JP2018033368A - Hydroponic method and hydroponic device - Google Patents

Hydroponic method and hydroponic device Download PDF

Info

Publication number
JP2018033368A
JP2018033368A JP2016169695A JP2016169695A JP2018033368A JP 2018033368 A JP2018033368 A JP 2018033368A JP 2016169695 A JP2016169695 A JP 2016169695A JP 2016169695 A JP2016169695 A JP 2016169695A JP 2018033368 A JP2018033368 A JP 2018033368A
Authority
JP
Japan
Prior art keywords
light
cultivation
period
crop
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016169695A
Other languages
Japanese (ja)
Other versions
JP6781593B2 (en
Inventor
光生 和田
Mitsuo Wada
光生 和田
中村 謙治
Kenji Nakamura
謙治 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Osaka Prefecture University
Espec MIC Corp
Original Assignee
Osaka University NUC
Osaka Prefecture University
Espec MIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Osaka Prefecture University, Espec MIC Corp filed Critical Osaka University NUC
Priority to JP2016169695A priority Critical patent/JP6781593B2/en
Publication of JP2018033368A publication Critical patent/JP2018033368A/en
Application granted granted Critical
Publication of JP6781593B2 publication Critical patent/JP6781593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide hydroponic methods and hydroponic devices which can sufficiently raise agricultural products while reducing the amount of the nitrate comprised in agricultural products.SOLUTION: The present invention relates to a method for cultivating agricultural products with nutrient solution in a light and dark cycle including the light period in which agricultural products are irradiated with a light and the dark period in which agricultural products are not irradiated with a light or irradiated with a light less than that in the light period, in 24 hours. The hydroponic method of the invention comprises a first cultivation step of contacting the root of an agricultural product with a first liquid containing nitrate ion, a second cultivation step of contacting the root of the agricultural product with a second solution substantially containing no nitrate ion. Then, in the light period, a first cultivation step is performed for 10% or more of the light period, and in the dark period, a second cultivation step is performed for 50% or more of the dark period.SELECTED DRAWING: Figure 1

Description

本発明は、養液栽培方法および養液栽培装置に関する。   The present invention relates to a hydroponic cultivation method and a hydroponic cultivation apparatus.

農作物の成長には窒素源(硝酸塩、アンモニウム塩などの窒素化合物)が必要である。土壌中の無機窒素は、アンモニア態窒素、亜硝酸態窒素、硝酸態窒素、尿素態窒素があるが、農作物は硝酸態窒素を主として吸収した場合に生育がよいことが分かっている。このため、養液栽培では、培養液中に窒素源として硝酸態窒素が多く含まれている。   Nitrogen sources (nitrogen compounds such as nitrates and ammonium salts) are necessary for growing crops. Inorganic nitrogen in soil includes ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, and urea nitrogen, but it has been found that crops grow well when they mainly absorb nitrate nitrogen. For this reason, in hydroponic cultivation, a large amount of nitrate nitrogen is contained as a nitrogen source in the culture solution.

したがって、養液栽培の農作物は、土壌栽培に比べ、農作物中に蓄積する硝酸塩の量が多くなりやすい。しかし、硝酸塩は、シュウ酸などのえぐ味成分増加の原因となる。また、硝酸塩は体内で亜硝酸塩になり、亜硝酸塩は、メトヘモグロビン血症の原因となる可能性がある。さらに亜硝酸塩がアミン類と反応すると、発がん性の高いニトロソアミンが生じる。これらの理由から、農作物中に含まれる硝酸塩の量は、できる限り少ないことが望ましい。   Therefore, the amount of nitrate accumulated in the crop is apt to increase in the hydroponically grown crop compared to soil cultivation. However, nitrate causes an increase in savory components such as oxalic acid. Nitrate also becomes nitrite in the body, which can cause methemoglobinemia. Furthermore, when nitrite reacts with amines, nitrosamine with high carcinogenicity is produced. For these reasons, it is desirable that the amount of nitrate contained in the crop is as small as possible.

特許文献1(特開平6−105625号公報)には、野菜の水耕栽培(養液栽培)において、収穫前の一定期間のうち2日〜数日間は硝酸態窒素を含まない水耕肥料溶液(培養液)を用いることで、野菜に含まれる硝酸塩の量を低下させる方法が開示されている。   Patent Document 1 (Japanese Patent Laid-Open No. 6-105625) discloses a hydroponic fertilizer solution that does not contain nitrate nitrogen for two to several days in a certain period before harvesting in hydroponics (nutriculture) of vegetables. A method of reducing the amount of nitrate contained in vegetables by using (culture medium) is disclosed.

特開平6−105625号公報JP-A-6-105625

しかしながら、養液栽培において、一定期間、硝酸態窒素を含有しない培養液を用いると、農作物の生育量が大幅に減少するという問題点があった。   However, in the hydroponics, there is a problem that the amount of crops grown is greatly reduced when a culture solution containing no nitrate nitrogen is used for a certain period.

本発明は、上記の課題に鑑みてなされたものであり、農作物中に含まれる硝酸塩の量を低減させつつ、農作物を十分に生育させることのできる、養液栽培方法および養液栽培装置を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a hydroponic cultivation method and a hydroponic cultivation apparatus that can sufficiently grow a crop while reducing the amount of nitrate contained in the crop. The purpose is to do.

本発明は、24時間のうちに、農作物に光が照射される明期と、農作物に光が照射されないか、または、農作物に前記明期より光量が少ない光が照射される暗期と、を含む明暗サイクル下で、農作物を養液栽培する、養液栽培方法である。本発明の養液栽培方法では、前記農作物の根を硝酸イオンを含有する第1液に接触させる、第1栽培工程と、前記農作物の根を硝酸イオンを実質的に含まない第2液に接触させる、第2栽培工程と、を含む。そして、前記明期において、前記明期の10%以上の時間、前記第1栽培工程を実施し、前記暗期において、前記暗期の50%以上の時間、前記第2栽培工程を実施する。   The present invention includes a light period in which light is applied to a crop within 24 hours, and a dark period in which light is not applied to the crop, or the light is applied to the crop with less light than the light period. This is a hydroponics method for hydroponically cultivating agricultural crops under a light / dark cycle. In the hydroponic cultivation method of the present invention, the first cultivation step in which the root of the crop is brought into contact with a first liquid containing nitrate ions, and the root of the crop is brought into contact with a second liquid that is substantially free of nitrate ions. A second cultivation step. In the light period, the first cultivation process is performed for 10% or more of the light period, and in the dark period, the second cultivation process is performed for 50% or more of the dark period.

前記第1栽培工程と前記第2栽培工程との間に、さらに、農作物の根域を洗浄する、洗浄工程を含むことが好ましい。   It is preferable that the washing | cleaning process of wash | cleaning the root area of agricultural products is further included between the said 1st cultivation process and the said 2nd cultivation process.

