JP2018045977A - 燃料電池の出力性能診断装置、燃料電池の出力性能診断システム、燃料電池の出力性能診断方法、及び燃料電池の出力性能診断プログラム - Google Patents

燃料電池の出力性能診断装置、燃料電池の出力性能診断システム、燃料電池の出力性能診断方法、及び燃料電池の出力性能診断プログラム Download PDF

Info

Publication number
JP2018045977A
JP2018045977A JP2016182275A JP2016182275A JP2018045977A JP 2018045977 A JP2018045977 A JP 2018045977A JP 2016182275 A JP2016182275 A JP 2016182275A JP 2016182275 A JP2016182275 A JP 2016182275A JP 2018045977 A JP2018045977 A JP 2018045977A
Authority
JP
Japan
Prior art keywords
fuel cell
voltage
output
output performance
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016182275A
Other languages
English (en)
Other versions
JP6579068B2 (ja
Inventor
荒木 康
Yasushi Araki
康 荒木
真明 松末
Masaaki Matsusue
真明 松末
雅之 伊藤
Masayuki Ito
雅之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016182275A priority Critical patent/JP6579068B2/ja
Priority to US15/671,769 priority patent/US11196065B2/en
Publication of JP2018045977A publication Critical patent/JP2018045977A/ja
Application granted granted Critical
Publication of JP6579068B2 publication Critical patent/JP6579068B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04611Power, energy, capacity or load of the individual fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04634Other electric variables, e.g. resistance or impedance
    • H01M8/04641Other electric variables, e.g. resistance or impedance of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04634Other electric variables, e.g. resistance or impedance
    • H01M8/04649Other electric variables, e.g. resistance or impedance of fuel cell stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/54Energy consumption estimation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】燃料電池の燃料消費の悪化を抑制しつつ、燃料電池が潜在的に出力可能な最大出力電力を精度よく算出できる燃料電池の出力性能診断装置、燃料電池の出力性能診断システム、燃料電池の出力性能診断方法、及び燃料電池の出力性能診断プログラムを提供することを目的とする。
【解決手段】燃料電池を動力源として走行する車両のトリップ中に取得された前記燃料電池のインピーダンスの代表値が、インピーダンス閾値以下であると判定された場合に、前記インピーダンスが取得された前記トリップ中において、前記燃料電池の出力電圧が下限電圧以上であって前記下限電圧よりも高い電圧閾値以下に所定期間以上にわたって維持されてから変化している期間中での、前記燃料電池の電流‐電圧特性を取得し、取得した前記電流‐電圧特性に基づいて、前記燃料電池の最大出力電力を算出する、燃料電池の出力性能診断装置。
【選択図】図3

