JP2018041954A - 導通接点針 - Google Patents

導通接点針 Download PDF

Info

Publication number
JP2018041954A
JP2018041954A JP2017127431A JP2017127431A JP2018041954A JP 2018041954 A JP2018041954 A JP 2018041954A JP 2017127431 A JP2017127431 A JP 2017127431A JP 2017127431 A JP2017127431 A JP 2017127431A JP 2018041954 A JP2018041954 A JP 2018041954A
Authority
JP
Japan
Prior art keywords
film
substrate
conductive
insulating film
convex portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017127431A
Other languages
English (en)
Other versions
JP6982992B2 (ja
Inventor
通広 川口
Michihiro Kawaguchi
通広 川口
公信 明野
Masanobu Akeno
公信 明野
片岡 憲一
Kenichi Kataoka
憲一 片岡
智樹 梅津
Tomoki Umezu
智樹 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nuflare Technology Inc
Original Assignee
Toshiba Corp
Nuflare Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nuflare Technology Inc filed Critical Toshiba Corp
Priority to TW106128198A priority Critical patent/TWI684070B/zh
Priority to US15/687,886 priority patent/US10373793B2/en
Priority to KR1020170109372A priority patent/KR102019549B1/ko
Publication of JP2018041954A publication Critical patent/JP2018041954A/ja
Application granted granted Critical
Publication of JP6982992B2 publication Critical patent/JP6982992B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/20Masks or mask blanks for imaging by charged particle beam [CPB] radiation, e.g. by electron beam; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/76Patterning of masks by imaging
    • G03F1/78Patterning of masks by imaging by charged particle beam [CPB], e.g. electron beam patterning of masks
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70991Connection with other apparatus, e.g. multiple exposure stations, particular arrangement of exposure apparatus and pre-exposure and/or post-exposure apparatus; Shared apparatus, e.g. having shared radiation source, shared mask or workpiece stage, shared base-plate; Utilities, e.g. cable, pipe or wireless arrangements for data, power, fluids or vacuum

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Electron Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

【目的】緻密な被破断膜を破断させて下層膜と導通することが可能な導通接点針を提供する。【構成】本発明の一態様の導通接点針18は、導電膜上に被破断膜が形成された基板を被破断膜上から押圧して、被破断膜を破断させて導電膜と導通する導通接点針であって、針本体13と、針本体の先端部に形成された複数の凸部11と、を備えたことを特徴とする。【選択図】図1