前記第1液は、前記硝酸イオン以外の養分をさらに含むことが好ましい。前記農作物は野菜であることが好ましい。前記野菜は葉菜類であることが好ましい。   It is preferable that the first liquid further includes nutrients other than the nitrate ions. The crop is preferably a vegetable. The vegetable is preferably a leaf vegetable.

また、本発明は、上記の養液栽培方法に用いられる、養液栽培装置であって、前記農作物の根の周囲に前記第1液を供給するための第1液供給装置と、前記農作物の根の周囲に前記第2液を供給するための第2液供給装置と、を備える、養液栽培装置である。   The present invention is also a hydroponic cultivation apparatus used in the above-described hydroponic cultivation method, wherein the first liquid supply apparatus for supplying the first liquid around the root of the agricultural crop, And a second liquid supply device for supplying the second liquid around the roots.

上記養液栽培装置は、前記農作物の根域を洗浄するための洗浄装置を含むことが好ましい。   It is preferable that the said hydroponic cultivation apparatus contains the washing | cleaning apparatus for wash | cleaning the root area of the said crop.

本発明によれば、農作物中に含まれる硝酸塩の量を低減させつつ、農作物を十分に生育させることのできる、養液栽培方法および養液栽培装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the nutrient solution cultivation method and nutrient solution cultivation apparatus which can fully grow a crop can be provided, reducing the quantity of the nitrate contained in a crop.

本発明の養液栽培装置の一例を示す模式図である。It is a schematic diagram which shows an example of the hydroponic cultivation apparatus of this invention. 本発明の養液栽培方法の一例を説明するためのフロー図である。It is a flowchart for demonstrating an example of the hydroponic cultivation method of this invention. レタス(品種:グリーンウェーブ)についての試験例1の測定結果を示すグラフである。It is a graph which shows the measurement result of the test example 1 about lettuce (variety: green wave). レタス(品種:クランチ)についての試験例1の測定結果を示すグラフである。It is a graph which shows the measurement result of the test example 1 about lettuce (variety: crunch). レタス(品種:グリーンウェーブ)についての試験例1の測定結果について、硝酸イオン含量とグルコース含量の関係を示すグラフである。It is a graph which shows the relationship between nitrate ion content and glucose content about the measurement result of the test example 1 about lettuce (variety: green wave). レタス(品種:クランチ)についての試験例1の測定結果について、硝酸イオン含量とグルコース含量の関係を示すグラフである。It is a graph which shows the relationship between a nitrate ion content and a glucose content about the measurement result of the test example 1 about lettuce (variety: crunch).

以下、本発明の実施形態について具体的に詳細に説明するが、本発明はこれらに限定されるものではない。なお、図面において、同一の参照符号は、同一部分または相当部分を表す。   Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited thereto. In the drawings, the same reference numerals represent the same or corresponding parts.

本発明の養液栽培方法は、土を用いずに、肥料(養分)を水に溶かした液(培養液)によって農作物を栽培する栽培方法である。養液栽培の長所としては、土壌病害や連作障害を回避できること、耕起、畝立、土寄せ、施肥、除草などの土耕に必要な作業が省略できること、給液や施肥管理の自動化が可能であること、肥料や水の利用効率が向上すること、などが挙げられる。   The nutrient solution cultivation method of the present invention is a cultivation method for cultivating agricultural crops using a solution (culture solution) obtained by dissolving fertilizer (nutrient) in water without using soil. The advantages of hydroponics include the ability to avoid soil diseases and continuous cropping failures, the omission of work necessary for soil cultivation such as plowing, anchoring, soil laying, fertilization and weeding, and automation of liquid supply and fertilization management. There are some things, such as improving the use efficiency of fertilizer and water.

培養液は、植物が成長するために必要な養分(必須元素)を吸収に適した濃度で水に溶かしてなる液である。栽培する農作物の種類、目標とする農作物の品質に応じて様々な種類の培養液を用いることができる。   The culture solution is a solution obtained by dissolving nutrients (essential elements) necessary for plant growth in water at a concentration suitable for absorption. Various types of culture solutions can be used according to the type of crop to be cultivated and the quality of the target crop.

培養液に含まれる養分は、基本的にはイオンの状態で存在し、これが農作物に吸収される。養分としては、比較的多量に必要な養分(元素)である、窒素、リン、カリウム、カルシウム、マグネシウムおよび硫黄が挙げられる。このうち、窒素は、培養液中において主に硝酸イオン(硝酸態窒素)として含まれている。また、微量でよい養分(微量元素)としては、塩素、ホウ素、鉄、マンガン、亜鉛、銅、モリブデンなどが挙げられる。   Nutrients contained in the culture solution basically exist in an ionic state, and this is absorbed by the crops. Examples of nutrients include nitrogen, phosphorus, potassium, calcium, magnesium and sulfur, which are nutrients (elements) required in relatively large amounts. Among these, nitrogen is mainly contained as nitrate ions (nitrate nitrogen) in the culture solution. Further, examples of nutrients (trace elements) that may be contained in a trace amount include chlorine, boron, iron, manganese, zinc, copper, and molybdenum.

本実施形態において、「農作物」は、例えば、野菜、果物、穀類、豆類、茶、花などであり、好ましくは野菜である。野菜は、好ましくは葉菜類である。   In the present embodiment, the “agricultural crops” are, for example, vegetables, fruits, cereals, beans, tea, flowers, etc., preferably vegetables. The vegetable is preferably a leaf vegetable.

葉菜類とは、主に葉の部分を食用とする野菜のことであり、葉菜、葉物(はもの)などとも呼ばれる。従来の養液栽培方法で栽培された野菜のうち、特に葉菜類について可食部の硝酸塩の含有量が多くなる傾向があった。   Leafy vegetables are vegetables that mainly use the leaf portion as an edible material, and are also called leafy vegetables, leafy products, and the like. Among the vegetables cultivated by the conventional hydroponics method, there was a tendency that the content of nitrate in the edible part increased especially for leaf vegetables.

なお、特許文献1に開示された養液栽培方法は、具体的にはホウレンソウ(非結球性葉菜類)についての適用例しか開示していない。そして、本発明者らの検討により、特許文献1に開示された養液栽培方法をレタス(非結球性)に適用した場合、硝酸塩の含有量を低減できるが、生育が著しく抑制されることが確認されている。   In addition, the nutrient solution cultivation method disclosed in Patent Document 1 specifically discloses only an application example for spinach (non-headed leaf vegetables). And by examination of the present inventors, when the hydroponic cultivation method disclosed in Patent Document 1 is applied to lettuce (non-ballistic), the content of nitrate can be reduced, but growth is significantly suppressed. It has been confirmed.

本発明の養液栽培方法では、24時間のうちに明期と暗期とを含む明暗サイクル下で、農作物を養液栽培する。   In the hydroponic cultivation method of the present invention, a crop is hydroponically cultivated under a light / dark cycle including a light period and a dark period within 24 hours.

