JP2008061570A - Vegetable with low nitrate nitrogen, and method and system for cultivating the same - Google Patents

Vegetable with low nitrate nitrogen, and method and system for cultivating the same Download PDF

Info

Publication number
JP2008061570A
JP2008061570A JP2006242680A JP2006242680A JP2008061570A JP 2008061570 A JP2008061570 A JP 2008061570A JP 2006242680 A JP2006242680 A JP 2006242680A JP 2006242680 A JP2006242680 A JP 2006242680A JP 2008061570 A JP2008061570 A JP 2008061570A
Authority
JP
Japan
Prior art keywords
culture solution
nitrate nitrogen
vegetable
vegetables
low nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006242680A
Other languages
Japanese (ja)
Inventor
Jukin Chin
樹錦 陳
Chia-Yu Chen
嘉譽 陳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canyon Biotechnology Co Ltd
Original Assignee
Canyon Biotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canyon Biotechnology Co Ltd filed Critical Canyon Biotechnology Co Ltd
Priority to JP2006242680A priority Critical patent/JP2008061570A/en
Publication of JP2008061570A publication Critical patent/JP2008061570A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02P60/216

Landscapes

  • Hydroponics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide vegetables with low nitrate nitrogen having low content of nitrate nitrogen owing to hydroponics, and free from giving harmful effect to a human body. <P>SOLUTION: A supply and circulation system 1 of culture solution comprises supplying to a perforated hydroponic pipe whose each hole is planted with a plant, from a culture solution supply pipe 21 with a pump 13 through a control valve 111 from a culture solution storage tank 11, and collecting culture solution collected from a culture solution collecting pipe 23 in the culture solution storage tank. Plants are grown by supplying culture solution for a fixed period, collected through stopping supply of culture solution before a harvesting time and cultivated by supplying water from a sprinkling water storage tank. As a result of this, it is possible to consume nitrate nitrogen accumulated in a plant body and lower nitrate nitrogen concentration to ≤450 ppm so as to harvest. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、低硝酸態窒素野菜に関し、特に水耕栽培により生産された硝酸態窒素の含有量が450ppm以下の低硝酸態窒素野菜に関する。   The present invention relates to a low nitrate nitrogen vegetable, and particularly to a low nitrate nitrogen vegetable having a nitrate nitrogen content of 450 ppm or less produced by hydroponics.

硝酸態窒素(NO3−―N)を含有する野菜が人間の健康にとって有害であることは、農業専門家を長期間にわたって悩ましている課題であるが、農業生産者にとっても、有効な解決方法を見付けることができず、技術的な難題となっている。今まで、硝酸態窒素(NO3−―N)の含有量の制御について、考察した著作はほとんどなく、ましてや技術的な進歩など論ずるまでもない。本発明の申請まで、遺伝子組替え技術を利用して、野菜などの農作物の遺伝子や成分を変化させようとする以外に、野菜が含有する有害物質に対して、量的制御を加える実験や考察はほとんどなかった。遺伝子組替え技術を利用して生産された農産物は人体に悪影響を及ぼすのか、遺伝子組替え技術が農業および生態系に及ぼす影響はどのようなものか、発生するであろう予期することができないリスクはどのようなものであるかなど、すべて長期間の観察を経ずして知ることのできない困難な問題である。今のところ、学会および業界では、人々を納得させる論文、データまたは研究などは一切発表されていない。 The fact that vegetables containing nitrate nitrogen (NO 3 --N) are harmful to human health is a problem that has plagued agricultural specialists for a long time, but it is also an effective solution for agricultural producers. This is a technical challenge. Until now, there has been almost no work on the control of the content of nitrate nitrogen (NO 3 --N), and there is no need to discuss technical progress. Until the application of the present invention, in addition to trying to change the genes and components of crops such as vegetables using genetic recombination technology, experiments and considerations that add quantitative control to harmful substances contained in vegetables are There was almost no. What are the agricultural products produced using genetic recombination technology, which have a negative impact on the human body, what is the impact of genetic recombination technology on agriculture and ecosystems, and what are the unforeseen risks that will occur? It is a difficult problem that cannot be known without long-term observation. So far, there are no published papers, data or research that convince people in academic societies and industries.

本発明の「低硝酸態窒素野菜」の栽培および生産は、遺伝子組替え技術やその他の関連技術により硝酸態窒素の検出量を450ppm以下にするのではなく、「水耕栽培装置」および「培養液供給中断栽培法」が野菜に充分な光合成を行なわせた結果によるものである。自然界の法則を利用して、低硝酸態窒素野菜を生産するのである。本発明は、野菜が含有する人体に悪影響を及ぼす有害物質に対して、量的制御を加えるものであって、これまで、本発明と関連性や類似性がある技術、報道または論文は、全くなかった。   Cultivation and production of the “low nitrate nitrogen vegetables” of the present invention does not reduce the detected amount of nitrate nitrogen to 450 ppm or less by genetic recombination technology or other related technologies, but “hydroponic cultivation apparatus” and “culture medium” This is due to the result of the “Suspended Cultivation Method” causing sufficient vegetable photosynthesis. It uses the laws of nature to produce low nitrate nitrogen vegetables. The present invention adds quantitative control to harmful substances that adversely affect the human body contained in vegetables, and so far, no technology, news reports or papers that are relevant or similar to the present invention have been found. There wasn't.

