JP2010135248A - 荷電粒子ビームの評価基板 - Google Patents

荷電粒子ビームの評価基板 Download PDF

Info

Publication number
JP2010135248A
JP2010135248A JP2008312069A JP2008312069A JP2010135248A JP 2010135248 A JP2010135248 A JP 2010135248A JP 2008312069 A JP2008312069 A JP 2008312069A JP 2008312069 A JP2008312069 A JP 2008312069A JP 2010135248 A JP2010135248 A JP 2010135248A
Authority
JP
Japan
Prior art keywords
charging
substrate
electron beam
evaluation
charged particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008312069A
Other languages
English (en)
Inventor
Takashi Kamikubo
貴司 上久保
Shuichi Tamamushi
秀一 玉虫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuflare Technology Inc
Original Assignee
Nuflare Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuflare Technology Inc filed Critical Nuflare Technology Inc
Priority to JP2008312069A priority Critical patent/JP2010135248A/ja
Publication of JP2010135248A publication Critical patent/JP2010135248A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)

Abstract

【目的】描画装置内に生じる各位置での電界による位置ずれを評価する評価基板を提供することを目的とする。
【構成】本発明の一態様の荷電粒子ビームの評価基板10は、基板本体12と、基板本体12上に形成された導電性膜28と、基板本体12面の領域内に規則的に配置された複数の帯電部22と、導電性膜28上であって各帯電部22の周囲に配置された複数のマーク24と、を備えたことを特徴とする。本発明によれば、描画装置内に生じる各位置での電界による位置ずれを評価することができる。
【選択図】図2