明期は、農作物に光が照射される期間(時間)である。明期に農作物に照射される光の強度は、好ましくは5μmol/m/秒以上であり、より好ましくは50〜2000μmol/m/秒であり、さらに好ましくは100〜200μmol/m/秒である。 The light period is a period (hour) during which light is applied to the crop. The intensity of light applied to the crops in the light period is preferably 5 μmol / m 2 / sec or more, more preferably 50 to 2000 μmol / m 2 / sec, and even more preferably 100 to 200 μmol / m 2 / sec. It is.

明期においては、このような光が照射されることによる何らかの影響により、農作物に含まれる硝酸還元酵素の活性が高まることが知られている。このため、農作物が硝酸態窒素を吸収しても硝酸イオンが還元され、硝酸イオンの蓄積が抑制されると考えられる。なお、硝酸イオンの還元によって生じた亜硝酸イオンは、さらに亜硝酸還元酵素によって還元されて、最終的にアンモニウムイオンとなるが、硝酸イオンからアンモニウムイオンに至る硝酸還元反応の律速段階は、硝酸イオンから亜硝酸イオンへの還元反応である。   In the light period, it is known that the activity of nitrate reductase contained in agricultural crops increases due to some influence caused by such light irradiation. For this reason, even if agricultural products absorb nitrate nitrogen, nitrate ions are reduced and accumulation of nitrate ions is considered to be suppressed. The nitrite ions generated by the reduction of nitrate ions are further reduced by nitrite reductase to finally become ammonium ions. The rate-limiting step of the nitrate reduction reaction from nitrate ions to ammonium ions is the nitrate ion. It is a reduction reaction from nitrite ions.

なお、光は、光源6(図1参照)から照射される光であってもよく、太陽光であってもよい。光源としては、例えば、蛍光灯、HID(High Intensity Discharge)ランプ、LED(発光ダイオード)などを好適に用いることができる。   In addition, the light irradiated from the light source 6 (refer FIG. 1) may be sufficient, and sunlight may be sufficient as light. As the light source, for example, a fluorescent lamp, an HID (High Intensity Discharge) lamp, an LED (light emitting diode), or the like can be suitably used.

一方、暗期は、農作物に光が照射されないか、または、農作物に明期より光量が少ない光が照射される期間である。暗期においては、硝酸還元酵素の活性が低くなるため、農作物が硝酸態窒素を吸収すると硝酸塩が蓄積され易いと考えられる。   On the other hand, the dark period is a period in which the crop is not irradiated with light or the crop is irradiated with light having a light amount smaller than that in the light period. In the dark period, nitrate reductase activity is low, so it is considered that nitrates are likely to accumulate when crops absorb nitrate nitrogen.

明期および暗期はいずれも3時間以上であることが好ましく、より好ましくは6時間以上であり、さらに好ましくは9時間以上である。   Both the light period and the dark period are preferably 3 hours or more, more preferably 6 hours or more, and further preferably 9 hours or more.

なお、明暗サイクルは、特定の明期および暗期からなる1種の24時間サイクルの繰り返しであってもよく、特定の明期および暗期からなる複数種の24時間サイクルを組み合わせてもよい。24時間サイクルに含まれる明期および暗期は、通常、各々1回ずつであるが、複数回含まれていてもよい。   The light-dark cycle may be a repetition of one type of 24-hour cycle consisting of a specific light period and dark period, or a combination of a plurality of types of 24-hour cycles consisting of a specific light period and dark period. The light period and dark period included in the 24-hour cycle are usually once each, but may be included multiple times.

図1は、本発明の養液栽培装置の一例を示す模式図である。また、図2は、本発明の養液栽培方法の一例を説明するためのフロー図である。以下、図1および図2を参照して、本実施形態の養液栽培方法および養液栽培装置の一例について説明する。   FIG. 1 is a schematic view showing an example of the hydroponic cultivation apparatus of the present invention. Moreover, FIG. 2 is a flowchart for demonstrating an example of the hydroponics method of this invention. Hereinafter, with reference to FIG. 1 and FIG. 2, an example of the nourishing culture method and the nourishing culture apparatus of this embodiment is demonstrated.

本実施形態の栽培方法は、第1栽培工程(S10)と、洗浄工程(S30)と、第2栽培工程(S50)とを含む。   The cultivation method of this embodiment includes a first cultivation process (S10), a washing process (S30), and a second cultivation process (S50).

[第1栽培工程(S10)]
第1栽培工程(S10)では、農作物の根を硝酸イオンを含有する第1液に接触させる。
[First cultivation step (S10)]
In a 1st cultivation process (S10), the root of agricultural products is made to contact the 1st liquid containing nitrate ion.

具体的には、図1を参照して、バルブ21,31を開き(バルブ22,23,32,33は閉じた状態)、第1ポンプ41を駆動して、第1液を貯留する第1タンク51内の第1液をバルブ21を介して、養液栽培用の栽培ベッド1の一方端に供給する。   Specifically, referring to FIG. 1, the valves 21, 31 are opened (the valves 22, 23, 32, 33 are closed), and the first pump 41 is driven to store the first liquid. The first liquid in the tank 51 is supplied to one end of the cultivation bed 1 for hydroponics via the valve 21.

栽培ベッド1においては、例えば、バルブ23側からその反対側の端部に向かって低くなる傾斜を有したトレー、または水平なトレー等の容器に、農作物の根などを支持するための支持体が、トレーの底面と間隔を空けて設置されている。支持体としては、例えば、定植用の複数の孔を有する樹脂板、ウレタンマット等が挙げられる。   In the cultivation bed 1, for example, a support for supporting the roots of crops or the like in a tray such as a tray having a lower slope from the valve 23 side toward the opposite end or a horizontal tray is provided. It is installed at a distance from the bottom of the tray. Examples of the support include a resin plate having a plurality of holes for planting and a urethane mat.

このような構成により、第1液は、農作物の根と接触するように栽培ベッド1の全体を通過して、バルブ31を介して第1タンク51に戻る。   With such a configuration, the first liquid passes through the entire cultivation bed 1 so as to come into contact with the roots of the crops, and returns to the first tank 51 through the valve 31.

そして、第1栽培工程(S10)は、上記明期の10%以上、好ましくは20%以上、より好ましくは30%以上、さらに好ましくは50%以上の時間実施される。なお、第1栽培工程を明期の100%の時間実施してもよい。このように、明期において、硝酸イオン(硝酸態窒素)を農作物に吸収させることで、硝酸還元酵素の活性化により硝酸が還元され、硝酸塩の蓄積が抑制され、かつ、農作物が硝酸態窒素を吸収することにより農作物の成長も許容範囲内に維持される。   And the 1st cultivation process (S10) is carried out for 10% or more of the above-mentioned light period, preferably 20% or more, more preferably 30% or more, and still more preferably 50% or more. The first cultivation process may be performed for 100% of the light period. In this way, in the light period, nitrate ions (nitrate nitrogen) are absorbed by the crops, nitrate is reduced by the activation of nitrate reductase, the accumulation of nitrate is suppressed, and the crops absorb nitrate nitrogen. By absorbing it, the growth of crops is maintained within an acceptable range.