Description

本発明は、導通接点針に係り、例えば、電子ビームを基板に照射する場合における基板の帯電を防止するアースピン用の接点針に関する。
半導体デバイスの微細化の進展を担うリソグラフィ技術は半導体製造プロセスのなかでも唯一パターンを生成する極めて重要なプロセスである。近年、LSIの高集積化に伴い、半導体デバイスに要求される回路線幅は年々微細化されてきている。これらの半導体デバイスへ所望の回路パターンを形成するためには、高精度の原画パターン(レチクル或いはマスクともいう。)が必要となる。ここで、電子線(EB:Electron beam)描画技術は本質的に優れた解像性を有しており、高精度の原画パターンの生産に用いられる。
例えば、石英ガラス基板上に順次Cr膜(遮光膜)、及びレジスト膜が形成されたマスクブランクスに、電子ビームにより回路パターンを描画し、現像、及び遮光膜のエッチングを経て、遮光膜パターン(マスクパターン)を形成することによって露光用のマスク基板が製造される。ここで、電子ビーム描画装置により、パターンを描画する際、電子ビームの照射によってレジスト膜の帯電が生じる。かかるレジスト膜の帯電により、その後の電子ビームの軌道が曲げられ、高精度な寸法のパターンを描画することが困難になってしまう。そのため、レジスト膜を破断させて、その下層のCr膜といった導電膜にアースピンを差し込み、接地させることでレジスト膜の帯電を抑制することが行われる(例えば、特許文献1参照)。
昨今のパターンの微細化に伴い、マスクパターンの形成にあたって、遮光膜の耐エッチング性を向上させるべく、従来とは異なり、遮光膜上に緻密な絶縁膜の層を形成しておくことが検討されている。緻密な絶縁膜は、引張強度が大きいため、従来のアースピンでは、荷重を大きくしても緻密な絶縁膜を変形させるだけで破断させることができず、その下層の導電膜まで侵入することが困難になってきたといった問題があった。その結果、導電膜にアースピンを差し込んで接地させるといったことができずレジスト膜の帯電を十分に抑制することが困難になってしまうといった問題があった。一方、さらに荷重を大きくすると、今度は石英ガラス基板を破断させてしまい、パーティクルを発生させてしまうといった新たな問題につながってしまう。かかる問題は、マスク基板に限るものではなく、例えば、半導体基板に直接電子ビームを照射してパターンを描画する場合等にも同様に生じ得る。その他、接地させる場合だけではなく、半導体基板の絶縁膜下の導電層の抵抗値の測定を行う場合等にも絶縁膜を破断できず下層の導電層に到達できないといった問題が生じ得る。
特開2012−015331号公報
そこで、本発明の一態様は、緻密な被破断膜を破断させて下層膜と導通することが可能な導通接点針を提供する。
本発明の一態様の導通接点針は、
導電膜上に被破断膜が形成された基板を被破断膜上から押圧して、被破断膜を破断させて導電膜と導通する導通接点針であって、
針本体と、
針本体の先端部に形成された複数の凸部と、
を備えたことを特徴とする。
また、複数の凸部の高さ寸法は、被破断膜の膜厚よりも大きく形成されると好適である。
また、被破断膜は、酸化クロム(CrO)を有し、
複数の凸部の隣り合う凸部間の隙間は1.3μm以上に形成されると好適である。
また、導電膜として、クロム(Cr)膜とタングステン(W)膜とのうちの1つが用いられると好適である。
また、基板として、半導体基板と露光用マスク基板とのうちの1つが用いられると好適である。
本発明の一態様によれば、緻密な被破断膜を破断させて下層膜と導通することができる。よって、導電膜上に形成された他の膜の帯電を抑制できる。
実施の形態1における導通接点針の構成を示す構成図である。 実施の形態1における導通接点針の先端側から見た図である。 実施の形態1における導通接点針の導通状態の一例を示す断面図である。 実施の形態1における導通接点針の先端部分の差し込み前後の状態の一例を示す断面図である。 実施の形態1における凸部のサイズと数と応力との関係の一例を示す図である。 実施の形態1における使用可能な凸部のサイズと数との関係の一例を示す図である。 実施の形態1における凸部によって押圧された絶縁膜の状態と隣り合う凸部間の隙間サイズとの関係の一例を示す図である。 実施の形態1における凸部の両端の辺にかかる応力差と隣り合う凸部間の隙間のサイズとの関係を示す図である。 実施の形態1における凸部の配置状況の一例を示す図である。 実施の形態1における凸部の先端面のエッジ部の面取り加工の発生応力に対する影響を説明するための図である。 実施の形態1と比較例とにおける導通接点針で被破断膜上から押圧した場合の接触抵抗値の一例を示す図である。 実施の形態1と比較例とにおける導通接点針で被破断膜上から押圧した場合の接触抵抗値の他の一例を示す図である。 実施の形態1と比較例とにおける接触痕の一例を説明するための図である。 実施の形態1における描画装置の構成を示す概念図である。 実施の形態1における基板カバーを示す上面図である。 図15の基板カバーが基板に装着された状態を示す上面図である。 図15の基板カバーの断面図である。 実施の形態2における導通接点針の構成を示す構成図である。
実施の形態1.
図1は、実施の形態1における導通接点針の構成を示す構成図である。図2は、実施の形態1における導通接点針の先端側から見た図である。図1において、実施の形態1における導通接点針18は、針本体13と、針本体13の先端部に形成された複数の凸部11とを備えている。導通接点針18は、図1及び図2に示すように、針本体13が円柱状或いは四角柱状等で形成され、先端側(図1では下側)が先細りし、先細り部分のさらに先端部分が丸みを帯びた曲面、例えば、球状(SR形状)に形成される。先端側を先細りさせることで、押圧した際に膜中に侵入し易くできる。そして、かかる例えば球状に形成された先端部分の領域20が先端側から掘り込まれ、図1及び図2に示すように、四角柱状で形成された複数の凸部11(或いは凸部11間に形成される複数の凹部)を形成する。先端部分が丸みを帯びた曲面に複数の凸部11を形成することで、少なくとも曲面の先端に形成される凸部11を確実に導電膜に接触させることができる。領域20は、ホルム(holm)の式における見かけの接触面よりも大きな領域に設定する。これにより、見かけの接触面内には確実にホルム(holm)の式における真実接触面を形成する複数の凸部11が配置される。
導通接点針18は、導電性材料で構成される。例えば、導電性ダイヤモンド、或いは導電性ジルコニア等の超高硬度な導電性材料が用いられると好適である。なお、針本体13の形状は、円柱状或いは四角柱状の他、三角柱状、五角柱状、六角柱状、或いはそれ以上の多角柱状であっても構わない。また、先細りする先端側は、円錐状、或いは、三角錐状、四角錐状、五角錐状、六角錐状、若しくはそれ以上の多角錐状であっても構わない。また、凸部11の形状は、四角柱状の他、円柱状、三角柱状、五角柱状、六角柱状、或いはそれ以上の多角柱状であっても構わない。より好適には、四角柱以上の多角柱状或いは円柱状が望ましい。