Description

本発明は、荷電粒子ビームの評価基板に係り、例えば、電子ビームを可変成形させながら試料にパターンを描画する描画装置における電子ビームの評価基板に関する。
半導体デバイスの微細化の進展を担うリソグラフィ技術は半導体製造プロセスのなかでも唯一パターンを生成する極めて重要なプロセスである。近年、LSIの高集積化に伴い、半導体デバイスに要求される回路線幅は年々微細化されてきている。これらの半導体デバイスへ所望の回路パターンを形成するためには、高精度の原画パターン(レチクル或いはマスクともいう。)が必要となる。ここで、電子線(電子ビーム)描画技術は本質的に優れた解像性を有しており、高精度の原画パターンの生産に用いられる。
図6は、従来の可変成形型電子線描画装置の動作を説明するための概念図である。
可変成形型電子線(EB:Electron beam)描画装置は、以下のように動作する。第1のアパーチャ410には、電子線330を成形するための矩形例えば長方形の開口411が形成されている。また、第2のアパーチャ420には、第1のアパーチャ410の開口411を通過した電子線330を所望の矩形形状に成形するための可変成形開口421が形成されている。荷電粒子ソース430から照射され、第1のアパーチャ410の開口411を通過した電子線330は、偏向器により偏向され、第2のアパーチャ420の可変成形開口421の一部を通過して、所定の一方向(例えば、X方向とする)に連続的に移動するステージ上に搭載された試料340に照射される。すなわち、第1のアパーチャ410の開口411と第2のアパーチャ420の可変成形開口421との両方を通過できる矩形形状が、X方向に連続的に移動するステージ上に搭載された試料340の描画領域に描画される。第1のアパーチャ410の開口411と第2のアパーチャ420の可変成形開口421との両方を通過させ、任意形状を作成する方式を可変成形方式という。
ここで、電子ビーム描画装置で、導電層とその上層のレジスト層が形成された基板上にパターンを描画する際、電子ビームの照射により基板上のレジスト層が帯電し、その周辺に電界が生じる。そこで、描画装置では、パターンを描画する際には、マスク基板上のレジスト膜の下層に形成された導電膜にアースを接続して帯電した電子を放電させることにより、かかる帯電を抑制することも行われている(例えば、特許文献1参照)。しかしながら、導電膜にアースを接続して、地絡させてもレジストに生じた電界を十分に無くすことができていないのが現状である。そのため、その後に照射される電子はかかる電界に起因する帯電効果により予定の軌道からずれてしまい、そのままでは所望する位置に電子ビームを照射することが困難となる。よって、かかる電界効果による位置ずれを補正することが必要となる。
しかしながら、かかる電界は装置の境界条件によって変化してしまう。描画装置内の基板を配置するステージ周辺には種々の材質を用いた様々な構造物が配置されているのが一般的である。これらの構造物によって変化する境界条件によって基板上での電界は変化してしまう。そのため、基板上の各位置を一様に補正したのでは位置ずれを解消することが困難となる。よって、位置に依存した補正が必要となる。しかし、上述した境界条件は描画装置の構成によって異なるため、使用する描画装置についての境界条件を十分に把握することは困難であった。このように、従来は、描画装置内に生じる電界の実情がわからないために高精度な補正ができず、十分に位置ずれを解消することが困難であった。
特開平09−205050号公報
上述したように、レジスト層に生じる帯電に起因する電界は装置の境界条件によって変化してしまう。しかし、従来は、描画装置内に生じる電界の実情がわからないために高精度な補正ができず、十分に位置ずれを解消することが困難であった。
そこで、本発明は、上述した問題点を克服し、描画装置内に生じる各位置での電界による位置ずれを評価する評価基板を提供することを目的とする。
本発明の一態様の荷電粒子ビームの評価基板は、
基板本体と、
基板本体上に形成された導電性膜と、
基板本体面の領域内に規則的に配置された複数の帯電部と、
導電性膜上であって各帯電部の周囲に配置された複数のマークと、
を備えたことを特徴とする。
規則的に配置された複数の帯電部を備えたことで、ビームを照射して、その周辺のマークの位置をスキャンすることで帯電により生じた電界に起因する位置ずれを各位置で測定することができる。
また、複数の帯電部は、金属で形成されると好適である。
そして、複数の帯電部の少なくとも1つに接続される電池をさらに備えると好適である。
また、複数のマークが配置されるピッチは、中心に位置する帯電部のサイズの1/5以下であると好適である。
また、導電性膜の表面と複数の帯電部の表面が同一面に位置すると好適である。
本発明によれば、描画装置内に生じる各位置での電界による位置ずれを評価することができる。その結果、装置の構成に応じた適切な位置ずれ補正を行うことができる。
以下、実施の形態では、荷電粒子ビームの一例として、電子ビームを用いた構成について説明する。但し、荷電粒子ビームは、電子ビームに限るものではなく、イオンビーム等の荷電粒子を用いたビームでも構わない。
実施の形態1.
図1は、実施の形態1における電子ビームの評価基板の構成を示す概念図である。図1において、評価基板10は、基板本体12と複数の評価ユニット20を備えている。基板本体12としては、例えば、ガラス基板、低熱膨張基板、或いはシリコン基板等を用いることができる。各評価ユニット20は、中心部に帯電部22が配置され、帯電部22の周囲を取り囲むように十字型に形成された複数のマーク24が配置される。評価ユニット20は、基板本体12面の領域内に規則的に配列されている。すなわち、帯電部22は基板本体12面の領域内に規則的に配列されている。例えば、評価ユニット20は5mm角の領域に形成され、10mmピッチで基板本体12面に配列されると好適である。帯電部22を帯電させることで、帯電部22の周囲に電界を生じさせることができる。その結果、マーク24を電子ビームでスキャンする際に、電界により電子ビームの軌道をずらすことができる。よって、電子ビームでスキャンすることによりマーク24の位置を測定し、位置ずれ量を計測すれば、帯電による位置ずれ量を測定することができる。