第1栽培工程(S10)の後、第1液を供給するための第1ポンプ41(第1液供給装置)を停止し(S20)、次の洗浄工程(S30)に移る。   After the 1st cultivation process (S10), the 1st pump 41 (1st liquid supply device) for supplying the 1st liquid is stopped (S20), and it moves to the following washing process (S30).

[洗浄工程(S30)]
洗浄工程(S30)では、農作物の根域(根と、栽培ベッド1を含む根の周囲)を洗浄する。
[Washing step (S30)]
In the washing step (S30), the root area of the crop (around the root and the root including the cultivation bed 1) is washed.

具体的には、バルブ23,33を開いて(バルブ21,22,31,32は閉じた状態)、除塩素水などの水をバルブ23を介して養液栽培用の栽培ベッド1の一方端に供給する。これにより、水は、農作物の根域(根および栽培ベッド1)を洗浄しながら栽培ベッド1の全体を通過して、バルブ33を介して廃水される。   Specifically, the valves 23 and 33 are opened (the valves 21, 22, 31, and 32 are closed), and water such as dechlorinated water is supplied to the one end of the cultivation bed 1 for hydroponics via the valve 23. To supply. As a result, the water passes through the entire cultivation bed 1 while washing the root area (root and cultivation bed 1) of the crop and is drained through the valve 33.

このようにして洗浄工程(S30)を実施することで、次の第2栽培工程(S50)で農作物の根域に硝酸イオンが残留しないため、第2栽培工程(S50)において、硝酸を含まない第2液を循環させることによる効果を有効に発揮させることができる。   By carrying out the washing step (S30) in this way, since nitrate ions do not remain in the root area of the crop in the next second cultivation step (S50), no nitric acid is contained in the second cultivation step (S50). The effect of circulating the second liquid can be effectively exhibited.

洗浄工程(S30)は必須の工程ではないが、洗浄工程(S30)を実施しなければ、次の第2栽培工程(S50)で第2液を循環させる場合、第2液に第1液中の硝酸イオンが含まれた状態で循環し続けることとなり、所望の効果が得られない可能性がある。   The washing step (S30) is not an essential step, but if the second step is circulated in the next second cultivation step (S50) unless the washing step (S30) is carried out, the second liquor is in the first liquor. Therefore, there is a possibility that the desired effect cannot be obtained.

[第2栽培工程(S50)]
第2栽培工程(S50)では、硝酸イオンを実質的に含まない第2液に接触させる。
[Second cultivation step (S50)]
In a 2nd cultivation process (S50), it is made to contact with the 2nd liquid which does not contain nitrate ion substantially.

具体的には、バルブ22,32を開き(バルブ21,23,31,33は閉じた状態)、第2ポンプ42を駆動して、第2液を貯留する第2タンク52内の第2液をバルブ22を介して、養液栽培用の栽培ベッド1の一方端に供給する。これにより、第1栽培工程と同様に、第2液は、農作物の根と接触するように栽培ベッド1の全体を通過して、バルブ32を介して第2タンク52に戻る。   Specifically, the valves 22 and 32 are opened (the valves 21, 23, 31, and 33 are closed), and the second pump 42 is driven to store the second liquid in the second tank 52 that stores the second liquid. Is supplied to one end of the cultivation bed 1 for hydroponics via a valve 22. Thereby, like the 1st cultivation process, the 2nd liquid passes the whole cultivation bed 1 so that it may contact with the root of agricultural products, and returns to the 2nd tank 52 via valve 32.

そして、第2栽培工程(S50)は、上記暗期の50%以上、好ましくは70%以上、より好ましくは90%以上の時間実施される。なお、第2栽培工程を明期の100%の時間実施してもよい。このように、硝酸還元酵素が活性化されず、硝酸が還元され難い暗期において、硝酸イオン(硝酸態窒素)を農作物に吸収させないようにすることで、硝酸塩の蓄積が抑制される。   And a 2nd cultivation process (S50) is implemented 50% or more of the said dark period, Preferably it is 70% or more, More preferably, it is 90% or more of time. The second cultivation process may be performed for 100% of the light period. Thus, nitrate accumulation is suppressed by preventing nitrate ions (nitrate nitrogen) from being absorbed by crops in the dark period when nitrate reductase is not activated and nitric acid is difficult to be reduced.

第2栽培工程(S50)の後、第2液を供給するための第2ポンプ42(第2液供給装置)を停止し(S60)、栽培を継続する場合は、第1洗浄工程(S10)に戻る。   After the 2nd cultivation process (S50), the 2nd pump 42 (2nd liquid supply device) for supplying the 2nd liquid is stopped (S60), and when continuing cultivation, the 1st washing process (S10) Return to.

なお、上記の実施形態において、培養液の供給方式は、培養液を栽培ベッドとタンクとの間で循環させる循環式であるが、非循環式であってもよい。養分の利用効率の向上や環境保全の面からは、培養液の供給方式は循環式であることが好ましい。   In addition, in said embodiment, although the supply system of a culture solution is the circulation type which circulates a culture solution between a cultivation bed and a tank, a non-circulation type may be sufficient. From the viewpoint of improving the utilization efficiency of nutrients and environmental conservation, it is preferable that the culture solution supply system is a circulation type.

非循環式としては、作物に吸収されなかった余剰培養液をそのまま廃棄するかけ流し式が挙げられ、固形培地耕などにおいて用いられることが多い。かけ流し式の場合、特に上記の洗浄工程(S30)は実施しなくてもよい。第2液が栽培ベッド上を所定量流れれば、第1液中の硝酸イオンは排除されるからである。   As the non-circulating type, there is a pouring type in which surplus culture solution that has not been absorbed by the crop is discarded as it is, and is often used in solid medium cultivation or the like. In the case of the flow-through type, the above-described cleaning step (S30) may not be particularly performed. This is because nitrate ions in the first liquid are eliminated if a predetermined amount of the second liquid flows on the cultivation bed.

上述した本実施形態の養液栽培方法によれば、硝酸還元活性が高い明期に硝酸を含む第1液で栽培を行い、硝酸還元活性が低下する暗期に硝酸を含まない第2液で栽培を行うことにより、農作物中に含まれる硝酸塩の量を低減させつつ、農作物を十分に生育させることができる。   According to the nourishing liquid cultivation method of this embodiment mentioned above, it grows with the 1st liquid which contains nitric acid in the light period when nitrate reduction activity is high, and it is 2nd liquid which does not contain nitric acid in the dark period when nitrate reduction activity falls. By performing cultivation, the crop can be sufficiently grown while reducing the amount of nitrate contained in the crop.

また、本実施形態の養液栽培方法によれば、農作物中の糖分(グルコース、フルクトース、スクロースなど)の含有量を増加させることも可能である。   In addition, according to the hydroponic cultivation method of the present embodiment, it is possible to increase the content of sugar (such as glucose, fructose, sucrose) in agricultural products.

