモニウムイオンと相互作用するため、粉体粒子表面へプラス帯電性が付与され、粉体粒子の帯電が安定化する。その結果、被塗装物に静電付着せず回収された粉体塗料を再利用するときに生じる、塗装膜の平滑性の変動が抑制されると推測される。
上記アンモニウムイオン量が0.60mg/L以下であれば、粉体粒子の帯電量自体が減少することが抑制され、被塗装物に静電付着せず回収された粉体塗料を再利用するときに生じる、塗装膜の平滑性の変動が抑制される。
(アンモニウムイオン量)
本実施形態に用いられる粉体塗料は、被塗装物に静電付着せず回収された粉体塗料を再利用するときに生じる、塗装膜の平滑性の変動を抑制する点から、粉体塗料0.5gを30±1℃の範囲のイオン交換水100g中に投入し、超音波分散器により30分間分散した後ろ過した、ろ液中のアンモニウムイオン量が、0.01mg/L以上0.60mg/L以下であり、0.07mg/L以上0.50mg/L以下であることが好ましい。
前記超音波分散器としては、アズワン製USD−4R(出力160W)が使用される。
また、ろ液中のアンモニウムイオン量は、イオンクロマトグラフィにより測定される。具体的には、下記条件により測定される。
陽イオン分離カラム:日本ダイオネクス(株)製 IonPacCS12A
陽イオンガードカラム:日本ダイオネクス(株)製 IonPacCG12A
溶離液:メタンスルホン酸 20mM
流速:1ml/min
温度:35℃
検出法:電気伝導度法(サプレッサ式)
上記アンモニウムイオン量を制御するためには、後述する粉体粒子の製造において用いられる樹脂粒子分散液を作製する段階で溶液中にアンモニウムイオンを添加する方法、粉体粒子製造中に溶液中にアンモニウムイオンを添加する方法、粉体粒子作製後に溶液中にアンモニウムイオンを添加処理する方法などが挙げられる。
アンモニウムイオンと、熱硬化性樹脂に含まれるカルボキシ基等の親水性基とを相互作用させやすくするため、後述する樹脂分散液の製造段階において添加することが好ましい。
粉体塗料における、上記アンモニウムイオン量は、例えば、上記アンモニウムイオンの添加における、添加量により制御される。アンモニウムイオンの添加は、アンモニア水溶液を用いて行うことが好ましい。
また、カルボキシ基等の親水性基と相互作用しているアンモニウムイオンは、その一部が、pHの調整によって除かれる。例えば、樹脂粒子分散液に酸を添加しpHを下げることにより、カルボキシ基と、アンモニウムイオンとの相互作用により存在する−COONHを、−COOHに置換することにより、粉体塗料における上記アンモニウムイオン量が減少する。粉体粒子製造時に同様のpH調整を行うことによっても、同様に上記アンモニウムイオン量が制御される。また、アンモニウムイオンは全てがカルボン酸と相互作用しているわけではなく、一部はエステル基などの極性基と相互作用して、粉体粒子中に存在している。このようなアンモニウムイオンは、比較的揮発しやすいため、粉体粒子の乾燥時に低圧状態にすることにより、上記アンモニウムイオン量が制御される。
(D5c及びD5oの関係)
本実施形態に係る静電粉体塗装方法において、付着粉体粒子の粒径5μm以下の粒子の体積割合D5cと、噴霧前粉体粒子の粒径5μm以下の粒子の体積割合D5oとが、式:D5o×0.80≦D5c≦D5o×1.20の関係を満たすが、塗装膜の平滑性の変動を抑制する点から、式:D5o×0.90≦D5c≦D5o×1.10の関係を満たすことが好ましい。
ここで、付着粉体粒子の粒径5μm以下の粒子の体積割合D5cと、噴霧前粉体粒子の粒径5μm以下の粒子の体積割合D5oとを上記式の関係を満たすようにするには、例えば、1)噴霧前粉体粒子を小径化すること(例えば噴霧前粉体粒子の体積平均粒径を3μm以上10μm以下とすること)、2)噴霧前粉体粒子を球状化すること(例えば噴霧前粉体粒子の円形度を0.96以上とすること)、3)噴霧前粉体粒子の粒度分布を狭分布化すること(例えば噴霧前粉体粒子の体積粒度分布指標GSDvを1.50以下とすること)、4)噴霧前粉体塗料に外部添加剤を添加すること(例えば粉体塗料にシリカ粒子を添加すること)、5)これらを組み合わせること等により、噴霧前粉体塗料(噴霧前粉体粒子)の帯電性の均一化(つまり噴霧前粉体塗料(噴霧前粉体粒子)の帯電分布の狭分布化)を図ることが挙げられる。
また、噴霧粉体塗料(噴霧前粉体粒子)の帯電性は、噴霧前粉体粒子が白色顔料(特に酸化チタン粒子)を含む場合、白色顔料の分散性が影響する。つまり、噴霧前粉体粒子中の白色顔料の分散性が低いと、噴霧粉体塗料(噴霧前粉体粒子)の帯電性が低下(つまり噴霧前粉体塗料(噴霧前粉体粒子)の帯電分布の広分布化)する傾向がある。このため、小径化し、かつ均一に近い状態で白色顔料(特に酸化チタン粒子)を噴霧前粉体粒子中に含ませ、白色顔料の分散性を高めることも、付着粉体粒子の粒径5μm以下の粒子の体積割合D5cと、噴霧前粉体粒子の粒径5μm以下の粒子の体積割合D5oとが上記式の関係を満たし易くなるため好ましい。つまり、付着粉体粒子の粒径5μm以下の粒子の体積割合D5cと、噴霧前粉体粒子の粒径5μm以下の粒子の体積割合D5oとが上記式の関係を満たすとは、小径化し、かつ均一に近い状態で白色顔料(特に酸化チタン粒子)が噴霧前粉体粒子中に含んでいることも示している。
ここで、各粉体粒子の粒径5μm以下の粒子の体積割合は、次に示す方法により測定される値である。まず、後述する「コールターマルチサイザーII(ベックマン・コールター社製)を用いた方法」により体積基準の粒度分布を求める。この粒度分布に基づいて、全粒子に対する、粒径5μm以下の粒子の体積割合を算出する。
以下、本実施形態に係る静電粉体塗装方法の詳細について説明する。
(付着工程)
付着工程では、熱硬化性樹脂及び熱硬化剤を含む粉体粒子(噴霧前粉体粒子)を有する粉体塗料(噴霧前粉体塗料)であって、帯電した粉体塗料を噴霧して、粉体塗料を被塗装物に静電付着させる。
具体的には、付着工程では、例えば、静電粉体塗装機の噴霧口と被塗布物の塗装面(導電性を有する面)との間に静電界を形成した状態で、静電粉体塗装機の噴霧口から、帯電した粉体塗料を噴霧し、粉体塗料を被塗装物の被塗装面に静電付着して、粉体塗料の膜を形成する。つまり、例えば、接地した被塗布物の被塗装面を陽極、静電粉体塗装機を陰極として電圧を印加し、両極に静電界(静電場)を形成し、帯電した粉体塗料を飛翔させて、被塗布物の塗装面に静電付着して、粉体塗料の膜を形成する。
なお、付着工程では、静電粉体塗装機の噴霧口と被塗装物の塗装面とを相対的に移動しつつ、実施してもよい。
ここで、静電粉体塗装機としては、例えば、コロナガン(コロナ放電で帯電した粉体塗料を噴霧する塗装機)、トリボガン(摩擦帯電で粉体塗料を噴霧する塗装機)、ベルガン(コロナ放電又は摩擦帯電で帯電した粉体塗料を遠心噴霧化して噴霧する塗装機)等の周知の静電粉体塗装機が利用できる。そして、良好な塗着とする為の噴霧条件は、各ガンの設定範囲でよい。
被塗装物の塗装面に付着させる粉体塗料の付着量は、付着粉体粒子の粒径5μm以下の粒子の体積割合D5cと噴霧前粉体粒子の粒径5μm以下の粒子の体積割合D5oとが上記式を満たし、塗装膜の平滑性の変動を抑制する点から、15.0g/m以上300.0g/m以下(好ましくは30.0g/m以上200.0g/m以下)がよい。
(焼付工程)
焼付工程では、被塗装物に静電付着した粉体塗料を加熱して、塗装膜を形成する。具体的には、加熱により、粉体塗料の膜の粉体粒子を溶融すると共に硬化させることで、塗装膜を形成する。
加熱温度(焼付温度)は、粉体塗料の種類に応じて選択される。一例として、加熱温度(焼付温度)は、例えば、90℃以上250℃以下が好ましく、100℃以上220℃以下がより好ましく、120℃以上200℃以下が更に好ましい。なお、加熱時間(焼付時間)は、加熱温度(焼付温度)に応じて調節する。
以上の工程を経て、塗装膜の形成、即ち、被塗装物の塗装が行われる。なお、粉体塗料の付着、及び加熱(焼付)は、一括して行ってもよい。
ここで、粉体塗料を塗装する対象物品である被塗装物は、特に、制限はなく、各種の金属部品、セラミック部品、樹脂部品等が挙げられる。これら対象物品は、板状品、線状品等の各物品への成形前の未成形品であってもよいし、電子部品用、道路車両用、建築内外装資材用等に成形された成形品であってもよい。また、対象物品は、被塗装面に、予め、プライマー処理、めっき処理、電着塗装等の表面処理が施された物品であってもよい。
<粉体塗料>
本実施形態に用いられる粉体塗料は、熱硬化性樹脂及び熱硬化剤を含む粉体粒子を有し、粉体塗料を噴霧して粉体塗料を被塗装物に静電付着させたとき、被塗装物に静電付着した粉体塗料における粉体粒子の粒径5μm以下の粒子の体積割合D5cと、噴霧前の粉体塗料における粉体粒子の粒径5μm以下の粒子の体積割合D5oとが、式:D5o×0.80≦D5c≦D5o×1.20の関係(好ましくは式:D5o×0.90≦D5c≦D5o×1.10の関係)を満たす。
本実施形態に用いられる粉体塗料は、本実施形態に係る静電粉体塗装方法で説明したように、塗装膜の平滑性の変動を抑制する。
なお、本実施形態に用いられる粉体塗料において、上記式を満たすとは、粉体塗料を噴霧して粉体塗料を被塗装物に静電付着させる条件として、後述する実施例における「静電粉体塗装」の欄で示す静電粉体塗装方法の条件で、粉体塗料を噴霧して粉体塗料を被塗装物に静電付着させたときに、その被塗装物に静電付着した粉体塗料における粉体粒子の粒径5μm以下の粒子の体積割合D5cと、噴霧前の粉体塗料における粉体粒子の粒径5μm以下の粒子の体積割合D5oとが、上記式を満たすことを意味する。
以下、本実施形態に用いられる静電粉体塗装方法に利用する粉体塗料(噴霧前粉体塗料)、及び本実施形態に係る粉体塗料の詳細について、まとめて説明する。なお、以下、双方の粉体塗料を本実施形態に係る粉体塗料と称して説明する。
本実施形態に用いられる粉体塗料は、粉体粒子を有する。粉体塗料は、必要に応じて、外部添加剤を有してもよい。
〔粉体粒子〕
粉体粒子は、熱硬化性樹脂及び熱硬化剤を含む。粉体粒子は、必要に応じて、着色剤、その他の添加剤を含んでもよい。
(熱硬化性樹脂)
熱硬化性樹脂は、熱熱硬化反応性基を有する樹脂である。熱硬化性樹脂としては、従来、粉体塗料の粉体粒子で使用する様々な種類の樹脂が挙げられる。
熱硬化性樹脂は、非水溶性(疎水性)の樹脂であることがよい。熱硬化性樹脂として非水溶性(疎水性)の樹脂を適用すると、粉体塗料(粉体粒子)の帯電特性の環境依存性が低減される。また、粉体粒子を凝集合一法で作製する場合、水性媒体中で乳化分散を実現する点からも、熱硬化性樹脂は、非水溶性(疎水性)の樹脂であることがよい。なお、非水溶性(疎水性)とは、25℃の水100質量部に対する対象物質の溶解量が5質量部未満であることを意味する。
熱硬化性樹脂としては、例えば、熱硬化性(メタ)アクリル樹脂、及び熱硬化性ポリエステル樹脂よりなる群から選択される少なくとも一種が挙げられる。熱硬化性樹脂の中でも、塗装時に帯電列が制御され易い点、塗装膜の強度、仕上げの美しさ等の点から、熱硬化性ポリエステル樹脂が好ましい。
熱硬化性ポリエステル樹脂に含まれる熱硬化反応性基としては、エポキシ基、カルボキシル基、水酸基、アミド基、アミノ基、酸無水基、ブロックイソシアネート基等が挙げられるが、合成が容易な点から、カルボキシル基、及び水酸基が好ましい。
−熱硬化性ポリエステル樹脂−
熱硬化性ポリエステル樹脂は、硬化反応性基を有するポリエステル樹脂である。熱硬化性ポリエステル樹脂に含まれる熱硬化反応性基としては、エポキシ基、カルボキシル基、水酸基、アミド基、アミノ基、酸無水基、ブロックイソシアネート基等が挙げられるが、合成が容易な点から、カルボキシル基、及び水酸基が好ましい。
熱硬化性ポリエステル樹脂は、例えば、多塩基酸と多価アルコールとを少なくとも重縮合した重縮合体である。
熱硬化性ポリエステル樹脂の熱硬化反応性基の導入は、ポリエステル樹脂を合成する際の多塩基酸と多価アルコールとの使用量を調整することにより行う。この調整により、熱硬化反応性基として、カルボキシル基、及び水酸基の少なくとも一方を有する熱硬化性ポリエステル樹脂が得られる。
また、ポリエステル樹脂を合成した後、熱硬化性反応基を導入して、熱硬化性ポリエステル樹脂を得てもよい。
多塩基酸としては、例えば、テレフタル酸、イソフタル酸、フタル酸、メチルテレフタル酸、トリメリット酸、ピロメリット酸、これら酸の無水物;コハク酸、アジピン酸、アゼライン酸、セバチン酸、これら酸の無水物;マレイン酸、イタコン酸、これら酸の無水物;フマル酸、テトラヒドロフタル酸、メチルテトラヒドロフタル酸ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸、これら酸の無水物;シクロヘキサンジカルボン酸、2,6−ナフタレンジカルボン酸等が挙げられる。
多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、トリエチレングリコール、ビス(ヒドロキシエチル)テレフタレート、シクロヘキサンジメタノール、オクタンジオール、ジエチルプロパンジオール、ブチルエチルプロパンジオール、2−メチル−1,3−プロパンジオール、2,2,4−トリメチルペンタンジオール、水添ビスフェノールA、水添ビスフェノールAのエチレンオキサイド付加物、水添ビスフェノールAのプロピレンオキサイド付加物、トリメチロールエタン、トリメチロールプロパン、グリセリン、ペンタエリスリトール、トリスヒドロキシエチルイソシアヌレート、ヒドロキシピバリルヒドロキシピバレート等が挙げられる。
熱硬化性ポリエステル樹脂は、多塩基酸及び多価アルコール以外の他の単量体が重縮合されていてもよい。
他の単量体としては、例えば、1分子中にカルボキシル基と水酸基とを併せ有する化合物(例えばジメタノールプロピオン酸、ヒドロキシピバレート等)、モノエポキシ化合物(例えば「カージュラE10(シェル社製)」等の分岐脂肪族カルボン酸のグリシジルエステル)など)、種々の1価アルコール(例えばメタノール、プロパノール、ブタノール、ベンジルアルコール等)、種々の1価の塩基酸(例えば安息香酸、p−tert−ブチル安息香酸等)、種々の脂肪酸(例えばひまし油脂肪酸、ヤシ油脂肪酸、大豆油脂肪酸の等)等が挙げられる。
熱硬化性ポリエステル樹脂の構造は、分岐構造のものでも、線状構造のものでもよい。
熱硬化性ポリエステル樹脂は、酸価と水酸基価との合計が10mgKOH/g以上250mgKOH/g以下であり、且つ数平均分子量が1000以上100,000以下のポリエステル樹脂が好ましい。
酸価と水酸基価との合計を上記範囲内にすると、塗装膜の平滑性及び機械的物性が向上しやすくなる。数平均分子量を上記範囲内にすると、塗装膜の平滑性及び機械的物性が向上すると共に、粉体塗料の貯蔵安定性も向上しやすくなる。