針本体13のサイズは、断面直径或いは断面1辺が0.1mm〜0.5mm程度が好適である。望ましくは0.2mm〜0.4mmが好適である。さらに望ましくは0.2mm〜0.3mmが好適である。また、長手方向の長さは、1mm〜5mm程度が好適である。望ましくは1mm〜3mmが好適である。さらに望ましくは1mm〜1.5mmが好適である。先端部分の球状は、SR10μm〜40μmが好適である。望ましくはSR15μm〜30μmが好適である。さらに望ましくはSR15μm〜25μmが好適である。なお、図1では、凸部11の幅Wと或いは凸部11間の隙間Lのサイズが同程度に示されているが、後述するように、隙間Lは、凸部11の幅Wよりも大きく形成される。
図3は、実施の形態1における導通接点針の導通状態の一例を示す断面図である。図3の例では、半導体装置を製造するための露光用マスク基板の断面を一例として示している。電子ビームが照射される露光用マスク基板300(描画前のマスクブランクス)では、ガラス基板302上に導電膜304が形成され、導電膜304上に絶縁膜306が形成され、絶縁膜306上にレジスト膜308が形成される。導電膜304の材料として、例えば、クロム(Cr)、タングステン(W)、及び窒化クロム(CrNx)等を用いると好適できる。レジスト膜308上からの描画後、現像、及びエッチングを経て残った絶縁膜306が遮光膜になって、かかる絶縁膜306のマスクパターンが形成される。上述したように、昨今のパターンの微細化に伴い、マスクパターンの形成にあたって、導電膜304(遮光膜)の耐エッチング性を向上させるべく、従来とは異なり、導電膜304上に緻密な絶縁膜306の層を形成する。緻密な絶縁膜306の材料として、例えば、酸化クロム(CrO)、窒化シリコン(SiNx)、或いは酸化シリコン(SiOx)等を用いると好適できる。緻密な絶縁膜306は、引張強度が大きい。そのため、従来のアースピンでは、レジスト膜を破断させることができても緻密な絶縁膜306を破断させることが困難であった。かかる点については、アースピンへの荷重を大きくしても、緻密な絶縁膜306を変形させるだけで破断させることができず、その下層の導電膜304まで侵入することが困難であった。その結果、導電膜304にアースピンを差し込み、接地させることができずレジスト膜308の帯電を十分に抑制することが困難になってしまうといった問題があった。これに対して、実施の形態1では、針本体13の先細り部分の先端部分に複数の凸部11を形成することによって、導電膜304上に被破断膜となる緻密な絶縁膜306とレジスト膜308とが形成された露光用マスク基板300(描画前のマスクブランクス)(基板の一例)を被破断膜上から押圧して、被破断膜を破断させて導電膜304と導通することができる。ここでは、緻密な絶縁膜306とレジスト膜308との積層膜が、導電膜304に通じるための被破断膜となる。なお、図3では、導通接点針18の先端部分の複数の凸部11の図示は省略している。次に、導通接点針18の先端部分の複数の凸部11の形状およびサイズ等の仕様について説明する。
図4は、実施の形態1における導通接点針の先端部分の差し込み前後の状態の一例を示す断面図である。図4(a)では、導通接点針18の先端部分の複数の凸部11を図3と同様の露光用マスク基板300(描画前のマスクブランクス)に差し込む前の状態を示している。露光用マスク基板300(描画前のマスクブランクス)において、導電膜304は、例えば、10〜30nmの膜厚で形成される。そして、絶縁膜306は、例えば、20〜40nmの膜厚で形成される。そして、レジスト膜308は、例えば、80〜200nmの膜厚で形成される。かかる露光用マスク基板300(描画前のマスクブランクス)に対して、導通接点針18を押圧して、複数の凸部11をレジスト膜308の上方から差し込むと、図4(b)に示すように、複数の凸部11は、レジスト膜308を破断させて侵入した後、下層の絶縁膜306を破断させる。そして、下層の導電膜304に到達する。その場合に、隣り合う凸部11間の隙間には、破断したレジスト膜308と絶縁膜306が埋め込まれていく。よって、複数の凸部11の高さ寸法Dは、レジスト膜308と絶縁膜306との膜厚の合計(被破断膜の膜厚)よりも大きく形成される。例えば、レジスト膜308と絶縁膜306との膜厚の合計が200nm(0.2μm)であれば、複数の凸部11の高さ寸法Dは、0.2μmよりも大きくなるように形成する。なお、図4(b)に示すように、隣り合う凸部11間の隙間には、凸部11が侵入したことによって押し遣られた膜部分も一緒に埋め込まれるので、複数の凸部11の高さ寸法Dは、かかる押し遣られた膜部分が逃げ込むことができる隙間分を確保することが有効である。よって、レジスト膜308と絶縁膜306との膜厚の合計よりも若干大きく形成する方が好適である。例えば、レジスト膜308と絶縁膜306との膜厚の合計の1.5倍以上にするとさらに好適である。例えば、レジスト膜308と絶縁膜306との膜厚の合計が200nm(0.2μm)であれば、複数の凸部11の高さ寸法Dは、0.2μm以上必要となり、0.3μm以上にするとさらに好適である。例えば、レジスト膜308のポアソン比が0.3〜0.4となる材料を用い、レジスト膜308と絶縁膜306との膜厚の合計が200nm(0.2μm)の場合に、複数の凸部11の高さ寸法Dは、0.3μmあれば十分な導通効果(抵抗値)を得ることができることが実験により確認されている。なお、必要な凸部11の高さ寸法D=(レジスト膜厚+絶縁膜厚)+(レジスト膜厚×ポアゾン比)で求めることができる。
図5は、実施の形態1における凸部のサイズと数と応力との関係の一例を示す図である。図5において、縦軸は、各層に発生する応力を示し、横軸は凸部のサイズを示す。ここでは、例えば0.225N(23gf)の荷重で導通接点針18を押圧した場合を示している。また、図5では、凸部11が25個(B)、50個(D)、及び100個(F)、それぞれ形成された場合にCrO(絶縁膜306)に働く各応力の分布、及び凸部11が25個(A)、50個(C)、及び100個(E)、それぞれ形成された場合にクォーツ(Qz:ガラス基板302)に働く各応力の分布、が示されている。ここでの個数は、絶縁膜306及びクォーツを押圧する凸部11の個数を示す。
実施の形態1において、導通接点針18が導電膜304と導通するためには、CrO(絶縁膜306)を破断させる必要がある。よって、CrOの破断応力(図5では、約3000MPa)よりも凸部11の先端の応力が大きくなるサイズと数の凸部11が必要となる。一方、導通接点針18がガラス基板302を破断させてしまうとパーティクルが発生するため望ましくない。よって、クォーツの破断応力(図5では、約14000MPa)よりも凸部11の先端の応力が小さくなるサイズと数の凸部11が必要となる。したがって、凸部11のサイズと数は、対象となる基板の材料によってその使用可能な範囲が決定される。なお、複数の凸部11によって、絶縁膜306を破断させる場合、凸部11の頂面(先端側端面)全面で膜を破断させるわけではなく、凸部11の頂面(先端側端面)を形成する周囲の辺に生じる応力集中によって破断させる。言い換えれば、せん断応力=荷重/(凸部11の頂面周囲の辺の長さの合計×個数)で近似できる。よって、図5で示す応力分布は、矩形の頂面(先端側端面)の周囲の辺に生じる集中応力の値で示している。複数の凸部の無い従来のアースピンでは、集中応力が生じる辺が不足している、或いは存在しないため、アースピンを押圧する荷重を増加しても結局アースピンの先端に絶縁膜306を破断させるだけの集中応力が生じない。その結果、絶縁膜306を変形させるだけで破断させるには至らない。これに対して、実施の形態1では、複数の凸部11によって、絶縁膜306を破断させるだけの集中応力を発生させることができる。その結果、絶縁膜306を破断させて、下層の導電膜304に到達できる。