Description

本発明は、燃料電池の出力性能診断装置、燃料電池の出力性能診断システム、燃料電池の出力性能診断方法、及び燃料電池の出力性能診断プログラムに関する。
従来から、走行のための動力源として車両に搭載された燃料電池の電流‐電圧特性(以下、IV特性と称する)を取得する技術が知られている(例えば特許文献1参照)。このようなIV特性に基づいて、燃料電池の出力可能な最大出力電力を算出して、燃料電池の出力性能を把握することが考えられる。
国際公開第2011/036765号
燃料電池の出力性能の低下には、燃料電池の使用期間の増加に伴う不可逆的な低下と、燃料電池の運転状態によって回復し得る可逆的な低下とが含まれる。従って、燃料電池のIV特性にも、出力性能の不可逆的な低下のみならず可逆的な低下も反映され得る。このため、可逆的な低下が発生している状態でIV特性を取得しても、可逆的な低下から回復した状態での、燃料電池が潜在的に出力可能な最大出力電力を算出することはできない。
このため、燃料電池の運転状態を制御して可逆的な低下から回復した状態でIV特性を取得して、燃料電池が潜在的に出力可能な最大出力電力を算出することが考えられる。ここで、出力性能の可逆的な低下は、燃料電池を高出力で運転することにより燃料電池の出力電圧を低下させつつ燃料電池内の相対湿度を増大させることにより回復できることが知られている。このため、事前に燃料電池を高出力で運転させて出力性能の可逆的な低下から回復させてから、IV特性を取得することが考えられる。しかしながらこの場合、運転者の運転操作等とは別に燃料電池を高出力で運転させる必要があり、燃料電池の燃料消費が悪化する可能性がある。
また、上記のように出力性能の可逆的な低下から回復した状態であっても、燃料電池が使用される環境湿度や環境温度等の条件により、燃料電池内の相対湿度にばらつきが生じる。従って、相対湿度がばらつきやすい条件下で取得されたIV特性にもばらつきが生じ、このIV特性が示す出力性能が、本来の潜在的な出力性能よりも低下していることを示す可能性がある。よって、このような条件下でIV特性を取得しても、燃料電池が潜在的に出力可能な最大出力電力を精度よく算出することができない可能性がある。
そこで、燃料電池の燃料消費の悪化を抑制しつつ、燃料電池が潜在的に出力可能な最大出力電力を精度よく算出できる燃料電池の出力性能診断装置、燃料電池の出力性能診断システム、燃料電池の出力性能診断方法、及び燃料電池の出力性能診断プログラムを提供することを目的とする。
上記目的は、燃料電池を動力源として走行する車両のトリップ中に取得された前記燃料電池のインピーダンスの代表値が、インピーダンス閾値以下であるか否かを判定する判定部と、前記判定部により肯定判定された場合に、前記インピーダンスが取得された前記トリップ中において、前記燃料電池の出力電圧が下限電圧以上であって前記下限電圧よりも高い電圧閾値以下に所定期間以上にわたって維持されてから変化している期間中での、前記燃料電池の電流‐電圧特性を取得する特性取得部と、取得した前記電流‐電圧特性に基づいて、前記燃料電池の最大出力電力を算出する算出部と、を備えた燃料電池の出力性能診断装置により達成できる。
判定部により肯定判定がなされた場合には、燃料電池内の相対湿度が比較的高くなりやく、燃料電池の潜在的な出力性能を十分に発揮しやすい条件下にあると判断できる。また、燃料電池の出力電圧が電圧閾値以下でありかつ下限電圧よりも高い状態に所定期間以上にわたって維持されることにより、燃料電池の出力性能の可逆的な低下を回復させることができる。また、燃料電池の出力電圧がこのような状態に維持されてから変化することにより、出力性能の可逆的な低下から回復した状態での燃料電池の電流‐電圧特性を取得できる。更に、このような燃料電池の出力電圧の推移は、運転者の運転操作等によって起こり得る。このため、運転者の運転操作とは別に燃料電池を高出力に制御する必要がないため、燃料電池の燃料消費の悪化を抑制しつつ、出力性能の可逆的な低下から回復した状態での燃料電池の電流‐電圧特性を取得できる。以上のように、燃料電池の潜在的な出力性能を十分に発揮しやすい条件下で、運転者の運転操作等によって、燃料電池の出力性能の可逆的な低下を回復させた状態での電流‐電圧特性を取得できる。このようにして取得された電流‐電圧特性に基づいて最大出力電力を算出することにより、燃料電池の燃料消費の悪化を抑制しつつ、燃料電池が潜在的に出力可能な最大出力電力を精度よく算出できる。
前記代表値は、前記トリップ中に取得された前記インピーダンスの最大値又は最小値であってもよい。
直近の複数回のトリップ中にそれぞれ取得された前記燃料電池のインピーダンスに基づいて、前記インピーダンス閾値を更新する更新部を備えてもよい。
前記算出部は、前記燃料電池の出力電流が上限電流となった場合又は前記燃料電池の出力電圧が前記下限電圧となった場合に出力されると予測される出力電力を、前記最大出力電力として算出してもよい。
算出された前記最大出力電力に関する情報を報知する報知部を制御する報知制御部を備えていてもよい。
算出された前記最大出力電力に関する情報を無線送信する送信部を備えていてもよい。
上記目的は、前記燃料電池の出力性能診断装置と、複数の前記燃料電池の出力性能診断装置の前記送信部からそれぞれ無線送信された複数の前記最大出力電力に関する情報を表示するための画像データを生成する情報処理装置と、を備えた燃料電池の出力性能診断システムによっても達成できる。
上記目的は、燃料電池を動力源として走行する車両のトリップ中に取得された前記燃料電池のインピーダンスの代表値が、インピーダンス閾値以下であるか否かを判定する判定工程と、前記判定工程において肯定判定された場合に、前記インピーダンスが取得された前記トリップ中において、前記燃料電池の出力電圧が下限電圧以上であって前記下限電圧よりも高い電圧閾値以下に所定期間以上にわたって維持されてから変化している期間中での、前記燃料電池の電流‐電圧特性を取得する特性取得工程と、取得した前記電流‐電圧特性に基づいて、前記燃料電池の最大出力電力を算出する算出工程と、を備えた燃料電池の出力性能診断方法によっても達成できる。
上記目的は、燃料電池を動力源として走行する車両のトリップ中に取得された前記燃料電池のインピーダンスの代表値が、インピーダンス閾値以下であるか否かを判定する判定処理と、前記判定処理において肯定判定された場合に、前記インピーダンスが取得された前記トリップ中において、前記燃料電池の出力電圧が下限電圧以上であって前記下限電圧よりも高い電圧閾値以下に所定期間以上にわたって維持されてから変化している期間中での、前記燃料電池の電流‐電圧特性を取得する特性取得処理と、取得した前記電流‐電圧特性に基づいて、前記燃料電池の最大出力電力を算出する算出処理と、をコンピュータに実行させる燃料電池の出力性能診断プログラムによっても達成できる。
燃料電池の燃料消費の悪化を抑制しつつ、燃料電池が潜在的に出力可能な最大出力電力を精度よく算出できる燃料電池の出力性能診断装置、燃料電池の出力性能診断システム、燃料電池の出力性能診断方法、及び燃料電池の出力性能診断プログラムを提供できる。
図1は、車両の構成図である。 図2Aは、環境湿度が異なる条件で燃料電池の運転させた場合でのIV特性を示したグラフであり、図2Bは、環境湿度が異なる条件で燃料電池の運転させた場合での運転中でのインピーダンスの変化を示したグラフであり、図2Cは、車両の各トリップでの燃料電池のインピーダンスの最大値及び最小値を、季節毎に測定したグラフである。 図3は、制御部により実行される診断制御の一例を示したフローチャートである。 図4Aは、制御部により実行される燃料電池の最大出力電力の算出処理の一例を示したフローチャートであり、図4Bは、燃料電池の最大出力電力の算出方法の説明図である。 図5は、制御部により実行されるインピーダンス閾値の更新制御の一例を示したフローチャートである。 図6は、表示部での最大出力電力の表示例を示した図である。 図7は、出力性能診断システムの構成図である。 図8Aは、サーバの構成図であり、図8Bは、外部端末の構成図である。 図9Aは、サーバの制御部が実行する制御の一例を示したフローチャートであり、図9Bは、サーバにより生成された画像データに基づいて外部端末の表示部に表示される画面の一例である。
図1は、燃料電池車1(以下、単に車両と称する)の構成図である。図1に示すように、車両1は、酸化剤ガス配管系30、燃料ガス配管系40、電力系50、及び制御部60を含む。燃料電池20は、酸化剤ガスと燃料ガスの供給を受けて発電を行い、発電に伴う電力を発生する。酸化剤ガス配管系30は、酸化剤ガスとしての、酸素を含む空気を燃料電池20に供給する。燃料ガス配管系40は、燃料ガスとしての水素ガスを燃料電池20に供給する。電力系50は、システムの電力を充放電する。制御部60は、車両1全体を統括制御する。燃料電池20は、固体高分子電解質型であり、複数のセルを積層したスタック構造を備えている。
燃料電池20には、出力電流及び電圧をそれぞれ検出する電流センサ2a及び電圧センサ2b、燃料電池20の温度を検出する温度センサ2cが取り付けられている。
酸化剤ガス配管系30は、エアコンプレッサ31、酸化剤ガス供給路32、加湿モジュール33、カソードオフガス流路34、及びエアコンプレッサ31を駆動する直流モータM1を有している。
エアコンプレッサ31は、モータM1により駆動され、外気から取り込んだ酸素を含む空気(酸化剤ガス)を圧縮して燃料電池20のカソード極に供給する。モータM1には、その回転数を検出する回転数検出センサ3aが取り付けられている。酸化剤ガス供給路32は、エアコンプレッサ31から供給される酸素を燃料電池20のカソード極に導く。燃料電池20のカソード極からはカソードオフガスがカソードオフガス流路34を介して排出される。
加湿モジュール33は、酸化剤ガス供給路32を流れる低湿潤状態の酸化剤ガスと、カソードオフガス流路34を流れる高湿潤状態のカソードオフガスとの間で水分交換を行い、燃料電池20に供給される酸化剤ガスを適度に加湿する。カソードオフガス流路34は、カソードオフガスをシステム外に排気し、カソード極出口付近には背圧調整弁A1が配設されている。燃料電池20から排出される酸化剤ガスの圧力、即ちカソード背圧は背圧調整弁A1によって調圧される。カソードオフガス流路34における燃料電池20と背圧調整弁A1の間には、カソード背圧を検出する圧力センサ3bが取り付けられている。
燃料ガス配管系40は、燃料ガス供給源41、燃料ガス供給路42、燃料ガス循環路43、アノードオフガス流路44、水素循環ポンプ45、気液分離器46、及び水素循環ポンプ45を駆動するためのモータM2を有している。