なお、熱硬化性ポリエステル樹脂の酸価及び水酸基価の測定は、JIS K−0070−1992に準ずる。また、熱硬化性ポリエステル樹脂の数平均分子量の測定は、後述する熱硬化性(メタ)アクリル樹脂の数平均分子量の測定と同様である。
−熱硬化性(メタ)アクリル樹脂−
熱硬化性(メタ)アクリル樹脂は、熱硬化反応性基を有する(メタ)アクリル樹脂である。熱硬化性(メタ)アクリル樹脂への熱硬化反応性基の導入は、熱硬化反応性基を有するビニル単量体を用いることがよい。熱硬化反応性基を有するビニル単量体は、(メタ)アクリル単量体((メタ)アクリロイル基を有する単量体)であってもよいし、(メタ)アクリル単量体以外のビニル単量体であってもよい。
ここで、熱硬化性(メタ)アクリル樹脂の熱硬化反応性基としては、例えば、エポキシ基、カルボキシル基、水酸基、アミド基、アミノ基、酸無水基、ブロック)イソシアネート基等が挙げられる。これらの中でも、(メタ)アクリル樹脂の熱硬化反応性基としては、(メタ)アクリル樹脂の製造容易な点から、エポキシ基、カルボキシル基、及び水酸基からなる群より選ばれる少なくとも1種であることが好ましい。特に、粉体塗料の貯蔵安定性及び塗装膜外観に優れる点から、ことから、熱硬化反応性基の少なくとも1種はエポキシ基であることがより好ましい。
硬化性反応性基としてエポキシ基を有するビニル単量体としては、例えば、各種の鎖式エポキシ基含有単量体(例えばグリシジル(メタ)アクリレート、β−メチルグリシジル(メタ)アクリレート、グリシジルビニルエーテル、アリルグリシジルエーテル等)、各種の(2−オキソ−1,3−オキソラン)基含有ビニル単量体(例えば(2−オキソ−1,3−オキソラン)メチル(メタ)アクリレート等)、各種の脂環式エポキシ基含有ビニル単量体(例えば3,4−エポキシシクロヘキシル(メタ)アクリレート、3,4−エポキシシクロヘキシルメチル(メタ)アクリレート、3,4−エポキシシクロヘキシルエチル(メタ)アクリレート等)などが挙げられる。
硬化性反応性基としてカルボキシル基を有するビニル単量体としては、例えば、各種のカルボキシル基含有単量体(例えば(メタ)アクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸等)、各種のα,β−不飽和ジカルボン酸と炭素数1以上18以下の1価アルコールとのモノエステル類(例えばフマル酸モノメチル、フマル酸モノエチル、フマル酸モノブチル、フマル酸モノイソブチル、フマル酸モノtert−ブチル、フマル酸モノヘキシル、フマル酸モノオクチル、フマル酸モノ2−エチルヘキシル、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノブチル、マレイン酸モノイソブチル、マレイン酸モノtert−ブチル、マレイン酸モノヘキシル、マレイン酸モノオクチル、マレイン酸モノ2−エチルヘキシル等)、イタコン酸モノアルキルエステル(例えばイタコン酸モノメチル、イタコン酸モノエチル、イタコン酸モノブチル、イタコン酸モノイソブチル、イタコン酸モノヘキシル、イタコン酸モノオクチル、イタコン酸モノ2−エチルヘキシル等)などが挙げられる。
硬化性反応性基として水酸基を有するビニル単量体としては、例えば、各種の水酸基含有(メタ)アクリレート(例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、3−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等)、上記各種の水酸基含有(メタ)アクリレートとε−カプロラクトンとの付加反応生成物、各種の水酸基含有ビニルエーテル(例えば2−ヒドロキシエチルビニルエーテル、3−ヒドロキシプロピルビニルエーテル、2−ヒドロキシプロピルビニルエーテル、4−ヒドロキシブチルビニルエーテル、3−ヒドロキシブチルビニルエーテル、2−ヒドロキシ−2−メチルプロピルビニルエーテル、5−ヒドロキシペンチルビニルエーテル、6−ヒドロキシヘキシルビニルエーテル等)、上記各種の水酸基含有ビニルエーテルとε−カプロラクトンとの付加反応生成物、各種の水酸基含有アリルエーテル(例えば、2−ヒドロキシエチル(メタ)アリルエーテル、3−ヒドロキシプロピル(メタ)アリルエーテル、2−ヒドロキシプロピル(メタ)アリルエーテル、4−ヒドロキシブチル(メタ)アリルエーテル、3−ヒドロキシブチル(メタ)アリルエーテル、2−ヒドロキシ−2−メチルプロピル(メタ)アリルエーテル、5−ヒドロキシペンチル(メタ)アリルエーテル、6−ヒドロキシヘキシル(メタ)アリルエーテル等)、上記各種の水酸基含有アリルエーテルとε−カプロラクトンとの付加反応生成物などが挙げられる。
熱硬化性(メタ)アクリル樹脂は、(メタ)アクリル単量体以外にも、熱硬化反応性基を有さない他のビニル単量体が共重合されていてもよい。
他のビニル単量体としては、各種のα−オレフィン(例えばエチレン、プロピレン、ブテン−1等)、フルオロオレフィンを除く各種のハロゲン化オレフィン(例えば塩化ビニル、塩化ビニリデン等)、各種の芳香族ビニル単量体(例えばスチレン、α−メチルスチレン、ビニルトルエン等)、各種の不飽和ジカルボン酸と炭素数1以上18以下の1価アルコールとのジエステル(例えばフマル酸ジメチル、フマル酸ジエチル、フマル酸ジブチル、フマル酸ジオクチル、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジブチル、マレイン酸ジオクチル、イタコン酸ジメチル、イタコン酸ジエチル、イタコン酸ジブチル、イタコン酸ジオクチル等)、各種の酸無水基含有単量体(例えば無水マレイン酸、無水イタコン酸、無水シトラコン酸、無水(メタ)アクリル酸、無水テトラヒドロフタル酸等)、各種の燐酸ステル基含有単量体(例えばジエチル−2−(メタ)アクリロイルオキシエチルフォスフェート、ジブチル−2−(メタ)アクリロイルオキシブチルフォスフェート、ジオクチル−2−(メアクリロイルオキシエチルフォスフェート、ジフェニル−2−(メタ)アクリロイルオキシエチルフォスフェート等)、各種の加水分解性シリル基含有単量体(例えばγ−(メタ)アクリロイルオキシプロピルトリメトキシシラン、γ−(メタ)アクリロイルオキシプロピルトリエトキシシラン、γ−(メタ)アクリロイルオキシプロピルメチルジメトキシシラン等)、各種の脂肪族カルボン酸ビニル(例えば酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、カプロン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、炭素原子数9以上11以下の分岐状脂肪族カルボン酸ビニル、ステアリン酸ビニル等)、環状構造を有するカルボン酸の各種のビニルエステル(例えばシクロヘキサンカルボン酸ビニル、メチルシクロヘキサンカルボン酸ビニル、安息香酸ビニル、p−tert−ブチル安息香酸ビニル等)などが挙げられる。
なお、熱硬化性(メタ)アクリル樹脂において、熱硬化反応性基を有するビニル単量体として、(メタ)アクリル単量体以外のビニル単量体を使用する場合、硬化性反応性基を有さないアクリル単量体を使用する。
硬化性反応性基を有さないアクリル単量体としては、(メタ)アクリル酸アルキルエステル(例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert−ブチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2−エチルオクチル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル等)、各種の(メタ)アクリル酸アリールエステル(例えば(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェニル、(メタ)アクリル酸フェノキシエチル等)、各種のアルキルカルビトール(メタ)アクリレート(例えばエチルカルビトール(メタ)アクリレート等)、他の各種の(メタ)アクリル酸エステル(例えばイソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニロキシエチル(メタ)アクリレート、(メタ)アクリル酸テトラヒドロフルフリル等)、各種のアミノ基含有アミド系不飽和単量体(例えばN−ジメチルアミノエチル(メタ)アクリルアミド、N−ジエチルアミノエチル(メタ)アクリルアミド、N−ジメチルアミノプロピル(メタ)アクリルアミド、N−ジエチルアミノプロピル(メタ)アクリルアミド等)、各種のジアルキルアミノアルキル(メタ)アクリレート(例えばジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート等)、各種のアミノ基含有単量体(例えばtert−ブチルアミノエチル(メタ)アクリレート、tert−ブチルアミノプロピル(メタ)アクリレート、アジリジニルエチル(メタ)アクリレート、ピロリジニルエチル(メタ)アクリレート、ピペリジニルエチル(メタ)アクリレート等)。
熱硬化性(メタ)アクリル樹脂は、数平均分子量が1,000以上20,000以下(好ましくは1,500以上15,000以下)のアクリル樹脂が好ましい。
数平均分子量を上記範囲内にすると、塗装膜の平滑性及び機械的物性が向上しやすくなる。
熱硬化性(メタ)アクリル樹脂の数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により測定する。GPCによる分子量測定は、測定装置として東ソー製GPC・HLC−8120GPCを用い、東ソー製カラム・TSKgel SuperHM−M(15cm)を使用し、THF溶媒で行う。重量平均分子量及び数平均分子量は、この測定結果から単分散ポリスチレン標準試料により作成した分子量校正曲線を使用して算出する。
熱硬化性樹脂は、単独でも2種以上を組み合わせて使用してもよい。
熱硬化性樹脂の含有量は、粉体粒子全体に対して、20質量%以上99質量%以下が好ましく、30質量%以上95質量%以下が好ましい。
なお、後述するように、粉体粒子がコア・シェル型粒子である際、樹脂被覆部の樹脂として熱硬化性樹脂を適用する場合には、上記の熱硬化性樹脂の含有量は、芯部及び樹脂被覆部の全熱硬化性樹脂の含有量を意味する。
(熱硬化剤)
熱硬化剤は、熱硬化性樹脂の熱硬化反応性基の種類に応じて選択する。
ここで、熱硬化剤とは、熱硬化性樹脂の末端基である熱硬化反応性基に対して、反応可能な官能基を有している化合物を意味する。
熱硬化性樹脂の熱硬化反応性基がカルボキシル基の場合、熱硬化剤としては、例えば、種々のエポキシ樹脂(例えばビスフェノールAのポリグリシジルエーテル等)、エポキシ基含有アクリル樹脂(例えばグリシジル基含有アクリル樹脂等)、種々の多価アルコール(例えば1,6−ヘキサンジオール、トリメチロールプロパン、トリメチロールエタン等)のポリグリシジルエーテル、種々の多価カルボン酸(例えばフタル酸、テレフタル酸、イソフタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸、トリメリット酸、ピロメリット酸等)のポリグリシジルエステル、種々の脂環式エポキシ基含有化合物(例えばビス(3,4−エポキシシクロヘキシル)メチルアジペート等)、ヒドロキシアミド(例えばトリグリシジルイソシアヌレート、β−ヒドロキシアルキルアミド等)等が挙げられる。
熱硬化性樹脂の熱硬化反応性基が水酸基の場合、熱硬化剤としては、例えば、ポリブロックイソシアネート、アミノプラスト等が挙げられる。ポリブロックポリイソシアネートとしては、例えば、各種の脂肪族ジイソシアネート(例えばヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等)、各種の環状脂肪族ジイソシアネート(例えばキシリレンジイソシアネート、イソホロンジイソシアネート等)、各種の芳香族ジイソシアネート(例えばトリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート等)などの有機ジイソシアネート;これら有機ジイソシアネートと、多価アルコール、低分子量ポリエステル樹脂(例えばポリエステルポリオール)又は水等との付加物;これら有機ジイソシアネート同士の重合体(イソシアヌレート型ポリイソシアネート化合物をも含む重合体);イソシアネート・ビウレット体等の各種のポリイソシアネート化合物を公知慣用のブロック化剤でブロック化したもの;ウレトジオン結合を構造単位として有するセルフ・ブロックポリイソシアネート化合物などが挙げられる。
熱硬化性樹脂の熱硬化反応性基がエポキシ基の場合、熱硬化剤としては、例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバチン酸、ドデカン二酸、アイコサン二酸、マレイン酸、シトラコン酸、イタコン酸、グルタコン酸、フタル酸、トリメリット酸、ピロメリット酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、シクロヘキセン−1,2−ジカルボン酸、トリメリット酸、ピロメリット酸等の酸;これら酸の無水物;これらの酸のウレタン変性物などが挙げられる。これらの中でも、熱硬化剤としては、塗装膜物性、及び貯蔵安定性の点から、脂肪族二塩基酸が好ましく、塗装膜物性の点から、ドデカン二酸が特に好ましい。
熱硬化剤は、単独でも2種以上を組み合わせて使用してもよい。
熱硬化剤の含有量は、熱硬化性樹脂に対して、1質量%以上30質量%以下が好ましく、3質量%以上20質量%以下が好ましい。
なお、後述するように、粉体粒子がコア・シェル型粒子である際、樹脂被覆部の樹脂として熱硬化性樹脂を適用する場合には、上記の熱硬化剤の含有量は、芯部及び樹脂被覆部の全熱硬化性樹脂に対する含有量を意味する。
(着色剤)
着色剤としては、例えば、顔料が挙げられる。着色剤は、顔料と共に染料を併用してもよい。
顔料としては、例えば、酸化鉄(例えばベンガラ等)、酸化チタン、チタン黄、亜鉛華、鉛白、硫化亜鉛、リトポン、酸化アンチモン、コバルトブルー、カーボンブラック等の無機顔料;キナクリドンレッド、フタロシアニンブルー、フタロシアニングリーン、パーマネントレッド、ハンザイエロー、インダンスレンブルー、ブリリアントファーストスカーレット、ベンツイミダゾロンイエロー等の有機顔料などが挙げられる。
顔料としては、その他、光輝性顔料も挙げられる。光輝性顔料としては、例えば、パール顔料、アルミニウム粉、ステンレス鋼粉等の金属粉;金属フレーク;ガラスビーズ;ガラスフレーク;雲母;リン片状酸化鉄(MIO)等が挙げられる。
着色剤は、単独でも2種以上を組み合わせて使用してもよい。