狩猟社会、放牧社会および農耕社会など人類の社会形態は進歩してきたが、ここ二百年においては、産業革命および産業革命に起因する農業革命(緑の革命)により農作物の生産効率は大幅に向上した。農作物の収穫の増加は、多くの人々を飢餓から救い出した。今のところ、農業革命に対する評価は、一般的に利点が欠点を上回っていると考えられるが、農業革命は、過度の土地開発および利用が土壌の劣化を早々に招き、土壌の劣化は大量の化学肥料を使用させ、収穫を改善しようとする一方で効率が悪化した。このような悪循環に陥ると、耕作地の酸化に拍車を掛け、土地の本来の力は完全に失われてしまう。また、従来の農耕は、大量の灌漑用水を消費するが、水資源がますます貴重になる今日において、収穫効率がさらに高い水耕栽培が出現し、現在において、重要な農耕方法の一つとされている。地球の気温は20世紀の僅か百年の間に0.6℃も上昇しており、ある地球温暖化の影響に関するコンピュータシュミレーションでは、今世紀末には3.3℃上昇すると試算され、南極および北極の氷が溶け出し、海面を上昇させ、沿海の農業地を減少させたり、消失させてしまったりする。世界七大河川のアマゾン川およびコンゴー川以外では、水量の減少が発生し、中国の黄河ではここ50年で部分的に河が枯れる現象が17回も起きている。地球温暖化の結果、激しい暴風雨などの極端な気象現象が頻繁に発生し、気象は短い周期で著しい変化を起こし、雨水が土地を潤す降水の自然法則を乱し、従来の農業経営および、農産物の収穫と価格に深刻な影響を及ぼすものと考えられる。そこで、生産効率の高い水耕栽培が、生産者が生産効率を高めるための選択肢の一つになったのである。水耕栽培は、耕地の減少、灌漑用水の大量消費、化学肥料の乱用による土地の劣化などの問題を改善したが、培養液の垂れ流しによる河川の酸化の悪影響、水耕栽培野菜の含有する硝酸態窒素の高残留量が人々の健康を損ねるなどの悪影響を生み出した。本発明は、上記の環境破壊、灌漑用水の浪費、安全で衛生的な野菜を提供することができない従来の農耕、水耕栽培または有機栽培に対して、独創的で、効果的な改善方法を提供する。
特許第3687455号
Although human social forms such as hunting society, grazing society and agricultural society have progressed, in the last two hundred years the agricultural revolution caused by the industrial revolution and industrial revolution (green revolution) has greatly improved the production efficiency of crops did. Increased crop yields have saved many people from hunger. At present, the evaluation of the agricultural revolution is generally considered to have advantages over disadvantages, but the agricultural revolution is prematurely caused by excessive land development and use, leading to a large amount of soil degradation. While using fertilizer and trying to improve the harvest, the efficiency deteriorated. Such a vicious cycle spurs the oxidation of the cultivated land, and the original power of the land is completely lost. Conventional farming consumes a large amount of water for irrigation, but as water resources become increasingly valuable, hydroponic cultivation with higher harvesting efficiency has emerged and is now regarded as one of the important farming methods. ing. The Earth's temperature has risen by 0.6 ° C over the last century of the 20th century, and a computer simulation on the impact of global warming estimated that it will rise 3.3 ° C at the end of this century. Ice melts, raises the sea level, reduces or disappears along the coastal agricultural land. Except for the Amazon River and Congo River, which are the seven major rivers in the world, the amount of water has declined, and in the Yellow River in China, the phenomenon that the river partially withered in the last 50 years has occurred 17 times. As a result of global warming, extreme weather events such as severe storms frequently occur, the weather undergoes significant changes in a short period, disturbs the natural laws of precipitation that rainwater wets the land, conventional farm management and agricultural products This is considered to have a serious impact on the yield and price of the rice. Therefore, hydroponic cultivation with high production efficiency has become one of the options for producers to increase production efficiency. Hydroponics has improved problems such as cultivated land reduction, large consumption of irrigation water, and land degradation due to chemical fertilizer abuse. High residual amount of nitrogen produced adverse effects such as harming people's health. The present invention provides a creative and effective improvement method for the above-mentioned conventional farming, hydroponics or organic cultivation that cannot provide environmental destruction, wasted irrigation water, and safe and sanitary vegetables. provide.
Japanese Patent No. 3687455

本発明の目的は、水耕栽培により硝酸態窒素の含有量が低く、人体に悪影響を及ぼさない低硝酸態窒素野菜を提供することにある。   An object of the present invention is to provide a low nitrate nitrogen vegetable that has a low nitrate nitrogen content by hydroponics and does not adversely affect the human body.

上述の目的を達成するため、本発明は、低硝酸態窒素野菜およびその栽培システムと方法を提供する。本発明の低硝酸態窒素野菜は、硝酸態窒素の検出量が450ppm以下であることを特徴とする。本発明の一実施形態による野菜の硝酸態窒素含有量の減少方法は、「水耕栽培装置」および「培養液供給中断栽培法」を本実施形態の説明における範例となす。この方法は、野菜の硝酸態窒素含有量を450ppm以下に減少させる能力(〔図1〕参照)があり、灌漑用水の節約、培養液の回収およびび再利用の簡単さ、水耕廃液の垂れ流し根絶、野菜の成長速度の増進、野菜の単位面積当たりの収穫効率の増加など、その特徴及び作用効果において、新規性、進歩性および産業における実用性などの発明構成要件に該当し、その特徴は以下のとおりである。
(1)野菜の硝酸態窒素含有量を450ppm以下に減少させることが可能である。
(2)培養液の回収および再利用が簡単にできる。
(3)灌漑用水の節約が可能である。
(4)培養液のEC/ph値を正確に制御することが可能である。
(5)多層の栽培方法により土地利用効率を高めることが可能である。
(6)耕作に必要な人力を大幅に減少させることが可能である。
(7)土壌を原因とする害虫の根絶が可能である。
In order to achieve the above object, the present invention provides a low nitrate nitrogen vegetable and a cultivation system and method thereof. The low nitrate nitrogen vegetable of the present invention is characterized in that the detected amount of nitrate nitrogen is 450 ppm or less. The method for reducing the nitrate nitrogen content of a vegetable according to one embodiment of the present invention uses “hydroponic cultivation apparatus” and “culture liquid supply interruption cultivation method” as examples in the description of this embodiment. This method has the ability to reduce the nitrate nitrogen content of vegetables to 450 ppm or less (see [Fig. 1]), saves irrigation water, simplifies the collection and reuse of culture fluids, and drains hydroponic wastewater. In terms of its features and effects, such as eradication, increase in the growth rate of vegetables, and increase in harvest efficiency per unit area of vegetables, it falls under the requirements of the invention, such as novelty, inventive step, and practicality in industry. It is as follows.
(1) It is possible to reduce the nitrate nitrogen content of vegetables to 450 ppm or less.
(2) The culture medium can be easily collected and reused.
(3) Irrigation water can be saved.
(4) The EC / ph value of the culture solution can be accurately controlled.
(5) It is possible to increase land use efficiency by a multi-layer cultivation method.
(6) It is possible to greatly reduce the manpower required for cultivation.
(7) Pests caused by soil can be eradicated.