燃料ガス供給源41は、燃料電池20へ燃料ガスである水素ガスを供給するタンクである。燃料ガス供給路42は、燃料ガス供給源41から放出される燃料ガスを燃料電池20のアノード側に導き、上流側から順にタンクバルブH1、水素調圧バルブH2、インジェクタH3が配設されている。これらバルブ及びインジェクタは、燃料電池20へ燃料ガスを供給、遮断する電磁弁である。
燃料ガス循環路43は、未反応燃料ガスを燃料電池20へ還流させ、上流側から順に気液分離器46、水素循環ポンプ45、及び不図示の逆止弁が配設されている。燃料電池20から排出された未反応燃料ガスは、水素循環ポンプ45によって適度に加圧され、燃料ガス供給路42へ導かれる。燃料ガス供給路42から燃料ガス循環路43への燃料ガスの逆流は、逆止弁によって抑制される。アノードオフガス流路44は、燃料電池20から排出された水素オフガスを含むアノードオフガスや気液分離器46内に貯留された水をシステム外に排気し、排気排水弁H5が配設されている。
電力系50は、高圧DC/DCコンバータ51、バッテリ52、トラクションインバータ53、補機インバータ54、トラクションモータM3、及び補機モータM4を備えている。
高圧DC/DCコンバータ51は、燃料電池20からの直流電圧を調整してバッテリ52に出力可能である。高圧DC/DCコンバータ51により、燃料電池20の出力電圧が制御される。
バッテリ52は、充放電可能な二次電池であり、余剰電力の充電や補助的な電力供給が可能である。燃料電池20で発電された直流電力の一部は、高圧DC/DCコンバータ51により昇降圧され、バッテリ52に充電される。バッテリ52には、その充電状態を検出するSOCセンサ5aが取り付けられている。
トラクションインバータ53、補機インバータ54は、燃料電池20又はバッテリ52から出力される直流電力を三相交流電力に変換してトラクションモータM3及び補機モータM4へ供給する。トラクションモータM3は、車輪71及び72を駆動する。トラクションモータM3が回生を行う場合には、トラクションモータM3からの出力電力は、トラクションインバータ53を介して直流電力に変換されてバッテリ52に充電される。トラクションモータM3には、その回転数を検出する回転数検出センサ5bが取り付けられている。
制御部60は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、メモリを含み、入力される各センサ信号に基づき、当該システムの各部を統合的に制御する。具体的には、制御部60は、アクセルペダル80の回動を検出するアクセルペダルセンサ81、SOCセンサ5a、回転数検出センサ5bから送出される各センサ信号に基づいて、燃料電池20の発電を制御する。また、制御部60は、イグニッションスイッチ83からオン信号及びオフ信号を検出することにより、燃料電池20の発電開始又は発電停止を要求する。また、制御部60には、後述する情報を表示することにより搭乗者に報知可能な表示部90が接続されている。表示部90は、例えばインストルメントパネルに設けられたディスプレイである。また、制御部60には、通信部61が接続されており、詳しくは後述するが、通信部61からネットワークを介してサーバと通信可能である。
また制御部60は、現時点での燃料電池20が潜在的に出力可能な最大出力電力を算出することにより、燃料電池20の出力性能を診断する出力性能診断制御を実行する。この制御は、制御部60のCPU、ROM、RAM、及びメモリにより機能的に実現される判定部、特性取得部、算出部、更新部、報知制御部、及び送信部により実行される。制御部60は、燃料電池20の出力性能診断装置の一例である。詳しくは後述する。
燃料電池20の出力性能の低下には、燃料電池20の使用期間の増大に伴う不可逆的な低下と、燃料電池20の運転状態によって回復し得る可逆的な低下とがある。出力性能の不可逆的な低下の主な要因は、燃料電池20の電解質膜内での陽イオン不純物の蓄積量の増大に伴う電解質膜のプロトン移動抵抗の増大や、燃料電池20の触媒層の貴金属(白金)粒子が凝集して貴金属粒子の表面積が低下するシンタリングである。このような出力性能の不可逆的な低下は、燃料電池20の使用期間の増大とともに徐々に低下する。これに対して、出力性能の可逆的な低下の主な要因は、燃料電池20内の乾燥や、燃料電池20の触媒層の酸素被毒やスルホン酸被毒である。燃料電池20内の乾燥は、燃料電池20の発電に伴う生成水量が増大することにより解消できる。また、触媒層の酸素被毒は、燃料電池20の電圧が低下することにより除去できる。また、触媒層のスルホン酸被毒は、燃料電池20の電圧が低下しかつ燃料電池20内に液水が潤沢に存在している場合に除去できる。即ち、出力性能の可逆的な低下は、燃料電池20の電圧を低下させ燃料電池20内の相対湿度を増大させることにより、回復し得るものである。
ここで、燃料電池20の運転状態を高出力に制御することにより、燃料電池20の電圧を低下させて発電による生成水量を増大させて相対湿度を増大させることができる。従って、事前に燃料電池20の運転状態を高出力に制御することによって、出力性能の可逆的な低下を回復させ、この状態で燃料電池20の出力性能を診断することにより、現時点での燃料電池20の潜在的な出力性能を診断することが考えられる。しかしながらこの場合、運転者の運転操作等とは別に燃料電池20を高出力で運転させる必要があり、燃料電池20の燃料消費が悪化する可能性がある。
また、上記のように出力性能の可逆的な低下を回復させた状態であったとしても、燃料電池20内の相対湿度は、環境温度や環境湿度、燃料電池20の運転履歴等の条件により影響を受ける。したがって、上記のように燃料電池20を高出力で制御したとしても、燃料電池の内部の相対湿度にはばらつきが生じる可能性がある。例えば、環境湿度が低い条件下での燃料電池20の出力性能は、高い場合に比して低くなる。図2Aは、環境湿度が異なる条件で燃料電池20の運転させた場合でのIV特性を示したグラフである。縦軸及び横軸はそれぞれ電圧及び電流を示している。IV特性X1はIV特性X2よりも環境湿度が低い状態で燃料電池20を運転させた場合でのIV特性を示している。また、図2Bは、環境湿度が異なる条件で燃料電池20の運転させた場合での運転中でのインピーダンスの変化を示したグラフである。縦軸はインピーダンス、横軸は時間を示している。インピーダンスZ1及びZ2は、それぞれIV特性X1及びX2に対応しており、インピーダンスZ1はインピーダンスZ2よりも環境湿度が低い状態で車両を運転させた場合でのインピーダンスである。尚、図2A及び図2Bの何れにおいても、環境湿度以外の環境条件や使用される燃料電池20の性能や運転状態等の条件は同じである。
図2Aに示すように、環境湿度が低い条件下でのIV特性X1の方がIV特性X2よりも、出力電圧が低下しており、燃料電池20の出力性能が低下していることを示している。また、図2Bに示すように、環境湿度の低い条件下でのインピーダンスZ1の方がインピーダンスZ2よりも高い値となり、燃料電池20の抵抗成分が増大していることを示している。この理由は、燃料電池20内の相対湿度が高いほど、インピーダンスは低くなるからである。このように、環境湿度が燃料電池20のインピーダンスに反映される。同様に、空気中の水蒸気量が一定であれば、環境温度が上昇すると環境湿度は低下し、環境温度が低下すると環境湿度は上昇するため、環境温度が燃料電池20のインピーダンスに反映される。また、燃料電池20の運転履歴によっても、燃料電池20内の相対湿度は変化するため、運転履歴が燃料電池20のインピーダンスに反映される。また、インピーダンスZ1及びZ2は、運転状態により変化する燃料電池20内の相対湿度に応じて変動し、運転期間中一定ではなく、それぞれ最大値及び最小値をとる。また、図2Bには、第1インピーダンス閾値R1及び第2インピーダンス閾値R2(以下、単に閾値R1及びR2と称する)を示しているが、詳しくは後述する。
図2Cは、車両1の各トリップでの燃料電池20のインピーダンスの最大値及び最小値を、季節毎に測定したグラフである。縦軸はインピーダンスを示し、横軸はインピーダンスが取得された時期を示している。図2Cでは、インピーダンスの最大値を○で示し、最小値を△で示している。尚、「トリップ」とは、イグニッションスイッチ83がOFFからONにされてから、次にONからOFFにされるまでの期間をいう。また、図2Cにおいても、閾値R1及びR2を示しているが、詳しくは後述する。
図2Cに示すように、春及び秋では、インピーダンスの最大値及び最小値のばらつきは少ないのに対して、夏及び冬は、春及び秋と比較してインピーダンスが高い値となりばらつきが大きくなる。春及び秋と比較して夏にインピーダンスが高くなる理由は、燃料電池20の環境温度が高くなり、燃料電池20内の相対湿度が低下しやすくなるからと考えられる。また、春及び秋と比較して夏にインピーダンスのばらつきが大きくなる理由は、夏であっても晴天時と雨天時とでは、燃料電池20の環境湿度の差が大きくなり、環境温度が高い場合であっても雨天時のように環境湿度が高い場合には、燃料電池20内の相対湿度が高くなると考えられるからである。また、春及び秋と比較して冬にインピーダンスが高くなる理由は、冬のような環境温度が低い場合には、運転停止中での燃料電池20内での残留水の凍結防止のために掃気処理が長めに実行され、燃料電池20内がより乾燥した状態で運転が停止され、運転再開時での燃料電池20内の相対湿度が低いからと考えられる。また、春及び秋と比較して冬にインピーダンスのばらつきが大きくなる理由は、冬であっても天候によっては、燃料電池20の環境温度の差や相対湿度の差が大きくなるからと考えられる。また、このような燃料電池20内の相対湿度のばらつきは、季節の変化のみならず、車両1が使用される地域が乾燥地域から湿潤地域に変わった場合にも起こり得る。
以上のように、燃料電池20の環境温度及び環境湿度や掃気処理の実行期間に応じて、燃料電池20内の相対湿度にもばらつきが生じるため、上述のように出力性能の可逆的な低下が回復した運転状態で潜在的な出力性能を診断しても、相対湿度のばらつきが診断結果に反映されてしまい燃料電池20が潜在的に出力可能な最大出力電力を精度よく算出できない可能性がある。
そこで本実施例での制御部60は、燃料電池20のインピーダンスの測定結果に基づいて燃料電池20の出力性能の診断に適した条件下であるか否かを判定し、適した条件である場合に燃料電池20が潜在的に出力可能な最大出力電力を精度よく算出する。尚、インピーダンスは、例えば交流インピーダンス法を用いて燃料電池20のインピーダンスの抵抗成分を測定する。燃料電池20に印加する電流の周波数が大きい場合(ω=∞)、インピーダンスは電解質膜抵抗であり、これによって燃料電池20の使用環境が出力性能の診断に適しているか否かを判定できる。