着色剤の含有量は、顔料の種類及び塗装膜に求められる色彩、明度、及び深度等に応じて選択する。
例えば、着色剤の含有量は、粉体粒子を構成する全樹脂に対して、1質量%以上70質量%以下が好ましく、2質量%以上60質量%以下がより好ましい。
ここで、粉体粒子は、着色剤として、白色顔料と共に、白色顔料以外の着色顔料を含むことがよい。粉体粒子が着色顔料と共に白色顔料を含有することで、塗装膜により被塗装物表面の色が隠蔽され、着色顔料の発色性が向上する。なお、白色顔料としては、酸化チタン、硫酸バリウム、酸化亜鉛、炭酸カルシウム等の周知の白色顔料が挙げられるが、白色度が高い(つまり隠蔽性が高い)点で、酸化チタンが好ましい。
(2価以上の金属イオン)
粉体粒子には、2価以上の金属イオン(以下、単に「金属イオン」とも称する)を含むことがよい。この金属イオンは、後述するように、粉体粒子がコア・シェル型粒子である際には、粉体粒子の芯部及び樹脂被覆部のいずれにも含まれる成分である。
粉体粒子に2価以上の金属イオンを含むと、粉体粒子で金属イオンによるイオン架橋を形成する。例えば、熱硬化性樹脂の官能基(例えば、熱硬化性樹脂として、熱硬化性ポリエステル樹脂を使用した場合、熱硬化性ポリエステル樹脂のカルボキシル基又は水酸基)と金属イオンとが相互作用し、イオン架橋を形成する。このイオン架橋により、粉体粒子の内包物(熱硬化剤、及び熱硬化剤以外に必要に応じて添加される着色剤、その他の添加剤等)が粉体粒子の表面に析出する現象(所謂、ブリード)が抑制され、保管性が高まりやすくなる。また、このイオン架橋は、粉体塗料の塗装後、熱硬化をするときの加熱により、イオン架橋の結合が切れることで、粉体粒子の溶融粘度が低下し、平滑性の高い塗装膜を形成しやすくなる。
金属イオンとしては、例えば、2価以上4価以下の金属イオンが挙げられる。具体的には、金属イオンとしては、例えば、アルミニウムイオン、マグネシウムイオン、鉄イオン、亜鉛イオン、及びカルシウムイオンよりなる群より選択される少なくとも1種の金属イオンが挙げられる。
金属イオンの供給源(粉体粒子に添加剤として含ませる化合物)としては、例えば、金属塩、無機金属塩重合体、金属錯体等が挙げられる。この金属塩、及び無機金属塩重合体は、例えば、粉体粒子を凝集合一法で作製する場合、凝集剤として粉体粒子に添加する。
金属塩としては、例えば、硫酸アルミニウム、塩化アルミニウム、塩化マグネシウム、硫酸マグネシウム、塩化鉄(II)、塩化亜鉛、塩化カルシウム、硫酸カルシウム等が挙げられる。
無機金属塩重合体としては、例えば、ポリ塩化アルミニウム、ポリ水酸化アルミニウム、ポリ硫酸鉄(II)、多硫化カルシウム等が挙げられる。
金属錯体としては、例えば、アミノカルボン酸の金属塩等が挙げられる。金属錯体として、具体的には、例えば、エチレンジアミン4酢酸、プロパンジアミン4酢酸、ニトリル3酢酸、トリエチレンテトラミン6酢酸、ジエチレントリアミン5酢酸等の公知のキレートをベースにした金属塩(例えば、カルシウム塩、マグネシウム塩、鉄塩、アルミニウム塩等)などが挙げられる。
なお、これら金属イオンの供給源は、凝集剤用途ではなく、単なる添加剤として添加してもよい。
金属イオンの価数は、高い程、網目状のイオン架橋を形成しやすくなり、塗装膜の平滑性、及び粉体塗料の保管性の点で好適である。このため、金属イオンとしては、Alイオンが好ましい。つまり、金属イオンの供給源としては、アルミニウム塩(例えば硫酸アルミニウム、塩化アルミニウム等)、アルミニウム塩重合体(例えばポリ塩化アルミニウム、ポリ水酸化アルミニウム等)が好ましい。更に、塗装膜の平滑性、及び粉体塗料の保管性の点で、金属イオンの供給源のうち、金属イオンの価数が同じであっても、金属塩に比べ、無機金属塩重合体が好ましい。このため、金属イオンの供給源としては、特に、アルミニウム塩重合体(例えばポリ塩化アルミニウム、ポリ水酸化アルミニウム等)が好ましい。
金属イオンの含有量は、塗装膜の平滑性、及び粉体塗料の保管性の点で、粉体粒子全体に対して0.002質量%以上0.2質量%以下が好ましく、0.005質量%以上0.15質量%以下がより好ましい。
金属イオンの含有量を0.002質量%以上とすると、金属イオンによる適度なイオン架橋が形成され、粉体粒子のブリードを抑え、塗装塗料の保管性が高まりやすくなる。一方、金属イオンの含有量を0.2質量%以下とすると、金属イオンによる過剰なイオン架橋の形成を抑え、塗装膜の平滑性が高まりやすくなる。
ここで、粉体粒子を凝集合一法で作製する場合、凝集剤として添加される金属イオンの供給源(金属塩、金属塩重合体)は、粉体粒子の粒度分布及び形状の制御に寄与する。
具体的には、金属イオンの価数は高い程、狭い粒度分布を得る点で好適である。また、狭い粒度分布を得る点で、金属イオンの価数が同じであっても、金属塩に比べ、金属塩重合体が好適である。このため、これら点からも、金属イオンの供給源としては、アルミニウム塩(例えば硫酸アルミニウム、塩化アルミニウム等)、アルミニウム塩重合体(例えばポリ塩化アルミニウム、ポリ水酸化アルミニウム等)が好ましく、アルミニウム塩重合体(例えばポリ塩化アルミニウム、ポリ水酸化アルミニウム等)が特に好ましい。
また、金属イオンの含有量が0.002質量%以上になるように、凝集剤を添加すると、水性媒体中における樹脂粒子の凝集が進行し、狭い粒度分布の実現に寄与する。また、芯部となる凝集粒子に対して、樹脂被覆部となる樹脂粒子の凝集が進行し、芯部表面全体に対する樹脂被覆部の形成の実現に寄与する。一方、金属イオンの含有量が0.2質量%以下になるように、凝集剤を添加すると、凝集粒子中のイオン架橋の過剰な生成を抑え、融合合一するときに、生成される粉体粒子の形状が球状に近づきやすくなる。このため、これら点からも、金属イオンの含有量は、0.002質量%以上0.2質量%以下が好ましく、0.005質量%以上0.15質量%以下がより好ましい。
金属イオンの含有量は、粉体粒子の蛍光X線強度を定量分析することにより測定される。具体的には、例えば、まず、樹脂と金属イオンの供給源との混合し、金属イオンの濃度が既知の樹脂混合物を得る。この樹脂混合物200mgを、直径13mmの錠剤成形器を用いて、ペレットサンプルを得る。このペレットサンプルの質量を精秤し、ペレットサンプルの蛍光X線強度測定を行って、ピーク強度を求める。同様に、金属イオンの供給源の添加量を変更したペレットサンプルについても測定を行い、これらの結果から検量線を作成する。そして、この検量線を用いて、測定対象となる粉体粒子中の金属イオンの含有量を定量分析する。
金属イオンの含有量の調整方法としては、例えば、1)金属イオンの供給源の添加量を調整する方法、2)粉体粒子を凝集合一法で作製する場合、凝集工程において、金属イオンの供給源として凝集剤(例えば金属塩、又は金属塩重合体)を添加した後、凝集工程の最後にキレート剤(例えばEDTA(エチレンジアミン四酢酸)、DTPA(ジエチレントリアミン五酢酸)、NTA(ニトリロ三酢酸)等)を添加し、キレート剤により金属イオンと錯体を形成させ、その後の洗浄工程等で形成された錯塩を除去して、金属イオンの含有量を調整する方法等が挙げられる。
(その他の添加剤)
その他の添加剤としては、粉体塗料に使用される各種の添加剤が挙げられる。
具体的には、その他の添加剤としては、例えば、発泡(ワキ)防止剤(例えば、ベンゾイン、ベンゾイン誘導体等)、硬化促進剤(アミン化合物、イミダゾール化合物、カチオン重合触媒等)、表面調整剤(レベリング剤)、可塑剤、帯電制御剤、酸化防止剤、顔料分散剤、難燃剤、流動付与剤等が挙げられる。
(コア・シェル型粒子)
本実施形態において、粉体粒子は、熱硬化性樹脂及び熱硬化剤を含有する芯部と、該芯部の表面を被覆する樹脂被覆部と、を有するコア・シェル型粒子であってもよい。
この際、芯部は、熱硬化性樹脂及び熱硬化剤の他、必要に応じて、前述した、着色剤のその他の添加剤を含有してもよい。
また、コア・シェル型粒子における樹脂被覆部について、以下に説明する。
樹脂被覆部は、樹脂のみで構成されていてもよいし、他の成分(芯部を構成する成分として説明した熱硬化剤、その他の添加剤等)を含んでいてもよい。
但し、ブリードを低減させる点から、樹脂被覆部は、樹脂のみで構成されていることがよい。なお、樹脂被覆部が、樹脂以外の他の成分を含む場合でも、樹脂は樹脂被覆部全体の90質量%以上(好ましくは95質量%以上)を占めることがよい。
樹脂被覆部を構成する樹脂は、非硬化性樹脂であってもよく、熱硬化性樹脂であってもよいが、塗装膜の硬化密度(架橋密度)向上の点から、熱硬化性樹脂であることがよい。
樹脂被覆部の樹脂として、熱硬化性樹脂を適用する場合、この熱硬化性樹脂としては、芯部の熱硬化性樹脂と同様なものが挙げられ、好ましい例も同様である。但し、樹脂被覆部の熱硬化性樹脂は、芯部の熱硬化性樹脂と同じ種類の樹脂であってもよいし、異なる樹脂であってもよい。
なお、樹脂被覆部の樹脂として、非硬化性樹脂を適用する場合、非硬化性樹脂としては、アクリル樹脂、及びポリエステル樹脂よりなる群から選択される少なくとも1種が好適に挙げられる。
樹脂被覆部の被覆率は、ブリードの抑制の点から、30%以上100%以下が好ましく、50%以上100%以下がより好ましい。
樹脂被覆部の被覆率は、粉体粒子表面の樹脂被覆部の被覆率はXPS(X線光電子分光)測定により求められた値である。
具体的には、XPS測定は、測定装置として日本電子社製、JPS−9000MXを使用し、X線源としてMgKα線を用い、加速電圧を10kV、エミッション電流を30mAに設定して実施する。
上記条件で得られたスペクトルから、粉体粒子表面の芯部の材料に起因する成分と被覆樹脂部の材料に起因する成分をピーク分離することによって、粉体粒子表面の樹脂被覆部の被覆率を定量する。ピーク分離は、測定されたスペクトルを、最小二乗法によるカーブフィッティングを用いて各成分に分離する。
分離のベースとなる成分スペクトルは、粉体粒子の作製に用いた熱硬化性樹脂、硬化剤、顔料、添加剤、被覆用樹脂を単独に測定して得られたスペクトルを用いる。そして、粉体粒子で得られた全スペクトル強度の総和に対しての被覆用樹脂に起因するスペクトル強度の比率から、被覆率を求める。
樹脂被覆部の厚さは、ブリード抑制の点から、0.1μm以上1.0μm以下が好ましく、0.2μm以上0.7μm以下がより好ましい。
樹脂被覆部の厚さは、次の方法により測定された値である。粉体粒子をエポキシ樹脂などに包埋し、ダイヤモンドナイフなどで切削することで薄切片を作製する。この薄切片を透過型電子顕微鏡(TEM)などで観察、複数の粉体粒子の断面画像を撮影する。粉体粒子の断面画像から樹脂被覆部の厚みを20か所測定して、その平均値を採用する。クリア粉体塗料などで断面画像において樹脂被覆部の観察が難しい場合は、染色を行って観察することで、測定を容易にすることもできる。
(粉体粒子の好ましい特性)
−体積粒度分布指標GSDv−
粉体粒子の体積粒度分布指標GSDvは、塗装膜の平滑性、及び粉体塗料の保管性の点で、1.50以下であることが好ましく、1.40以下がより好ましく、1.30以下が更に好ましい。特に、粉体粒子の体積粒度分布指標GSDv(つまり噴霧前粉体粒子の体積粒度分布指標GSDv)は、付着粉体粒子の粒径5μm以下の粒子の体積割合D5cと、噴霧前粉体粒子の粒径5μm以下の粒子の体積割合D5oとを上記式の関係を満たすようにする点から、1.40以下が好ましい。
−体積平均粒径D50v−
また、粉体粒子の体積平均粒径D50vは、少量で平滑性の高い塗装膜を形成する点から、1μm以上25μm以下が好ましく、2μm以上20μm以下がより好ましく、3μm以上15μm以下が更に好ましい。特に、粉体粒子の体積平均粒径D50v(つまり噴霧前粉体粒子の体積平均粒径D50v)は、付着粉体粒子の粒径5μm以下の粒子の体積割合D5cと、噴霧前粉体粒子の粒径5μm以下の粒子の体積割合D5oとを上記式の関係を満たすようにする点から、3μm以上20μm以下が好ましく、3μm以上10μm以下がより好ましい。
−平均円形度−
更に、粉体粒子の平均円形度は、塗装膜の平滑性、及び粉体塗料の保管性の点で、0.96以上であることが好ましく、0.97以上がより好ましく、0.98以上が更に好ましい。特に、粉体粒子の平均円形度(つまり噴霧前粉体粒子の平均円形度)は、付着粉体粒子の粒径5μm以下の粒子の体積割合D5cと、噴霧前粉体粒子の粒径5μm以下の粒子の体積割合D5oとを上記式の関係を満たすようにする点から、0.96以上が好ましい。
ここで、粉体粒子の体積平均粒径D50v、及び体積粒度分布指標GSDvは、コールターマルチサイザーII(ベックマン・コールター社製)を用い、電解液はISOTON−II(ベックマン・コールター社製)を使用して測定される。
測定に際しては、分散剤として、界面活性剤(アルキルベンゼンスルホン酸ナトリウムが好ましい)の5%水溶液2ml中に測定試料を20mg以上50mg以下加える。これを電解液100ml以上150ml以下中に添加する。
試料を懸濁した電解液は超音波分散器で1分間分散処理を行い、コールターマルチサイザーIIIにより、アパーチャー径として100μmのアパーチャーを用いて2μm以上60μm以下の範囲の粒径の粒子の粒度分布を測定する。なお、測定濃度は5%以上10%以下、サンプリングする粒子数は50000個である。
測定される粒度分布を基にして32分割された粒度範囲(チャンネル)に対して体積をそれぞれ小径側から累積分布を描いて、累積16%となる粒径を体積粒径D16v、累積50%となる粒径を体積平均粒径D50v、累積84%となる粒径を体積粒径D84vと定義する。
そして、体積平均粒度分布指標(GSDv)は(D84v/D16v)1/2として算出される。
また、粉体粒子の平均円形度は、フロー式粒子像分析装置「FPIA−3000(シスメックス社製)」を用いることにより測定される。具体的には、予め不純固形物を除去した水100ml以上150ml以下の中に、分散剤として界面活性剤(アルキルベンゼンスルホン酸塩)を0.1ml以上0.5ml以下加え、更に測定試料を0.1g以上0.5g以下加える。測定試料を分散した懸濁液は超音波分散器で1分以上3分以下分散処理を行ない、分散液濃度を3000個/μl以上1万個/μl以下とする。この分散液に対して、フロー式粒子像分析装置を用いて、粉体粒子の平均円形度を測定する。
ここで、粉体粒子の平均円形度は、粉体粒子について測定されたn個の各粒子の円形度(Ci)を求め、次いで、下記式により算出される値である。但し、下記式中、Ciは、円形度(=粒子の投影面積に等しい円の周囲長/粒子投影像の周囲長)を示し、fiは、粉体粒子の頻度を示す。
〔外部添加剤〕