また、各マーク24を配列する際のピッチPは帯電部22のサイズに比べて十分小さくすると好適である。具体的には各マーク24のピッチPを帯電部22のサイズの1/5以下にするとより好適である。よって、例えば、四角形に形成された帯電部22の各辺の付近には少なくとも5つ以上のマーク24が配置されることになる。また、基板本体12は、実情に合わせるためにも実際にパターンを描画する際に用いられる基板と同様のものが好適である。実情に合わせることで、電界の状態をより実情に近づけることができる。
図2は、図1の評価基板の断面の一部を示す図である。図2において、基板本体12上には導電性膜28が形成されている。導電性膜28の材料としては、例えば、金属が好適である。具体的には、実際にパターンが描画される際の導電膜の材料となるクロム(Cr)等が好適である。非金属であっても不純物がドープされて導電性をもったシリコン(Si)等も好適である。そして、評価ユニット20の中心部にあたる位置では、基板本体12に開口部が形成され、開口部に帯電部22が配置される。その際、帯電部22は導通によるショートを防止するため、導電性膜28と非接触となるように隙間gを設けて配置される。帯電部22の材料は、導電性膜28と同じ材料が望ましい。すなわち、帯電部22の材料としては、例えば、金属が好適である。具体的には、実際にパターンが描画される際の導電膜の材料となるクロム(Cr)等が好適である。導電性膜28と同じ材料にすることで実際にパターンを描画する際に用いられる導電膜の材料と同じとなり実情に合わせることができる。実情に合わせることで、電界の状態をより実現象に近づけることができる。
帯電部22の下部には電池26が配置される。電池26は、すべての帯電部22の下部に配置されてもよいが、これに限るものではなく、少なくとも1つの帯電部22の下部に配置されていればよい。電池26は、一方の極が帯電部22に他方の極が導電性膜28に接続される。かかる構成により、帯電部22と導電性膜28との間を正確に所望する電位差にすることができる。そして、導電性膜28はさらにアース30に接続され、地絡されている。実際の製品用の基板にパターンを描画する際にも、上述したように導電層はアースに接続されているので実情に合わせることができる。実情に合わせることで、電界の状態をより実現象に近づけることができる。電池26は、例えば、ボタン電池を用いると好適である。導電性膜28上には十字型のマーク24が配置される。マーク24の材料は、導電性膜28と反射率の異なる金属を用いると好適である。例えば、タンタル(Ta)やタングステン(W)等が好適である。反射率の異なる金属を用いることで、電子ビームでマーク24をスキャンした際に、得られる測定データのコントラストを大きくすることができる。また、反射率の異なる金属を用いることで、マーク24の高さを薄くすることができる。
図3は、図2における帯電部と導電性膜の一部を示す断面図である。図3に示すように、帯電部22の表面と導電性膜28の表面の高さ位置が同じ、言い換えると、導電性膜28の表面と複数の帯電部22の表面が同一面に位置するように配置されると好適である。高さを合わせることで、製品の基板を描画する際に帯電する導電膜と同じ位置に帯電部22を配置することができる。よって、実情に合わせることができる。実情に合わせることで、電界の状態をより実現象に近づけることができる。
以上のように形成された評価基板10を用いて、製品用の基板にパターンを描画する前に、描画装置内のレジスト層に生じる電界を再現し、電子ビームの軌道のずれを評価する。
図4は、実施の形態1における描画装置の構成を示す概念図である。
図4において、描画装置100は、描画部150と制御部160を備えている。描画装置100は、荷電粒子ビーム描画装置の一例となる。描画部150は、電子鏡筒102と描画室103を有している。電子鏡筒102内には、電子銃201(照射部)、照明レンズ202、第1のアパーチャ203、投影レンズ204、偏向器205、第2のアパーチャ206、対物レンズ207、副偏向器208、及び主偏向器216が配置されている。また、描画室103内には、検出器218(測定部)とXYステージ105とを有している。検出器218は、描画室103ではなく、電子鏡筒102内に配置されても構わない。制御部160は、制御コンピュータ(CPU)310、インターフェース回路320、メモリ312、増幅器326、及びA/D変換器328を備えている。図4では、本実施の形態1を説明する上で必要な構成部分以外については記載を省略している。描画装置100にとって、通常、必要なその他の構成が含まれることは言うまでもない。
電子銃201から放出された電子ビーム200は、照明レンズ202により矩形例えば長方形の穴を持つ第1のアパーチャ203全体を照明する。ここで、電子ビーム200をまず矩形例えば長方形に成形する。そして、第1のアパーチャ203を通過した第1のアパーチャ像の電子ビーム200は、投影レンズ204により第2のアパーチャ206上に投影される。かかる第2のアパーチャ206上での第1のアパーチャ像の位置は、偏向器205によって制御され、ビーム形状と寸法を変化させることができる。そして、第2のアパーチャ206を通過した第2のアパーチャ像の電子ビーム200は、対物レンズ207により焦点を合わせ、副偏向器208及び主偏向器216により偏向され、移動可能に配置されたXYステージ105上の評価基板10上のマーク24上を走査するように照射される。そして、評価基板10からの反射電子は検出器218によって検出される。検出器218で検出された信号は、増幅器326で増幅され、A/D変換器328でデジタル情報に変換され、制御コンピュータ310に送られる。副偏向器208及び主偏向器216は、インターフェース回路320を介して制御コンピュータ310によって制御される。制御コンピュータ310により演算された結果等の出入力データは、メモリ312に格納される。
かかる描画装置100を用いて、帯電により生じた電界に起因する位置ずれ量を測定する。
図5は、実施の形態1における電子ビームの評価方法の要部工程を示すフローチャート図である。