図6は、実施の形態1における使用可能な凸部のサイズと数との関係の一例を示す図である。図6では、縦軸に凸部11の頂面(先端側端面)を形成する周囲の辺のサイズ(正方形の1辺)を示し、横軸に凸部11の膜への接触個数を示している。図6では、図5の説明で使用可能とした範囲を示し、CrOの破断応力境界とクォーツの破断応力境界の2線の間の領域のサイズと個数(本数)が凸部の使用範囲となる。例えば、凸部11の膜への接触個数を40個に設定する場合、凸部11の頂面(先端側端面)を形成する周囲の辺のサイズ(正方形の1辺)は0.3μm〜0.47μmのサイズで形成可能である。例えば、凸部11の膜への接触個数を60個に設定する場合、凸部11の頂面(先端側端面)を形成する周囲の辺のサイズ(正方形の1辺)は0.22μm〜0.42μmのサイズで形成可能である。逆に、凸部11の頂面(先端側端面)を形成する周囲の辺のサイズ(正方形の1辺)を0.3μmに設定すると、凸部11の膜への接触個数を40〜105個の範囲で形成可能となる。複数の凸部11を製造する場合、現実的には、凸部11の頂面(先端側端面)を形成する周囲の辺のサイズ(正方形の1辺)は0.05μm以上が望ましい。より望ましくは、0.2μm〜0.5μmのサイズが好適である。さらに望ましくは、0.3μm〜0.4μmのサイズが好適である。凸部11の膜への接触個数は25個以上が望ましい。より望ましくは、30〜65個が好適である。導通接点針18を製造する場合には、実際には絶縁膜306に接触しない凸部11も含めて、かかる条件範囲で決まる接触個数以上の凸部11を形成すればよい。これにより、絶縁膜306の破断に必要な個数の凸部11を確保できる。
図7は、実施の形態1における凸部によって押圧された絶縁膜の状態と隣り合う凸部間の隙間サイズとの関係の一例を示す図である。図7(a)では、隣り合う凸部11間の隙間のサイズ(距離)L1が十分な大きさで形成された場合における隣り合う複数の凸部11によって押圧された絶縁膜306の断面状態を示す。図7(b)では、隣り合う凸部11間の隙間のサイズ(距離)L2が十分な大きさよりも狭く形成された場合における隣り合う複数の凸部11によって押圧された絶縁膜306の断面状態を示す。L1>L2となる。凸部11が絶縁膜306を押圧する場合、実際に絶縁膜306を破断するのは、凸部11の頂面(先端側端面)を形成する周囲の辺の作用による。よって、かかる辺に集中応力を生じさせる必要がある。ここで、図7(b)に示すように、隣り合う凸部11間の隙間のサイズ(距離)Lが狭い場合、例えば、左端に位置する凸部11の左側の辺a1と、右端に位置する凸部11の右側の辺b3と、には集中応力が生じる。その結果、かかる2辺a1,b3では、絶縁膜306を少なくとも変形させる(ひずませる)ことができる。しかし、2辺a1,b3で変形させられた絶縁膜306は、2辺a1,b3の間では平坦のままの状態を維持してしまう。言い換えれば、中央の凸部11では、絶縁膜306は変形しない。すなわち、中央の凸部11の辺a2,b2には、集中応力が生じていない。同様に、左端に位置する凸部11の右側の辺b1と、右端に位置する凸部11の左側の辺a3でも絶縁膜306は変形しない。言い換えれば、辺b1,a3には、集中応力が生じていない。よって、このまま荷重を大きくしても、辺b1,a2,b2,a3では、絶縁膜306を破断することが困難になる。その結果、少なくとも中央の凸部11は下層の導電膜304に接触できない。これでは、真実接触面を構成する凸部11の個数が不足し、帯電防止に必要な接触抵抗値を得られなくなってしまう。一方、図7(a)に示すように、隣り合う凸部11間の隙間のサイズ(距離)L1が十分な大きさに確保されると、絶縁膜306に接触する隣り合う凸部11のすべての辺で絶縁膜306を少なくとも変形させる(ひずませる)ことができる。すなわち、隣り合う凸部11のすべての辺a1,b1,a3,b3で集中応力を生じさせることができる。そして、かかる各辺の応力がそれぞれ絶縁膜306のせん断応力(引っ張り応力)を超えれば、それぞれ絶縁膜306を破断できる。その結果、隣り合う凸部11を下層の導電膜304に接触させることができる。よって、真実接触面を構成する凸部11の個数を確保でき、帯電防止に必要な接触抵抗値を得ることができる。したがって、隣り合う凸部11のすべての辺a1,b1,a3,b3で絶縁膜306のせん断応力(引っ張り応力)を超える応力が得られるような隣り合う凸部11間の隙間のサイズ(距離)L1で複数の凸部11を形成すればよい。
図8は、実施の形態1における凸部の両端の辺にかかる応力差と隣り合う凸部間の隙間のサイズとの関係を示す図である。隣り合う凸部11が共に絶縁膜306を確実に破断させるには、各凸部11の両端の辺(例えば、図7(a)の辺a1,b1)に絶縁膜306を変形させる(ひずませる)応力が生じ、かつ、両端の辺(例えば、図7(a)の辺a1,b1)に生じる応力差が0になる状態が最も望ましい。応力差を0にするためには、図8の例では、隣り合う凸部11間の隙間のサイズ(距離)Lが1.8μm必要であることがわかる。ただし、実験の結果、隣り合う凸部11間の隙間のサイズ(距離)Lが1.3μm以上あれば、応力差が0でなくても、隣り合う凸部11が共に絶縁膜306を破断できることがわかっている。
図9は、実施の形態1における凸部の配置状況の一例を示す図である。針本体13の先細り部分の先端部に、例えば、凸部11と隙間とを1:1のサイズで格子状に複数の凸部11を形成した場合を図9(b)に示す。かかる場合、導通作業を実施後は凸部11間にコンタミが付着してしまった。これに対して、針本体13の先細り部分の先端部に、例えば、凸部11間の隙間Lを凸部11のサイズWに対して十分大きくなるように千鳥格子状に複数の凸部11を形成した場合を図9(a)に示す。かかる場合、導通作業を実施後のコンタミの付着は見られなかった。この結果から、隣り合う凸部11間の隙間寸法Lが狭すぎると絶縁膜306の破断が困難になるばかりでなく、レジスト膜308を破断させた際のコンタミが付着してしまうといった問題が生じることがわかった。よって、隣り合う凸部11間の隙間寸法Lが凸部の幅Wと同程度になる梨地加工等で複数の凸部を製造する場合についても隙間が狭くなってしまい、同様の問題が生じることになる。かかる点からも凸部11間の隙間Lを所定長さ以上確保することが効果的であることがわかる。