外部添加剤は、粉体粒子間の凝集の発生を抑制し、少量で平滑性の高い塗装膜を形成することができる。外部添加剤の具体例としては、例えば、無機粒子が挙げられる。無機粒子として、SiO、TiO、Al、CuO、ZnO、SnO、CeO、Fe、MgO、BaO、CaO、KO、NaO、ZrO、CaO・SiO、KO・(TiO)n、Al・2SiO、CaCO、MgCO、BaSO、MgSO等の粒子が挙げられる。
外部添加剤としての無機粒子の表面は、疎水化処理が施されていることがよい。疎水化処理は、例えば疎水化処理剤に無機粒子を浸漬する等して行う。疎水化処理剤は特に制限されないが、例えば、シラン系カップリング剤、シリコーンオイル、チタネート系カップリング剤、アルミニウム系カップリング剤等が挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
疎水化処理剤の量としては、通常、例えば、無機粒子100質量部に対して、1質量部以上10質量部である。
外部添加剤の体積平均粒径は、5nm以上200nm以下が好ましく、7nm以上100nm以下がより好ましく、10nm以上50nm以下が更に好ましい。外部添加剤の体積平均粒子径を5nm以上200nm以下とすると、静電粉体塗装機で粉体塗料を塗布する際に、空気流で粉体粒子がほぐれて一次粒子として飛翔しやすくなり、粉体粒子が一次粒子の状態で被塗装物に付着し粒径単位の配色(調色)が実現され易くなり、調色性が良好になる。
また、互いに色の異なる複数の粉体塗料の粉体粒子に同じ種類の外部添加剤を添加することで、粉体塗料間の帯電性の差が減少する。そのため、異なる粉体塗料を混合(調色)したとき、混合性が高まり、色むらの発生がより抑制される。
外部添加剤の外添量としては、例えば、粉体粒子に対して、0.01質量%以上5質量%以下が好ましく、0.01質量%以上2.0質量%以下がより好ましい。
〔特定無機酸化物粒子〕
粉体粒子は、外部添加剤として、特定無機酸化物粒子(正帯電性の無機酸化物粒子)を適用することがよい。
ここで、上記「正帯電性」、「負帯電性」に関しては、本実施形態では、シリカ粒子と電子写真キャリア用鉄粉とを混合し、ブローオフ法により帯電量を測定し、その値が正となるものを正帯電性シリカとした。具体的には、測定するシリカ粒子の粒径と比重とから、鉄粉に対するカバレッジを計算し、鉄粉に対するシリカ粒子のカバレッジが200%となる外添剤仕込み量を下記式(1)より求めた。200(%)=(√3/2π)×(Dc・ρc)/(Da・ρa)×(シリカ仕込み量)/(鉄粉仕込み量)×100 ・・・ 式(1)
(上記式において、Dcは鉄粉粒径(μm)、ρcは鉄粉比重、Daは外添剤粒径(μm)、ρaは外添剤比重を各々表す。)次に、鉄粉10gと、上記計算で求めた仕込み量のシリカとを混合し、20分間ターブラーミキサーにて混合した。その後、帯電量測定装置TB−200(東芝社製)によりブローオフ法で帯電量を測定した。
(無機酸化物粒子)
無機酸化物粒子としては、SiO、TiO、Al、CuO、ZnO、SnO、CeO、Fe、MgO、BaO、CaO、KO、NaO、ZrO、CaO・SiO、KO・(TiO)n、Al・2SiO等の粒子が挙げられる。
中でも、粉体粒子の流動性の付与能、帯電性の調整のし易さの点から、SiO、TiO、Alが好ましく、特に、SiOがより好ましい。
(アミノ基を有するシラン化合物)
特定無機酸化物粒子としては、アミノ基を有するシラン化合物を含む無機酸化物粒子が挙げられる。
特定無機酸化物粒子に含まれるアミノ基を有するシラン化合物としては、アミノ基とケイ素原子(Si)とを含む化合物であり、製造適性の点、本実施形態における摩擦帯電方式への適性のために必要な帯電制御のし易さ、材料としての選択性が広い等の点から、アミノ基を有するシランカップリング剤及びアミノ基を有するシリコーンオイルから選択される1種以上の化合物が好ましい。
アミノ基を有するシラン化合物は、1種単独で使用してもよいし、2種以上を併用してもよい。
アミノ基を有するシランカップリング剤としては、アミノ基として、無置換アミノ基、アルキルアミノ基、又はジアルキルアミノ基を有するものが好ましい。ここで、アルキルアミノ基及びジアルキルアミノ基中のアルキル基としては、メチル基、エチル基、又はブチル基が好ましい。
アミノ基を有するシランカップリング剤として、具体的には、3−アミノプロピルトリメトキシシラン、3−アミノプロピルメチルジメトキシシラン、3−アミノプロピルトリエトキシシラン、3−アミノプロピルメチルジエトキシシラン、3−(N,N−ジメチル)アミノプロピルトリメトキシシラン、3−(N,N−ジエチル)アミノプロピルトリメトキシシラン、3−(N,N−ジブチル)アミノプロピルトリメトキシシラン、3−(N,N−ジメチル)アミノプロピルトリエトキシシラン、3−(N,N−ジエチル)アミノプロピルトリエトキシシラン、3−(N,N−ジブチル)アミノプロピルトリエトキシシラン、3−(N,N−ジメチル)アミノプロピルメチルジメトキシシラン、3−(N,N−ジエチル)アミノプロピルメチルジメトキシシラン、3−(N,N−ジブチル)アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−(ビニルベンジル)−2−アミノエチル−3−アミノプロピルトリメトキシシランの塩酸塩、1,2−エタンジアミン,N−{3−(トリメトキシシリル)プロピル}−,N−{(エテニルフェニル)メチル}誘導体塩酸塩、ジメチル{2−メチル−3−(メチルアミノ)プロピル}トリメトキシシラン等が挙げられる。
中でも、帯電付与性、特定無機酸化物粒子の製造性の点から、アミノプロピル基を有するトリメトキシシラン、アミノプロピル基を有するジメトキシシランシラン、アミノプロピル基を有するトリエトキシシラン、及びアミノプロピル基を有するジエトキシシランシランが好ましく、具体的には、ジメチル{2−メチル−3−(メチルアミノ)プロピル}トリメトキシシランが好ましい。
なお、アミノ基を有するシランカップリング剤は、帯電付与制御の調整剤、流動性の調整剤として、例えば、ヘキサメチルシラザン等に代表されるアミノ基を含有しないシラン化合物、アミノ基を含有しないシランカップリング剤等の公知のシラン化合物との併用も可能である。
また、アミノ基を有するシリコーンオイルとしては、ポリシロキサンの側鎖及び主鎖末端の少なくとも一方に、アミノ基を含む有機基が導入されたアミノ変性シリコーンオイルが挙げられる。
具体的には、導入されるアミノ基を含む有機基としては、例えば、2−アミノエチル基、3−アミノプロピル基、N−シクロヘキシル−3−アミノプロピル基、N−(2−アミノエチル)−3−アミノプロピル基等が挙げられる。
アミノ基を有するシリコーンオイルとしては、市販品を用いてもよい。
市販品としては、例えば、信越化学工業社製のKF−857、KF−868、KF−865、KF−864、KF−869、KF−859、KF−393、KF−860、KF−880、KF−8004、KF−8002、KF−8005、KF−8010、KF−867、X−22−3820W、KF−869、KF−861、X−22−3939A、KF−877等が挙げられる。
また、東レ・ダウコーニング社製のBY16−205、FZ−3760、SF8417、BY16−849、BY16−892、FZ−3785、BY16−872、BY16−213、BY16−203、BY16−898、BY16−890、BY16−891、BY16−893、FZ−3789等が挙げられる。
また、アミノ基を有するシラン化合物としては、上記したものの他、アミノ基、アルキルアミノ基、又はジアルキルアミノ基と、ケイ素原子と、を含む化合物(アルコキシ基を含まない化合物)が挙げられる。
アミノメチルトリメチルシラン、ジメチルアミノジメチルシラン、ジメチルアミノトリメチルシラン、ビス(ジメチルアミノ)メチルシラン、アリルアミノトリメチルシラン、ジエチルアミノジメチルシラン、ビス(エチルアミノ)ジメチルシラン、ビス(ジメチルアミノ)ジメチルシラン、2−アミノエチルアミノメチルトリメチルシラン、トリス(ジメチルアミノ)シラン、ビス(ジメチルアミノ)メチルビニルシラン、イソプロピルアミノメチルトリメチルシラン、ジエチルアミノトリメチルシラン、ブチルアミノメチルトリメチルシラン、3−ブチルアミノプロピルトリメチルシラン等が挙げられる。
特定無機酸化物粒子において、アミノ基を有するシラン化合物は、無機酸化物粒子の内部に含まれていてもよいし、表層部に含まれていてもよいし、内部及び表層部の両方に含まれていてもよい。
帯電列の制御が容易な点、また、製造が簡易な点から、アミノ基を有するシラン化合物は、無機酸化物粒子の表層部に含まれていることが好ましい。
アミノ基を有するシラン化合物を無機酸化物粒子の内部に含ませるには、無機酸化物粒子の合成、造粒、精製等の過程においてアミノ基を有するシラン化合物を添加する方法がある。
例えば、無機酸化物粒子がSiOであれば、ゾルゲル法等の湿式法にてSiO粒子(シリカ粒子)を合成する際に、反応過程において、アミノ基を有するシラン化合物を用いることで、アミノ基を有するシラン化合物を内部に含む特定無機酸化物粒子が得られる。
また、アミノ基を有するシラン化合物を無機酸化物粒子の表層部に含ませるためには、無機酸化物粒子の表面に、アミノ基を有するシラン化合物を化学的に結合させる、又は物理的に吸着させる方法がある。
例えば、アミノ基を有するシラン化合物がアミノ基を有するシランカップリング剤であれば、無機酸化物粒子に対しアミノ基を有するシランカップリング剤により表面処理することで、アミノ基を有するシラン化合物を表層部に含む特定無機酸化物粒子が得られる。
この表面処理としては、アミノ基を有するシラン化合物を含む表面処理剤に、無機酸化物粒子を浸漬する等して行えばよい。また、表面処理は、無機酸化物粒子ゾルの分散体に対して行われてもよい。
特定無機酸化物粒子中のアミノ基の含有量としては、アミノ基を有するシラン化合物の分子量によって変わり、また、求める帯電量の制御効果、流動性の制御効果に応じて、決定されればよい。
アミノ基を有するシラン化合物の含有量は、例えば、粉体粒子と特定無機酸化物粒子との帯電量を制御する効果の発現の点、製造適性の点から、特定無機酸化物粒子の全質量に対して、0.01質量%以上50質量%以下が好ましく0.1質量%以上20質量%以下がより好ましい。
なお、特定無機酸化物粒子中のアミノ基の含有量は、一般的な装置を用いた元素分析法により窒素原子の含有量を求めることにより推定される。
−疎水化処理剤−
上記のように、無機酸化物粒子の表面に、アミノ基を有するシラン化合物を化学的に結合させる、又は物理的に吸着させる方法を用いて特定無機酸化物粒子を得る際には、帯電列を制御する効果を損なわない範囲において、アミノ基を有するシラン化合物以外の成分を併用してもよい。
併用される成分としては、疎水化処理剤が挙げられ、疎水化処理剤は特に制限されないが、例えば、アミノ基を有するシラン化合物以外のシラン系カップリング剤、アミノ基を有するシラン化合物以外のシリコーンオイル、チタネート系カップリング剤、アルミニウム系カップリング剤等が挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。
(特定無機酸化物粒子の好ましい物性)
−体積平均粒径−
特定無機酸化物粒子の体積平均粒径D50vは、粉体粒子の粒径との関係もあるが、0.001μm以上1.0μm以下が好ましく、0.005μm以上0.5μm以下がより好ましい。
特定無機酸化物粒子の体積平均粒径が上記範囲であることで、粉体粒子に高い流動性が付与され、更に、平滑性に優れた塗装膜を形成しうる。
なお、特定無機酸化物粒子の体積平均粒径D50vも、前記粉体塗料の体積平均粒径D50vと同様の方法で測定する。
(特定無機酸化物粒子の含有割合)
粉体粒子の炭素量CSと無機酸化物粒子の金属総量ISとから計算式(1)によって算出される特定無機酸化物粒子の含有割合Fは、次の通り算出される。
ここで、特定無機酸化物粒子の含有割合Fは、以下の計算式(1)から算出される。
計算式(1) F=100×IS/(IS+CS)
計算式(1)中、CSは蛍光X線分析によって測定された粉体粒子の炭素量を表し、ISは蛍光X線分析によって測定された特定無機酸化物粒子の金属総量を表す。
粉体粒子の主成分は一般に樹脂であり、その大部分を構成する元素は炭素である。
一方、特定無機酸化物粒子中の無機酸化物粒子は、MOx(Mは金属元素、xは自然数)で示され、特定無機酸化物粒子を構成する元素のうちの多くがMである。
また、蛍光X線分析は、分析対象とする測定試料の表面における元素の構成割合が測定される。
即ち、計算式(1)で求められる含有割合Fは、粉体粒子表面の特定無機酸化物粒子の被覆率を示すものである。
(蛍光X線分析によるCS及びISの測定法)
試料前処理としては、粉体塗料4gを、加圧成型器で10t(10,000kg)、1分間の加圧成型を実施する。
得られた測定試料について、(株)リガク製の走査型蛍光X線分析装置ZSX Primus IIを使用して、測定条件は、定性定量測定で、管電圧60KV、管電流50mA、測定時間40deg/minにて、測定する。
ここで、特定無機酸化物粒子中の測定元素は、Si、Ti、Al、Cu、Zn、Sn、Ce、Fe、Mg、Ba、Ca、K、Na、Zr、及びCaであって、ISはこれらの元素の総量である。
<粉体塗料の製造方法>
次に、本実施形態に係る粉体塗料の製造方法について説明する。
本実施形態に係る粉体塗料は、粉体粒子を製造後、必要に応じて、粉体粒子に対して外部添加剤を外添することで得られる。
粉体粒子は、乾式製法(例えば、混練粉砕法等)、湿式製法(例えば凝集合一法、懸濁重合法、溶解懸濁法等)のいずれにより製造してもよい。粉体粒子の製法は、これらの製法に特に制限はなく、周知の製法が採用される。
例えば、乾式製法には、1)熱硬化性樹脂及び他の原料を混練、粉砕、分級する混練粉砕法、混練粉砕法にて得られた粒子を機械的衝撃力または熱エネルギーにて形状を変化させる乾式製法等がある。
本実施形態に係る粉体塗料は、例えば、乾式製法により得られた粉体粒子を、アンモニア水溶液を用いて処理することにより得られる。
処理方法としては、例えば、0.001質量%のアンモニア水溶液中に粒子を浸漬させる方法が挙げられる。
なお、処理に用いるアンモニア水溶液中には、他の塩基性化合物が含まれていてもよいが、アンモニアを含む塩基性化合物の全量に対し、アンモニアの含有量が10モル%以上であることが好ましく、50モル%以上であることがより好ましい。
一方、湿式製法には、例えば、1)熱硬化性樹脂を得るための重合性単量体を乳化重合させた分散液と、他の原料の分散液とを混合し、凝集、加熱融着させ、粉体粒子を得る凝集合一法、2)熱硬化性樹脂を得るための重合性単量体と、他の原料の溶液とを水系溶媒に懸濁させて重合する懸濁重合法、3)熱硬化性樹脂と、他の原料の溶液とを水系溶媒に懸濁させて造粒する溶解懸濁法等がある。なお、湿式製法の方が、熱的な影響が小さいことから好適に使用できる。