なお、1日を明期と暗期に分け、明期と暗期に応じて日内で硝酸態窒素の投与量を調整する方法は、これまで知られていなかった。   Heretofore, a method for dividing one day into a light period and a dark period and adjusting the dosage of nitrate nitrogen within the day according to the light period and the dark period has not been known.

以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.

(実施例1)
実施例1では、2種の結球性葉菜類(レタス)について、上記実施形態の一例である養液栽培を行った。レタスとしては、リーフレタスである「グリーンウェーブ」(タキイ種苗(株))、および、フリル系レタスである「クランチ」(ツルタのタネ(株))の2品種を用いた。
Example 1
In Example 1, the hydroponics which is an example of the said embodiment was performed about 2 types of bulbous leaf vegetables (lettuce). As the lettuce, two varieties of “green wave” (Takii Seed and Seed Co., Ltd.) that is leaf lettuce and “crunch” (Turuta Seed Co., Ltd.) that is a frilled lettuce were used.

(1)養液栽培装置
閉鎖型人工気象器(LPH−220SP−S,日本医化器械製作所)を栽培室として使用した。また、人工気象器内には、CO制御装置(SF6200,サイエンス堺電子(株))を設置した。したがって、人工気象器内は、生育気温、日長(明期の長さ)およびCO濃度を制御することが可能である。
(1) Hydroponic cultivation apparatus A closed-type artificial meteorograph (LPH-220SP-S, Nippon Medical Instrument Co., Ltd.) was used as a cultivation room. In addition, a CO 2 control device (SF6200, Science Sakai Electronics Co., Ltd.) was installed in the artificial weather device. Therefore, it is possible to control the growth temperature, the day length (the length of the light period), and the CO 2 concentration in the artificial weather device.

人口気象室内には上下2段の栽培棚が設置されており、それぞれに2つの堪液型の水耕装置(栽培ベッド)を配置した。栽培ベッドとしては、幅16cm×奥行25.5cm×高さ15cmの光を通さない水平に配置されたプラスチックトレイの上面に、プラスチック板(縦28cm×横17cm)を設けてなる装置を用いた。プラスチック板には、直径1.5cmの孔(定植用)4つと、通気用の孔が設けられている。なお、各栽培ベッドにエアーポンプを用いて通気した。   There are two upper and lower cultivation shelves in the artificial meteorological chamber, and two submerged hydroponic devices (cultivation beds) were placed in each. As the cultivation bed, an apparatus was used in which a plastic plate (vertical 28 cm × horizontal 17 cm) was provided on the upper surface of a horizontally disposed plastic tray having a width of 16 cm × depth of 25.5 cm × height of 15 cm. The plastic plate is provided with four holes (for planting) having a diameter of 1.5 cm and holes for ventilation. Each cultivation bed was ventilated using an air pump.

光源として、三波長型昼白色蛍光灯を用い、栽培面での平均光合成有効光量子束密度(PPFD)は、上段300μmol/m/秒、下段250μmol/m/秒であった。 As a light source, using a three-wavelength type daylight white fluorescent lamp, the average photosynthetic photon flux density of cultivation surface (PPFD) is the upper 300 [mu] mol / m 2 / sec, it was lower 250μmol / m 2 / sec.

(2)養液栽培方法
上記の養液栽培装置(人工気象器および栽培ベッド)を用いて、人工気象器内の生育気温が23℃となり、CO濃度が700ppmとなるように制御して、蛍光灯の点灯時間(明期)を12時間(9:00〜21:00)に設定して、リーフレタス(品種:クランチ(下段)およびグリーンウェーブ(上段))をレタスの育苗および定植を行った。
(2) Hydroponic cultivation method Using the above-mentioned hydroponic cultivation apparatus (artificial meteorological device and cultivation bed), the growth temperature in the artificial meteorological device is 23 ° C, and the CO 2 concentration is controlled to 700 ppm, Fluorescent lamp lighting time (light period) is set to 12 hours (9: 00 to 21:00), lettuce seedling and planting of lettuce (variety: crunch (lower) and green wave (upper)) It was.

すなわち、人工気象器内で、各品種のレタスの種子を50粒ずつ、吸水させた水耕用ウレタンマットに播種した。発芽後(播種から3〜4日後)から培養液を施与した.播種1週間後に、湛液型の水耕装置に移植し、さらに1週間育苗した。   That is, 50 seeds of each kind of lettuce were sown in a hydroponic urethane mat soaked in an artificial meteorograph. The culture solution was applied after germination (3-4 days after sowing). One week after sowing, the seedling was transplanted to a submerged hydroponic device and raised for another week.

培養液としては、基本培養液を園試処方1/2単位としたものを用いた。培養液中の多量要素の組成は、表1に示す通りであり、硝酸態窒素(硝酸イオン:NO )を含んでいる。なお、培養液には、微量要素としてOATハウス肥料5号を0.05g/Lの割合で添加した。 As the culture solution, a basic culture solution with 1/2 unit of garden trial formulation was used. The composition of the large amount element in the culture solution is as shown in Table 1 and contains nitrate nitrogen (nitrate ion: NO 3 ). In addition, OAT house fertilizer No. 5 was added to the culture solution at a rate of 0.05 g / L as a trace element.

Figure 2018033368
Figure 2018033368

このようにして2週間育苗した後に、各品種のレタスを、3つの栽培ベッドに4株ずつ(各人口気象器内に計16株づつ)定植した。   After raising the seedlings for 2 weeks in this way, lettuce of each varieties was planted 4 by 3 in 3 cultivation beds (a total of 16 in each artificial weather instrument).

定植から1週間経過後から、明期(9:00〜21:00)に上記と同様の培養液で満たされた栽培ベッド(水耕装置)で栽培し、暗期(21:00〜翌9:00)に水(除塩素水)で満たされた栽培ベッドで栽培できるように、培養液と水の交換を毎日行って、2週間栽培した。培養液と水を交換する際は、根域を洗浄用の水で洗い流し、よく水をきってから栽培を再開した。すなわち、洗浄工程に要した時間を除き、第1栽培工程を明期(12時間)のほぼ100%の時間実施し、第2栽培工程を暗期(12時間)のほぼ100%の時間実施した。なお、この2週間において、1週間経過時に培養液を新しいものに交換した。この2週間の栽培後、リーフレタスの収穫を行った。   One week after planting, the plant is cultivated in a cultivation bed (hydroponic device) filled with the same culture solution in the light period (9:00 to 21:00) and dark (21:00 to the next 9 The culture solution was exchanged with water every day so that it could be cultivated in a cultivation bed filled with water (dechlorinated water) at 0:00) and cultivated for 2 weeks. When exchanging the culture solution and water, the root area was washed away with washing water, and the cultivation was resumed after draining water well. That is, except for the time required for the washing process, the first cultivation process was carried out for almost 100% of the light period (12 hours), and the second cultivation process was carried out for almost 100% of the dark period (12 hours). . In these two weeks, the culture medium was replaced with a new one when one week passed. After two weeks of cultivation, leaf lettuce was harvested.