本発明の一実施形態による野菜の硝酸態窒素含有量の減少方法は、水耕栽培技術を採用している。培養液の供給、回収および貯蔵に配水管を利用しているのが特徴で、野菜の成長過程で配水管内の培養液を野菜の根に供給し吸収させ、培養液のph値が上昇すると、すぐph値を低下させ、培養液のEC値が上昇すると、すぐEC値を低下させ、培養液の成分を常に野菜の吸収に最適な状態に維持する。本発明は、灌漑用水の節約、水耕廃液の垂れ流し根絶および土壌を原因とする害虫の根絶など進歩性および実用性を兼ね備え、農業栽培技術上すぐれた効果を発揮する。   The method for reducing the nitrate nitrogen content of vegetables according to one embodiment of the present invention employs hydroponics. It is characterized by using a water pipe for supply, recovery and storage of the culture solution. During the growth process of the vegetable, the culture solution in the distribution pipe is supplied to the root of the vegetable and absorbed, and when the ph value of the culture solution rises, As soon as the ph value is decreased and the EC value of the culture medium is increased, the EC value is decreased immediately, and the components of the culture medium are always maintained in an optimal state for absorption of vegetables. INDUSTRIAL APPLICABILITY The present invention has an inventive and practical utility such as saving irrigation water, eradicating drainage of hydroponic waste liquid and eradicating pests caused by soil, and exhibits excellent effects in agricultural cultivation technology.

本実施形態は、配水管を利用しているのが特徴で、従来の水耕栽培と異なり、効果的に培養液および水の使用量を減少させることができる(〔図5〕参照)。また、培養液の供給、回収および再利用の簡単さという利点があるが、水耕栽培野菜の成長に必要な培養液を常に十分供給する(〔図1〕参照)。本実施形態の水耕栽培技術は、塩化ビニル樹脂管を基礎にしており、培養液回収の便利さという特性を持っている。これにより、培養液の廃液の垂れ流しを根絶でき、さらに有効に野菜の茎葉内に蓄積された硝酸態窒素の含有量を450ppm以下に抑えることができる。また、本実施形態の水耕栽培技術は、不透光材質である塩化ビニル樹脂管を基礎にしているため、日光が直接培養液に照射しないので、各種の藻類や細菌が培養液内で繁殖するのを防ぎ、各種の藻類や細菌が栽培過程において野菜と培養液中の栄養分を争い合うのも防ぐことができる。これにより、藻類や細菌が分泌するアルカリ物質が培養液に溶け出すのをさらに防ぎ、培養液のph値を安定して維持し、ph値が上昇して野菜の根が培養液を吸収する効率を低下させるのを防ぐ(ph値が5.5〜6.5の時、植物の根の吸収効率が最も良い)。   This embodiment is characterized by the use of a water distribution pipe, and unlike conventional hydroponics, the amount of the culture solution and water used can be effectively reduced (see [FIG. 5]). Moreover, although there exists an advantage that supply, collection | recovery, and reuse of a culture solution are advantageous, the culture solution required for the growth of a hydroponic vegetable is always supplied enough (refer to FIG. 1). The hydroponic cultivation technique of the present embodiment is based on a vinyl chloride resin tube and has a characteristic that it is convenient for collecting a culture solution. As a result, it is possible to eradicate the drainage of the waste liquid of the culture solution, and to effectively suppress the content of nitrate nitrogen accumulated in the shoots of vegetables to 450 ppm or less. In addition, since the hydroponic cultivation technique of this embodiment is based on a polyvinyl chloride resin tube that is an opaque material, sunlight does not directly irradiate the culture solution, so that various algae and bacteria are propagated in the culture solution. It is possible to prevent various algae and bacteria from competing for nutrients in the culture medium with vegetables during the cultivation process. As a result, alkaline substances secreted by algae and bacteria are further prevented from dissolving into the culture solution, the ph value of the culture solution is stably maintained, and the ph value increases so that the vegetable root absorbs the culture solution. (When the ph value is 5.5 to 6.5, the absorption efficiency of the root of the plant is the best).

上記のように、本実施形態の野菜の硝酸態窒素含有量の減少方法は、従来の水耕栽培および土地耕作とは異なる。本実施形態は、以下の六つの特色を持ち、農業栽培技術向上の利点といえる。
(1)灌漑用水を70%節約可能である
(2)水耕廃液垂れ流しの根絶。
(3)土地を酸化させない。
(4)土壌を原因とする害虫の根絶が可能である。
(5)野菜の硝酸態窒素含有量の減少が可能である。
(6)野菜が成長する速度を速めることが可能である。
As described above, the method for reducing the nitrate nitrogen content of vegetables according to this embodiment is different from conventional hydroponics and land cultivation. This embodiment has the following six features and can be said to be an advantage of improving agricultural cultivation technology.
(1) 70% savings on irrigation water (2) Eradication of drainage of hydroponic waste.
(3) Do not oxidize land.
(4) Pests caused by soil can be eradicated.
(5) The nitrate nitrogen content of vegetables can be reduced.
(6) It is possible to increase the speed at which vegetables grow.

本実施例の第一の特色は、従来の農業において農作物に大量の灌漑用水を供給することにより、最終的に良好なる収穫が得られることが期待できるという不合理な状況に着目したことである。従来の農業において灌漑用水がどこに使われるかを詳細に分析してみると、大量の灌漑用水はすべて農作物に吸収されたわけでなかったことがわかった。実際に野菜の成長周期において必要な水の量を計測し統計してみると、一株の野菜が一日に必要な水は平均で僅か100C.C.で十分であることがわかった。しかし、従来は一日に平均約200C.C.〜500C.C.(土壌の水はけにより異なる)使用し、貴重な水資源を無駄に浪費していた。従来の農業では、灌漑用水が大体50%〜90%の割合で地下に沁み込んで流出したり、太陽熱により蒸発したりして無駄に浪費されていた。従来の農業における灌漑用水の浪費は、日増しに水不足が深刻になる現在において、解決が待たれる問題である。本実施例による野菜栽培は、大量の灌漑用水を節約することができる。必要な水は従来の僅か25%〜30%程度で、野菜が吸収し切れなかった水や培養液はすべて回収および再利用することができる。   The first feature of this example is that it focused on the unreasonable situation that a good harvest can be expected in the end by supplying a large amount of irrigation water to crops in conventional agriculture. . A detailed analysis of where irrigation water is used in traditional agriculture revealed that not all of the irrigation water was absorbed by the crops. Actually, the amount of water required during the vegetable growth cycle is measured and statistically calculated. C. Was found to be sufficient. However, in the past, an average of about 200 C./day. C. -500C. C. (Varies depending on the drainage of soil) and wasted precious water resources. In conventional agriculture, irrigation water was swept into the basement at a rate of about 50% to 90% and wasted and wasted due to evaporation by solar heat. The waste of irrigation water in conventional agriculture is a problem that needs to be solved in the present situation where water shortages are becoming more serious every day. Vegetable cultivation according to this embodiment can save a large amount of irrigation water. The required water is only about 25% to 30% of the conventional water, and all the water and culture solution that the vegetables could not absorb can be recovered and reused.

