JP2018036371A - 光学フィルタ - Google Patents

光学フィルタ Download PDF

Info

Publication number
JP2018036371A
JP2018036371A JP2016167997A JP2016167997A JP2018036371A JP 2018036371 A JP2018036371 A JP 2018036371A JP 2016167997 A JP2016167997 A JP 2016167997A JP 2016167997 A JP2016167997 A JP 2016167997A JP 2018036371 A JP2018036371 A JP 2018036371A
Authority
JP
Japan
Prior art keywords
refractive index
coat
film
index film
low refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016167997A
Other languages
English (en)
Inventor
大西 学
Manabu Onishi
学 大西
祐貴 藤井
Yuki Fujii
祐貴 藤井
佑一 加茂
Yuichi Kamo
佑一 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daishinku Corp
Original Assignee
Daishinku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daishinku Corp filed Critical Daishinku Corp
Priority to JP2016167997A priority Critical patent/JP2018036371A/ja
Publication of JP2018036371A publication Critical patent/JP2018036371A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】樹脂基板にコーティングされる誘電体多層膜による反りを抑制できる光学フィルタを提供する。【解決手段】光学フィルタ10は、樹脂基板11と、樹脂基板11のA面側にコーティングされた第1コート12と、B面側にコーティングされた第2コート13とを含む。第1コート12および第2コート13は、高屈折率膜と低屈折率膜とを交互に積層してなる誘電体多層膜であり、高屈折率膜および低屈折率膜の物理膜厚は、0.5×r(a−b)<(β−α)<1.5×r(a−b)の式を満たす。aは第1コートにおける低屈折率膜の物理膜厚合計である。bは第2コートにおける低屈折率膜の物理膜厚合計である。αは第1コートにおける高屈折率膜の物理膜厚合計である。βは第2コートにおける高屈折率膜の物理膜厚合計である。rは物理膜厚が同じ場合の低屈折率膜の内部応力と高屈折率膜の内部応力との比である。【選択図】図4