図10は、実施の形態1における凸部の先端面のエッジ部の面取り加工の発生応力に対する影響を説明するための図である。図10の例では、絶縁膜306(CrOx)層に対する応力として、凸部11の頂面(先端側端面)を形成する周囲の辺のサイズ(正方形の1辺)を0.35μmに設定し、−0.175μm変位させた場合を一例として示している。凸部11の先端面の面取り加工として、R0.025μmからR寸法を大きくするのに伴い発生応力が比例して小さくなり、R0.05μm付近で変曲点を迎え、その後、R寸法を大きくするのに伴い発生応力が収束していく。よって、凸部11の先端面のエッジ部は、鋭角(シャープ)であるほど好適であり、さらに望ましくは変曲点(R0.05μm)よりも小さいとなお好適である。
図11は、実施の形態1と比較例とにおける導通接点針で被破断膜上から押圧した場合の接触抵抗値の一例を示す図である。図11(a)では、先端に複数の凸部11が無い従来のアースピン(比較例)を基板の被破断膜(絶縁膜306及びレジスト膜308の積層膜)上から押圧した場合における基板表面の接触抵抗との関係の一例を示している。接触抵抗値の単位はアドレスユニット(A.U.)で示している。図11(b)では、先端に複数の凸部11が配置された実施の形態1における導通接点針(アースピン)を基板の被破断膜(絶縁膜306及びレジスト膜308の積層膜)上から押圧した場合における、荷重と基板表面の接触抵抗との関係の一例を示している。接触抵抗値の単位はアドレスユニット(A.U.)で示している。実施の形態1と比較例とでそれぞれN1〜N5の5つのサンプルを用いて測定した。ここでは、パーティクルを発生させないようにクォーツ(ガラス基板302)を破断させない荷重の範囲で測定した結果を示している。
図11(a)に示すように、複数の凸部11が無い従来のアースピンでは、荷重を大きくしてもほとんど接触抵抗値が変わらないことがわかる。これは、アースピンが絶縁膜306の下層に配置される導電膜304と接触できていないことを示す。これに対して、実施の形態1では、図11(b)に示すように、荷重をかけることで、接触抵抗値が大きく下がることがわかる。図11(b)の例では、0.2N以上でいずれのサンプルでもほぼ収束しており、かかる荷重以上で実施の形態1のアースピンがN1〜N5のいずれのサンプルでも絶縁膜306の下層に配置される導電膜304に十分接触できていることがわかる。かかる点は、被破断膜のうち特に破断しにくい緻密な絶縁膜306を破断することができていることを示す。以上からもクォーツ(ガラス基板302)を破断させない荷重の範囲で絶縁膜306を破断させるには、実施の形態1の形状が有効であることがわかる。
図12は、実施の形態1と比較例とにおける導通接点針で被破断膜上から押圧した場合の接触抵抗値の他の一例を示す図である。図12では、クォーツ(ガラス基板302)を破断させる荷重かどうかに関係なく、荷重をかけて得られた基板表面の接触抵抗の測定結果の一例を示す。図12では、先端に複数の凸部11が無い従来のアースピン(比較例)を基板の被破断膜(絶縁膜306及びレジスト膜308の積層膜)上から押圧した場合における基板表面の接触抵抗と、先端に複数の凸部11が配置された実施の形態1における導通接点針(アースピン)を基板の被破断膜(絶縁膜306及びレジスト膜308の積層膜)上から押圧した場合における基板表面の接触抵抗との測定結果の一例を示す。ここでは、比較例のアースピンと実施の形態1のアースピンとについて、それぞれ複数のサンプル品を作成し、その効果を測定した。先端に複数の凸部11が無い従来のアースピン(比較例)では、サンプルの中には荷重を大きくかけたことで絶縁膜306を何等かの影響で破断させて、その下層に辿り着き接触抵抗値が低くなったものも存在したが、荷重を大きくしても接触抵抗値の許容閾値Kthよりも高いものも多くあり、接触抵抗値がばらついてしまった。これに対して、先端に複数の凸部11が配置された実施の形態1では、いずれも接触抵抗値が許容閾値Kthよりも低く抑えられ、ばらつきが小さかった。かかる点からも実施の形態1のアースピンではいずれのサンプルでも絶縁膜306の下層に配置される導電膜304に十分接触できていることがわかる。
図13は、実施の形態1と比較例とにおける接触痕の一例を説明するための図である。図13(a)では、先端に複数の凸部11が無い従来のアースピン(比較例)を用いて、クォーツ(ガラス基板302)を破断させない荷重の範囲で基板を押圧した場合の接触痕の一例を示す。図13(b)では、先端に複数の凸部11が配置された実施の形態1を用いて、クォーツ(ガラス基板302)を破断させない荷重の範囲で基板を押圧した場合の接触痕の一例を示す。比較例では、図13(a)に示すように、基板の表面の膜を変形させるだけで、アースピンが導電膜304に到達していない。これに対して、実施の形態1を用いた実験では、図13(b)に示すように、アースピンの凸部がクォーツ(ガラス基板302)まで変形させて、凸部11の痕を生成するケースを確認している。このように、実施の形態1では、アースピンを導電膜304に到達させることができる。
以上のように被破断膜の破断及び導電膜304との導通に優れた実施の形態1の導通接点針(アースピン)を搭載する装置の一例について以下に説明する。実施の形態1では、荷電粒子ビームの一例として、電子ビームを用いた構成について説明する。但し、荷電粒子ビームは、電子ビームに限るものではなく、イオンビーム等の荷電粒子を用いたビームでも構わない。また、荷電粒子ビーム装置の一例として、可変成形型の描画装置について説明する。
図14は、実施の形態1における描画装置の構成を示す概念図である。図1において、描画装置100は、描画機構150と制御部160を備えている。描画装置100は、荷電粒子ビーム描画装置の一例である。特に、可変成形型(VSB型)の描画装置の一例である。描画機構150は、電子鏡筒102と描画室103を備えている。電子鏡筒102内には、電子銃201、照明レンズ202、第1の成形アパーチャ203、投影レンズ204、偏向器205、第2の成形アパーチャ206、対物レンズ207、及び偏向器208が配置されている。描画室103内には、少なくともXY方向に移動可能なXYステージ105が配置される。XYステージ105上には、レジストが塗布された基板101が配置される。ここでは、例えば、上述した露光用マスク基板300(描画前のマスクブランクス)が配置される。露光用マスク基板300(描画前のマスクブランクス)では、ガラス基板302上にクロム(Cr)等の遮光膜(導電膜304)、酸化クロム等の絶縁膜306、及びレジスト膜308の順で各膜が積層されている。基板101として、露光用マスク基板300(描画前のマスクブランクス)の代わりに、シリコンウェハ等の半導体装置を製造するための半導体基板が配置されても構わない。かかる半導体基板においても、導電膜304、緻密な絶縁膜306、及びレジスト膜308の順で各膜が積層されている。基板101は、基板カバー10が装着された状態でXYステージ105上に配置される。基板カバー10を介して基板101は描画装置100のグランドに接続され、グランド電位に維持される。