本実施例の第二の特色は、従来の水耕栽培の重大欠点である廃液垂れ流しによる悪影響を解決したことである。従来の水耕栽培の培養液は、太陽光線を浴びるのを防ぐのが困難で、培養液内で藻類や細菌が繁殖することを避けることができず、太陽光線および細菌の繁殖が培養液内の硝酸塩類を急速に分解(発酵)し、培養液の温度を上昇させてしまい、野菜の根腐れを生じる原因の一つであった。このため、使用できなくなった廃液は頻繁に河川に垂れ流される一方で、新しい培養液に交換することが水耕栽培の一般的な作業になってしまい、河川の水質を酸化させる主な原因になっている。上記の原因により、台湾政府の農業管理機関は、法律をもって水耕栽培を禁止してはいないが、水耕栽培を主要な栽培方法として農民に勧めてもいない。本実施例の水耕栽培は、培養液の回収および再利用が可能で、従来の水耕栽培に付きものの廃液の垂れ流しという問題は一切存在しない。また、培養液は回収および再利用が可能なので、効果的に生産コストを下げることができる。   The second feature of the present example is that the adverse effect due to the drainage of waste liquid, which is a serious drawback of conventional hydroponics, has been solved. Conventional hydroponics culture solutions are difficult to prevent exposure to sunlight, and it is not possible to avoid the growth of algae and bacteria in the culture solution. This was one of the causes that caused the root rot of vegetables by rapidly decomposing (fermenting) the nitrates and raising the temperature of the culture solution. For this reason, waste liquids that can no longer be used often run down into rivers, but replacing them with new culture liquids has become a common part of hydroponics, which is a major cause of oxidizing the water quality of rivers. It has become. For the above reasons, the agricultural management organization of the Taiwan government does not prohibit hydroponic cultivation by law, but does not recommend it to farmers as the main cultivation method. In the hydroponic cultivation of this embodiment, the culture solution can be collected and reused, and there is no problem of the drainage of the waste liquid associated with the conventional hydroponic cultivation. In addition, since the culture solution can be recovered and reused, the production cost can be effectively reduced.

本実施例の第三の特色は、化学肥料を土壌内に一切使用しない栽培方法を提供し、土壌を酸化または劣化させないことである。土壌栽培は、肥料の使用量を正確に制御することが困難で、灌漑用水または雨水により肥料が土壌から無駄に流失するため、肥料の使用不足を心配するあまり、過度に使用してしまうことがよくある。本実施例は、定時、定量および野菜の異なる成育段階に応じて必要な培養液を供給する。また、本実施例の水耕栽培方法は、野菜の根に直接培養液を供給するため、経済的であるばかりでなく、化学肥料の過度の使用によって、土壌を酸化および劣化させることを防ぐことができる。本実施例の野菜栽培工程は、全く土壌と接触しないため、化学肥料による土壌汚染を完全に防ぐことができる。   The third feature of the present embodiment is to provide a cultivation method in which no chemical fertilizer is used in the soil and to prevent the soil from being oxidized or deteriorated. In soil cultivation, it is difficult to accurately control the amount of fertilizer used, and fertilizer is washed away from the soil due to irrigation water or rainwater. Often. This example provides the necessary culture solution according to the regular time, quantitative and different growth stages of vegetables. In addition, the hydroponics method of the present example supplies the culture solution directly to the roots of the vegetables, so it is not only economical, but also prevents the soil from being oxidized and deteriorated by excessive use of chemical fertilizers. Can do. Since the vegetable cultivation process of a present Example does not contact with soil at all, the soil contamination by a chemical fertilizer can be prevented completely.

本実施例の第四の特色は、従来の水耕栽培では全体的および専門的知識に欠け、好ましくない後遺症が多かったが、本実施例はそれらの問題を解決した。水耕栽培野菜の栽培過程では、根は常に培養液に浸漬しているため、空気に接触できず、呼吸を行なうことができない。これにより、野菜内部の硝酸態窒素含有量が土壌栽培の野菜より遥かに高くなり、硝酸態窒素が超過する原因の一つとなっている。水耕栽培野菜は根が呼吸できないため、野菜内部の酵素が硝酸態窒素に対し効果的に新陳代謝を行うのに十分な酸素を提供できない。また、水耕栽培の培養液は、濃度が高すぎることが多く、水耕栽培野菜の正常な光合成メカニズムが負荷できる量を遥かに越えてしまい、野菜の茎葉内に過量の硝酸基(NO3−)が蓄積し、アミノ酸(amino acid)に転化したり、最終的にタンパク質(protein)に合成したりすることができない。硝酸基(NO3−)は、人体が代謝できない元素の一つで、多量の硝酸基(NO3−)が食用されて、人体の消化器官に入ると、消化器官内の消化酵素の化学作用により、亜硝酸アンモニウム(NH4NO2)に転化される。亜硝酸アンモニウムは、発がん性物質であると考えられ、過度の摂取は健康に悪影響を与えてしまう。また、臨床医学により、ブルーベビー症候群になる可能性があることがわかっている。幼児が硝酸塩を多量に摂取すると、硝酸基(NO3−)が血液中に混入し、ヘモグロビンに酸素と結合する機能を失わせ、血液は青紫色を呈し、呼吸困難を起こし、場合によっては窒息してしまうこともある。ブルーベビー症候群以外に、胃腸癌を引き起こす原因の一つでもある。亜硝酸アンモニウム(NH4NO2)は、人体の赤血球を破壊し、細胞を急速に老化させてしまうことさえある。先進諸国では、消費者の健康を守るため、既に野菜の硝酸含有率の規制値が設けられており、例えばドイツでは幼児が食用するホウレンソウは、250ppmを越えてはならない。WHOが提唱する体重1Kgあたりの硝酸塩の摂取量は、一日3.6mg以下で、体重60Kgの人が一日に摂取できる硝酸塩の安全残留量は500ppmを越えてはならない。 The fourth feature of this example was that the conventional hydroponics lacked overall and specialized knowledge and had many undesirable after effects, but this example solved these problems. In the cultivation process of hydroponically cultivated vegetables, the roots are always immersed in the culture solution, so they cannot contact the air and cannot breathe. As a result, the nitrate nitrogen content inside the vegetables is much higher than that of soil-grown vegetables, which is one of the causes of excess nitrate nitrogen. Since hydroponically grown vegetables cannot breathe their roots, the enzymes inside the vegetables cannot provide enough oxygen to effectively metabolize nitrate nitrogen. In addition, the culture medium of hydroponics is often too high in concentration, and far exceeds the amount that can be loaded by the normal photosynthesis mechanism of hydroponic vegetables, and excessive amounts of nitrate groups (NO 3) in the stems and leaves of vegetables. -) Accumulates and cannot be converted into amino acids or ultimately synthesized into proteins. The nitrate group (NO 3- ) is one of the elements that the human body cannot metabolize. When a large amount of nitrate group (NO 3- ) is consumed and enters the digestive organs of the human body, the chemical action of digestive enzymes in the digestive organs Is converted to ammonium nitrite (NH 4 NO 2 ). Ammonium nitrite is considered to be a carcinogen and excessive consumption can adversely affect health. In addition, clinical medicine has shown that there is a possibility of blue baby syndrome. When an infant consumes a large amount of nitrate, the nitrate group (NO 3- ) enters the blood, causing hemoglobin to lose its ability to bind oxygen, causing the blood to become blue-purple, causing dyspnea, and in some cases choking Sometimes it ends up. Besides blue baby syndrome, it is one of the causes of gastrointestinal cancer. Ammonium nitrite (NH 4 NO 2 ) can destroy the red blood cells of the human body and even cause the cells to age rapidly. In developed countries, the regulation value of the nitrate content of vegetables has already been established to protect the health of consumers. In Germany, for example, spinach consumed by infants should not exceed 250 ppm. The intake of nitrate per kilogram of body weight proposed by WHO is 3.6 mg or less per day, and the safe residual amount of nitrate that a person with a body weight of 60 kilograms can consume per day should not exceed 500 ppm.