Description

本発明は、基板の両面に誘電体多層膜を形成した光学フィルタに関する。
撮像デバイスの光学系では、さまざまな光学フィルタが用いられている。例えば、ビデオカメラやデジタルスチルカメラ等では、赤外線カットフィルタを設けて、撮像素子であるCCD(Charge Coupled Device)に赤外光域の光線を到達させないようにし、人の目に近い撮像画像が得られるようにしている。また、監視カメラでは、昼間の撮影は可視光線を用いて行い、夜間などの暗視下における撮影は近赤外光域の光線を用いて行うように、可視光域と近赤外光域とに透過帯域を有する2波長バンドパスフィルタが用いられている。これらの光学フィルタは、その用途に応じて特定の波長の光線を選択的に透過させたり、遮断したりする。
これらの光学フィルタの多くは、水晶やガラスからなる透光性基板に誘電体多層膜をコーティングすることで所望の透過特性を持たせている。しかしながら、誘電体多層膜による光の遮断は反射特性によるものであり、ゴーストやフレアが生じやすい。また、誘電体多層膜は、光線が斜めに入射したときに透過特性が変化しやすいといった問題もある。
このため、例えば特許文献1では、誘電体多層膜をコーティングする基板として、近赤外光域に対して吸収特性を有する赤外光吸収基板を用いた光学フィルタが提案されている。また、特許文献1における赤外光吸収基板は、透明樹脂に赤外線を吸収する化合物を含有させてなる樹脂基板とされている。
特許第5884953号明細書
光学フィルタに用いられる誘電体多層膜は、高屈折率材料からなる薄膜と低屈折率材料からなる薄膜とを多層に積層し、各膜における光学膜厚を適切に設計することで所望の透過特性を得ている。基板に対して誘電体多層膜の各薄膜のコーティングには、電子ビーム蒸着法(EB蒸着法)やイオンアシスト蒸着法(IAD法)が用いられるが、これらの蒸着法で形成される薄膜には内部応力が生じる。この内部応力により、基板には曲げ応力が作用する。
誘電体多層膜をコーティングする基板が水晶やガラス基板である場合には、基板自体の剛性が高いため、基板に上記曲げ応力が作用しても反りが生じることは殆どなく、特に問題となることはない。しかしながら、特許文献1のように樹脂基板を用いる場合には、基板自体の剛性が低いため、上記曲げ応力によって基板に生じる反りは無視できないものとなる。
特許文献1には、樹脂基板に生じる反りについては考慮されておらず、その解決方法も開示されていない。
本発明は、上記課題に鑑みてなされたものであり、樹脂基板にコーティングされる誘電体多層膜による反りを抑制できる光学フィルタを提供することを目的とする。
上記の課題を解決するために、本発明は、樹脂基板と該樹脂基板の両面にコーティングされる誘電体多層膜とを有する光学フィルタであって、前記誘電体多層膜は、前記樹脂基板の一方の面にコーティングされた第1コートと、他方の面にコーティングされた第2コートとを含み、前記第1コートおよび前記第2コートは、高屈折率材料からなる高屈折率膜と低屈折率材料からなる低屈折率膜とを交互に積層してなり、前記第1コートおよび前記第2コートにおける高屈折率膜および低屈折率膜の物理膜厚が、0.5×r(a−b)<(β−α)<1.5×r(a−b)の式を満たすことを特徴としている。
a:第1コートにおける低屈折率膜の物理膜厚合計
b:第2コートにおける低屈折率膜の物理膜厚合計
α:第1コートにおける高屈折率膜の物理膜厚合計
β:第2コートにおける高屈折率膜の物理膜厚合計
r:物理膜厚が同じ場合の低屈折率膜の内部応力と高屈折率膜の内部応力との比
あるいは、本発明は、樹脂基板と該樹脂基板の両面にコーティングされる誘電体多層膜とを有する光学フィルタであって、前記誘電体多層膜は、前記樹脂基板の一方の面にコーティングされた第1コートと、他方の面にコーティングされた第2コートとを含み、前記第1コートおよび前記第2コートは、高屈折率材料からなる高屈折率膜と低屈折率材料からなる低屈折率膜とを交互に積層してなり、前記第1コートおよび前記第2コートにおける高屈折率膜および低屈折率膜の物理膜厚が、2(a−b)<(β−α)<6(a−b)
の式を満たすことを特徴としている。
a:第1コートにおける低屈折率膜の物理膜厚合計
b:第2コートにおける低屈折率膜の物理膜厚合計
α:第1コートにおける高屈折率膜の物理膜厚合計
β:第2コートにおける高屈折率膜の物理膜厚合計
上記の構成によれば、低屈折率膜の膜厚差によって生じる反り量を、高屈折率膜の膜厚差によって生じる反り量にて相殺することができ、基板に発生する反りを抑制することができる。これにより、反りの発生しやすい樹脂基板を用いる場合であっても、基板反りの問題を解消することができる。
また、上記光学フィルタでは、前記第1コートおよび前記第2コートにおける低屈折率膜の物理膜厚が、b≦a≦1.05b、または、a≦b≦1.05aの式を満たすことが好ましい。
上記の構成によれば、低屈折率膜の膜厚差が大きすぎて反りの緩和が困難となることを回避できる。
また、上記光学フィルタは、前記高屈折率材料がTiO2からなり、前記低屈折率材料がSiO2からなる構成とすることができる。
本発明の光学フィルタは、低屈折率膜の膜厚差によって生じる反り量を、高屈折率膜の膜厚差によって生じる反り量にて相殺することができ、反りの発生しやすい樹脂基板を用いる場合であっても、基板反りの問題を解消することができるといった効果を奏する。