(比較例1)
比較例1では、定植後の2週間の栽培において、連続して実施例1と同様の培養液のみで栽培した。それ以外の点は、基本的に実施例1と同様にして2種のレタスの養液栽培を行った。
(Comparative Example 1)
In Comparative Example 1, in the cultivation for 2 weeks after the planting, the cultivation was continued using only the same culture solution as in Example 1. Except for that point, two types of lettuce were cultivated in the same manner as in Example 1.

(比較例2)
比較例2では、定植後の2週間の栽培において、明期(9:00〜21:00)に水(除塩素水)で満たされた栽培ベッドで栽培し、暗期(21:00〜翌9:00)に実施例1と同様の培養液で満たされた栽培ベッドで栽培できるように、培養液と水の交換を毎日行った。それ以外の点は、基本的に実施例1と同様にして2種のレタスの養液栽培を行った。
(Comparative Example 2)
In Comparative Example 2, in the cultivation for 2 weeks after planting, it was cultivated in a cultivation bed filled with water (dechlorinated water) in the light period (9: 00 to 21:00), and the dark period (21: 00 to the next) At 9:00), the culture solution and water were exchanged every day so that the cultivation bed filled with the same culture solution as in Example 1 could be cultivated. Except for that point, two types of lettuce were cultivated in the same manner as in Example 1.

[試験例1]
上記の実施例1、比較例1および比較例2で収穫されたレタス(「グリーンウェーブ」および「クランチ」)について、収穫後すぐに、地上部生体重、葉中硝酸イオン含量および葉中グルコース含量を測定した。
[Test Example 1]
About lettuce ("green wave" and "crunch") harvested in Example 1, Comparative Example 1 and Comparative Example 2 above, immediately after harvesting, the above-ground living weight, leaf nitrate ion content and leaf glucose content Was measured.

(1)地上部生体重の測定
収穫されたリーフレタスを地上部と根に分けて、地上部の生体重を測定した。
(1) Measurement of above-ground living weight The harvested leaf lettuce was divided into the above-ground portion and the root, and the above-ground living weight was measured.

地上部生体重の測定結果(平均値:n=3)を、グリーンウェーブについて図3(a)に示し、クランチについて図4(a)に示す。   The measurement results (average value: n = 3) of the above-ground living body weight are shown in FIG. 3A for green waves and in FIG. 4A for crunches.

(2)葉中硝酸イオン含量の測定
収穫されたリーフレタスの半分程度に4倍量の水を加え、ミキサーですりつぶし、ガーゼに包んで搾り、汁液を得た。得られた汁液を10倍に希釈し、希釈液の硝酸濃度を小型反射式分光光度計(RQフレックス2,Merck KGaA)を用いて測定し、葉中硝酸イオン含量を算出した。
(2) Measurement of nitrate ion content in leaf Four times the amount of water was added to about half of the harvested leaf lettuce, ground with a mixer, wrapped in gauze and squeezed to obtain a juice. The obtained juice was diluted 10-fold, and the nitric acid concentration of the diluted solution was measured using a small reflection spectrophotometer (RQ Flex 2, Merck KGaA), and the nitrate ion content in the leaf was calculated.

葉中硝酸イオン含量の測定結果(平均値:n=3)を、グリーンウェーブについて図3(b)に示し、クランチについて図4(b)に示す。   The measurement results (average value: n = 3) of the nitrate ion content in the leaves are shown in FIG. 3B for green waves and in FIG. 4B for crunches.

(3)葉中グルコース含量の測定
0ppmから1000ppmまで100ppmごとのグルコース溶液を調整した。グルコース溶液1mLに酵素液3mL(グルコースキット グルコースCII−テストワコー,和光純薬(株))を混合し、37℃に設定した恒温槽で5分間反応させた後、505nmの吸光度を測定し、検量線を作成した。その結果、250ppm付近まで測定可能と判断し、0ppm〜200ppmの検量線を用いた。
(3) Measurement of glucose content in leaves A glucose solution was prepared every 100 ppm from 0 ppm to 1000 ppm. 3 mL of enzyme solution (glucose kit Glucose CII-Test Wako, Wako Pure Chemical Industries, Ltd.) was mixed with 1 mL of glucose solution, reacted for 5 minutes in a thermostatic chamber set at 37 ° C., and then the absorbance at 505 nm was measured and calibrated. Created a line. As a result, it was judged that measurement was possible up to about 250 ppm, and a calibration curve of 0 ppm to 200 ppm was used.

収穫したレタスの1/4程度を細かく刻み、部位が均一になるようにかき混ぜ、サンプル瓶に6g採取した。4倍量の99%エタノールを加え、ブレンダーで磨砕した。得られた抽出液に対して、遠心分離機を用い15000Gで5分間の遠心分離を行った。遠心沈殿管に上澄み1mLを採取し、40℃で3時間遠心濃縮した。得られたサンプルに水10mLを加え、再溶解し、試料とした。   About 1/4 of the harvested lettuce was finely chopped, stirred so that the site was uniform, and 6 g was collected in a sample bottle. Four times the amount of 99% ethanol was added and ground with a blender. The obtained extract was centrifuged at 15000 G for 5 minutes using a centrifuge. 1 mL of the supernatant was collected in a centrifugal sedimentation tube, and concentrated by centrifugation at 40 ° C. for 3 hours. 10 mL of water was added to the obtained sample and redissolved to prepare a sample.

試料0.5mLに酢酸バッファー0.5mLを加えた混合液を調製し、37℃で5分間保持した。その後、混合液1mLに酵素液3mL(グルコースキット:「グルコースCII−テストワコー」,和光純薬(株))を加えて混合し、酵素反応液を調製した。酵素反応液を37℃に設定した恒温槽で5分間反応させた後、該酵素反応液について505nmの吸光度を測定した。吸光度の測定値を検量線で得られた式に代入し、葉中グルコース含量を算出した。   A mixed solution was prepared by adding 0.5 mL of acetate buffer to 0.5 mL of the sample, and maintained at 37 ° C. for 5 minutes. Thereafter, 3 mL of enzyme solution (glucose kit: “glucose CII-Test Wako”, Wako Pure Chemical Industries, Ltd.) was added to 1 mL of the mixed solution and mixed to prepare an enzyme reaction solution. The enzyme reaction solution was reacted for 5 minutes in a thermostatic bath set at 37 ° C., and then the absorbance at 505 nm was measured for the enzyme reaction solution. The measured value of absorbance was substituted into the equation obtained from the calibration curve, and the glucose content in the leaf was calculated.

葉中グルコース含量の測定結果(平均値:n=3)を、グリーンウェーブについて図3(c)に示し、クランチについて図4(c)に示す。   The measurement results (average value: n = 3) of the glucose content in the leaves are shown in FIG. 3 (c) for green waves and in FIG. 4 (c) for crunches.