図3は、制御部60により実行される診断制御の一例を示したフローチャートである。診断制御は制御部60により一定の周期で繰り返し実行される。最初に、車両1のトリップ中に取得された燃料電池20のインピーダンスの最大値MXが閾値R1以下であるか否かが判定される(ステップS1)。閾値R1は、燃料電池20内の相対湿度が比較的高くなる条件下にあるか否かを判別するための閾値である。尚、燃料電池20の運転中は、インピーダンスの測定は一定周期で継続して行われ、運転中でのインピーダンスの最大値MX及び後述する最小値MNは随時取得、更新される。最大値MX及び最小値MNは、車両1のトリップ中に取得された燃料電池20のインピーダンスの代表値の一例である。ステップS1で否定判定の場合には、本制御は終了する。
ステップS1で肯定判定の場合には、車両1のトリップ中に取得された燃料電池20のインピーダンスの最小値MNが閾値R2以下であるか否かが判定される(ステップS3)。閾値R2も閾値R1と同様に、燃料電池20内の相対湿度が比較的高くなる条件下にあるか否かを判別するための閾値であり、閾値R1よりも小さい値である。否定判定の場合には、本制御は終了する。尚、閾値R1及びR2の算出については後述する。
このステップS1及びS3により、燃料電池20が出力性能の診断に適した条件下にあるか否かが判断される。例えば、図2Bの例では、インピーダンスZ1の場合にはステップS1で否定判定がなされ出力性能の診断は実行されず、インピーダンスZ2の場合には運転停止付近でステップS1及びS3で肯定判定がなされて出力性能の診断が実行される。尚、1トリップ中において、燃料電池20は、バッテリ52の充電率に応じて発電と発電停止とを繰り返す場合があるが、1トリップ中では燃料電池20の使用環境等は大きく変化しない場合が多いと考えられる。このため、1トリップ中に燃料電池20の発電と発電停止とが繰り返された場合であっても、そのトリップ中に取得されたインピーダンスの代表値に基づいて、燃料電池20が出力性能の診断に適した条件下にあるか否かが判断される。ステップS1及びS3の処理は、燃料電池20により走行する車両1のトリップ中に取得された燃料電池20のインピーダンスの代表値が、インピーダンス閾値以下であるか否かを判定する判定部が実行する処理の一例である。
ステップS1及びS3でインピーダンスの最大値MX及び最小値MNを用いる理由は、図2Bに示したように燃料電池20の運転中に燃料電池20内の相対湿度は変動し、このようなインピーダンスを用いて燃料電池20の使用環境を判別するためには、運転中でのインピーダンスの最大値MX及び最小値MNを用いることが適しているからである。尚、ステップS1及びS3の何れか一方のみを実行してもよいが、双方実施する方が燃料電池20の出力性能の診断に適した条件下であるか否かを精度よく判別できる。尚、ステップS1及びS3の順序は逆であってもよい。また、車両1のトリップ中に取得された燃料電池20のインピーダンスの代表値として最大値MX及び最小値MNを用いたが、平均値や中央値を用いてもよい。平均値や中央値を用いる場合には、それに対応した閾値を用いる必要がある。
次に、運転者によって操作されるアクセルペダル80のアクセル開度Accが所定開度以上であるか否かが判定される(ステップS5)。ここで、所定開度は、上述した燃料電池20の出力性能の可逆的な低下が回復し得る運転状態となる開度を意味し、燃料電池20の電圧は低く発電による生成水量は多くなる高出力での開度である。所定開度は、例えば90%である。否定判定の場合には、後述するステップS5a以降の処理が実行される。尚、ステップ5は必ずしも実施されなくてもよい。
ステップS5で肯定判定の場合、燃料電池20の出力電圧が下限電圧V0以上であって電圧閾値V1以下である状態が所定期間継続されたか否かが判定される(ステップS7)。電圧閾値V1は、上述した被毒を除去可能であってかつ発電による生成水量も多くなる電圧に設定されている。所定期間とは、燃料電池20の触媒層の被毒量を低減できる期間であって、例えば30秒以上である。燃料電池20の電圧は電圧センサ2bの測定結果に基づいて取得される。否定判定の場合には、後述するステップS5a以降の処理が実行される。
ステップS7で肯定判定の場合、電流センサ2a及び電圧センサ2bの測定結果に基づいて、燃料電池20のIV特性が取得される(ステップS9)。次に、燃料電池20の出力電圧が電圧閾値V2以上となったか否かが判定される(ステップS11)。電圧閾値V2は、電圧閾値V1よりも大きい値である。即ち、燃料電池20の出力電圧が電圧閾値V1以下から電圧閾値V2以上に変化している期間中でのIV特性が取得される。否定判定の場合には、ステップS9の処理が継続される。これにより、電圧閾値V1〜V2区間でのIV特性が継続して取得される。以上のステップS1〜S11までの処理により、燃料電池20の使用環境や運転履歴が燃料電池20の出力性能の診断に適した条件下であって、出力性能の可逆的な低下から回復した状態でのIV特性を、運転者の運転操作に従って燃料電池20が高出力となった場合に取得できる。このため、燃料電池20の燃料消費の悪化を抑制できる。ステップS9及びS11の処理は、判定部により肯定判定された場合に、インピーダンスが取得されたトリップ中において、燃料電池20の出力電圧が下限電圧以上であって下限電圧よりも高い電圧閾値以下に所定期間以上にわたって維持されてから変化している期間中での、燃料電池20の電流‐電圧特性を取得する特性取得部が実行する処理の一例である。
尚、ステップS11においては、電圧閾値V2は、必ずしも電圧閾値V1よりも高い必要はなく、ステップS7の条件が成立してIV特性の取得が開始された時点での出力電圧に所定の電圧値を加算した値であってもよい。また、電圧閾値V2の代わりに電流閾値を用いてもよい。また、ステップS7の条件が成立してからの燃料電池20の出力電圧の変化量の絶対値が所定量以上になったか否かを判定してもよい。この場合、出力電圧が低下する側に変化する場合のみならず、増大する側に変化する場合でもよい。出力電圧が増大するように変化している期間においても、IV特性を取得できるからである。同様に、ステップS7の条件が成立してからの燃料電池20の出力電流の変化量の絶対値が所定量以上になったか否かを判定してもよい。何れの場合も、後述する直線近似式を算出できる程度の区間でのIV特性を取得できればよい。
ステップS11で肯定判定の場合には、取得されたIV特性を直線で近似した直線近似式が算出される(ステップS13)。次に、直線近似式に基づいて、燃料電池20が潜在的に出力可能な最大出力電力が算出される(ステップS15)。以上のステップS1〜S15の処理により、燃料電池20の燃料消費の悪化を抑制しつつ、燃料電池20の最大出力電力を算出できる。ステップS13及びS15は、取得したIV特性に基づいて、燃料電池20の最大出力電力を算出する算出部が実行する処理の一例である。詳しくは後述する。
次に、算出された最大出力電力は、制御部60のメモリに記憶、更新される(ステップS17)。次に、制御部60のメモリに記憶、更新された最大出力電力は、表示部90に表示される(ステップS19)。これにより車両1の燃料電池20の最大出力電力が搭乗者に報知される。ステップS19の処理は、算出された最大出力電力に関する情報を報知する報知部を制御する報知制御部が実行する処理の一例である。
次に、制御部60のメモリに記憶、更新された最大出力電力に関する最大出力電力情報は、通信部61からネットワークを介してサーバに送信される(ステップS21)。詳しくは後述する。ステップS21の処理は、算出された最大出力電力に関する情報を無線送信する送信部が実行する処理の一例である。最大出力電力情報は、その車両1のナンバープレートに記載された登録番号や車両1のフレームナンバー等である車両識別情報と、その車両1の走行距離を示す走行距離情報とに関連付けされて、サーバに送信される。なお、車両識別情報の代わりに燃料電池のシリアルナンバー等である燃料電池識別番号を使用してもよい。車両識別情報及び走行距離情報は、制御部60のメモリに記憶されており、走行距離情報は、随時更新されている。尚、ステップS19及びS21の順序は問わない。ステップS19及びS21については、詳しくは後述する。
ステップS5、S7、S9、S11、S13、及びS15の代わりに、アクセル開度Accが所定期間以上にわたって全開である状態が継続されている最中の燃料電池20の出力電圧及び出力電流に基づいて出力電力を算出することも考えられる。しかしながらこの場合であっても、燃料電池20の触媒層の被毒量を低下させるために所定期間アクセル開度Accを全開に維持される必要があり、このようにアクセルペダル80が運転者により操作される頻度は少ない。このため本実施例では、ステップS5、S7、S11のように運転者により操作される頻度がより多い運転状態で取得されたIV特性に基づいて、燃料電池20の最大出力電力が算出される。このため、より多くの頻度で燃料電池20の最大出力電力を算出でき、最新の最大出力電力に更新される。
次に、ステップS5又はS7で否定判定の場合には、前回の最大出力電力の更新からの車両1の走行距離が所定距離以上であるか否かが判定される(ステップS5a)。否定判定の場合には、本制御は終了する。尚、ステップS5aの代わりに、前回の最大出力電力の更新から所定期間が経過したか否かが判定されてもよい。ここで、「所定距離」及び「所定期間」は、それぞれ、燃料電池20の出力性能が不可逆的に低下するのに要する車両1の走行距離及び燃料電池20の使用期間を考慮して予め定められている。
次に、SOCセンサ5aの測定値に基づいて、バッテリ52の充電可能量が所定量B以上であるか否かが判定される(ステップS5b)。否定判定の場合には本制御は終了する。後述の制御の実行により生じる燃料電池20の余剰発電電力をバッテリ52に蓄電する必要があるからである。
ステップS5bで肯定判定の場合、アクセル開度Accに関わらず燃料電池20の要求出力を増大させて、燃料電池20の出力電圧が下限電圧V0以上であって電圧閾値V1以下に所定期間維持される(ステップS7a)。ここで所定期間とは、ステップS7での所定期間と同じ趣旨により定められた期間であるが、ステップS7での所定期間と同一の期間に限定されない。このようにして、出力性能の可逆的な低下から燃料電池20を強制的に回復させることができる。尚、この処理により発生した燃料電池20の余剰発電電力は、バッテリ52に蓄電される。