制御部160は、制御計算機ユニット110、制御回路120、及び磁気ディスク装置等の記憶装置140を有している。制御計算機ユニット110、制御回路120、及び記憶装置140は、図示しないバスを介して互いに接続されている。制御回路120は、描画機構150に接続され、描画機構150の各構成を駆動制御する。
ここで、図1では、実施の形態1を説明する上で必要な構成部分について記載している。描画装置100にとって、通常、必要なその他の構成が含まれても構わないことは言うまでもない。導通接点針18が基板101の被破断膜上から押圧して、被破断膜を破断させて導電膜と導通すると共に、導通接点針18にグランド電位が印加された状態で、描画機構150(照射機構)は、基板101に電子ビームを照射する。ここでは、描画機構150は、電子ビームを用いて基板101にパターンを描画する。描画機構150の動作を、以下、具体的に説明する。
電子銃201(放出部)から放出された電子ビーム200は、照明レンズ202により矩形の穴を持つ第1の成形アパーチャ203全体を照明する。ここで、電子ビーム200をまず矩形に成形する。そして、第1の成形アパーチャ203を通過した第1のアパーチャ像の電子ビーム200は、投影レンズ204により第2の成形アパーチャ206上に投影される。偏向器205によって、かかる第2の成形アパーチャ206上での第1のアパーチャ像は偏向制御され、ビーム形状と寸法を変化させる(可変成形を行なう)ことができる。かかる可変成形はショット毎に行なわれ、通常ショット毎に異なるビーム形状と寸法に成形される。そして、第2の成形アパーチャ206を通過した第2のアパーチャ像の電子ビーム200は、対物レンズ207により焦点を合わせ、偏向器208によって偏向され、連続的に移動するXYステージ105に配置された試料101の所望する位置に照射される。
図15は、実施の形態1における基板カバーを示す上面図である。図16は、図15の基板カバーが基板に装着された状態を示す上面図である。図17は、図15の基板カバーの断面図である。基板カバー10は、3つの接点サポート部材12(12a,12b,12c)及びフレーム16(枠状部材の一例)を備えている。接点サポート部材12(12a,12b,12c)は、3点指示で基板カバー10を支持する位置にフレーム16の上面側から取り付けされている。そして、接点サポート部材12(12a,12b,12c)は、フレーム16の内周端よりも内側に張り出すように取り付けられている。内側に張り出すだけではなく、さらに外周端よりも外側に張り出すように取り付けられてもよい。接点サポート部材12は、フレーム16に、例えば、ねじ止め或いは溶接等で固定されている。各接点サポート部材12(12a,12b,12c)の裏面側には、フレーム16の内周端よりも内側の位置に接点部となる導通接点針18(ここではアースピン)が先端を裏面側に向けて配置される。
フレーム16は、板材により構成され、外周寸法が基板101の外周端よりも大きく、内側の中央部に形成された開口部の寸法が基板101の外周端よりも小さく形成されている。すなわち、図16に示すように基板101の上部に基板カバー10を上方から重ねた場合に、点線で示す基板101の外周部の全周がフレーム16に重なるように形成されている。このように、基板カバー10は、基板101の外周部全体を上方からカバーする。そして、基板カバー10を基板101に取り付けた際に、3つの導通接点針18が基板101上に形成されている膜内に食い込み、同じく基板101上に形成されている導電膜と導通する。
基板カバー10は、全体が導電性材料で形成されているもの、或いは全体が絶縁材料で形成され、その表面に導電性材料がコーティングされているもの等が好適である。導電性材料としては、金属材料、例えば銅(Cu)やチタン(Ti)およびその合金等が好適であり、絶縁材料としては、例えばアルミナ等のセラミックス材料等が好適である。
そして、基板カバー10を基板101に装着することによって、3つの導通接点針18が緻密で破断しにくい絶縁膜を破断して、下層の導電膜と導通する。導通接点針18は、基板カバー10を介してグランド電位に接続される。かかる構成により、基板101表面に電子ビーム200が衝突或いは散乱することによって生じた帯電を抑制できる。その結果、電子ビーム200の軌道が曲げられることを抑制し、高精度な寸法のパターンを描画できる。
以上のように、実施の形態1によれば、緻密な被破断膜を破断させて下層膜と導通することができる。よって、導電膜304上に形成された他の膜の帯電を抑制できる。
実施の形態2.
実施の形態1では、針本体13の先細りさせた先端側の端を例えば球状に形成している場合を示したがこれに限るものではない。以下、特に説明する点以外の内容は実施の形態1と同様である。
図18は、実施の形態2における導通接点針の構成を示す構成図である。図18において、導通接点針18の針本体13の先細りさせた先端側の端が平面であってもよい。そして、かかる平面が先端側から掘り込まれ、例えば四角柱状で形成された複数の凸部11(或いは凸部11間に形成される複数の凹部)を形成してもよい。その他の点は、図1と同様である。かかる構成でも、緻密な被破断膜を破断させて下層膜と導通することができる。なお、図18に形成されている凸部11は先端側の面全てに形成されていても良いし、面の一部に形成されていても良い。実施の形態2によれば、実施の形態1と同様の効果を得ることができる。
以上、具体例を参照しつつ実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。導通接点針18を差し込む基板は、露光用マスク基板300に限るものではなく、例えば、半導体基板に直接電子ビームを照射してパターンを描画する際に半導体基板に差し込む場合にも適用できる。その他、グランド接続させる場合だけではなく、半導体基板の絶縁膜下の導電層の抵抗値の測定を行う場合等にも適用できる。
また、装置構成や制御手法等、本発明の説明に直接必要しない部分等については記載を省略したが、必要とされる装置構成や制御手法を適宜選択して用いることができる。例えば、描画装置100を制御する制御部構成については、記載を省略したが、必要とされる制御部構成を適宜選択して用いることは言うまでもない。
その他、本発明の要素を具備し、当業者が適宜設計変更しうる全ての導通接点針は、本発明の範囲に包含される。
10 基板カバー
11 凸部
12 接点サポート部材
13 針本体
16 フレーム
18 導通接点針
100 描画装置
101 基板
102 電子鏡筒
103 描画室
105 XYステージ
110 制御計算機ユニット
120 制御回路
140 記憶装置
150 描画部
160 制御部
200 電子ビーム
201 電子銃
202 照明レンズ
203 第1の成形アパーチャ
204 投影レンズ
205 偏向器
206 第2の成形アパーチャ
207 対物レンズ
208 偏向器
300 露光用ガラス基板
302 ガラス基板
304 導電膜
306 絶縁膜
308 レジスト膜