ステップ(S)102において、帯電部22に電圧を印加しない状態で、各評価ユニット20におけるマーク24の位置を測定する。具体的には、まず、評価基板10の測定対象となる評価ユニット20における帯電部22が電子ビーム200の光軸上に位置するようにXYステージ105を移動させる。そして、帯電部22に電圧を印加しない状態で、その周囲のマーク24上を電子ビーム200で走査して、各マーク24の位置を測定する。例えば、電池26を配置しない状態で各マーク24の位置を測定する。スキャンの仕方は、副偏向器208及び主偏向器216が電子ビーム200を偏向することで、電子ビーム200を走査すればよい。マーク24は、十字型をしているので、x方向とy方向に電子ビーム200を走査して、その測定結果からマーク24の中心位置を演算すればよい。1つの評価ユニット20での測定が終了したら、次の評価ユニット20について同様にマーク24の位置を測定する。このようにして、すべての評価ユニット20についてマーク24の位置を測定する。
S104において、帯電部22に電圧を印加した状態で、各評価ユニット20におけるマーク24の位置を測定する。具体的には、測定対象となる評価ユニット20における帯電部22に電圧を印加する。例えば、測定対象となる評価ユニット20における帯電部22の下方について電池26を配置することで、測定対象の帯電部22に電圧を印加する。電池26を用いることで、評価基板10から延びる配線等を無くすことができ、実情に近づけることができる。電圧は、実情に合わせて0〜10Vの間で設定すると好適である。そして、まず、評価基板10の測定対象となる評価ユニット20における帯電部22が電子ビーム200の光軸上に位置するようにXYステージ105を移動させる。そして、帯電部22に電圧を印加した状態で、その周囲のマーク24上を電子ビーム200で走査して、各マーク24の位置を測定する。スキャンの仕方は、副偏向器208及び主偏向器216が電子ビーム200を偏向することで、電子ビーム200を走査すればよい。マーク24は、十字型をしているので、x方向とy方向に電子ビーム200を走査して、その測定結果からマーク24の中心位置を演算すればよい。1つの評価ユニット20での測定が終了したら、次の評価ユニット20の位置に電池26を入れ直して、かかる評価ユニット20について同様にマーク24の位置を測定する。このようにして、すべての評価ユニット20についてマーク24の位置を測定する。電池26はすべての帯電部22に配置してもよいが、上述したように、測定対象にする際にだけ配置しても好適である。
S106において、帯電による位置ずれ量を演算する。具体的には、帯電部22に電圧を印加しないことで帯電させない状態で測定したマーク24位置と帯電部22に電圧を印加して帯電させた状態で測定したマーク24位置との差を演算する。この差が帯電により生じた電界に起因した位置ずれ量となる。
以上の測定と演算を複数の電圧における場合について求める。すなわち、電池の電圧を可変にして測定するとよい。具体的には、0〜10Vの間で電圧の異なる複数の電池26を用いて各電圧での位置ずれ量を求めればよい。製品用の基板を描画する際には、電子ビーム200の照射量によって帯電量が異なるため、複数の帯電状態が得られるように帯電部22に印加する電圧を可変にして複数の条件で求めておくとよい。
S108において、位置ずれ量を演算で求める場合の応答関数R(x)を演算する。位置ずれ量Δxは、以下の式(1)で求めることができる。
(1) Δx=∫R(x’)・V(x−x’)dx’
ここで、式(1)において、xは、測定位置の座標(x,y)を示すベクトルとする。また、V(x)は印加電圧とする。かかる式(1)に印加電圧V(x)と位置ずれ量Δxを代入して応答関数R(x)を求めることで、評価基板10の各位置における応答関数R(x)を得ることができる。
製品用の基板を描画する際には、電子ビーム200の照射量から得られる帯電量に相当する印加電圧V(x)とかかる場所での応答関数R(x)を用いれば、式(1)から位置に依存した位置ずれ量Δxが得られる。得られた位置ずれ量Δx分だけ電子ビーム200の偏向位置を補正すれば高精度な位置に電子ビームを照射することができる。
以上のように、実施の形態1における評価基板を用いて、予め、帯電により生じた電界に起因する位置ずれ量を各位置で求めておくことで、描画装置の構成が異なる場合でも、描画装置内に生じる電界の実情を把握することができる。よって、描画装置が異なっても、かかる描画装置100に合わせた高精度な補正を行なうことができる。
以上、具体例を参照しつつ実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、上述した実施の形態では、帯電部に電圧を印加することで帯電させていたが、磁場を印加して磁界による位置ずれを評価するように構成しても好適である。
また、装置構成や制御手法等、本発明の説明に直接必要しない部分等については記載を省略したが、必要とされる装置構成や制御手法を適宜選択して用いることができる。例えば、描画装置100を制御する制御部構成については、記載を省略したが、必要とされる制御部構成を適宜選択して用いることは言うまでもない。
その他、本発明の要素を具備し、当業者が適宜設計変更しうる全ての荷電粒子ビームの評価基板及びかかる評価基板を用いた評価方法は、本発明の範囲に包含される。
実施の形態1における電子ビームの評価基板の構成を示す概念図である。 図1の評価基板の断面の一部を示す図である。 図2における帯電部と導電性膜の一部を示す断面図である。 実施の形態1における描画装置の構成を示す概念図である。 実施の形態1における電子ビームの評価方法の要部工程を示すフローチャート図である。 従来の可変成形型電子線描画装置の動作を説明するための概念図である。
符号の説明
10 評価基板
12 基板本体
20 評価ユニット
22 帯電部
24 マーク
26 電池
28 導電性膜
30 アース
100 描画装置
102 電子鏡筒
103 描画室
105 XYステージ
150 描画部
160 制御部
200 電子ビーム
201 電子銃
202 照明レンズ
203,410 第1のアパーチャ
204 投影レンズ
205 偏向器
206,420 第2のアパーチャ
207 対物レンズ
208 副偏向器
216 主偏向器
218 検出器
310 制御コンピュータ
312 メモリ
320 インターフェース回路
326 増幅器
328 A/D変換器
330 電子線
340 試料
411 開口
421 可変成形開口
430 荷電粒子ソース