次に、電流センサ2a及び電圧センサ2bの測定結果に基づいて、燃料電池20のIV特性が取得される(ステップS9a)。次に、アクセル開度Accに関わらず燃料電池20の要求出力を低下させて、燃料電池20の電圧が電圧閾値V2以上となるように制御される(ステップS11a)。これにより、電圧閾値V1〜V2区間でのIV特性が取得される。尚、ステップS11と同様に、ステップS11aにおいても、電圧閾値V2の代わりに電流閾値を用いてもよいし、燃料電池20の出力電圧を所定量変化させてもよい。次に、ステップS13以降の処理が実行される。以上のようにして、運転者の運転操作により燃料電池20が潜在的な出力性能の診断に適した高出力の運転状態とはならずに、長期間にわたって出力性能の診断が行われていないような場合に、潜在的な出力性能の診断が強制的に行われる。この制御により、燃料電池20の燃料消費は悪化するが、燃料電池20の出力性能を診断できる。尚、ステップS5a〜S11aまでの処理は、必ずしも実施しなくてもよい。しかしながら、運転者の運転操作によっては、ステップS5〜S11までの操作が長期間にわたって実施されず、最新の最大出力電力が更新されない可能性がある。そのため、ステップS5a〜S11aまでを実行することにより、最大出力電力の更新を適切なタイミングで実行することができる。
ステップS7a、S9a、S11a、S13、及びS15の代わりに、燃料電池20の出力電力を、後述する上限電流及び下限電圧の何れか一方により制限された状態で所定期間維持して可逆的な性能低下を除去し、その後に算出された燃料電池20の出力電力を、燃料電池20が潜在的に出力可能な最大出力電力としてもよい。この場合、ステップS9a、S13、及びS15の処理を実行する必要はないため、制御部60の処理負荷を抑制できる。尚、ステップS7a、9a、S11a、S13、及びS15を実行する場合には、燃料電池20の出力電力を最大にまで制御する必要はないため、燃料消費の悪化を抑制できる。
燃料電池20の最大出力電力の算出処理について具体的に説明する。図4Aは、制御部60により実行される燃料電池20の最大出力電力の算出処理の一例を示したフローチャートである。まず、ステップS13で算出された直線近似式に、上限電流I0を代入して得られる予測電圧Vxと、下限電圧V0を代入して得られる予測電流Ixとが算出される(ステップS151)。ここで予測電圧Vxは、燃料電池20の出力電流が上限電流I0となった場合に予測される出力電圧を意味し、予測電流Ixは、燃料電池20の出力電圧が下限電圧V0となった場合に予測される出力電流を意味する。また、上限電流I0及び下限電圧V0は、車両1の正常動作の確保を考慮して規定されたものであり、燃料電池20の理論的に出力可能な最大電流及び最小電圧ではない。
次に、予測電圧Vxが下限電圧V0以上であるか否かが判定される(ステップS153)。肯定判定の場合には、予測電圧Vxと上限電流I0との乗算により燃料電池20の潜在的な最大出力電力が算出される(ステップS155)。否定判定の場合には、予測電流Ixと下限電圧V0との乗算により燃料電池20の潜在的な最大出力電力が算出される(ステップS157)。
図4Bは、燃料電池20の最大出力電力の算出方法の説明図である。図4Bでは、縦軸及び横軸はそれぞれ電圧及び電流を示している。図4Bには、出力性能が異なる2つの燃料電池のIV曲線IV1及びIV2を示している。また、図4Bには、電圧閾値V1〜V2区間でのIV曲線IV1の近似直線L1とその延長線E1と、電圧閾値V1〜V2区間でのIV曲線IV2の近似直線L2とその延長線E2とを示している。また、延長線E1及びE2上でのそれぞれの上限電流I0に対応する予測電圧Vx1及びVx2と、延長線E1及びE2上での下限電圧V0に対応する予測電流Ix1及びIx2とを示している。図4Bに示すように、近似直線L2及び延長線E2は、それぞれ近似直線L1及び延長線E1よりも電圧が低下しており、IV曲線IV2に対応する燃料電池は、IV曲線IV1に対応する燃料電池よりも潜在的な出力性能が低いことを意味している。
ここで、延長線E1においては、予測電流Ix1>上限電流I0、予測電圧Vx1>下限電圧V0であり、出力電流が上限電流I0を超えた予測電流Ix1になることはないため、IV曲線IV1に対応する燃料電池の潜在的な最大出力電力は、ステップS155の処理により算出される。また、延長線E2においては、予測電流Ix2<上限電流I0、予測電圧Vx2<下限電圧V0であり、出力電圧が下限電圧V0を下回る予測電圧Vx2になることはないため、IV曲線IV2に対応する燃料電池の潜在的な最大出力電力は、ステップS157の処理により算出される。以上のようにして、燃料電池の潜在的な最大出力電力が算出される。尚、ステップS153の代わりに、予測電流Ixが上限電流I0を超えているか否かを判定してもよい。
上述のように、燃料電池20の出力電圧が電圧閾値V1以下に所定期間維持されてから、電圧閾値V1〜V2区間でのIV特性に基づいて、燃料電池20の潜在的な最大出力電力が算出される。このため、燃料電池20の出力電圧が電圧閾値V1以下に所定期間維持されて触媒層への被毒量が低下した状態で直ちにIV特性が取得されることになる。従って、燃料電池20の出力性能の可逆的な低下から回復した直後のIV特性を取得でき、燃料電池20の潜在的な最大出力電力を精度よく算出できる。
また、電圧閾値V1〜V2区間でのIV特性及びその延長線に基づいて、上限電流I0及び下限電圧V0により許容される範囲内で、その線上の各動作点での出力電力を算出し、その中の最大値を最大出力電力としてもよい。
尚、ステップS13によれば、電圧閾値V1〜V2区間でのIV特性に基づいて直線近似式が算出されるが、電圧閾値V1〜V2区間よりも短い区間でのIV特性に基づいて直線近似式を算出してもよい。例えば、電圧閾値V1から、電圧閾値V1と電圧閾値V2との間の途中の区間でのIV特性を用いて、直線近似式を算出してもよい。電圧閾値V1〜V2区間でIV特性が曲線を描く場合に、できる限り電圧閾値V1側であって短い区間でのIV特性を用いて直線近似式を算出することにより、燃料電池20の潜在的な最大出力電力を精度よく算出できるからである。
次に、閾値R1及びR2について説明する。閾値R1及びR2は、常に一定である固定値ではなく、更新される値である。閾値R1及びR2の更新は、燃料電池20の使用期間の増大と共に不可逆的に低下する出力性能を考慮して行われるものである。即ち、上述したように燃料電池20の使用期間が長期化するほど、出力性能が不可逆的に低下し、インピーダンスが高い値となるからである。図5は、制御部60により実行される閾値R1及びR2の更新制御の一例を示したフローチャートである。まず、前回の閾値R1及びR2の更新がされてから車両の走行距離が所定距離以上となったか否かを判定する(ステップS31)。否定判定の場合には本制御は終了する。尚、ステップS31の代わりに、例えば前回の閾値R1及びR2の更新から所定期間経過したか否かが判定されてもよい。ここで、「所定距離」及び「所定期間」は、それぞれ、燃料電池20の出力性能が不可逆的に低下するのに要される車両1の走行距離及び燃料電池20の使用期間を考慮して予め定められている。
次に、直近の複数回のトリップ毎のインピーダンスの最大値及び最小値が取得される(ステップS33)。尚、トリップ毎のインピーダンスの最大値及び最小値は、制御部60のメモリに記憶されている。
次に、取得された複数の最大値のうち、小さい順にn番目(n≧2)からm番目(m≧(n+1))までの最大値の平均値Ra1が算出され、取得された複数の最小値のうち、小さい順にn番目(n≧2)からm番目(m≧(n+1))までの最小値の平均値Ra2が算出される(ステップS35)。
次に、算出された平均値Ra1及びRa2のそれぞれに所定値ΔRa1及びΔRa2を加算した値を、それぞれ閾値R1及びR2として更新される(ステップS37)。直近の複数回とは、測定ばらつきを排除するために十分多い数であり、例えば100回であり、n番目からm番目とは、10〜20番目である。1番目から(n−1)番目までの値を除外した理由は、インピーダンスの測定結果に含まれる誤差を除外するためである。例えば図2Cに示したように、閾値R1及びR2が更新される。ステップS37の処理は、直近のトリップ毎の燃料電池20のインピーダンスの最大値及び最小値の少なくとも一方の平均値に基づいて算出された値を、インピーダンス閾値として更新する更新部が実行する処理の一例である。
上記ステップS31の代わりに、現在のトリップ中で閾値R1及びR2が更新されたか否かを判定してもよい。即ち、燃料電池20の運転が開始される度に、ステップ33以降の処理が実行されてもよい。
また、ステップS35で、取得された複数の最大値の全体の平均値Rb1と標準偏差σ1とが算出され、取得された複数の最小値の全体の平均値Rb2と標準偏差σ2とが算出され、ステップS37で、平均値Rb1から標準偏差σ1を減算した値を閾値R1として更新し、平均値Rb2から標準偏差σ2を減算した値を閾値R2として更新してもよい。また、平均値Rb1から、標準偏差σ1を所定の係数k(0<k<1、又はk>1)で乗算した値を、減算した値を閾値R1として更新してもよい。閾値R2についても同様である。また、閾値R1及びR2は、車両1の走行距離に増大に応じて増大する関数であってもよい
尚、図3に示した診断制御において、ステップS1及びS3の何れか一方のみを実行する場合には、図5の更新制御においても、対応する閾値のみを更新すればよい。また、閾値R1及びR2が更新される前は、予め実験により算出された初期値に設定されている。
上述したように、算出された燃料電池20の最大出力電力に関する情報は、表示部90に表示される。図6は、表示部90での最大出力電力の表示例を示した図である。表示部90の中央に、車速に関する情報を表示する車速表示領域91が設定され、表示部90の上部右側に燃料ガスの貯蔵量に関する情報を表示する燃料ガス量表示領域93、表示部90の上部左側に上述した燃料電池20の最大出力電力に関する情報を表示する最大出力表示領域95が設定されている。制御部60は、算出された燃料電池20の最大出力電力値を最大出力表示領域95に表示させことにより、搭乗者に報知する。尚、燃料電池20の最大出力電力は、常時表示部90に表示させてもよいし、搭乗者により操作スイッチなどが操作される毎に表示部90に表示するようにしてもよい。また、最大出力電力に関する情報の表示態様は、図6に示したものには限定されず、例えば、具体的な数値は用いずに、インジケータにより表示してもよいし、その他、文字、図形、パターン等によって表示してもよい。また、制御部60は、最大出力電力に関する情報を、車両内のスピーカから音声により搭乗者に報知してもよい。
次に、出力性能診断システムAについて説明する。図7は、出力性能診断システムAの構成図である。出力性能診断システムAでは、車両1や、サーバ100、外部端末120が、インターネットなどのネットワークNに接続されている。上述した機能を有した制御部60は、図7に示した複数の車両1にそれぞれ搭載されている。各車両1の制御部60は、ネットワークNに接続されており、各車両1の最大出力電力に関する情報をサーバ100に送信する。サーバ100は、所定の処理を実行して、複数の車両1の燃料電池20の最大出力電力に関する情報を外部端末120に送信する。以下に、サーバ100、外部端末120について説明する。