本実施形態に係る粉体塗料は、例えば、粉体粒子の製造中に、樹脂を、アンモニア水溶液を用いて処理することにより得られる。
具体的な処理方法については後述する。
また、上記製法で得られた粉体粒子を芯部(コア)にして、さらに樹脂粒子を付着、加熱融合して、コア・シェル型粒子である粉体粒子を得てもよい。
これらの中でも、体積粒度分布指標GSDv、体積平均粒径D50v、及び平均円形度を上記の好ましい範囲に容易に制御できる点から、凝集合一法により、粉体粒子を得ることがよい。
以下、コア・シェル型粒子である粉体粒子を製造する凝集合一法を例に挙げて説明する。
具体的には、
熱硬化性樹脂を含む第1樹脂粒子、及び熱硬化剤が分散された分散液中で、前記第1樹脂粒子と前記熱硬化剤とを凝集して、又は、熱硬化性樹脂、及び熱硬化剤を含む複合粒子が分散された分散液中で、前記複合粒子を凝集して、第1凝集粒子を形成する工程(第1凝集粒子形成工程)と、
前記第1凝集粒子が分散された第1凝集粒子分散液と、樹脂を含む第2樹脂粒子が分散された第2樹脂粒子分散液とを混合し、前記第1凝集粒子の表面に前記第2樹脂粒子を凝集し、前記第2樹脂粒子が前記第1凝集粒子の表面に付着した第2凝集粒子を形成する工程(第2凝集粒子形成工程)と、
前記第2凝集粒子が分散された第2凝集粒子分散液に対して加熱し、前記第2凝集粒子を融合及び合一する工程(融合合一工程)と、
を経て、粉体粒子を製造することが好ましい。
なお、この凝集合一法により製造された粉体粒子は、第1凝集粒子が融合合一した部分が芯部となり、第1凝集粒子の表面に付着した第2樹脂粒子が融合合一した部分が樹脂被覆部となる。
そのため、第1凝集粒子形成工程で形成された第1凝集粒子を、第2凝集粒子形成工程を経ず、融合合一工程へと供し、第2凝集粒子の代わりに融合及び合一すれば、単層構造の粉体粒子が得られる。
以下、各工程の詳細について説明する。
なお、以下の説明では、着色剤を含む粉体粒子の製造方法について説明するが、着色剤は必要に応じて含有するものである。
−各分散液準備工程−
まず、凝集合一法で使用する各分散液を準備する。
具体的には、芯部の熱硬化性樹脂を含む第1樹脂粒子が分散された第1樹脂粒子分散液、熱硬化剤が分散された熱硬化剤分散液、着色剤が分散された着色剤分散液、樹脂被覆部の樹脂を含む第2樹脂粒子が分散された第2樹脂粒子分散液を準備する。
また、第1樹脂粒子分散液、及び熱硬化剤分散液に代えて、芯部用の熱硬化性樹脂、及び熱硬化剤を含む複合粒子が分散された複合粒子分散液を準備する。
なお、粉体塗料の製造方法の各工程において、第1樹脂粒子、第2樹脂粒子、及び複合粒子を、総じて「樹脂粒子」と称し、これらの樹脂粒子の分散液を「樹脂粒子分散液」と称して説明する。
ここで、樹脂粒子分散液は、例えば、樹脂粒子を界面活性剤により分散媒中に分散させることにより調製する。
樹脂粒子分散液に用いる分散媒としては、例えば水性媒体が挙げられる。
水性媒体としては、例えば、蒸留水、イオン交換水等の水;アルコール類等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
界面活性剤としては、例えば、硫酸エステル塩系、スルホン酸塩系、リン酸エステル系、せっけん系等のアニオン性界面活性剤;アミン塩型、4級アンモニウム塩型等のカチオン性界面活性剤;ポリエチレングリコール系、アルキルフェノールエチレンオキサイド付加物系、多価アルコール系等の非イオン性界面活性剤等が挙げられる。これらの中でも特に、アニオン性界面活性剤、カチオン性界面活性剤が挙げられる。非イオン性界面活性剤は、アニオン性界面活性剤又はカチオン性界面活性剤と併用してもよい。
界面活性剤は、1種単独で使用してもよいし、2種以上を併用してもよい。
樹脂粒子分散液において、樹脂粒子を分散媒に分散する方法としては、例えば回転せん断型ホモジナイザーや、メディアを有するボールミル、サンドミル、ダイノミル等の一般的な分散方法が挙げられる。また、樹脂粒子の種類によっては、例えば転相乳化法を用いて樹脂粒子分散液中に樹脂粒子を分散させてもよい。
なお、転相乳化法とは、分散すべき樹脂を、その樹脂が可溶な疎水性有機溶剤中に溶解せしめ、有機連続相(O相)に塩基を加えて、中和したのち、水性媒体(W相)を投入することによって、W/OからO/Wへの、樹脂の変換(いわゆる転相)が行われて不連続相化し、樹脂を水性媒体中に粒子状に分散する方法である。
樹脂粒子分散液の調製方法として、具体的には、以下の方法がある。
例えば、樹脂粒子分散液が、ポリエステル樹脂粒子が分散されたポリエステル樹脂粒子分散液の場合、かかるポリエステル樹脂粒子分散液は、原料単量体を加熱溶融及び減圧下重縮合した後、得られた重縮合体を、溶剤(例えば酢酸エチル等)を加えて溶解し、更に、得られた溶解物に弱アルカリ性水溶液を加えながら撹拌、及び転相乳化することによって得られる。
なお、樹脂粒子分散液が複合粒子分散液である場合、熱硬化性樹脂と熱硬化剤とを混合して、分散媒に分散(例えば転相乳化等の乳化)することで、当該複合粒子分散液を得る
樹脂粒子分散液中に分散する樹脂粒子の体積平均粒径としては、例えば、1μm以下がよく、0.01μm以上1μm以下が好ましく、0.08μm以上0.8μm以下がより好ましく、0.1μm以上0.6μmが更に好ましい。
なお、樹脂粒子の体積平均粒径は、レーザー回折式粒度分布測定装置(例えば、堀場製作所製、LA−700)の測定によって得られた粒度分布を用い、分割された粒度範囲(チャンネル)に対し、体積について小粒径側から累積分布を引き、全粒子に対して累積50%となる粒径を体積平均粒径D50vとして測定される。なお、他の分散液中の粒子の体積平均粒径も同様に測定される。
ここで、樹脂粒子分散液を作製するためには、公知の乳化方法を用いることができるが、得られる粒度分布が狭く、且つ体積平均粒径を1μm以下(特に0.08μm以上0.40μm以下)の範囲にしやすい転相乳化法が有効である。
転相乳化法は、樹脂を溶解する有機溶剤、更に両親媒性の有機溶剤の単独、又は混合溶剤に樹脂を溶かして油相とする。その油相を攪拌しながら塩基性化合物を少量滴下し、更に攪拌しながら水を少しずつ滴下し、油相中に水滴が取り込まれる。次に水の滴下量がある量を超えると油相と水相が逆転して油相が油滴となる。その後、減圧化の脱溶剤工程をへて水分散液が得られる。
両親媒性の有機溶剤とは、20℃における水に対する溶解性が少なくとも5g/L以上、望ましくは10g/L以上であるものをいう。この溶解性が5g/L未満のものは、水性化処理速度を加速させる効果に乏しく、得られる水分散体も貯蔵安定性に劣るという問題がある。また、両親媒性の有機溶剤としては、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、sec−ブタノール、tert−ブタノール、n−アミルアルコール、イソアミルアルコール、sec−アミルアルコール、tert−アミルアルコール、1−エチル−1−プロパノール、2−メチル−1−ブタノール、n−ヘキサノール、シクロヘキサノール等のアルコール類、メチルエチルケトン、メチルイソブチルケトン、エチルブチルケトン、シクロヘキサノン、イソホロン等のケトン類、テトラヒドロフラン、ジオキサン等のエーテル類、酢酸エチル、酢酸−n−プロピル、酢酸イソプロピル、酢酸−n−ブチル、酢酸イソブチル、酢酸−sec−ブチル、酢酸−3−メトキシブチル、プロピオン酸メチル、プロピオン酸エチル、炭酸ジエチル、炭酸ジメチル等のエステル類、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールエチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールエチルエーテルアセテート、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールメチルエーテルアセテート、ジプロピレングリコールモノブチルエーテル等のグリコール誘導体、さらには、3−メトキシ−3−メチルブタノール、3−メトキシブタノール、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、ジアセトンアルコール、アセト酢酸エチル等が挙げられる。これらの溶剤は単一でも、また2種以上を混合しても使用できる。
なお、熱硬化性樹脂としての熱硬化性ポリエステル樹脂は、水媒体に分散させる際に塩基性化合物で中和される。熱硬化性ポリエステル樹脂のカルボキシル基との中和反応が水性化の起動力であり、しかも生成したカルボキシルアニオン間の電気反発力によって、粒子間の凝集を抑制され易くなる。
塩基性化合物としてはアンモニア、沸点が250℃以下の有機アミン化合物等が挙げられるが、使用される塩基性化合物の全量に対し、10モル%以上がアンモニアであることが好ましく、25モル%以上がアンモニアであることがより好ましく、50モル%以上がアンモニアであることが更に好ましい。上記中和反応をアンモニアを用いて行うことにより、粉体塗料における上記アンモニウムイオン量が調整される。好ましい有機アミン化合物の例としては、トリエチルアミン、N,N−ジエチルエタノールアミン、N,N−ジメチルエタノールアミン、アミノエタノールアミン、N−メチル−N,N−ジエタノールアミン、イソプロピルアミン、イミノビスプロピルアミン、エチルアミン、ジエチルアミン、3−エトキシプロピルアミン、3−ジエチルアミノプロピルアミン、sec−ブチルアミン、プロピルアミン、メチルアミノプロピルアミン、ジメチルアミノプロピルアミン、メチルイミノビスプロピルアミン、3−メトキシプロピルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モルホリン、N−メチルモルホリン、N−エチルモルホリン等が挙げられる。
塩基性化合物は、熱硬化性ポリエステル樹脂中に含まれるカルボキシル基に応じて、少なくとも部分中和し得る量、すなわち、カルボキシル基に対して0.2倍当量以上9.0倍当量以下を添加することが好ましく、0.6倍当量以上2.0倍当量以下を添加することがより好ましい。0.2倍当量以上であれば、塩基性化合物添加の効果が認められ易い。9.0倍当量以下であれば、油相の親水性が過剰に増すことが抑制されるためと思われるが、粒径分布が広くなりにくく良好な分散液を得られ易い。
前記乳化液から有機溶媒を除去する方法としては、乳化液を15℃から70℃で有機溶剤を揮発させる方法、これに減圧を組み合わせる方法が好ましく用いられる。
樹脂粒子分散液に含まれる樹脂粒子の含有量としては、例えば、5質量%以上50質量%以下が好ましく、10質量%以上40質量%以下がより好ましい。
着色剤分散液に用いられる分散剤は、一般的には界面活性剤である。界面活性剤としては、例えば、硫酸エステル塩系、スルホン酸塩系、リン酸エステル系、せっけん系等のアニオン界面活性剤;アミン塩型、4級アンモニウム塩型等のカチオン界面活性剤;ポリエチレングリコール系、アルキルフェノールエチレンオキサイド付加物系、多価アルコール系等の非イオン系界面活性剤等が好適にあげられる。これらの中でもイオン性界面活性剤が好ましく、アニオン界面活性剤、カチオン界面活性剤がより好ましい。前記非イオン系界面活性剤は、前記アニオン界面活性剤またはカチオン界面活性剤と併用されるのが好ましい。前記界面活性剤は、1種単独で使用してもよいし、2種以上を併用してもよい。また、離型剤分散液など、他の分散液に用いられる分散剤と同極性であることが好ましい。
前記アニオン界面活性剤の具体例としては、ラウリン酸カリウム、オレイン酸ナトリウム、ヒマシ油ナトリウム等の脂肪酸セッケン類;オクチルサルフェート、ラウリルサルフェート、ラウリルエーテルサルフェート、ノニルフェニルエーテルサルフェート等の硫酸エステル類;ラウリルスルホネート、ドデシルスルホネート、ドデシルベンゼンスルホネート、トリイソプロピルナフタレンスルホネート、ジブチルナフタレンスルホネート等のアルキルナフタレンスルホン酸ナトリウム、ナフタレンスルホネートホルマリン縮合物、モノオクチルスルホサクシネート、ジオクチルスルホサクシネート、ラウリン酸アミドスルホネート、オレイン酸アミドスルホネート等のスルホン酸塩類;ラウリルホスフェート、イソプロピルホスフェート、ノニルフェニルエーテルホスフェート等のリン酸エステル類;ジオクチルスルホコハク酸ナトリウム等のジアルキルスルホコハク酸ナトリウム、スルホコハク酸ラウリル2ナトリウム、ポリオキシエチレンスルホコハク酸ラウリル2ナトリウム等のスルホコハク酸塩類等があげられる。中でも、ドデシルベンゼンスルホネートやその分岐体などのアルキルベンゼンスルホネート系化合物が好ましい。
前記カチオン界面活性剤の具体例としては、ラウリルアミン塩酸塩、ステアリルアミン塩酸塩、オレイルアミン酢酸塩、ステアリルアミン酢酸塩、ステアリルアミノプロピルアミン酢酸塩等のアミン塩類;ラウリルトリメチルアンモニウムクロライド、ジラウリルジメチルアンモニウムクロライド、ジステアリルアンモニウムクロライド、ジステアリルジメチルアンモニウムクロライド、ラウリルジヒドロキシエチルメチルアンモニウムクロライド、オレイルビスポリオキシエチレンメチルアンモニウムクロライド、ラウロイルアミノプロピルジメチルエチルアンモニウムエトサルフェート、ラウロイルアミノプロピルジメチルヒドロキシエチルアンモニウムパークロレート、アルキルベンゼンジメチルアンモニウムクロライド、アルキルトリメチルアンモニウムクロライド等の4級アンモニウム塩類等が挙げられる。
前記非イオン性界面活性剤の具体例としては、ポリオキシエチレンオクチルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル等のアルキルエーテル類;ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル等のアルキルフェニルエーテル類;ポリオキシエチレンラウレート、ポリオキシエチレンステアレート、ポリオキシエチレンオレート等のアルキルエステル類;ポリオキシエチレンラウリルアミノエーテル、ポリオキシエチレンステアリルアミノエーテル、ポリオキシエチレンオレイルアミノエーテル、ポリオキシエチレン大豆アミノエーテル、ポリオキシエチレン牛脂アミノエーテル等のアルキルアミン類;ポリオキシエチレンラウリン酸アミド、ポリオキシエチレンステアリン酸アミド、ポリオキシエチレンオレイン酸アミド等のアルキルアミド類;ポリオキシエチレンヒマシ油エーテル、ポリオキシエチレンナタネ油エーテル等の植物油エーテル類;ラウリン酸ジエタノールアミド、ステアリン酸ジエタノールアミド、オレイン酸ジエタノールアミド等のアルカノールアミド類;ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタンモノオレエート等のソルビタンエステルエーテル類等が挙げられる。