本発明の一実施形態を示す図であり、光学フィルタの概略構成を示す断面図である。 (a)は樹脂基板の透過特性を示すグラフであり、(b)は第1コートの透過特性を示すグラフであり、(c)は第2コートの透過特性を示すグラフである。 図2(a)〜(c)に示す樹脂基板、第1コートおよび第2コートを組み合わせてなる光学フィルタの透過特性を示すグラフである。 図1に示す光学フィルタのより詳細な構成を示す断面図である。 低屈折率膜の物理膜厚に対する高屈折率膜の物理膜厚の膜厚比と、反り量との関係を示すグラフである。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。図1は、本実施の形態に係る光学フィルタ10の構成例を示すものであり、ここでは、可視光域と近赤外光域の一部とに透過帯域を有する2波長バンドパスフィルタを例示する。但し、本発明の光学フィルタの種類は特に限定されるものではなく、樹脂基板と該樹脂基板の両面にコーティングされる誘電体多層膜とを有するものであればよい。
図1に示す光学フィルタ10は、樹脂基板11と、樹脂基板11の一方の面(A面)にコーティングされた第1コート12と、他方の面(B面)にコーティングされた第2コート13とを有している。第1コート12および第2コート13は共に、高屈折率材料からなる薄膜(以下、高屈折率膜)と低屈折率材料からなる薄膜(以下、低屈折率膜)とを交互に多層に積層してなる誘電体多層膜である。本実施形態では、高屈折率膜として二酸化チタン(TiO2)が、低屈折率膜として二酸化珪素(SiO2)がそれぞれ使用されている。なお高屈折率材料としてはTiO2以外に、例えば、ZrO2、Nb25、Ta25を使用してもよい。また、低屈折率材料としてはSiO2以外に、例えばMgF2を使用してもよい。
樹脂基板11は、透明樹脂に赤外線を吸収する化合物を含有させてなる赤外光吸収基板である。本実施形態では樹脂基板11としてシクロオレフィン樹脂(COP)が使用されており、その平面視形状は正方形となっている(一辺が80mm)。なおシクロオレフィン樹脂以外にも、アクリル樹脂やポリカーボネート樹脂やエポキシ樹脂なども使用可能である。さらにこれらの樹脂からなる基板上に赤外吸収機能を有するインクを滴下した後、これを硬化させた赤外吸収機能を有する樹脂基板であってもよい。樹脂基板11は、図2(a)に示すように、可視光域と近赤外光域との境界付近で吸収極大を有し、可視光域の長波長側でなだらかに透過率が減少する透過特性を有する。
なお、光学フィルタ10における近赤外光域では、短波長側から順に第1帯域、第2帯域、第3帯域が存在する(図3参照)とする。第1コート12は、図2(b)に示すように、可視光域に透過特性を有し、第1帯域のほぼ全体に遮断特性を有し、第1帯域より長波長側では少なくとも第2帯域に透過特性を有する。第2コート13は、図2(c)に示すように、少なくとも可視光域から第2帯域の長波長側にかけて透過特性を有し、第3帯域に遮断特性を有する。樹脂基板11、第1コート12および第2コート13を組み合わせてなる光学フィルタ10の透過特性は図3に示すものとなる。
第1コート12および第2コート13は、図4に示すように、高屈折率膜と低屈折率膜とを交互に多層に積層してなる誘電体多層膜である。高屈折率膜は、例えば、TiO2をIAD法で成膜して形成される。また、低屈折率膜は、例えば、SiO2をEB蒸着法で成膜して形成される。通常、樹脂基板へ成膜する場合は、基板を加熱する温度が比較的低い(例えば100℃以下)低温成膜を用いる。低屈折率膜のSiO2は前記低温成膜でも問題は無いが、高屈折率膜のTiO2は低温成膜だと透過率が下がってしまい、可視光域において高い透過率を維持することができなくなる。そこで、本実施形態ではTiO2は、イオン化した酸素が供給されることによって低温状態でも反応が促進されるIAD法を用いている。これにより透過率の低下を防止し、可視光域において高い透過率を維持することができる。ここで、SiO2もIAD法を用いた場合は、成膜中の基板温度の上昇が大きくなって樹脂基板が変形してしまうため、EB蒸着法を用いている。
この場合、高屈折率膜および低屈折率膜の物理膜厚が同じであるとすると、低屈折率膜が樹脂基板11に対して与える反り量(すなわち、低屈折率膜の内部応力)は、高屈折率膜が樹脂基板11に対して与える反り量(すなわち、高屈折率膜の内部応力)の約2〜6倍となる。また、高屈折率膜および低屈折率膜に生じる内部応力は、いずれも圧縮応力である。
図5は、基板の一方の面に低屈折率膜を成膜し、他方の面に高屈折率膜を成膜した場合に、低屈折率膜の物理膜厚に対する高屈折率膜の物理膜厚の膜厚比と、基板に発生した反り量との関係を示すグラフである。ここでは、低屈折率膜の物理膜厚を1とした場合に高屈折率膜の物理膜厚を0,3,5,10倍とした場合の反り量について測定した。尚、高屈折率膜の物理膜厚が0倍の場合とは、一方の面に低屈折率膜のみを成膜し、他方の面には何も成膜しなかった場合を示す。