図8Aは、サーバ100の構成図である。サーバ100は、通信部101、制御部103、データベース105、生成部107を含む。通信部101は、制御部60及び外部端末120と通信可能なネットワークインタフェースであり、複数の車両1の制御部60から送信された、最大出力電力情報、車両識別情報、及び走行距離情報を受信して、制御部103に送信する。制御部103は、車両識別情報に関連付けをして最大出力電力情報及び走行距離情報をデータベース105に記憶、更新する。これにより、データベース105には複数の車両1に関する車両識別情報、最大出力電力情報、及び走行距離情報が記憶される。図7に示したように、上記の診断処理等を実行する制御部60を搭載した複数の車両1が、ネットワークNを介してサーバ100に接続されているため、データベース105には複数の車両1に関する情報が記憶、更新される。生成部107は、制御部103からの指令によりデータベース105に格納されている情報に基づいて、外部端末120に表示するための画像データを生成する。生成された画像データは、制御部103により通信部101から外部端末120に送信される。
図8Bは、外部端末120の構成図である。外部端末120は、通信部121、制御部123、表示部127、及び入力部129を含む。通信部121は、サーバ100と通信可能なネットワークインタフェースであり、サーバ100から送信された画像データを受信して制御部123に送信する。制御部123は、CPU、ROM、RAM等から構成され、サーバ100から送信された画像データを表示部127に表示させる。表示部127は、例えばディスプレイである。入力部129は、例えばキーボードやタッチパネル等である。外部端末120は、例えば中古車販売店等に設置される据置型のコンピュータであるが、これに限定されず、携帯可能なコンピュータであってもよい。
図9Aは、サーバ100の制御部103が実行する制御の一例を示したフローチャートである。複数の車両1の制御部60から送信された情報を受信したか否かが判定される(ステップS41)。肯定判定の場合、受信した情報をデータベース105に記憶、更新される(ステップS43)。否定判定の場合、及びステップS43の処理の後に、外部端末120から最大出力電力に関する情報表示要求があるか否かが判定される(ステップS45)。例えば外部端末120の入力部129から特定車両の車両識別情報が入力された場合には、外部端末120の通信部121からネットワークNを介してサーバ100に情報表示要求がなされる。否定判定の場合には本制御は終了する。肯定判定の場合、データベース105に記憶された情報に基づいて、外部端末120の表示部127に表示するための画像データが生成部107により生成される(ステップS47)。生成された画像データは、通信部101によりネットワークNを介して外部端末120に送信される(ステップS49)。このように、サーバ100は、複数の制御部60からそれぞれ無線送信された複数の最大出力電力に関する情報を表示するための画像データを生成する情報処理装置の一例である。
図9Bは、サーバ100により生成された画像データに基づいて外部端末120の表示部127に表示される画面の一例である。車両台数と最大出力電力とを、走行距離毎に分類して棒グラフ状にした画像データが生成部107により生成され、外部端末120の表示部127に表示される。これにより、外部端末120の利用者は、現時点での市場に流通している車両の出力性能を把握でき、例えばこのような燃料電池車の中古車販売価格や中古車買取価格の平均価格の決定の判断材料に利用できる。また、この画像データでは、入力部129から入力された特定の車両識別情報に基づいて、特定車両と他車両との最大出力電力を判別可能に表示される。具体的には、図9Bにおいて、ハッチングがされた箇所が、特定車両の最大出力電力を示している。これにより、外部端末120の利用者は、特定車両の出力性能と他車両の出力性能とを比較することができ、例えば特定車両の買取価格や販売価格の決定の判断材料に利用できる。また、サーバ100は、外部端末120のみならず、各車両1の制御部60に画像データを送信して、例えば各車両1の表示部90にこのような最大出力電力に関する情報を表示させてもよい。各車両1の所有者は、他車両との比較において自車両の現状の出力性能を把握でき、例えば、自車両1の下取り価格の予想の判断材料に利用できる。
尚、サーバ100の生成部107が表示部127に表示するための画像データを生成するのではなく、外部端末120の制御部123がサーバ100から送信された情報に基づいて、表示部127に表示する画像データを生成してもよい。
車両1の制御部60は、自車両の車両識別情報と共に、常時燃料電池20のインピーダンス、出力電流、出力電圧、アクセル開度、走行距離等に関する情報を常時サーバ100に送信し、制御部103はこれらの情報を取得してデータベース105に記憶、更新し、これらの情報に基づいて制御部103が図3の診断制御や図5の更新制御を実行してもよい。即ち、図3、図4A、及び図5に示した制御は、必ずしも車両1の制御部60が実行する必要はなく、サーバ100の制御部103が実行してもよい。この場合、制御部103が、判定部、特性取得部、算出部、更新部、報知制御部として機能し、燃料電池20の出力性能診断装置として機能する。また、この場合、算出された最大出力電力は、車両1の車両識別情報と共にデータベース105に記憶、更新され、通信部101からその車両1の制御部60に送信されて表示部90に表示される。
また、制御部60と制御部103とで協働で図3の診断制御を実行してもよい。例えば、ステップS1〜S11及びS5a〜S11aまでの処理を車両1の制御部60が実行し、ステップS13〜S21の処理をサーバ100の制御部103が実行してもよい。この場合、車両1の制御部60は、取得したIV特性に関する情報を通信部61からサーバ100に送信する。サーバ100の制御部103は、取得したIV特性に基づいて最大出力電力を算出し、最大出力電力に関する情報を、その車両1の制御部60に送信して表示部90に表示させ、また外部端末120に送信して表示部127に表示させる。この場合、車両1の制御部60は、判定部、及び特性取得部として機能し、サーバ100の制御部103は、算出部として機能する。
尚、上記の処理機能は、コンピュータによって実現することができる。その場合、処理装置が有すべき機能の処理内容を記述したプログラムが提供される。そのプログラムをコンピュータで実行することにより、上記処理機能がコンピュータ上で実現される。処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体(ただし、搬送波は除く)に記録しておくことができる。
プログラムを流通させる場合には、例えば、そのプログラムが記録されたDVD(Digital Versatile Disc)、CD−ROM(Compact Disc Read Only Memory)などの可搬型記録媒体の形態で販売される。また、プログラムをサーバコンピュータの記憶装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することもできる。
プログラムを実行するコンピュータは、例えば、可搬型記録媒体に記録されたプログラムもしくはサーバコンピュータから転送されたプログラムを、自己の記憶装置に格納する。そして、コンピュータは、自己の記憶装置からプログラムを読み取り、プログラムに従った処理を実行する。なお、コンピュータは、可搬型記録媒体から直接プログラムを読み取り、そのプログラムに従った処理を実行することもできる。また、コンピュータは、サーバコンピュータからプログラムが転送されるごとに、逐次、受け取ったプログラムに従った処理を実行することもできる。
以上本発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
1 車両
20 燃料電池
60 制御部(燃料電池の出力性能診断装置、判定部、特性取得部、算出部、報知部、送信部)
100 サーバ(情報処理装置、燃料電池の出力性能診断装置)
A 出力性能診断システム
上記目的は、燃料電池を動力源として走行する車両のトリップ中に取得された前記燃料電池のインピーダンスの代表値が、インピーダンス閾値以下である場合に、前記インピーダンスが取得された前記トリップ中において、前記燃料電池の出力電圧が下限電圧以上であって前記下限電圧よりも高い電圧閾値以下に所定期間以上にわたって維持されてから変化している期間中での、前記燃料電池の電流‐電圧特性に基づいて、前記燃料電池の最大出力電力を算出する算出部を備えた燃料電池の出力性能診断装置により達成できる。
燃料電池を動力源として走行する車両のトリップ中に取得された燃料電池のインピーダンスの代表値が、インピーダンス閾値以下である場合には、燃料電池内の相対湿度が比較的高くなりやく、燃料電池の潜在的な出力性能を十分に発揮しやすい条件下にあると判断できる。また、燃料電池の出力電圧が電圧閾値以下でありかつ下限電圧よりも高い状態に所定期間以上にわたって維持されることにより、燃料電池の出力性能の可逆的な低下を回復させることができる。また、燃料電池の出力電圧がこのような状態に維持されてから変化することにより、燃料電池の電流‐電圧特性は、出力性能の可逆的な低下から回復した状態での特性である。更に、このような燃料電池の出力電圧の推移は、運転者の運転操作等によって起こり得る。このため、運転者の運転操作とは別に燃料電池を高出力に制御する必要がないため、燃料電池の燃料消費の悪化を抑制しつつ、出力性能の可逆的な低下から回復した状態での燃料電池の電流‐電圧特性に基づいて、燃料電池の最大出力電力が算出される。以上のように、燃料電池の潜在的な出力性能を十分に発揮しやすい条件下で、運転者の運転操作等によって、燃料電池の出力性能の可逆的な低下を回復させた状態での電流‐電圧特性に基づいて最大出力電力を算出することにより、燃料電池の燃料消費の悪化を抑制しつつ、燃料電池が潜在的に出力可能な最大出力電力を精度よく算出できる。
前記インピーダンス閾値は、直近の複数回のトリップ中にそれぞれ取得された前記燃料電池のインピーダンスに基づいて、更新されていてもよい。
上記目的は、燃料電池を動力源として走行する車両のトリップ中に取得された前記燃料電池のインピーダンスの代表値が、インピーダンス閾値以下である場合に、前記インピーダンスが取得された前記トリップ中において、前記燃料電池の出力電圧が下限電圧以上であって前記下限電圧よりも高い電圧閾値以下に所定期間以上にわたって維持されてから変化している期間中での、前記燃料電池の電流‐電圧特性に基づいて、前記燃料電池の最大出力電力を算出する算出処理をコンピュータに実行させる燃料電池の出力性能診断プログラムによっても達成できる。