用いられる分散剤の添加量は、着色剤に対して、1質量%以上30質量%以下であることが望ましく、5質量%以上20質量%以下であることがより好適である。分散剤が少なすぎると粒径が小さくならない場合や、分散液の保存安定性が低下する場合がある。一方、多すぎる場合には、トナー中に残留する分散剤の量が多くなり、トナーの帯電性や粉体流動性が低下する場合がる。
用いられる水系分散媒は、蒸留水、イオン交換水など、金属イオンなどの不純物が少ないものであることが好ましい。また、消泡や表面張力調整の目的でアルコールなどを添加することもできる。また、粘度調整のために、ポリビニルアルコールやセルロース系ポリマーなどを添加することもできるが、トナー中に残留すると帯電性が悪化するため、出来うる限り使用しないほうが良い。
前記着色剤の分散方法としては、例えば、高圧式ホモジナイザー、回転せん断型ホモジナイザー、超音波分散機、高圧衝撃式分散機や、メディアを有するボールミル、サンドミル、ダイノミルなどの一般的な分散方法を使用することができ、なんら制限されるものではない。
硬化剤分散液については、着色剤分散と同様の方法を用いることができる。
また、より樹脂中での分散性を高めるために、樹脂粒子分散液を作製するときに同時に添加する方法であることがより好ましい。
−第1凝集粒子形成工程−
次に、第1樹脂粒子分散液と、熱硬化剤分散液と、着色剤分散液と、を混合する。
そして、混合分散液中で、第1樹脂粒子と熱硬化剤と着色剤とをヘテロ凝集させ、目的とする粉体粒子の径に近い径を持つ、第1樹脂粒子と熱硬化剤と着色剤とを含む第1凝集粒子を形成する。
具体的には、例えば、混合分散液に凝集剤を添加すると共に、混合分散液のpHを酸性(例えばpHが2以上5以下)に調整し、必要に応じて分散安定剤を添加した後、第1樹脂粒子のガラス転移温度(具体的には、例えば、第1樹脂粒子のガラス転移温度−30℃以上ガラス転移温度−10℃以下)の温度に加熱し、混合分散液に分散された粒子を凝集させて、第1凝集粒子を形成する。
なお、第1凝集粒子形成工程においては、熱硬化性樹脂、及び熱硬化剤を含む複合粒子分散液と、着色剤分散液と、を混合し、混合分散液中で、複合粒子と着色剤とをヘテロ凝集させて、第1凝集粒子を形成してもよい。
第1凝集粒子形成工程においては、例えば、混合分散液を回転せん断型ホモジナイザーで攪拌下、室温(例えば25℃)で上記凝集剤を添加し、混合分散液のpHを酸性(例えばpHが2以上5以下)に調整し、必要に応じて分散安定剤を添加した後に、上記加熱を行ってもよい。
凝集剤としては、例えば、混合分散液に添加される分散剤として用いる界面活性剤と逆極性の界面活性剤、金属塩、金属塩重合体、金属錯体が挙げられる。凝集剤として金属錯体を用いた場合には、界面活性剤の使用量が低減され、帯電特性が向上する。
なお、凝集終了後、凝集剤の金属イオンと錯体又は類似の結合を形成する添加剤を必要に応じて用いてもよい。この添加剤としては、キレート剤が好適に用いられる。このキレート剤の添加により、凝集剤を過剰に添加した場合、粉体粒子の金属イオンの含有量の調整が実現される。
ここで、凝集剤としての金属塩、金属塩重合体、金属錯体は、金属イオンの供給源として用いる。これらの例示について、既述の通りである。
キレート剤としては、水溶性のキレート剤が挙げられる。キレート剤として、具体的には、例えば、酒石酸、クエン酸、グルコン酸などのオキシカルボン酸、イミノジ酸(IDA)、ニトリロトリ酢酸(NTA)、エチレンジアミンテトラ酢酸(EDTA)などが挙げられる。
キレート剤の添加量としては、例えば、樹脂粒子100質量部に対して0.01質量部以上5.0質量部以下がよく、0.1質量部以上3.0質量部未満が好ましい。
−第2凝集粒子形成工程−
次に、得られた第1凝集粒子が分散された第1凝集粒子分散液と、第2樹脂粒子分散液とを混合する。
なお、第2樹脂粒子は第1樹脂粒子と同種であってもよいし、異種であってもよい。
そして、第1凝集粒子、及び第2樹脂粒子が分散された混合分散液中で、第1凝集粒子の表面に第2樹脂粒子が付着するように凝集して、第1凝集粒子の表面に第2樹脂粒子が付着した第2凝集粒子を形成する。
具体的には、例えば、第1凝集粒子形成工程において、第1凝集粒子が目的とする粒径に達したときに、第1凝集粒子分散液に、第2樹脂粒子分散液を混合し、この混合分散液に対して、第2樹脂粒子のガラス転移温度以下で加熱を行う。
そして、混合分散液のpHを、例えば6.0以上11.0以下程度の範囲にすることにより、凝集の進行を停止させる。
上記pH調整を、アンモニアの添加によって行うことにより、粉体粒子における上記アンモニウムイオン濃度が調整される。
上記アンモニアはアンモニア水として添加することが好ましい。
アンモニアの添加量は、混合分散液中のアンモニウムイオン濃度が、0.0001質量%以上0.005質量%となるように添加することが好ましい。
これにより、第1凝集粒子の表面に第2樹脂粒子が付着するようにして凝集した第2凝集粒子が得られる。
−融合合一工程−
次に、第2凝集粒子が分散された第2凝集粒子分散液に対して、例えば、第1及び第2樹脂粒子のガラス転移温度以上(例えば第1及び第2樹脂粒子のガラス転移温度より10から30℃高い温度以上)に加熱して、第2凝集粒子を融合合一し、粉体粒子を形成する。
以上の工程を経て、粉体粒子が得られる。
得られた粉体粒子を含む溶液に対し、アンモニアを添加することにより、粉体粒子における上記アンモニウムイオン濃度が調整される。
上記アンモニアはアンモニア水として添加することが好ましい。
アンモニアの添加量は、粉体粒子を含む溶液中のアンモニウムイオン濃度が、0.0001質量%以上0.005質量%となるように添加することが好ましい。
ここで、融合合一工程終了後は、分散液中に形成された粉体粒子を、公知の洗浄工程、固液分離工程、乾燥工程を経て乾燥した状態の粉体粒子を得る。
洗浄工程は、帯電性の点から充分にイオン交換水による置換洗浄を施すことがよい。また、固液分離工程は、特に制限はないが、生産性の点から吸引濾過、加圧濾過等を施すことがよい。また、乾燥工程も特に方法に制限はないが、生産性の点から凍結乾燥、気流式乾燥、流動乾燥、振動型流動乾燥等を施すことがよい。
そして、本実施形態に係る粉体塗料は、得られた乾燥状態の粉体粒子に、必要に応じて、外部添加剤を添加し、混合することにより製造される。
なお、上記の混合は、例えばVブレンダー、ヘンシェルミキサー、レーディゲミキサー等によって行うことがよい。
更に、必要に応じて、振動篩分機、風力篩分機等を使って粉体粒子の粗大粒子を取り除いてもよい。
以下、実施例により本実施形態を詳細に説明するが、本実施形態は、これら実施例に何ら限定されるものではない。なお、以下の説明において、特に断りのない限り、「部」及び「%」はすべて質量基準である。
<樹脂の物性の測定方法>
ポリエステル樹脂の物性の測定方法は、以下のとおりとした。
(ガラス転移温度)
ポリエステル樹脂のガラス転移温度(Tg)は、ASTMD3418−8に準拠した示差走査熱量測定により求めた。測定は、具体的には下記のとおり行った。
自動接線処理システムを備えた示差走査熱量計(DSC−50型、島津製作所)に試料をセットし、冷却媒体として液体窒素をセットし、昇温速度10℃/分で0℃から100℃まで加熱して(1回目の昇温過程)、DSC曲線を得、次に、降温速度−10℃/分で0℃まで冷却し、再度、昇温速度10℃/分で0℃から150℃まで加熱して(2回目の昇温過程)、DSC曲線を得た。なお、0℃及び100℃にてそれぞれ10分間ずつホールドした。
測定装置の検出部の温度補正にはインジウムと亜鉛との混合物の融解温度を用い、熱量の補正にはインジウムの融解熱を用いた。試料はアルミニウム製パンに入れ、サンプルの入ったアルミニウム製パンと対照用の空のアルミニウム製パンとをセットした。
非晶性樹脂のガラス転移温度は、2回目の昇温過程のDSC曲線の吸熱部におけるベースラインと立ち上がりラインとの交点の温度をもってガラス転移温度とした。
(酸価及び水酸基価)
ポリエステル樹脂の酸価及び水酸基価の測定は、JIS K0070−1992に準拠して測定した。
(重量平均分子量及び数平均分子量)
ポリエステル樹脂の重量平均分子量及び数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により測定した。GPCによる分子量測定は、測定装置としてHLC−8120GPC、SC−8020(東ソー)を用い、カラムとしてTSKgel SuperHM−M(6.0mmID×15cm)(東ソー)を2本用い、溶離液としてテトラヒドロフランを用いた。測定条件は、試料濃度0.5質量%、流速0.6mL/min、サンプル注入量10μL、測定温度40℃とし、RI検出器で検出を行った。検量線は、東ソー「polystylene標準試料TSK standard」:「A−500」、「F−1」、「F−10」、「F−80」、「F−380」、「A−2500」、「F−4」、「F−40」、「F−128」、「F−700」の10サンプルから作成した。
<ポリエステル樹脂系青色粉体粒子(PCC1)の作製>
(着色剤分散液(C1)の調製)
・Blue顔料(C.I.Pigment Violet23(CROMOPHTAL VIOLET GT、チバジャパン社):150部
・アニオン界面活性剤(ネオゲンRK、第一工業製薬):20部
・イオン交換水:350部
上記の材料を混合し、高圧衝撃式分散機アルティマイザー(HJP30006、スギノマシン)を用いて分散最大圧力240MPaにて1時間分散し、固形分濃度を25質量%に調整して、着色剤分散液を得た。着色剤分散液の体積平均粒径は0.16μmであった。
(白色顔料分散液(W1)の調製)
・酸化チタン(CR−60、石原産業):200部
・アニオン界面活性剤(ネオゲンRK、第一工業製薬):10部
・イオン交換水:300部
・1.0質量%硝酸水溶液:15部
上記の材料と直径3mmのアルミナビーズ(アズワン社)600部とを1000mLボトル(アイボーイ、アズワン社)に投入し、卓上ボールミルにて回転数150rpmで24時間混合し、固形分濃度を25質量%に調整した。得られた分散液を、レーザー回折粒度測定器を用いて測定したところ体積平均粒径が0.35μmであった。
(ポリエステル樹脂・硬化剤複合分散液(E1)の調製)
コンデンサー、温度計、水滴下装置、アンカー翼を備えたジャケット付き3リットル反応槽(東京理化器械株式会社製:BJ−30N)を水循環式恒温槽にて40℃に維持しながら、該反応槽に酢酸エチル180質量部とイソプロピルアルコール80質量部との混合溶剤を投入し、これに下記組成物を投入した。
・ポリエステル樹脂(PES1)[テレフタル酸/エチレングリコール/ネオペンチルグリコール/トリメチロールプロパンの重縮合体(モル比=100/60/38/2(mol%)、ガラス転移温度=62℃、酸価(Av)=12mgKOH/g、水酸基価(OHv)=55mgKOH/g、重量平均分子量(Mw)=12000、数平均分子量(Mn)=4000]: 240質量部
・ブロックイソシアネート硬化剤VESTAGONB1530(EVONIK社製):60質量部
・ベンゾイン:1.5質量部
・アクリルオリゴマー(アクロナール4F BASF社):3質量部
投入後、スリーワンモーターを用い150rpmで攪拌を施し、溶解させて油相を得た。この攪拌されている油相に、10質量%アンモニア水溶液の1.2質量部と5質量%水酸化ナトリウム水溶液の47質量部との混合液を5分間で滴下し、10分間混合した後、更にイオン交換水900質量部を毎分5質量部の速度で滴下して転相させ、乳化液を得た。
すぐに、得られた乳化液800質量部とイオン交換水700質量部とを2リットルのナスフラスコに入れ、トラップ球を介して真空制御ユニットを備えたエバポレーター(東京理化器械株式会社製)にセットした。ナスフラスコを回転させながら、60℃の湯バスで加温し、突沸に注意しつつ7kPaまで減圧し溶剤を除去した。溶剤回収量が1100質量部になった時点で常圧に戻し、ナスフラスコを水冷して分散液を得た。得られた分散液に溶剤臭は無かった。この分散液における樹脂粒子の体積平均粒子径は145nmであった。その後、アニオン性界面活性剤(ダウケミカル製、Dowfax2A1、有効成分量45質量%)を、分散液中の樹脂分に対して有効成分として2質量%添加混合し、1.0質量%硝酸を用いてpHを5.0に調整した後、イオン交換水を加えて固形分濃度が25質量%になるように調整した。これをポリエステル樹脂・硬化剤複合分散液(E1)とした。
(青色粉体粒子(PCC1)の作製)
−凝集工程−
・ポリエステル樹脂・硬化剤複合分散液(E1):180質量部(固形分45質量部)
・白色顔料分散液(W1):160質量部(固形分40質量部)
・着色剤分散液(C1):8質量部(固形分2質量部)
・イオン交換水:200質量部
以上を丸型ステンレス製フラスコ中においてホモジナイザー(IKA社製、ウルトラタラックスT50)で十分に混合・分散した。これに1%ポリ塩化アルミニウム水溶液50質量部を加え、ウルトラタラックスで8000回転で10分間分散した。
攪拌機、マントルヒーターを設置し、スラリーが充分に攪拌するように攪拌機の回転数を適宜調整しながら、毎分0.02℃で昇温し、コールターカウンター[TA−II]型(アパーチャー径:50μm、ベックマン−コールター社製)にて凝集粒子の粒径を測定し、体積平均粒径が5.5μmとなったところで、シェルとしてポリエステル樹脂・硬化剤複合分散液(E1)60質量部を直ちに投入した。(シェル投入)。 体積平均粒径が6.5μmとなったところで、EDTA(キレスト株式会社製、キレスト40、有効成分40質量%)3質量部を添加し、次いで、5%水酸化ナトリウムを用いてpHを9.5に調整した。
−融合合一工程−
その後、毎分0.5℃で70℃まで昇温し、さらに毎分0.05℃で昇温しながら、15分毎にFPIA−3000(シスメックス株式会社製)で形状係数を測定し、平均形状係数が0.970を超えた時点で、冷却水にて容器を30℃まで5分間かけて冷却した。
−濾過・洗浄・乾燥工程−
冷却後のスラリーを、目開き20μmのナイロンメッシュに通過させ粗大粉を除去し、スラリーをアスピレータで減圧ろ過し、固液分離した。ろ紙上に残った固形分を手でできるだけ細かく砕いて、温度30℃で3000質量部のイオン交換水に投入し、30分間攪拌混合した後、再度アスピレータで固液分離した。ろ液の電気伝導度が10μS/cm以下になるまでこの操作を繰り返し、得られた固形分を、湿式乾式整粒機(コーミル)で細かく砕いてから、30℃のオーブン中で36時間乾燥して青色粉体粒子(PCC1)を得た。