(4) 考察
図3(a)および(b)、並びに、図4(a)および(b)に示される地上部生体重および葉中硝酸イオン含量の測定結果から、硝酸イオンを含む培養液を常に循環させた比較例1に対して、暗期に培養液を水に切り替えた実施例1では、葉中硝酸イオン含量が低減することが分かる。
(4) Discussion From the results of measurement of the above-ground living weight and the nitrate ion content in leaves shown in FIGS. 3 (a) and 3 (b) and FIGS. 4 (a) and 4 (b), a culture solution containing nitrate ions is obtained. It can be seen that the content of nitrate ions in the leaf is reduced in Example 1 in which the culture solution is switched to water in the dark period, as compared to Comparative Example 1 which was constantly circulated.

また、明期に培養液を水に切り替えた比較例2よりも、暗期に培養液を水に切り替えた実施例1の方が、葉中硝酸イオン含量が低減することが分かる。この結果から、農作物が硝酸イオンに接触している時間(農作物に接触する硝酸イオンの量)が同じであっても、暗期に培養液を水に切り替える方が葉中硝酸イオン含量を低減できることが分かる。   Moreover, it turns out that the direction of Example 1 which switched the culture solution to water in the dark period reduces the nitrate ion content in a leaf compared with the comparative example 2 which switched the culture solution to water in the light period. From this result, even if the time when the crops are in contact with nitrate ions (the amount of nitrate ions in contact with the crops) is the same, it is possible to reduce the nitrate ion content in the leaves by switching the culture medium to water during the dark period. I understand.

さらに、図3(c)および図4(c)に示される葉中グルコース含量の測定結果から、実施例1では、比較例1および比較例2よりも、葉中グルコース含量が増加することが分かる。   Further, from the measurement results of the leaf glucose content shown in FIG. 3C and FIG. 4C, it can be seen that the leaf glucose content increases in Example 1 as compared to Comparative Example 1 and Comparative Example 2. .

また、図5および図6は、グリーンウェーブおよびクランチの各々についての試験例1の測定結果(n=3)について、硝酸イオン含量とグルコース含量の関係を示すグラフである。図5および図6に示されるように、比較例1および実施例1のデータに基づく回帰直線の傾きと、比較例1および比較例2のデータに基づく回帰直線の傾きと、を比較すると、グリーンウェーブおよびクランチのいずれの場合も、前者(実施例1)の方が後者(比較例2)よりも、硝酸イオン含量の低下に対するグルコース含量の増加率が大きいことが分かる。   5 and 6 are graphs showing the relationship between the nitrate ion content and the glucose content for the measurement results of Test Example 1 (n = 3) for each of the green wave and the crunch. As shown in FIGS. 5 and 6, when the slope of the regression line based on the data of Comparative Example 1 and Example 1 is compared with the slope of the regression line based on the data of Comparative Example 1 and Comparative Example 2, In both cases of wave and crunch, it can be seen that the increase rate of the glucose content with respect to the decrease of the nitrate ion content is larger in the former (Example 1) than in the latter (Comparative Example 2).

したがって、明期に培養液を水に切り替えた比較例2よりも、暗期に培養液を水に切り替えた実施例1の方が、硝酸イオン含量の低減量に比して、より効果的にグルコース含量を増加させることができると考えられる。   Therefore, compared to Comparative Example 2 in which the culture solution was switched to water in the light period, Example 1 in which the culture solution was switched to water in the dark period was more effective than the reduction amount of the nitrate ion content. It is believed that the glucose content can be increased.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 栽培ベッド、21,22,23 供給バルブ、31,32,33 排出バルブ、41 第1ポンプ、42 第2ポンプ、51 第1タンク、52 第2タンク、6 光源。   1 cultivation bed, 21, 22, 23 supply valve, 31, 32, 33 discharge valve, 41 1st pump, 42 2nd pump, 51 1st tank, 52 2nd tank, 6 light source.

Claims (7)

24時間のうちに、農作物に光が照射される明期と、農作物に光が照射されないか、または、農作物に前記明期より光量が少ない光が照射される暗期と、を含む明暗サイクル下で、農作物を養液栽培する、養液栽培方法であって、
前記農作物の根を硝酸イオンを含有する第1液に接触させる、第1栽培工程と、
前記農作物の根を硝酸イオンを実質的に含まない第2液に接触させる、第2栽培工程と、を含み、
前記明期において、前記明期の10%以上の時間、前記第1栽培工程を実施し、
前記暗期において、前記暗期の50%以上の時間、前記第2栽培工程を実施する、養液栽培方法。
Under a light-dark cycle including a light period in which light is applied to the crop within 24 hours and a dark period in which the light is not applied to the crop or the light is applied to the crop with less light than the light period. A hydroponics method for hydroponically cultivating crops,
A first cultivation step in which the roots of the crop are brought into contact with a first liquid containing nitrate ions;
A second cultivation step of contacting the roots of the crop with a second liquid substantially free of nitrate ions,
In the light period, the first cultivation process is performed for a time of 10% or more of the light period,
In the dark period, the hydroponics method of carrying out the second cultivation step for 50% or more of the dark period.
前記第1栽培工程と前記第2栽培工程との間に、さらに、農作物の根域を洗浄する、洗浄工程を含む、請求項1に記載の養液栽培方法。   The hydroponic cultivation method according to claim 1, further comprising a washing step of washing a root area of the crop between the first cultivation step and the second cultivation step. 前記第1液は、前記硝酸イオン以外の養分をさらに含む、請求項1または2に記載の養液栽培方法。   The hydroponics method according to claim 1 or 2, wherein the first liquid further includes nutrients other than the nitrate ions. 前記農作物は野菜である、請求項1〜3のいずれか1項に記載の養液栽培方法。   The hydroponic cultivation method according to any one of claims 1 to 3, wherein the crop is a vegetable. 前記野菜は葉菜類である、請求項4に記載の養液栽培方法。   The hydroponic cultivation method according to claim 4, wherein the vegetables are leaf vegetables. 請求項1〜5のいずれか1項に記載の養液栽培方法に用いられる、養液栽培装置であって、
前記農作物の根の周囲に前記第1液を供給するための第1液供給装置と、
前記農作物の根の周囲に前記第2液を供給するための第2液供給装置と、を備える、養液栽培装置。
It is a hydroponic cultivation apparatus used for the hydroponic cultivation method of any one of Claims 1-5,
A first liquid supply device for supplying the first liquid around a root of the crop;
A hydroponic cultivation apparatus, comprising: a second liquid supply device for supplying the second liquid around a root of the crop.
前記農作物の根を洗浄するための洗浄装置を含む、請求項6に記載の養液栽培装置。   The hydroponic cultivation apparatus according to claim 6, comprising a cleaning apparatus for cleaning the roots of the crops.
JP2016169695A 2016-08-31 2016-08-31 Hydroponic cultivation method and hydroponic cultivation equipment Active JP6781593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016169695A JP6781593B2 (en) 2016-08-31 2016-08-31 Hydroponic cultivation method and hydroponic cultivation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016169695A JP6781593B2 (en) 2016-08-31 2016-08-31 Hydroponic cultivation method and hydroponic cultivation equipment