Claims (9)

  1. 燃料電池を動力源として走行する車両のトリップ中に取得された前記燃料電池のインピーダンスの代表値が、インピーダンス閾値以下であるか否かを判定する判定部と、
    前記判定部により肯定判定された場合に、前記インピーダンスが取得された前記トリップ中において、前記燃料電池の出力電圧が下限電圧以上であって前記下限電圧よりも高い電圧閾値以下に所定期間以上にわたって維持されてから変化している期間中での、前記燃料電池の電流‐電圧特性を取得する特性取得部と、
    取得した前記電流‐電圧特性に基づいて、前記燃料電池の最大出力電力を算出する算出部と、を備えた燃料電池の出力性能診断装置。
  2. 前記代表値は、前記トリップ中に取得された前記インピーダンスの最大値又は最小値である、請求項1の燃料電池の出力性能診断装置。
  3. 直近の複数回のトリップ中にそれぞれ取得された前記燃料電池のインピーダンスに基づいて、前記インピーダンス閾値を更新する更新部を備えた、請求項1又は2の燃料電池の出力性能診断装置。
  4. 前記算出部は、前記燃料電池の出力電流が上限電流となった場合又は前記燃料電池の出力電圧が前記下限電圧となった場合に出力されると予測される出力電力を、前記最大出力電力として算出する、請求項1乃至3の何れかの燃料電池の出力性能診断装置。
  5. 算出された前記最大出力電力に関する情報を報知する報知部を制御する報知制御部を備えた、請求項1乃至4の何れかの燃料電池の出力性能診断装置。
  6. 算出された前記最大出力電力に関する情報を無線送信する送信部を備えた、請求項1乃至5の何れかの燃料電池の出力性能診断装置。
  7. 複数の請求項6の前記燃料電池の出力性能診断装置と、
    複数の前記燃料電池の出力性能診断装置の前記送信部からそれぞれ無線送信された複数の前記最大出力電力に関する情報を表示するための画像データを生成する情報処理装置と、を備えた燃料電池の出力性能診断システム。
  8. 燃料電池を動力源として走行する車両のトリップ中に取得された前記燃料電池のインピーダンスの代表値が、インピーダンス閾値以下であるか否かを判定する判定工程と、
    前記判定工程において肯定判定された場合に、前記インピーダンスが取得された前記トリップ中において、前記燃料電池の出力電圧が下限電圧以上であって前記下限電圧よりも高い電圧閾値以下に所定期間以上にわたって維持されてから変化している期間中での、前記燃料電池の電流‐電圧特性を取得する特性取得工程と、
    取得した前記電流‐電圧特性に基づいて、前記燃料電池の最大出力電力を算出する算出工程と、を備えた燃料電池の出力性能診断方法。
  9. 燃料電池を動力源として走行する車両のトリップ中に取得された前記燃料電池のインピーダンスの代表値が、インピーダンス閾値以下であるか否かを判定する判定処理と、
    前記判定処理において肯定判定された場合に、前記インピーダンスが取得された前記トリップ中において、前記燃料電池の出力電圧が下限電圧以上であって前記下限電圧よりも高い電圧閾値以下に所定期間以上にわたって維持されてから変化している期間中での、前記燃料電池の電流‐電圧特性を取得する特性取得処理と、
    取得した前記電流‐電圧特性に基づいて、前記燃料電池の最大出力電力を算出する算出処理と、をコンピュータに実行させる燃料電池の出力性能診断プログラム。
JP2016182275A 2016-09-16 2016-09-16 燃料電池の出力性能診断装置、燃料電池の出力性能診断システム、燃料電池の出力性能診断方法、及び燃料電池の出力性能診断プログラム Active JP6579068B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016182275A JP6579068B2 (ja) 2016-09-16 2016-09-16 燃料電池の出力性能診断装置、燃料電池の出力性能診断システム、燃料電池の出力性能診断方法、及び燃料電池の出力性能診断プログラム
US15/671,769 US11196065B2 (en) 2016-09-16 2017-08-08 Output performance diagnosis apparatus for fuel cell, output performance diagnosis system for fuel cell, output performance diagnosis method for fuel cell, and non-transitory computer readable medium storing output performance diagnosis program for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016182275A JP6579068B2 (ja) 2016-09-16 2016-09-16 燃料電池の出力性能診断装置、燃料電池の出力性能診断システム、燃料電池の出力性能診断方法、及び燃料電池の出力性能診断プログラム