<ポリエステル樹脂系青色粉体粒子(PCC2)の作製>
青色粉体粒子(PCC1)の作製における凝集工程において、体積平均粒径が8.5 mとなったところで、ポリエステル樹脂・硬化剤複合分散液(E1)60部を投入した以外は、青色粉体粒子(PCC1)の作製と同様の操作により、青色粉体粒子(PCC2)を得た。
<ポリエステル樹脂系青色粉体粒子(PCC3)の作製>
青色粉体粒子(PCC1)の作製における凝集工程において、体積平均粒径が3.3μmとなったところで、ポリエステル樹脂・硬化剤複合分散液(E1)60部を投入した以外は、青色粉体粒子(PCC1)の作製と同様の操作により、青色粉体粒子(PCC3)を得た。
<ポリエステル樹脂系青色粉体粒子(PCC4)の作製>
青色粉体粒子(PCC1)の作製の凝集工程において、体積平均粒径が13.5μmとなったところで、ポリエステル樹脂・硬化剤複合分散液(E1)60部を投入した以外は、青色粉体粒子(PCC1)の作製と同様の操作により、青色粉体粒子(PCC4)を得た。
<ポリエステル樹脂系青色粉体粒子(PCC5)の作製>
ポリエステル樹脂・硬化剤複合分散液(E1)の調製において、10質量%アンモニア水溶液の1質量部と5質量%水酸化ナトリウム水溶液の47質量部との混合液を、10質量%アンモニア水溶液の8質量部と5質量%水酸化ナトリウム水溶液の15質量部との混合液へ変更した以外は、青色粉体粒子(PCC1)の作製と同様の操作により、青色粉体粒子(PCC5)を得た。
<ポリエステル樹脂系青色粉体粒子(PCC6)の作製>
ポリエステル樹脂・硬化剤複合分散液(E1)の調製において、10質量%アンモニア水溶液の1質量部と5質量%水酸化ナトリウム水溶液の47質量部との混合液を、10質量%アンモニア水溶液の15質量部へ変更した以外は同様の操作にて、粉体粒子(PCC6)を得た。

<ポリエステル樹脂系青色粉体粒子(PCC7)の作製>
(ポリエステル樹脂・硬化剤複合分散液(E2)の調製)
コンデンサー、温度計、水滴下装置、アンカー翼を備えたジャケット付き3リットル反応槽(東京理化器械株式会社製:BJ−30N)を水循環式恒温槽にて40℃に維持しながら、該反応槽に酢酸エチル180質量部とイソプロピルアルコール80質量部との混合溶剤を投入し、これに下記組成物を投入した。
・ポリエステル樹脂(PES1)[テレフタル酸/エチレングリコール/ネオペンチルグリコール/トリメチロールプロパンの重縮合体(モル比=100/60/38/2(mol%)、ガラス転移温度=62℃、酸価(Av)=12mgKOH/g、水酸基価(OHv)=55mgKOH/g、重量平均分子量(Mw)=12000、数平均分子量(Mn)=4000]: 240質量部
・ブロックイソシアネート硬化剤VESTAGONB1530(EVONIK社製):60質量部
・ベンゾイン:1.5質量部
・アクリルオリゴマー(アクロナール4F BASF社):3質量部
投入後、スリーワンモーターを用い150rpmで攪拌を施し、溶解させて油相を得た。この攪拌されている油相に、10質量%アンモニア水溶液の15質量部を5分間で滴下し、10分間混合した後、更にイオン交換水900質量部を毎分5質量部の速度で滴下して転相させ、乳化液を得た。
すぐに、得られた乳化液800質量部とイオン交換水700質量部とを2リットルのナスフラスコに入れ、トラップ球を介して真空制御ユニットを備えたエバポレーター(東京理化器械株式会社製)にセットした。ナスフラスコを回転させながら、60℃の湯バスで加温し、突沸に注意しつつ10kPaまで減圧し溶剤を除去した。溶剤回収量が1000質量部になった時点で常圧に戻し、ナスフラスコを水冷して分散液を得た。得られた分散液に溶剤臭は無かった。この分散液における樹脂粒子の体積平均粒子径は130nmであった。その後、アニオン性界面活性剤(ダウケミカル製、Dowfax2A1、有効成分量45質量%)を、分散液中の樹脂分に対して有効成分として2質量%添加混合し、1.0質量%硝酸を用いてpHを5.0に調整した後、イオン交換水を加えて固形分濃度が25質量%になるように調整した。これをポリエステル樹脂・硬化剤複合分散液(E2)とした。
(青色粉体粒子(PCC7)の作製)
−凝集工程−
・ポリエステル樹脂・硬化剤複合分散液(E2):180質量部(固形分45質量部)
・白色顔料分散液(W1):160質量部(固形分40質量部)
・着色剤分散液(C1):8質量部(固形分2質量部)
・イオン交換水:200質量部
以上を丸型ステンレス製フラスコ中においてホモジナイザー(IKA社製、ウルトラタラックスT50)で十分に混合・分散した。これに1%ポリ塩化アルミニウム水溶液50質量部を加え、ウルトラタラックスで8000回転で10分間分散した。
攪拌機、マントルヒーターを設置し、スラリーが充分に攪拌するように攪拌機の回転数を適宜調整しながら、毎分0.02℃で昇温し、コールターカウンター[TA−II]型(アパーチャー径:50μm、ベックマン−コールター社製)にて凝集粒子の粒径を測定し、体積平均粒径が5.5μmとなったところで、シェルとしてポリエステル樹脂・硬化剤複合分散液(E2)60質量部を直ちに投入した。(シェル投入)。 体積平均粒径が6.5μmとなったところで、EDTA(キレスト株式会社製、キレスト40、有効成分40質量%)3質量部を添加し、次いで、5%水酸化ナトリウム90質量部と10%アンモニア水20質量部の混合液を用いてpHを9.5に調整した。
−融合合一工程−
その後、毎分0.5℃で70℃まで昇温し、さらに毎分0.05℃で昇温しながら、5分毎にFPIA−3000(シスメックス株式会社製)で形状係数を測定し、平均形状係数が0.964になった時点で、冷却水にて容器を30℃まで5分間かけて冷却した。
−濾過・洗浄・乾燥工程−
冷却後のスラリーを、目開き20μmのナイロンメッシュに通過させ粗大粉を除去し、スラリーをアスピレータで減圧ろ過し、固液分離した。ろ紙上に残った固形分を手でできるだけ細かく砕いて、温度30℃で3000質量部のイオン交換水に投入し、30分間攪拌混合した後、再度アスピレータで固液分離した。ろ液の電気伝導度が10μS/cm以下になるまでこの操作を繰り返し、得られた固形分を、湿式乾式整粒機(コーミル)で細かく砕いてから、30℃のオーブン中で36時間乾燥して青色粉体粒子(PCC7)を得た。
<ポリエステル樹脂系青色粉体粒子(PCC8)の作製>
(ポリエステル樹脂・硬化剤複合分散液(E3)の調製)
コンデンサー、温度計、水滴下装置、アンカー翼を備えたジャケット付き3リットル反応槽(東京理化器械株式会社製:BJ−30N)を水循環式恒温槽にて40℃に維持しながら、該反応槽に酢酸エチル180質量部とイソプロピルアルコール80質量部との混合溶剤を投入し、これに下記組成物を投入した。
・ポリエステル樹脂(PES1)[テレフタル酸/エチレングリコール/ネオペンチルグリコール/トリメチロールプロパンの重縮合体(モル比=100/60/38/2(mol%)、ガラス転移温度=62℃、酸価(Av)=12mgKOH/g、水酸基価(OHv)=55mgKOH/g、重量平均分子量(Mw)=12000、数平均分子量(Mn)=4000]: 240質量部
・ブロックイソシアネート硬化剤VESTAGONB1530(EVONIK社製):60質量部
・ベンゾイン:1.5質量部
・アクリルオリゴマー(アクロナール4F BASF社):3質量部
投入後、スリーワンモーターを用い150rpmで攪拌を施し、溶解させて油相を得た。この攪拌されている油相に、10質量%アンモニア水溶液の8質量部と5質量%水酸化ナトリウム水溶液の15質量部の混合液を5分間で滴下し、10分間混合した後、更にイオン交換水900質量部を毎分5質量部の速度で滴下して転相させ、乳化液を得た。
すぐに、得られた乳化液800質量部とイオン交換水700質量部とを2リットルのナスフラスコに入れ、トラップ球を介して真空制御ユニットを備えたエバポレーター(東京理化器械株式会社製)にセットした。ナスフラスコを回転させながら、60℃の湯バスで加温し、突沸に注意しつつ7kPaまで減圧し溶剤を除去した。溶剤回収量が1100質量部になった時点で常圧に戻し、ナスフラスコを水冷して分散液を得た。得られた分散液に溶剤臭は無かった。この分散液における樹脂粒子の体積平均粒子径は135nmであった。その後、アニオン性界面活性剤(ダウケミカル製、Dowfax2A1、有効成分量45質量%)を、分散液中の樹脂分に対して有効成分として2質量%添加混合し、1.0質量%硝酸を用いてpHを5.0に調整した後、イオン交換水を加えて固形分濃度が25質量%になるように調整した。これをポリエステル樹脂・硬化剤複合分散液(E3)とした。
(青色粉体粒子(PCC8)の作製)
−凝集工程−
・ポリエステル樹脂・硬化剤複合分散液(E3):180質量部(固形分45質量部)
・白色顔料分散液(W1):160質量部(固形分40質量部)
・着色剤分散液(C1):8質量部(固形分2質量部)
・イオン交換水:200質量部
以上を丸型ステンレス製フラスコ中においてホモジナイザー(IKA社製、ウルトラタラックスT50)で十分に混合・分散した。これに1%ポリ塩化アルミニウム水溶液50質量部を加え、ウルトラタラックスで8000回転で10分間分散した。
攪拌機、マントルヒーターを設置し、スラリーが充分に攪拌するように攪拌機の回転数を適宜調整しながら、毎分0.02℃で昇温し、コールターカウンター[TA−II]型(アパーチャー径:50μm、ベックマン−コールター社製)にて凝集粒子の粒径を測定し、体積平均粒径が5.5μmとなったところで、シェルとしてポリエステル樹脂・硬化剤複合分散液(E3)60質量部を直ちに投入した。(シェル投入)。 体積平均粒径が6.5μmとなったところで、EDTA(キレスト株式会社製、キレスト40、有効成分40質量%)3質量部を添加し、次いで、5%水酸化ナトリウムを用いてpHを9.5に調整した。
−融合合一工程−
その後、毎分0.5℃で70℃まで昇温し、さらに毎分0.05℃で昇温しながら、15分毎にFPIA−3000(シスメックス株式会社製)で形状係数を測定し、平均形状係数が0.970を超えた時点で、冷却水にて容器を30℃まで5分間かけて冷却した。
冷却後のスラリーに、1質量%の硝酸を加えてpH7.0に調整し、さらに10質量%アンモニア水を加えてpHを7.2に調整した後、毎分0.5℃で45℃まで昇温した。45℃で1時間保持した後、30℃まで冷却した。
−濾過・洗浄・乾燥工程−
冷却後のスラリーを、目開き20μmのナイロンメッシュに通過させ粗大粉を除去し、スラリーをアスピレータで減圧ろ過し、固液分離した。ろ紙上に残った固形分を手でできるだけ細かく砕いて、温度30℃で3000質量部のイオン交換水に投入し、30分間攪拌混合した後、再度アスピレータで固液分離した。ろ液の電気伝導度が10μS/cm以下になるまでこの操作を繰り返し、得られた固形分を、湿式乾式整粒機(コーミル)で細かく砕いてから、30℃のオーブン中で36時間乾燥して青色粉体粒子(PCC8)を得た。
(青色粉体粒子(PCC10)の作製)
・ポリエステル樹脂(PES1):1005質量部
・ブロックイソシアネート硬化剤VESTAGONB1530(EVONIK社製):13質量部
・酸化チタン(石原産業製 CR−60):460質量部
・シアン顔料(大日精化(株)製、C.I.Pigment Blue 15:3、(銅フタロシアニン)):30質量部
以上をBR型バンバリー型混練機(神戸製鋼社製)で、回転数120rpmで約15分間溶融混練した後、混練物を圧延ロールで厚さ1cm程度の板状に成形し、フィッツミル型粉砕機で数ミリ程度まで粗粉砕し、ターボミル(フロイントターボ社製)で微粉砕し、エルボージェット(日鉄鉱業社製)で分級した。さらにエルボージェットで分級を繰り返した。
得られた粒子200質量部を、攪拌機を備えた容量5リットルのステンレス容器に、イオン交換水2000質量部とアニオン界面活性剤(デモールSNB、花王(株)社製)100質量部と分級後粒子300質量部を加え、泡を巻き込まないように注意しながら、24時間撹拌分散した。分散液を、ホモジナイザー(IKA社製、ウルトラタラックスT50)で3000回転で10分間分散した後、10%アンモニア水30質量部を加え、さらに、5000回転で20分間分散した後、さらに24時間撹拌を継続した。
得られたスラリーをアスピレータで減圧ろ過し、固液分離した。ろ紙上に残った固形分を手でできるだけ細かく砕いて、温度30℃で3000質量部のイオン交換水に投入し、30分間攪拌混合した後、再度アスピレータで固液分離した。ろ液の電気伝導度が10μS/cm以下になるまでこの操作を繰り返し、得られた固形分を、湿式乾式整粒機(コーミル)で細かく砕いてから、30℃のオーブン中で乾燥した。乾燥時間2時間毎にアンモニウムイオン量を測定し、所望のアンモニウムイオン量になったところでオーブンから取り出し、ポリエステル系青色粉体塗料(PCC10)を得た。
<ポリエステル樹脂系青色粉体粒子(比較用PCC1)の作製>
・ポリエステル樹脂(PES1):1120質量部
・ブロックイソシアネート硬化剤VESTAGONB1530(EVONIK社製):13質量部
・酸化チタン(石原産業製 A−220):350質量部
・シアン顔料(大日精化(株)製、C.I.Pigment Blue 15:3、(銅フタロシアニン)):37質量部
以上をBR型バンバリー型混練機(神戸製鋼社製)で、回転数120rpmで約15分間溶融混練した後、混練物を圧延ロールで厚さ1cm程度の板状に成形し、フィッツミル型粉砕機で数ミリ程度まで粗粉砕し、IDS粉砕機(日本ニューマチック工業社製)で微粉砕し、ポリエステル系青色粉体塗料(比較用PCC1)を得た。
<ポリエステル樹脂系青色粉体粒子(比較用PCC2)の作製>
ポリエステル樹脂・硬化剤複合分散液(E1)の調製において、10質量%アンモニア水溶液の1質量部と5質量%水酸化ナトリウム水溶液の47質量部との混合液を、5質量%水酸化ナトリウム水溶液:52質量部へ変更した以外は同様の操作にて、粉体粒子(比較用PCC2)を得た。
<外添剤の添加>
PCC1〜PCC8とPCC10並びに比較用PCC1及び比較用PCC2の各粉体100質量部と、平均粒子径12nmの負帯電性シリカ粒子(R972、日本アエロジル社)0.3部をヘンシェルミキサーを用い周速32m/s*10分間ブレンドをおこなった後、45μm網目のシーブを用いて粗大粒子を除去し、粉体塗料PCC1〜粉体塗料PCC8並びに比較用粉体塗料PCC1及び比較用粉体塗料PCC2を得た。
PCC8の粉体100質量部と、平均粒子径12nmの正帯電性シリカ粒子(TG−820F、キャボット社)0.7部をヘンシェルミキサーを用い周速32m/s*10分間ブレンドをおこなった後、45μm網目のシーブを用いて粗大粒子を除去し、粉体塗料PCC9を得た。