Claims (6)

  1. 導電膜上に被破断膜が形成された基板を前記被破断膜上から押圧して、前記被破断膜を破断させて前記導電膜と導通する導通接点針であって、
    針本体と、
    前記針本体の先端部に形成された複数の凸部と、
    を備えたことを特徴とする導通接点針。
  2. 前記複数の凸部の高さ寸法は、前記被破断膜の膜厚よりも大きく形成されることを特徴とする請求項1記載の導通接点針。
  3. 前記被破断膜は、酸化クロム(CrO)を有し、
    前記複数の凸部の隣り合う凸部間の隙間は1.3μm以上に形成されることを特徴とする請求項1又は2記載の導通接点針。
  4. 前記導電膜として、クロム(Cr)膜とタングステン(W)膜とのうちの1つが用いられることを特徴とする請求項1〜3いずれか記載の導通接点針。
  5. 前記基板として、半導体基板と露光用マスク基板とのうちの1つが用いられることを特徴とする請求項1〜4いずれか記載の導通接点針。
  6. 前記複数の凸部は、頂面を形成する辺を有することを特徴とする請求項1〜5いずれか記載の導通接点針。
JP2017127431A 2016-09-05 2017-06-29 導通接点針 Active JP6982992B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW106128198A TWI684070B (zh) 2016-09-05 2017-08-21 導通接點針以及帶電粒子束裝置
US15/687,886 US10373793B2 (en) 2016-09-05 2017-08-28 Conductive contact point pin and charged particle beam apparatus
KR1020170109372A KR102019549B1 (ko) 2016-09-05 2017-08-29 도통 접점 침 및 하전 입자 빔 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016173138 2016-09-05
JP2016173138 2016-09-05