図5のグラフでは、膜厚比を0,3,5,10倍として測定した4点のプロットと、これらのプロットから得られる近似直線を記載している。この近似直線において、反り量が0となるのは、膜厚比が約3.9倍のときである。これより、図5のグラフの例では、低屈折率膜が基板に対して与える反り量は、高屈折率膜が基板に対して与える反り量の約3.9倍であることがわかる。言い換えれば、物理膜厚が同じ場合の低屈折率膜の内部応力と高屈折率膜の内部応力との比は3.9である。尚、物理膜厚が同じ場合の低屈折率膜の内部応力と高屈折率膜の内部応力との比は、使用する低屈折率材料および高屈折率材料の種類や、成膜方法や成膜条件によって変化する。本実施形態においては、実用上の反り量の規格が±2000μmとなっており、このときの前記膜厚比は約2〜6であり、好ましくは約3〜5となっている。
第1コート12および第2コート13においては、高屈折率膜および低屈折率膜の光学膜厚は、光学フィルタ10が所望の透過特性を持つように公知のアルゴリズムを用いて計算される。また、高屈折率膜および低屈折率膜の物理膜厚は、樹脂基板11の反りを低減するため、以下の(1)式の条件を満たすように設定される。すなわち、A面側に形成される第1コート12によって生じる反り量と、B面側に形成される第2コート13によって生じる反り量とを相殺させるように高屈折率膜および低屈折率膜の物理膜厚が設定される。
0.5×r(a−b)<(β−α)<1.5×r(a−b) ・・・(1)
ここで、
a:第1コート(A面側)における低屈折率膜の物理膜厚合計
b:第2コート(B面側)における低屈折率膜の物理膜厚合計
α:第1コート(A面側)における高屈折率膜の物理膜厚合計
β:第2コート(B面側)における高屈折率膜の物理膜厚合計
r:物理膜厚が同じ場合の低屈折率膜の内部応力と高屈折率膜の内部応力との比
(r=(低屈折率膜の内部応力)/(高屈折率膜の内部応力))
である。
また、上述したように、高屈折率膜および低屈折率膜の物理膜厚が同じであるとすると、低屈折率膜が樹脂基板11に対して与える反り量は、高屈折率膜が樹脂基板11に対して与える反り量の約2〜6倍となる。これより、
2(a−b)<(β−α)<6(a−b)
の関係が与えられる。
A面側の第1コート12の低屈折率膜とB面側の第2コート13の低屈折率膜との間に物理膜厚の差(a−b)がある場合(ここでは、a>bとする)、この低屈折率膜の膜厚差に応じた反り力が樹脂基板11に作用する。本実施の形態に係る光学フィルタ10では、低屈折率膜の膜厚差によって生じる反り量を、高屈折率膜の膜厚差によって生じる反り量にて相殺する。このため、A面側の低屈折率膜の物理膜厚合計がB面側の低屈折率膜の物理膜厚合計よりも大きい場合(a>b)には、B面側の高屈折率膜の物理膜厚合計をA面側の物理膜厚合計よりも大きくする(β>α)。また、物理膜厚が同じ場合には、低屈折率膜の内部応力は高屈折率膜の内部応力よりも大きく、その比はrであるため、高屈折率膜の膜厚差(β−α)は低屈折率膜の膜厚差(a−b)の略r倍とする必要がある。これより、上記(1)式が得られる。
尚、樹脂基板11の反りを抑制するにあたって、低屈折率膜の膜厚差によって生じる反り量と高屈折率膜の膜厚差によって生じる反り量とを完全に一致させる必要はなく、ある程度のマージンが認められる。上記(1)式では、50%のマージンを設定している。
また、本実施の形態に係る光学フィルタ10では、低屈折率膜の膜厚差(a−b)が大きすぎると反りの緩和が困難となる傾向がある。このため、A面側およびB面側の一方における低屈折率膜の膜厚は、他方の低屈折率膜の膜厚に比べて5%以内の膜厚差とすることが好ましい。すなわち、以下の(2)または(3)式が満たされることが好ましい。
b≦a≦1.05b ・・・(2)
a≦b≦1.05a ・・・(3)
続いて、第1コート12および第2コート13のそれぞれにおいて、各低屈折率膜および各高屈折率膜の光学膜厚および物理膜厚の設計手順を説明する。
まず、第1コート12および第2コート13の各々について、光学フィルタ10が所望の透過特性が得られるように光学膜厚での設計が行われる。ここで光学膜厚は屈折率と物理膜厚との積である。当該光学膜厚の設計には公知のアルゴリズムが使用可能である。
しかし、当該光学膜厚の設計だけでは物理膜厚が(1)式を満足しないため、第2コート13に関して光学フィルタ10の透過特性を考慮した上で物理膜厚を調整し、光学フィルタ10の物理膜厚が(1)式を満足するようにする。例えば、第2コート13における高屈折率膜と低屈折率膜の積層回数を増減させることで、設計された透過特性に影響を及ぼすことなく物理膜厚を調整することが可能となる。
このような設計方法で光学フィルタ10の物理膜厚が(1)式を満足しない場合は、第1コート12または/および第2コート13において、樹脂基板の上層に低屈折率材料からなる調整層を設けて、光学フィルタ10の物理膜厚が(1)式を満足するように調整する。ここで前記調整層は物理膜厚を合わせるためのものであり、光学フィルタ10の透過特性には何ら影響を及ぼさないものとなっている。
今回開示した実施形態はすべての点で例示であって、限定的な解釈の根拠となるものではない。従って、本発明の技術的範囲は、上記した実施形態のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。
10 光学フィルタ
11 樹脂基板
12 第1コート
13 第2コート