Publications (2)

Publication Number Publication Date
JP2018045977A true JP2018045977A (ja) 2018-03-22
JP6579068B2 JP6579068B2 (ja) 2019-09-25

Family

ID=61620655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016182275A Active JP6579068B2 (ja) 2016-09-16 2016-09-16 燃料電池の出力性能診断装置、燃料電池の出力性能診断システム、燃料電池の出力性能診断方法、及び燃料電池の出力性能診断プログラム

Country Status (2)

Country Link
US (1) US11196065B2 (ja)
JP (1) JP6579068B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10930958B2 (en) 2018-08-24 2021-02-23 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106933618B (zh) * 2017-01-25 2020-03-27 上海蔚来汽车有限公司 基于系统参数相关系数的系统升级评估方法
CN108896919B (zh) * 2018-06-19 2020-09-25 爱驰汽车有限公司 电池老化状态的估算方法、装置及电池管理系统
CN108931268B (zh) * 2018-06-25 2020-12-22 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种燃料电池增湿罐增湿效果测试方法
CN111196184A (zh) * 2018-11-16 2020-05-26 宝沃汽车(中国)有限公司 车辆及车用燃料电池进气系统的控制方法、控制装置
CN110239349B (zh) * 2019-06-27 2021-01-22 浙江吉利控股集团有限公司 一种混合动力车防误报警的方法及系统
CN110470997B (zh) * 2019-07-31 2021-08-13 王成 一种锂电池检测装置
DE102020000193A1 (de) * 2020-01-15 2021-07-15 Daimler Ag Verfahren zum lnitiieren eines Regenerationsprozesses
CN113917352B (zh) * 2021-10-14 2022-07-26 浙江大学 基于阻抗老化特征的燃料电池催化层在线老化诊断方法
US20230211888A1 (en) * 2022-01-04 2023-07-06 General Electric Company Safety management of a propulsion system with a fuel cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009266689A (ja) * 2008-04-25 2009-11-12 Toyota Motor Corp 燃料電池の運転方法、燃料電池システム
JP2010114039A (ja) * 2008-11-10 2010-05-20 Toyota Motor Corp 燃料電池システム
JP2010146793A (ja) * 2008-12-17 2010-07-01 Yokogawa Electric Corp 燃料電池の活性化装置および活性化方法
JP2012160336A (ja) * 2011-01-31 2012-08-23 Toshiba Corp 燃料電池システムとその運転方法
WO2013069174A1 (ja) * 2011-11-09 2013-05-16 パナソニック株式会社 熱電併給システムおよびその制御方法
US8886392B1 (en) * 2011-12-21 2014-11-11 Intellectual Ventures Fund 79 Llc Methods, devices, and mediums associated with managing vehicle maintenance activities
JP2016091810A (ja) * 2014-11-05 2016-05-23 トヨタ自動車株式会社 燃料電池システムおよび最大電力算出方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207442A (ja) 2006-01-30 2007-08-16 Toyota Motor Corp 燃料電池システム
JP4961830B2 (ja) * 2006-05-15 2012-06-27 トヨタ自動車株式会社 蓄電装置の充放電制御装置および充放電制御方法ならびに電動車両
JP5023374B2 (ja) * 2007-02-05 2012-09-12 トヨタ自動車株式会社 燃料電池システム
JP4353299B2 (ja) 2007-12-14 2009-10-28 トヨタ自動車株式会社 電池学習システム
JP4551942B2 (ja) * 2008-03-14 2010-09-29 本田技研工業株式会社 ハイブリッド直流電源システム、燃料電池車両及び蓄電装置の保護方法
KR20100121354A (ko) * 2009-05-08 2010-11-17 삼성전자주식회사 연료 전지의 열화를 진단하는 방법 및 장치
DE112009005282B4 (de) 2009-09-25 2020-08-27 Toyota Jidosha Kabushiki Kaisha Brennstoffzellensystem
JP2011192458A (ja) 2010-03-12 2011-09-29 Toyota Motor Corp 燃料電池システム、移動体、および燃料電池システムの制御方法
JP5678021B2 (ja) * 2012-09-18 2015-02-25 本田技研工業株式会社 電力供給システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009266689A (ja) * 2008-04-25 2009-11-12 Toyota Motor Corp 燃料電池の運転方法、燃料電池システム
JP2010114039A (ja) * 2008-11-10 2010-05-20 Toyota Motor Corp 燃料電池システム
JP2010146793A (ja) * 2008-12-17 2010-07-01 Yokogawa Electric Corp 燃料電池の活性化装置および活性化方法
JP2012160336A (ja) * 2011-01-31 2012-08-23 Toshiba Corp 燃料電池システムとその運転方法
WO2013069174A1 (ja) * 2011-11-09 2013-05-16 パナソニック株式会社 熱電併給システムおよびその制御方法
US8886392B1 (en) * 2011-12-21 2014-11-11 Intellectual Ventures Fund 79 Llc Methods, devices, and mediums associated with managing vehicle maintenance activities
JP2016091810A (ja) * 2014-11-05 2016-05-23 トヨタ自動車株式会社 燃料電池システムおよび最大電力算出方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10930958B2 (en) 2018-08-24 2021-02-23 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Also Published As

Publication number Publication date
US20180083298A1 (en) 2018-03-22
US11196065B2 (en) 2021-12-07
JP6579068B2 (ja) 2019-09-25

Similar Documents

Publication Publication Date Title
JP6579068B2 (ja) 燃料電池の出力性能診断装置、燃料電池の出力性能診断システム、燃料電池の出力性能診断方法、及び燃料電池の出力性能診断プログラム
CN106680720B (zh) 基于车联网的车载蓄电池失效预警系统及方法
US10656211B2 (en) Method of predicting time for charging battery of eco-friendly vehicle
JP5017084B2 (ja) 電池制御方法及びそのシステム
CN103713262B (zh) 用于计算绿色车辆的可能行驶距离的系统和方法
CN102412405B (zh) 预测燃料电池堆中的燃料电池的最小电池电压趋势的方法
TW200928404A (en) Battery performance monitor
US20230023729A1 (en) Real-time battery fault detection and state-of-health monitoring
MX2013004808A (es) Aparato de diagnostico de la bateria del vehiculo.
JP2008218097A (ja) 燃料電池システム
US20140272652A1 (en) Systems and methods for predicting polarization curves in a fuel cell system
JP2007057385A (ja) 蓄電デバイスの劣化状態推定装置
CN106249158B (zh) 磷酸铁锂电池实际可用容量检测方法、系统及电动汽车
JP2007057434A (ja) 蓄電デバイスの劣化状態推定システム
JP2006226788A (ja) バッテリ管理システム
KR20130131859A (ko) 배터리팩의 배터리 유닛 노후화 시스템 및 방법
JP2007080708A (ja) 電池電源の劣化診断方式
CN115230526A (zh) 一种预估汽车剩余续航里程的方法、装置及车辆
CN117104074A (zh) 一种充放电控制的方法及充放电控制系统
US11573271B1 (en) Battery fault detection
JP2019090684A (ja) 内部状態推定装置
US20230324463A1 (en) Method and Apparatus for Operating a System for Detecting an Anomaly of an Electrical Energy Store for a Device by Means of Machine Learning Methods
JP7233215B2 (ja) 蓄電システム、異常予兆診断システム
JP4190766B2 (ja) 車両に搭載された蓄電池の残存容量推定方法と装置
CN106558715B (zh) 用于启动燃料电池系统中的电压恢复的系统和方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190812

R151 Written notification of patent or utility model registration

Ref document number: 6579068

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151