Publications (2)

Publication Number Publication Date
JP2018033368A true JP2018033368A (en) 2018-03-08
JP6781593B2 JP6781593B2 (en) 2020-11-04

Family

ID=61564615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016169695A Active JP6781593B2 (en) 2016-08-31 2016-08-31 Hydroponic cultivation method and hydroponic cultivation equipment

Country Status (1)

Country Link
JP (1) JP6781593B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021125328A1 (en) * 2019-12-20 2021-06-24 京セラ株式会社 Vegetable production method and lettuce
JP2021151270A (en) * 2019-12-20 2021-09-30 京セラ株式会社 Method for producing vegetable
JP7369412B1 (en) * 2023-04-25 2023-10-26 オリエンタル白石株式会社 aquaponics system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067047A (en) * 1992-06-26 1994-01-18 Shikoku Sogo Kenkyusho:Kk Hydroponic culture method
JPH06105625A (en) * 1992-09-29 1994-04-19 Shikoku Sogo Kenkyusho:Kk Method for water-culturing vegetable
JPH0856515A (en) * 1994-08-18 1996-03-05 Sandoz Ag Low nitrate lettuce
JPH10290638A (en) * 1997-04-17 1998-11-04 Japan Tobacco Inc Production of spinach for eating in raw by hydroponics
JPH1169920A (en) * 1997-08-28 1999-03-16 Japan Tobacco Inc Production of low-nitric acid leaf vegetable by hydroponic
JP2008061570A (en) * 2006-09-07 2008-03-21 Canyon Biotechnology Co Ltd Vegetable with low nitrate nitrogen, and method and system for cultivating the same
US20080115245A1 (en) * 2006-11-09 2008-05-15 Canyon Biotechnology Co. Ltd. Low nitrate vegetable and its cultivation system and method
WO2010140632A1 (en) * 2009-06-03 2010-12-09 日本山村硝子株式会社 Method for producing high functionality plants in hydroponic cultivation
JP2013111073A (en) * 2011-12-01 2013-06-10 Mitsubishi Electric Plant Engineering Corp Lettuce cultivation system and method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067047A (en) * 1992-06-26 1994-01-18 Shikoku Sogo Kenkyusho:Kk Hydroponic culture method
JPH06105625A (en) * 1992-09-29 1994-04-19 Shikoku Sogo Kenkyusho:Kk Method for water-culturing vegetable
JPH0856515A (en) * 1994-08-18 1996-03-05 Sandoz Ag Low nitrate lettuce
JPH10290638A (en) * 1997-04-17 1998-11-04 Japan Tobacco Inc Production of spinach for eating in raw by hydroponics
JPH1169920A (en) * 1997-08-28 1999-03-16 Japan Tobacco Inc Production of low-nitric acid leaf vegetable by hydroponic
JP2008061570A (en) * 2006-09-07 2008-03-21 Canyon Biotechnology Co Ltd Vegetable with low nitrate nitrogen, and method and system for cultivating the same
US20080115245A1 (en) * 2006-11-09 2008-05-15 Canyon Biotechnology Co. Ltd. Low nitrate vegetable and its cultivation system and method
WO2010140632A1 (en) * 2009-06-03 2010-12-09 日本山村硝子株式会社 Method for producing high functionality plants in hydroponic cultivation
JP2013111073A (en) * 2011-12-01 2013-06-10 Mitsubishi Electric Plant Engineering Corp Lettuce cultivation system and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
壇和弘、大和陽一、今田成雄: "光強度および赤色光/遠赤色光比の違いがコマツナの硝酸イオン濃度および硝酸還元酵素活性に及ぼす影響", 園芸学研究, vol. 4, no. 3, JPN6020037402, 2005, JP, pages 323 - 328, ISSN: 0004360693 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021125328A1 (en) * 2019-12-20 2021-06-24 京セラ株式会社 Vegetable production method and lettuce
JP2021151270A (en) * 2019-12-20 2021-09-30 京セラ株式会社 Method for producing vegetable
JPWO2021125328A1 (en) * 2019-12-20 2021-12-16 京セラ株式会社 Vegetable production method
JP7014936B2 (en) 2019-12-20 2022-02-01 京セラ株式会社 Vegetable production method
US11638405B2 (en) 2019-12-20 2023-05-02 Kyocera Corporation Vegetable production method
JP7369412B1 (en) * 2023-04-25 2023-10-26 オリエンタル白石株式会社 aquaponics system

Also Published As

Publication number Publication date
JP6781593B2 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
KR101231624B1 (en) agreculture apparatus
KR101269814B1 (en) the growing method of hydroponics ginseng and the system
JP3023675B1 (en) Cultivation method of salamander tree
JP2015097515A (en) Hydroponic raising seedling method, and hydroponic culture method
CN106106008A (en) A kind of tree Fructus Vitis viniferae fast seedling-cultivating method
JPWO2017135236A1 (en) Method for breeding salt-tolerant seedling and method for hydroponics plant cultivation
JP6781593B2 (en) Hydroponic cultivation method and hydroponic cultivation equipment
KR0137877B1 (en) The large scale rapid seed potato production by hydroponic culture
CN107821074A (en) A kind of implantation methods for shortening leek breeding time
Özer The effects of different seedling production systems on quality of tomato plantlets.
Li et al. Effect of potassium application on celery growth and cation uptake under different calcium and magnesium levels in substrate culture
CN107509524A (en) It is a kind of to promote the fluffy seed of alkali to sprout neat method and the fluffy implantation methods of alkali
CN104025958A (en) Planting method of organic rice
JP2015181369A (en) Production method of panax ginseng
CN108076941B (en) Planting method for increasing survival rate of oranges
Celik et al. Enhancing germination of kiwifruit seeds with temperature, medium and gibberellic acid
CN110024638A (en) A kind of implantation methods of high-grade rice
CN107616068A (en) A kind of high efficiency, low cost potato virus-free plantlet and seed production technology
CN110698252A (en) Nutrient solution for cruciferous vegetable hydroponics and application
JP2011067172A (en) Water caltrop (trapa japonica) cultivating device
TWI492705B (en) Manufacturing method of plant culture medium
Stoian et al. The influence of the type of substrate on the production of sweet potatoes.
CN109076936A (en) A kind of convenient sowing of bletilla seed and seedling quickly return native breeding method
CN108668748A (en) A kind of implantation methods of peach
Çebi et al. Biometrical and biochemical properties of fruits of mini cucumber plants grown under various irrigation regimes in an unheated greenhouse

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190819

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201016

R150 Certificate of patent or registration of utility model

Ref document number: 6781593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250