Claims (4)

  1. 樹脂基板と該樹脂基板の両面にコーティングされる誘電体多層膜とを有する光学フィルタであって、
    前記誘電体多層膜は、前記樹脂基板の一方の面にコーティングされた第1コートと、他方の面にコーティングされた第2コートとを含み、
    前記第1コートおよび前記第2コートは、高屈折率材料からなる高屈折率膜と低屈折率材料からなる低屈折率膜とを交互に積層してなり、
    前記第1コートおよび前記第2コートにおける高屈折率膜および低屈折率膜の物理膜厚が、
    0.5×r(a−b)<(β−α)<1.5×r(a−b)
    の式を満たすことを特徴とする光学フィルタ。
    a:第1コートにおける低屈折率膜の物理膜厚合計
    b:第2コートにおける低屈折率膜の物理膜厚合計
    α:第1コートにおける高屈折率膜の物理膜厚合計
    β:第2コートにおける高屈折率膜の物理膜厚合計
    r:物理膜厚が同じ場合の低屈折率膜の内部応力と高屈折率膜の内部応力との比
  2. 樹脂基板と該樹脂基板の両面にコーティングされる誘電体多層膜とを有する光学フィルタであって、
    前記誘電体多層膜は、前記樹脂基板の一方の面にコーティングされた第1コートと、他方の面にコーティングされた第2コートとを含み、
    前記第1コートおよび前記第2コートは、高屈折率材料からなる高屈折率膜と低屈折率材料からなる低屈折率膜とを交互に積層してなり、
    前記第1コートおよび前記第2コートにおける高屈折率膜および低屈折率膜の物理膜厚が、
    2(a−b)<(β−α)<6(a−b)
    の式を満たすことを特徴とする光学フィルタ。
    a:第1コートにおける低屈折率膜の物理膜厚合計
    b:第2コートにおける低屈折率膜の物理膜厚合計
    α:第1コートにおける高屈折率膜の物理膜厚合計
    β:第2コートにおける高屈折率膜の物理膜厚合計
  3. 請求項1または2に記載の光学フィルタであって、
    前記第1コートおよび前記第2コートにおける低屈折率膜の物理膜厚が、
    b≦a≦1.05b、または、a≦b≦1.05a
    の式を満たすことを特徴とする光学フィルタ。
  4. 請求項1から3の何れか1項に記載の光学フィルタであって、
    前記高屈折率材料がTiO2からなり、前記低屈折率材料がSiO2からなることを特徴とする光学フィルタ。
JP2016167997A 2016-08-30 2016-08-30 光学フィルタ Pending JP2018036371A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016167997A JP2018036371A (ja) 2016-08-30 2016-08-30 光学フィルタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016167997A JP2018036371A (ja) 2016-08-30 2016-08-30 光学フィルタ