EUでは既に食用野菜の硝酸含有率の規制値が設けられており、2,000〜3,000ppm以下である。中国の規制値はさらに厳しく、450ppm以下である。台湾では冬に生産される野菜は、日照不足、化学肥料の使用過度、および市場に供給するため、夜明け前に収穫されてしまうという要因があり、野菜の硝酸基(NO3−)残留量は3,000〜4,000ppmになってしまうことさえ多々ある。政府当局は、現時点では依然として硝酸基(NO3−)残留量の規制値についていかなる態度も示していない。これにより、本発明が採用する規制値は、世界で最も厳しい中国の規制値(450ppm以下)を基準としており、本発明が達成する硝酸基(NO3−)残留量は、世界の農業関係者が想像できなかった数値で、世界で唯一、野菜が含有する有害物質に定量制御を実現する。
注:硝酸基(NO3−)濃度=硝酸態窒素(NO3− −N)濃度×4.43
In EU, the regulation value of nitric acid content of edible vegetables has already been established, and is 2,000 to 3,000 ppm or less. China's regulatory limits are even stricter and are below 450 ppm. In Taiwan, vegetables produced in winter have a shortage of sunshine, excessive use of chemical fertilizers, and because they are supplied to the market, they are harvested before dawn. The residual amount of nitrate (NO 3- ) in vegetables is There are often even 3,000 to 4,000 ppm. Government authorities still do not show any attitude regarding the limit value of nitrate (NO 3- ) residue at this time. As a result, the regulation value adopted by the present invention is based on the world's strictest regulation value (450 ppm or less) in China, and the residual amount of nitrate group (NO 3- ) achieved by the present invention This is the only value in the world that realizes quantitative control of harmful substances contained in vegetables.
Note: Nitric acid group (NO 3 −) concentration = Nitrate nitrogen (NO 3 − −N) concentration × 4.43

本実施例は、野菜に蓄積された過料の硝酸基(NO3−)の安全性に対して、改善を加えたもので、従来の土壌栽培および水耕栽培野菜が含有する可能性がある過度の硝酸基(NO3−)の残留を防ぎ、健康に悪影響を及ぼす事態を避けることができる。一般の土壌栽培野菜は、根が土壌の土砂間に隙間を有するため、空気の流れがあり、自由に呼吸ができる。根の呼吸により野菜内部に取り入れられた酸素(O2)は、野菜に硝酸態窒素(NO3−―N)を急速に消費させ、太陽光が充分でさえあれば、ふつう硝酸基(NO3−)が過度に蓄積(約1,500〜2,000ppm)されるのを防ぐが、収穫時に天候不順に見まわれ、光合成が充分行なえないと、土壌栽培野菜の茎葉内の硝酸基(NO3−)含有量が超過(約2,500〜3,500ppm)することがよくある。従来の水耕栽培野菜は、根が培養液内に長時間浸り、直接酸素呼吸できない。また、培養液内の硝酸塩類の濃度が高いため、収穫時期になっても、状況は変わらない。土壌栽培が野菜の収穫前の随分前に、肥料の使用を停止しているのとは異なっている。従来の水耕栽培装置は、培養液の供給を段階的に分けて制御することができなかった。これにより、水耕栽培野菜内に過度の硝酸基(NO3−)(約3,000〜4,500ppm)が含有されることがよくあった。野菜の硝酸態窒素(NO3−―N)残留量が過度に高いと、茎葉部分の硝酸基(NO3−)濃度は4,500ppmを越えてしまう。本実施例は、本発明の制御方法により実際に実験を行なった。サンプル野菜の硝酸態窒素(NO3−―N)含有量(サンプル野菜は乾燥されクロロフィルを破壊された後、硝酸態窒素が測定できる。サンプル野菜の重量と乾燥後の重量との比率は4.8%であった。)に対し制御を加えた結果、実際に測定した硝酸態窒素(NO3−―N)含有量は、僅か358ppm(国立中興大学農業及自然資源学院分析結果報告書を参照)で、EUが定めた食用野菜の硝酸含有率の規制値(EUの食用野菜の硝酸含有率の規制値を参照)を下回り、従来の土壌栽培および有機栽培野菜の硝酸含有率を遥かに下回っている。
注:検査方法については、NIEA W415.52Bを参照。
This example is an improvement to the safety of the nitrate group (NO 3- ) of the supercharge accumulated in vegetables, and there is a possibility that conventional soil-cultivated and hydroponically grown vegetables may contain It is possible to prevent the remaining nitrate group (NO 3 −) from being adversely affected by health. In general soil-cultivated vegetables, the roots have gaps between the soil and sand, so there is a flow of air and breathing freely. Oxygen (O 2 ) taken into the vegetable by root respiration causes the vegetable to rapidly consume nitrate nitrogen (NO 3 --N) and, as long as sunlight is sufficient, it is usually a nitrate group (NO 3). -) Is prevented from accumulating excessively (about 1,500 to 2,000 ppm), but it is observed irregularly at the time of harvest, and if photosynthesis is not sufficient, nitrate groups (NO 3) in the foliage of soil-grown vegetables -) The content often exceeds (about 2,500 to 3,500 ppm). In conventional hydroponic vegetables, the roots are immersed in the culture solution for a long time and cannot directly breathe oxygen. Moreover, since the concentration of nitrates in the culture solution is high, the situation does not change even at the harvest time. This is different from the fact that soil cultivation has stopped using fertilizers long before the harvest of vegetables. The conventional hydroponic cultivation apparatus cannot control the supply of the culture solution in stages. Thus, excessive nitrate group in hydroponics vegetables (NO 3 -) (approximately 3,000~4,500Ppm) had often contained. If the residual amount of nitrate nitrogen (NO 3 --N) in vegetables is too high, the concentration of nitrate groups (NO 3- ) in the foliage will exceed 4,500 ppm. In this example, an experiment was actually performed by the control method of the present invention. Nitrate nitrogen (NO 3 --N) content of sample vegetable (After sample vegetable is dried and chlorophyll is destroyed, nitrate nitrogen can be measured. The ratio of the weight of sample vegetable to the weight after drying is 4. As a result of adding control, the actual measured nitrate nitrogen (NO 3 --N) content was only 358 ppm (refer to the National Chuoko University Agricultural and Natural Resource Academy analysis report) ) Below the regulation value for nitrate content of edible vegetables set by the EU (see regulation value for nitrate content of EU edible vegetables) and far below the nitrate content of conventional soil and organic vegetables. ing.
Note: See NIEA W415.52B for inspection methods.