Publications (2)

Publication Number Publication Date
JP2018041954A true JP2018041954A (ja) 2018-03-15
JP6982992B2 JP6982992B2 (ja) 2021-12-17

Family

ID=61624011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017127431A Active JP6982992B2 (ja) 2016-09-05 2017-06-29 導通接点針

Country Status (3)

Country Link
JP (1) JP6982992B2 (ja)
KR (1) KR102019549B1 (ja)
TW (1) TWI684070B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020136353A (ja) * 2019-02-14 2020-08-31 株式会社ニューフレアテクノロジー 描画装置および描画方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7034867B2 (ja) * 2018-08-31 2022-03-14 株式会社ニューフレアテクノロジー 異常判定方法および描画装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06289592A (ja) * 1993-04-06 1994-10-18 Toppan Printing Co Ltd フォトマスクの製造方法
JPH1151970A (ja) * 1997-07-31 1999-02-26 Nec Corp プローブカード
JP2007218675A (ja) * 2006-02-15 2007-08-30 Fujitsu Ltd プローブ及びプローブの製造方法
JP2009198238A (ja) * 2008-02-20 2009-09-03 Totoku Electric Co Ltd プローブ針及びその製造方法
JP2010038803A (ja) * 2008-08-07 2010-02-18 Japan Electronic Materials Corp コンタクトプローブ及びコンタクトプローブの製造方法
JP2010074059A (ja) * 2008-09-22 2010-04-02 Nuflare Technology Inc アースピン、アースプレート、荷電粒子ビーム描画装置および荷電粒子ビーム描画方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3428397B2 (ja) * 1997-10-14 2003-07-22 松下電器産業株式会社 有機エレクトロルミネセンス素子及びその製造方法
US7247895B2 (en) * 2001-07-26 2007-07-24 The Board Of Trustees Of The University Of Illinois Electrostatic nanolithography probe actuation device and method
US8988091B2 (en) * 2004-05-21 2015-03-24 Microprobe, Inc. Multiple contact probes
JP2008058809A (ja) * 2006-09-01 2008-03-13 Nuflare Technology Inc 基板カバー、荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06289592A (ja) * 1993-04-06 1994-10-18 Toppan Printing Co Ltd フォトマスクの製造方法
JPH1151970A (ja) * 1997-07-31 1999-02-26 Nec Corp プローブカード
JP2007218675A (ja) * 2006-02-15 2007-08-30 Fujitsu Ltd プローブ及びプローブの製造方法
JP2009198238A (ja) * 2008-02-20 2009-09-03 Totoku Electric Co Ltd プローブ針及びその製造方法
JP2010038803A (ja) * 2008-08-07 2010-02-18 Japan Electronic Materials Corp コンタクトプローブ及びコンタクトプローブの製造方法
JP2010074059A (ja) * 2008-09-22 2010-04-02 Nuflare Technology Inc アースピン、アースプレート、荷電粒子ビーム描画装置および荷電粒子ビーム描画方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020136353A (ja) * 2019-02-14 2020-08-31 株式会社ニューフレアテクノロジー 描画装置および描画方法
JP7037513B2 (ja) 2019-02-14 2022-03-16 株式会社ニューフレアテクノロジー 描画装置および描画方法

Also Published As

Publication number Publication date
KR102019549B1 (ko) 2019-09-06
KR20180027346A (ko) 2018-03-14
TW201820044A (zh) 2018-06-01
TWI684070B (zh) 2020-02-01
JP6982992B2 (ja) 2021-12-17

Similar Documents

Publication Publication Date Title
JP7030663B2 (ja) 半導体装置及び荷電粒子線露光装置
US7922501B2 (en) Substrate earthing mechanism for use in charged-particle beam writing apparatus
US9530616B2 (en) Blanking aperture array and charged particle beam writing apparatus
US11302511B2 (en) Field curvature correction for multi-beam inspection systems
TW201115614A (en) Charged particle beam writing apparatus and method thereof
US10373793B2 (en) Conductive contact point pin and charged particle beam apparatus
JP6982992B2 (ja) 導通接点針
JP2006032814A (ja) 露光方法、パターン寸法調整方法及び焦点ぼかし量取得方法
JP2013120833A (ja) 荷電粒子ビーム描画装置および荷電粒子ビーム描画方法
TW201602374A (zh) 成膜遮罩、成膜遮罩之製造方法及觸控面板之製造方法
US6972417B2 (en) Apparatus and methods for patterning a reticle blank by electron-beam inscription with reduced exposure of the reticle blank by backscattered electrons
US6888150B2 (en) Method for defect and conductivity engineering of a conducting nanoscaled structure
TW201444703A (zh) 借助聚焦離子束的突出標記
US9343323B2 (en) Method of producing aperture member
JP2004153032A (ja) 露光用の相補形マスク、その製造方法及びその製造プログラム
US20180012731A1 (en) Blanking aperture array, method for manufacturing blanking aperture array, and multi-charged particle beam writing apparatus
CN110931337B (zh) 半导体装置
TW200841132A (en) Electron lithography method
TW201832265A (zh) 在多射束柱中減少之庫侖交互作用
JP2010067781A (ja) 電子線描画方法、電子線描画装置及びフォトマスク
JP2010135248A (ja) 荷電粒子ビームの評価基板
JP2002326199A (ja) 微小光学素子の作製方法、及び該作製方法による微小光学素子、該素子を用いた光学装置
US10459355B2 (en) Template substrate and manufacturing method thereof
JP5859951B2 (ja) 荷電粒子ビーム描画装置および荷電粒子ビーム描画方法
JPS59158518A (ja) 荷電ビ−ム露光装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180710

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211122

R150 Certificate of patent or registration of utility model

Ref document number: 6982992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150