Claims (5)

  1. 基板本体と、
    前記基板本体上に形成された導電性膜と、
    前記基板本体面の領域内に規則的に配置された複数の帯電部と、
    前記導電性膜上であって各帯電部の周囲に配置された複数のマークと、
    を備えたことを特徴とする荷電粒子ビームの評価基板。
  2. 前記複数の帯電部は、金属で形成されることを特徴とする請求項1記載の荷電粒子ビームの評価基板。
  3. 前記複数の帯電部の少なくとも1つに接続される電池をさらに備えたことを特徴とする請求項1又は2記載の荷電粒子ビームの評価基板。
  4. 前記複数のマークが配置されるピッチは、中心に位置する帯電部のサイズの1/5以下であることを特徴とする請求項1〜3いずれか記載の荷電粒子ビームの評価基板。
  5. 前記導電性膜の表面と前記複数の帯電部の表面が同一面に位置することを特徴とする請求項1〜4いずれか記載の荷電粒子ビームの評価基板。
JP2008312069A 2008-12-08 2008-12-08 荷電粒子ビームの評価基板 Pending JP2010135248A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008312069A JP2010135248A (ja) 2008-12-08 2008-12-08 荷電粒子ビームの評価基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008312069A JP2010135248A (ja) 2008-12-08 2008-12-08 荷電粒子ビームの評価基板