Publications (1)

Publication Number Publication Date
JP2018036371A true JP2018036371A (ja) 2018-03-08

Family

ID=61567391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016167997A Pending JP2018036371A (ja) 2016-08-30 2016-08-30 光学フィルタ

Country Status (1)

Country Link
JP (1) JP2018036371A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114787671A (zh) * 2019-12-11 2022-07-22 Agc株式会社 滤光片和成像装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114787671A (zh) * 2019-12-11 2022-07-22 Agc株式会社 滤光片和成像装置

Similar Documents

Publication Publication Date Title
JP5662982B2 (ja) 反射防止膜および光学素子
US9423530B2 (en) Optical element, and optical system and optical apparatus using same
US9069126B2 (en) Optical element, optical system and optical apparatus having antireflection coating
JP2015004919A (ja) 反射防止膜及びそれを有する光学素子
JP2007206172A (ja) 撮像系光学素子
JP2008276112A (ja) Ndフィルタ
US10551534B2 (en) Optical element, optical system, image pickup apparatus, and lens apparatus
JP2004354735A (ja) 光線カットフィルタ
JP2003029027A (ja) 近赤外線カットフィルタ
JP2017040909A (ja) 光学フィルタおよびそれを有する光学系、撮像装置、レンズ装置
JP2006301487A (ja) 近赤外線カットフィルタ
JP2010032867A (ja) Irカットフィルタ
JP4963027B2 (ja) Ndフィルタおよびその製造方法、それらを用いた光量絞り装置
KR101844368B1 (ko) 광학 필터 및 이를 포함하는 촬상 장치
JP2010175941A (ja) 光学フィルタ及び光学フィルタの製造方法、並びにこれらの光学フィルタを有する撮像装置
JP4914955B2 (ja) Irカット機能付きndフィルタ
JP5879021B2 (ja) Ndフィルタ
KR20130047634A (ko) 반사 방지막 및 광학 소자
JP2018036371A (ja) 光学フィルタ
JP2017032852A (ja) 反射防止膜及び光学部品
JP2006330128A (ja) Irカット膜付きndフィルタ、irカット膜付きndフィルタの製造方法、及びこれらのndフィルタを有する光量絞り装置及びカメラ
JP5126089B2 (ja) 光線カットフィルタ
JP2018180430A (ja) 光学フィルタ
JP2006195373A (ja) 視感度補正近赤外カットフィルタ、並びに、それを用いた光学ローパスフィルタ及び視感度補正素子
JP2022072420A (ja) 光学素子、光学系、および、光学機器