従来の土壌栽培野菜が必要とする窒素(N2)は、尿素[CO(NH22]が主な供給源であるが、ふつう植物の根は、尿素を直接吸収することができない(少数の根粒類植物を除く)。窒素(N2)元素は、自然界の循環において、まず土壌内の細菌または真菌により、尿素[CO(NH22]中の窒素(N2)をアンモニア(NH3)または硝酸塩類に転化し、その後、アンモニア(NH3)または硝酸塩類は更に、亜硝化細菌の発酵を経て、亜硝酸基(NO2)に分解される。最後に、硝化細菌は、再び亜硝酸基(NO2)に対し、二度目の発酵分解を行ない、最後に硝酸基(NO3−)に転化する。転化後、尿素[CO(NH22]中の窒素(N2)元素は、完全に硝酸基(NO3−)に分解されてはじめて植物の根に吸収されると共に、光合成により硝酸基(NO3−)をアミノ酸(amino acid)および二酸化炭素(CO2)に転化して、最後に、アミノ酸(amino acid)は野菜に有用なタンパク質(protein)に合成される。その転換のメカニズムは、尿素[CO(NH22]が細菌または真菌により初期分解(発酵)されてアンモニア(NH3)となり、土壌内の特殊な細菌により数回分解(発酵)され、アンモニア(NH3)が硝酸基(NO3−)に転化される。硝酸基(NO3−)になり、ようやく野菜に吸収利用され、アミノ酸(amino acid)に転化され、最後に、野菜の光合成により、アミノ酸を野菜の茎根骨幹内部に有用なタンパク質(protein)に合成する。自然界では、一部の根粒類植物は、その根粒内に寄生する「窒素固定細菌」群落により、直接、自然界のアンモニア(NH3)や空気中の窒素(N2)を吸収利用することができる。アンモニア(NH3)が植物に吸収される化学過程を硝化作用と称し、その化学反応式は、以下のようになっている。
[(NO4+)→(亜硝化細菌分解)→(NO2−)→(硝化細菌分解)→(NO3−)]
Nitrogen (N 2 ) required by conventional soil-grown vegetables is urea [CO (NH 2 ) 2 ], but the roots of plants usually cannot absorb urea directly (a small number). Except for rhizobial plants). Nitrogen (N 2) elements, in the circulation of the nature, by bacteria or fungi in the soil first, the conversion of nitrogen in the urea [CO (NH 2) 2] a (N 2) to ammonia (NH 3) or nitrates Thereafter, ammonia (NH 3 ) or nitrates are further decomposed into nitrite groups (NO 2 ) through fermentation of nitrifying bacteria. Finally, the nitrifying bacteria again undergoes a second fermentation decomposition with respect to the nitrite group (NO 2 ), and finally is converted into a nitrate group (NO 3 −). After conversion, the nitrogen (N 2 ) element in urea [CO (NH 2 ) 2 ] is only completely decomposed into nitrate groups (NO 3- ) and is absorbed by plant roots, and nitrate groups ( NO 3 -) and then converted to an amino acid (amino acid) and carbon dioxide (CO2), finally, the amino acid (amino acid) is synthesized vegetables useful protein (protein). The mechanism of the conversion is that urea [CO (NH 2 ) 2 ] is first decomposed (fermented) by bacteria or fungi to become ammonia (NH 3 ), and decomposed several times (fermented) by special bacteria in the soil. (NH 3 ) is converted to nitrate groups (NO 3 — ). It becomes nitrate group (NO3-), finally absorbed into vegetables, converted to amino acid, and finally, by photosynthesis of vegetables, amino acids are synthesized into useful proteins inside the roots of vegetables. To do. In nature, some rhizobia plants can directly absorb and utilize natural ammonia (NH 3 ) and nitrogen in the air (N 2) by the “nitrogen-fixing bacteria” community that parasitizes in the nodules. A chemical process in which ammonia (NH 3 ) is absorbed by plants is referred to as nitrification, and its chemical reaction formula is as follows.
[(NO 4 +) → (Nitrite Bacteria Degradation) → (NO 2 −) → (Nitrification Bacteria Decomposition) → (NO 3 −)]