Publications (1)

Publication Number Publication Date
JP2010135248A true JP2010135248A (ja) 2010-06-17

Family

ID=42346330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008312069A Pending JP2010135248A (ja) 2008-12-08 2008-12-08 荷電粒子ビームの評価基板

Country Status (1)

Country Link
JP (1) JP2010135248A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153456A (ja) * 2008-12-24 2010-07-08 Nuflare Technology Inc 荷電粒子ビーム描画装置および方法
JP2013026489A (ja) * 2011-07-22 2013-02-04 Nuflare Technology Inc 温度調整用マスク及び荷電粒子ビーム描画装置の温度調整方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153456A (ja) * 2008-12-24 2010-07-08 Nuflare Technology Inc 荷電粒子ビーム描画装置および方法
JP2013026489A (ja) * 2011-07-22 2013-02-04 Nuflare Technology Inc 温度調整用マスク及び荷電粒子ビーム描画装置の温度調整方法

Similar Documents

Publication Publication Date Title
JP5505821B2 (ja) 粒子ビーム露光装置のためのパターンロック装置
US6222195B1 (en) Charged-particle-beam exposure device and charged-particle-beam exposure method
US7608528B2 (en) Substrate cover, and charged particle beam writing apparatus and method
US8816276B2 (en) Electron beam writing apparatus and electron beam writing method
JP4870437B2 (ja) 偏向収差補正電圧の演算方法及び荷電粒子ビーム描画方法
KR100998770B1 (ko) 하전 입자 빔 묘화 장치, 패턴의 치수 오차 보정 장치 및 패턴의 치수 오차 보정 방법
US9373424B2 (en) Electron beam writing apparatus and electron beam writing method
JP6087154B2 (ja) 荷電粒子ビーム描画装置、試料面へのビーム入射角調整方法、および荷電粒子ビーム描画方法
JPH10214779A (ja) 電子ビーム露光方法及び該方法を用いたデバイス製造方法
JP2002329659A (ja) 荷電粒子線露光方法、荷電粒子線露光装置及びデバイス製造方法
JP4612838B2 (ja) 荷電粒子線露光装置およびその露光方法
KR20200098423A (ko) 멀티 하전 입자 빔 묘화 장치 및 멀티 하전 입자 빔 묘화 방법
US6352799B1 (en) Charged-particle-beam pattern-transfer methods and apparatus including beam-drift measurement and correction, and device manufacturing methods comprising same
JP2010135248A (ja) 荷電粒子ビームの評価基板
JP6861543B2 (ja) 荷電粒子ビーム描画方法および荷電粒子ビーム描画装置
JP6869695B2 (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
JP2008311311A (ja) 荷電粒子ビーム露光方法及び荷電粒子ビーム露光装置
CN114787967A (zh) 多带电粒子束描绘方法以及多带电粒子束描绘装置
US7049611B2 (en) Charged-particle beam lithographic system
US6376137B1 (en) Charged-particle-beam microlithography apparatus and methods including correction of stage-positioning errors using a deflector
JP3714280B2 (ja) 電子ビーム近接露光装置における電子ビームの傾き測定方法及び傾き較正方法並びに電子ビーム近接露光装置
JP2007329267A (ja) 荷電粒子線描画装置及び荷電粒子線描画方法
JP2786660B2 (ja) 荷電ビーム描画方法
JP7508671B2 (ja) リターディング電圧を用いた電子線検査装置
JP2011066236A (ja) 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法