<実施例1〜10、比較例1〜2>
(アンモニウムイオン量の測定)
上述の方法により、各粉体塗料におけるアンモニウムイオン量を測定した。測定結果は表2に記載した。
(粉体塗料の保存安定性)
各粉体塗料を、プラスチック容器に5g秤量し、温度35℃、湿度50RH%のチャンバーで120時間放置した。室温にもどした後、目開き45ミクロンのメッシュに投入し、振動篩機(アズワン製)で振動させた。メッシュ上に残った粉体塗料の質量を測定し、仕込み量に対する質量比を算出し、保存安定性の指標とした。
保存安定性指標=メッシュ上残量/5×100 [%]
(塗膜試料の作製)
粉体塗料を旭サナック製コロナガンXR4−110Cに装填した。なお、装填する粉体塗料が噴霧前(新品)の粉体塗料に該当する。
粉体塗料を、温度10℃、湿度20RH%の環境下で、鏡面仕上げのアルミ板のテストパネル(30cm×30cm)に、正面30cmの距離(パネルとコロナガンの噴霧口との距離)で、塗布した後、被塗物を190℃に設定した高温チャンバーに入れて30分間加熱(焼付け)した。得られた塗装膜を新品塗装膜として、評価に使用した。コロナガンの印加電圧は80kV、入力エア圧は0.55MPa、吐出量200g/分とし、パネルに付着させる粉体塗料の付着量は30.0g/m以上100.0g/m以下の範囲で、5.0g/mごとに塗装膜を作製し、焼き付け後の塗装膜の膜厚を、渦電流型膜厚計(ケット科学研究所社製)で測定し、用いた粉体塗料の粒子径の5倍の膜厚にもっとも近い塗装膜を評価した。
ここで、上記同様の条件で、粉体塗料をパネルに静電付着させるところまで実施した。そして、パネルに静電付着した粉体塗料を回収し、付着した粉体塗料の粉体粒子(付着粉体粒子)の粒径5μm以下の粒子の体積割合D5c(表中「体積割合D5c」と表記)を測定した。また、噴霧前の粉体塗料における粉体粒子(噴霧前粉体粒子)の粒径5μm以下の粒子の体積割合D5o(表中「体積割合D5o」と表記)も測定した。
一方で、パネルに静電付着しなかった粉体塗料を回収し、回収した粉体塗料と噴霧前(新品)の粉体塗料を質量比50:50の割合で混合し、混合粉体塗料を得た。そして、この混合粉体塗料を用いて、上記同様の条件で、パネルに対して、混合粉体塗料の静電付着を実施した。粉体塗料が静電付着したパネルに対し、上記方法と同様に焼付を行った。得られた塗装膜を回収品塗装膜として、評価に使用した。
一方、コロナガンでの塗布と同様にして、トリボガン(MTR100VT−mini、旭サナック社)を使用して、塗膜試料を得た。
(塗膜の平滑性及び鮮映性評価)
表面粗さ測定機(SURFCOM 1400A、東京精密)を用いて、新品塗装膜及び回収品塗装膜の表面の中心線平均粗さRa(単位:μm、表中では単にRaと記載)及びろ波中心線うねりWca(単位:μm、表中では単にWcaと記載)を測定した。双方とも、数字が小さいほど塗膜の表面平滑性に優れることを示す。
Raは、一般的な表面の平滑性指標であり、光沢度と相関が高いことが知られている。Wcaは、大きなうねりも含めた平滑性指標であり鮮映性と関連する。本実施においては、Wca0.1以下が、蛍光灯の形がはっきりと映る鮮映性を意味する。
コロナガンを用いた場合の評価結果を表2に、トリボガンを用いた場合の評価結果を表3にそれぞれ記載した。
(塗膜の耐溶剤性)
新品塗装膜及び回収品塗装膜を、キシレンに浸した綿棒で10往復こすった後、12時間室温で放置した後の表面状態を目視で観察した。充分に硬化反応していれば溶剤へは溶解しないため、硬化反応性の指標となる。目視で損傷が無ければA、損傷があればBとした。
コロナガンを用いた場合の評価結果を表2に、トリボガンを用いた場合の評価結果を表3にそれぞれ記載した。
上記結果から、本実施例では、比較例に比べ、特にトリボガンを使用した際の、RaやWcaの低下が抑制されていることがわかる。従って、本実施例では、粉体塗料に帯電を与える方法が摩擦帯電方式、及び、コロナ帯電方式のいずれの方法であっても、被塗装物に静電付着せず回収された粉体塗料を再利用するときに生じる、塗装膜の平滑性の変動が抑制されていることがわかる。
実施例を詳細に確認すると、実施例1乃至4又は実施例7と比較して、実施例5乃至6では、体積割合変動(D5c/D5o)が更に小さく、かつ、回収品塗装膜の平滑性に更に優れているという結果が得られた。
これは、実施例1乃至4又は実施例7と比較して、実施例5乃至6において用いられた粉体塗料における上述のアンモニウムイオン量が、より好ましい量の範囲に含まれているためであると考えられる。
実施例9の粉体塗料は、アミノ基を有するシラン化合物を含む無機酸化物粒子を外添したものであるが、トリボガンでの新品塗装膜と回収品塗装膜の平滑性の差が更に小さくなっている。
比較例1の粉体塗料は、混練粉砕品で形状が不定形で粉体流動性が悪く、また、アンモニウムイオンが無いため、トリボガンの塗装膜の平滑性が悪い。
比較例2の粉体塗料は、湿式製法であるがアンモニウムイオンが無いため、特に、トリボガンでの回収品の塗装膜平滑性が悪い。

Claims (6)

  1. 熱硬化性樹脂及び熱硬化剤を含み、粉体粒子を有し、粉体塗料0.5gを30±1℃の範囲のイオン交換水100g中に投入し、超音波分散器により30分間分散した後ろ過した、ろ液中のアンモニウムイオン量が、0.01mg/L以上0.60mg/L以下である粉体塗料であって、帯電した粉体塗料を噴霧して、前記粉体塗料を被塗装物に静電付着させる工程と、
    前記被塗装物に静電付着した前記粉体塗料を加熱して、塗装膜を形成する工程と、
    を有し、
    前記被塗装物に静電付着した前記粉体塗料における前記粉体粒子の粒径5μm以下の粒子の体積割合D5cと、噴霧前の前記粉体塗料における前記粉体粒子の粒径5μm以下の粒子の体積割合D5oとが、式:D5o×0.80≦D5c≦D5o×1.20の関係を満たす静電粉体塗装方法。
  2. 前記被塗装物に静電付着した前記粉体塗料における前記粉体粒子の粒径5μm以下の粒子の体積割合D5cと、噴霧前の前記粉体塗料における前記粉体粒子の粒径5μm以下の粒子の体積割合D5oとが、式:D5o×0.90≦D5c≦D5o×1.10の関係を満たす請求項1に記載の静電粉体塗装方法。
  3. 噴霧前の前記粉体塗料における前記粉体粒子の体積平均粒径が、3μm以上10μm以下である請求項1又は請求項2に記載の静電粉体塗装方法。
  4. 噴霧前の前記粉体塗料における前記粉体粒子の平均円形度が、0.96以上である請求項1〜請求項3のいずれか1項に記載の静電粉体塗装方法。
  5. 噴霧前の前記粉体塗料が、外部添加剤として、アミノ基を有するシラン化合物を含む無機酸化物粒子を有する請求項1〜請求項4のいずれか1項に記載の静電粉体塗装方法。
  6. 噴霧前の前記粉体塗料における前記粉体粒子が、ポリエステル樹脂を含有する請求項1〜請求項5のいずれか1項に記載の静電粉体塗装方法。
JP2016184323A 2016-09-21 2016-09-21 静電粉体塗装方法 Pending JP2018047423A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016184323A JP2018047423A (ja) 2016-09-21 2016-09-21 静電粉体塗装方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016184323A JP2018047423A (ja) 2016-09-21 2016-09-21 静電粉体塗装方法

Publications (1)

Publication Number Publication Date
JP2018047423A true JP2018047423A (ja) 2018-03-29

Family

ID=61765743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016184323A Pending JP2018047423A (ja) 2016-09-21 2016-09-21 静電粉体塗装方法

Country Status (1)

Country Link
JP (1) JP2018047423A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116854548A (zh) * 2023-07-06 2023-10-10 西南科技大学 一种纳米铜燃烧催化剂的制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5085632A (ja) * 1973-11-29 1975-07-10
JPH0995628A (ja) * 1995-09-29 1997-04-08 Tomoegawa Paper Co Ltd 粉体塗料
US20030004270A1 (en) * 2001-06-08 2003-01-02 Arthur Samuel David Ammonia and organic amine catalysis of epoxy hybrid powder coatings
JP2007063548A (ja) * 2005-08-03 2007-03-15 Sanyo Chem Ind Ltd 樹脂粒子
JP2008248101A (ja) * 2007-03-30 2008-10-16 Sumitomo Bakelite Co Ltd エポキシ樹脂粉体塗料
US20150368477A1 (en) * 2014-06-20 2015-12-24 Fuji Xerox Co., Ltd. Thermosetting powder coating material and coated article

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5085632A (ja) * 1973-11-29 1975-07-10
JPH0995628A (ja) * 1995-09-29 1997-04-08 Tomoegawa Paper Co Ltd 粉体塗料
US20030004270A1 (en) * 2001-06-08 2003-01-02 Arthur Samuel David Ammonia and organic amine catalysis of epoxy hybrid powder coatings
CN1514860A (zh) * 2001-06-08 2004-07-21 纳幕尔杜邦公司 氨和有机胺对环氧混合粉末涂料的催化作用
JP2004532924A (ja) * 2001-06-08 2004-10-28 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー エポキシハイブリッド粉体塗料のアンモニアおよび有機アミンの触媒作用
JP2007063548A (ja) * 2005-08-03 2007-03-15 Sanyo Chem Ind Ltd 樹脂粒子
JP2008248101A (ja) * 2007-03-30 2008-10-16 Sumitomo Bakelite Co Ltd エポキシ樹脂粉体塗料
US20150368477A1 (en) * 2014-06-20 2015-12-24 Fuji Xerox Co., Ltd. Thermosetting powder coating material and coated article
JP2016006143A (ja) * 2014-06-20 2016-01-14 富士ゼロックス株式会社 熱硬化性粉体塗料及びその製造方法、並びに塗装品及びその製造方法
CN105315742A (zh) * 2014-06-20 2016-02-10 富士施乐株式会社 热固性粉末涂料和涂装品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116854548A (zh) * 2023-07-06 2023-10-10 西南科技大学 一种纳米铜燃烧催化剂的制备方法及应用
CN116854548B (zh) * 2023-07-06 2024-04-02 西南科技大学 一种纳米铜燃烧催化剂的制备方法及应用

Similar Documents

Publication Publication Date Title
JP6432236B2 (ja) 粉体塗装装置、及び粉体塗装方法
JP5999142B2 (ja) 熱硬化性粉体塗料及びその製造方法、並びに塗装品及びその製造方法
JP6957925B2 (ja) 粉体塗料及び静電粉体塗装方法
JP6451169B2 (ja) 粉体塗装装置、プログラム、及び粉体塗装方法
JP2016183227A (ja) 熱硬化性粉体塗料、塗装品、及び塗装品の製造方法
JP6070663B2 (ja) 熱硬化性粉体塗料、塗装品、及び塗装品の製造方法
JP6672776B2 (ja) 静電粉体塗装方法、及び粉体塗料
JP6645087B2 (ja) 静電粉体塗装方法、及び粉体塗料
JP6665463B2 (ja) 静電粉体塗装方法、及び粉体塗料
JP6641835B2 (ja) 静電粉体塗装方法、及び粉体塗料
JP2019035027A (ja) 粉体塗料、塗装品及び塗装品の製造方法
JP2016145298A (ja) 粉体塗料及び粉体塗料の製造方法
JP2018012790A (ja) 粉体塗料及び静電粉体塗装方法
JP6129120B2 (ja) 熱硬化性粉体塗料、熱硬化性粉体塗料の製造方法、塗装品、及び塗装品の製造方法
JP6620487B2 (ja) 静電粉体塗装方法、及び粉体塗料
JP6245313B2 (ja) 熱硬化性粉体塗料及びその製造方法、並びに塗装品及びその製造方法
JP2018047423A (ja) 静電粉体塗装方法
JP6129121B2 (ja) 調色方法、粉体塗料組成物及び粉体塗料セット
JP6672777B2 (ja) 静電粉体塗装方法、及び粉体塗料
JP2017057358A (ja) 熱硬化性粉体塗料及び塗装方法
JP2018075551A (ja) 塗装物の製造方法
JP6693075B2 (ja) 熱硬化性粉体塗料、塗装品、及び塗装品の製造方法
JP2018153786A (ja) 静電粉体塗装方法
JP2018154793A (ja) 熱硬化性粉体塗料、塗装品、及び塗装品の製造方法
JP7069555B2 (ja) 粉体塗料及び静電粉体塗装方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210316