従来の水耕栽培が使用する培養液(肥料)は、窒素、リン、カリウム、カルシウム、硫などである。窒素は、培養液内に調合された硝酸カルシウム[Ca(NO3−)2]や硝酸カリウムK(NO3)など硝酸塩類を主な供給源としている。水耕栽培野菜の根は、長時間、培養液内に直接浸され、硝酸基(NO3−)などの成分を吸収し続け、効果的に新陳代謝を行なうことができず、野菜内部の硝酸態窒素(NO3−―N)含有量は必然的に極めて高くなる。この問題の解決策として、培養液内の硝酸基(NO3−)の濃度を適切に制御したり、各成長段階での供給量を設定したりすることが挙げられる。日照量の多寡、温度の高低、または野菜生長過程の違いにより、適時に培養液の供給量や濃度を調整する。例えば、快晴の日照時間が長い状況下では、硝酸基(NO3−)濃度が少し高めの培養液を提供して野菜の速い生長を促す。活発な光合成作用が野菜に吸収された硝酸基(NO3−)をアミノ酸(amino acid)に還元させ、タンパク質(protein)に合成することができるからである。反対に、天候不順の場合は、培養液内の硝酸基(NO3−)の濃度を低くして、不十分な光合成により、硝酸基(NO3−)が野菜の内部に過度に残留するのを防ぐ。硝酸基(NO3−)が人体に摂取されると、消化器官と消化酵素に作用が生じた後、人体に有害な亜硝酸アンモニウム(NH4NO2)に転化される。本発明は、上記した水耕栽培野菜の問題点を解決する。野菜の収穫前の数日間、培養液(硝酸塩類)の供給を完全に中断して、野菜が基本的な新陳代謝が維持できるように、水のみ供給する。これが本実施形態の「培養液供給中断栽培法」である。野菜に新陳代謝を行なわせ、野菜内部に蓄積した硝酸基(NO3−)を収穫日の前までに、強制的にアミノ酸(amino acid)に還元させる。つまり、野菜に十分な光合成(総日照量は900,000LUX.以上)を行なわせ、野菜内のアミノ酸(amino acid)をタンパク質(protein)に転化させることにより、市販されている野菜の硝酸基(NO3−)含有量が過度に高いという状況を根本的に解決することができる。市販されている野菜の硝酸基(NO3−)含有量が過度に高いのは、主に野菜が過度に硝酸基(NO3−)を吸収したからである。また、野菜が生長期間に行なった光合成(6CO2+6H2O→C6H12O6+6O2↑)の時間または活発性の不足が、野菜にATM酵素を十分に作らせることができず、吸収された硝酸基(NO3−)を円滑にアミノ酸(amino acid)に転化させたり、タンパク質(protein)に合成することができなかったことも、重要な原因である。野菜が、蓄積した硝酸基(NO3−)を消費してアミノ酸(amino acid)に転化させたり、タンパク質(protein)に合成したりする前に、早々と収穫されてしまっているからである。 The culture solution (fertilizer) used by conventional hydroponics is nitrogen, phosphorus, potassium, calcium, sulfur, and the like. Nitrogen is mainly sourced from nitrates such as calcium nitrate [Ca (NO 3 −) 2 ] and potassium nitrate K (NO 3 ) prepared in the culture solution. Hydroponically grown vegetable roots are soaked directly in the culture for a long period of time and continue to absorb components such as nitrate groups (NO 3 −) and cannot be effectively metabolized. The nitrogen (NO 3 --N) content is necessarily very high. As a solution to this problem, it is possible to appropriately control the concentration of nitrate groups (NO 3 −) in the culture solution and to set the supply amount at each growth stage. Adjust the supply and concentration of the culture in a timely manner depending on the amount of sunlight, the temperature, or the difference in the vegetable growth process. For example, under conditions where sunny sunshine hours are long, a culture solution with a slightly higher nitrate group (NO 3 −) concentration is provided to promote fast growth of vegetables. This is because active photosynthetic action can reduce nitrate groups (NO 3- ) absorbed by vegetables to amino acids and synthesize them into proteins. Conversely, if the weather is unsatisfactory, the concentration of nitrate groups (NO 3- ) in the culture solution will be lowered, and nitrate groups (NO 3- ) will remain excessively in the vegetables due to insufficient photosynthesis. prevent. When nitrate groups (NO 3- ) are ingested by the human body, they act on digestive organs and digestive enzymes, and then are converted to ammonium nitrite (NH 4 NO 2 ), which is harmful to the human body. The present invention solves the above-mentioned problems of hydroponically grown vegetables. For a few days before the harvest of vegetables, the supply of culture fluid (nitrates) is completely interrupted and only water is supplied so that the vegetables can maintain their basic metabolism. This is the “culture liquid supply interruption cultivation method” of the present embodiment. The vegetable is metabolized and the nitrate group (NO 3- ) accumulated inside the vegetable is forcibly reduced to an amino acid before the harvest date. In other words, vegetables are sufficiently photo-synthesized (total amount of sunshine is 900,000 LUX. Or more), and amino acids in vegetables are converted into proteins, so that the nitrate groups ( The situation where the NO 3 −) content is excessively high can be fundamentally solved. The reason why the content of nitrate groups (NO 3 −) in commercially available vegetables is excessively high is mainly because vegetables absorb nitrate groups (NO 3 −) excessively. In addition, the lack of time or activity of photosynthesis (6CO 2 + 6H 2 O → C 6 H 12 O 6 + 6O 2 ↑) carried out by the vegetable over the long period of time prevents the vegetable from making enough ATM enzymes. An important cause is that the absorbed nitrate group (NO 3 −) could not be smoothly converted into an amino acid or synthesized into a protein. This is because vegetables are quickly harvested before consuming accumulated nitrate groups (NO 3 −) to convert them into amino acids or synthesizing them into proteins.

以上説明したように、本発明は、硝酸態窒素が含まれる培養液により野菜を水耕栽培して、野菜をある程度生育させた後、野菜の収穫前の一定期間、水のみで野菜を水耕栽培することにより、野菜の内部に残留する硝酸態窒素をほとんど消費させ、人体に悪影響を及ぼさない低硝酸態窒素野菜を提供することができる。   As described above, the present invention hydroponically cultivates vegetables with a culture solution containing nitrate nitrogen, grows the vegetables to some extent, and then hydroponically cultivates the vegetables only with water for a certain period before harvesting the vegetables. By cultivating, it is possible to provide a low nitrate nitrogen vegetable that consumes most of the nitrate nitrogen remaining inside the vegetable and does not adversely affect the human body.

以下、本発明の実施形態を図面に基づいて、本発明の低硝酸態窒素野菜の栽培法を説明する。図1は、本発明の一実施形態による野菜の硝酸態窒素含有量の制御方法のシステムを示した模式図である。図1に示すように、本発明は、野菜の特定成分に対して、定量制御を加えるシステムで、培養液供給および循環システム1および水耕栽培部2から成る。   Hereinafter, the cultivation method of the low nitrate nitrogen vegetable of this invention is demonstrated based on drawing about embodiment of this invention. FIG. 1 is a schematic view showing a system of a method for controlling the nitrate nitrogen content of vegetables according to an embodiment of the present invention. As shown in FIG. 1, the present invention is a system that applies quantitative control to specific components of vegetables, and includes a culture solution supply and circulation system 1 and a hydroponic cultivation unit 2.

図2は、本発明の一実施形態による培養液供給および循環システムを示した模式図である。培養液の供給および循環システム1は、水耕栽培部2内で栽培する野菜に対して、培養液の供給および循環を行なう。まず、培養液の供給および循環システム1は、水耕栽培部2内の野菜の培養液のEC値およびph値を常時検出し、必要に応じて、培養液のEC値およびph値を調節し、2内の野菜に最適で充分な栄養を与え、迅速に成長させ、単位面積当たりの収穫効率を高める。野菜をある程度生育させた後、つまり収穫前の一定期間(本実施形態では72時間)、培養液の供給および循環システム1が培養液を回収し、水だけを提供し、水耕栽培部2内の野菜に基本的な新陳代謝を行なわせる。水耕栽培部2内の野菜に十分に光合成を行なわせ、野菜の茎葉内に蓄積された硝酸態窒素を迅速に消費させると、健康指向の低硝酸態窒素野菜を順調に栽培することができる。   FIG. 2 is a schematic view showing a culture solution supply and circulation system according to an embodiment of the present invention. The culture solution supply and circulation system 1 supplies and circulates the culture solution to the vegetables cultivated in the hydroponic cultivation unit 2. First, the culture solution supply and circulation system 1 constantly detects the EC value and ph value of the vegetable culture solution in the hydroponic cultivation unit 2, and adjusts the EC value and ph value of the culture solution as necessary. 2. Give the vegetables in 2 optimal and adequate nutrition, grow quickly and increase the harvest efficiency per unit area. After the vegetables are grown to some extent, that is, for a certain period before harvesting (72 hours in this embodiment), the supply and circulation system 1 of the culture solution collects the culture solution and provides only water. To make a basic metabolism of the vegetables. If the vegetables in the hydroponic cultivation part 2 are sufficiently photo-synthesized and the nitrate nitrogen accumulated in the stalks and leaves of the vegetables is consumed quickly, healthy-oriented low nitrate nitrogen vegetables can be cultivated smoothly. .

培養液の供給および循環システム1は、培養液貯留タンク11、灌水貯留タンク12、培養液加圧ポンプ13、培養液回収ポンプ14、培養液調整ポンプ15、EC/ph値検知制御装置16、UV紫外線殺菌灯17および精密濾過器18を備える。培養液貯留タンク11の上方に培養液液位制御装置112が配置され、培養液液位制御装置112の機能は培養液貯留タンク11の容量を制御することで、培養液を回収するのに必要な空間を確保する。培養液貯留タンク11の下方には、培養液制御弁111が配置され、培養液制御弁111は培養液を供給する弁である。培養液貯留タンク11と培養液供給管21との間には培養液加圧ポンプ13が配置され、培養液加圧ポンプ13の機能は培養液に圧力を加え、精密濾過器18を通過させ、不純物を濾過した後、多孔水耕栽培管22に送って野菜を成育させるのに用いる。灌水貯留タンク12の上方には灌水水位制御装置122が配置され、灌水水位制御装置122の機能は灌水貯留タンク12の通常の容量を制御することである。灌水貯留タンク12の下方には、灌水制御弁121が配置され、灌水制御弁121は灌水を供給する弁である。灌水制御弁121がオンに設定されると、培養液制御弁111もオフに設定され、多孔水耕栽培管22が野菜に水を供給し、野菜が光合成を行なうのを助け、茎葉内に蓄積された硝酸態窒素を消費させる。これとは逆に、培養液は、多孔水耕栽培管22に供給されて、野菜を迅速に成長させる。培養液回収ポンプ14は、培養液回収管23から循環して来た培養液に圧力を加え、UV紫外線殺菌灯17を通過させ、殺菌処理を行なった後、培養液貯留タンク11に回収し再利用に備える。培養液貯留タンク11の外側にはEC/ph値検知制御装置16が配置され、培養液のEC値およびph値の変化を常時検出するために、EC/ph値検知線165と培養液貯留タンク11の出口とは接続されている。EC/ph値制御線166により信号を送信し、EC液容器161またはph液容器162を作動させ、培養液のEC値およびph値を調整する。EC液容器161またはph液容器162は、EC/ph値検知制御装置16から送信されてくる信号を受信すると、作動し、EC液はEC液注入管163を介し、ph液はph液注入管164を介して培養液貯留タンク11内に送り込まれて培養液に混合され、培養液のEC値およびph値を常に設定したレベルに維持する。EC値またはph値が上昇すると、培養液調整ポンプ15が作動し、灌水貯留タンク12から水を培養液貯留タンク11に送り、培養液のEC値またはph値を下げる。灌水貯留タンク12の水が不足すると、灌水制御弁123がオンされ、水を灌水貯留タンク12に貯蔵し、必要に備える。   The culture solution supply and circulation system 1 includes a culture solution storage tank 11, an irrigation storage tank 12, a culture solution pressurization pump 13, a culture solution recovery pump 14, a culture solution adjustment pump 15, an EC / ph value detection control device 16, and a UV. An ultraviolet germicidal lamp 17 and a microfilter 18 are provided. A culture fluid level control device 112 is disposed above the culture fluid storage tank 11, and the function of the culture fluid level control device 112 is necessary for recovering the culture fluid by controlling the capacity of the culture fluid storage tank 11. Secure space. A culture solution control valve 111 is disposed below the culture solution storage tank 11, and the culture solution control valve 111 is a valve for supplying the culture solution. A culture medium pressurizing pump 13 is disposed between the culture medium storage tank 11 and the culture medium supply pipe 21, and the function of the culture medium pressurizing pump 13 is to apply pressure to the culture medium and pass it through the microfilter 18. After filtering impurities, they are sent to the porous hydroponic tube 22 and used to grow vegetables. An irrigation water level control device 122 is disposed above the irrigation water storage tank 12, and the function of the irrigation water level control device 122 is to control the normal capacity of the irrigation water storage tank 12. An irrigation control valve 121 is disposed below the irrigation storage tank 12, and the irrigation control valve 121 is a valve for supplying irrigation. When the irrigation control valve 121 is set to ON, the culture solution control valve 111 is also set to OFF, the porous hydroponic tube 22 supplies water to the vegetables, helps the vegetables to perform photosynthesis, and accumulates in the foliage. Consumed nitrate nitrogen is consumed. On the contrary, the culture solution is supplied to the porous hydroponics tube 22 to grow the vegetables quickly. The culture solution recovery pump 14 applies pressure to the culture solution circulated from the culture solution recovery tube 23, passes the UV ultraviolet sterilization lamp 17, performs sterilization treatment, and then recovers it to the culture solution storage tank 11 and re-injects it. Prepare for use. An EC / ph value detection control device 16 is arranged outside the culture solution storage tank 11, and an EC / ph value detection line 165 and a culture solution storage tank are used to constantly detect changes in the EC value and ph value of the culture solution. 11 outlets are connected. A signal is transmitted through the EC / ph value control line 166, the EC solution container 161 or the ph solution container 162 is operated, and the EC value and ph value of the culture solution are adjusted. When the EC liquid container 161 or the ph liquid container 162 receives a signal transmitted from the EC / ph value detection control device 16, the EC liquid container 161 or the ph liquid container 162 operates, and the EC liquid passes through the EC liquid injection pipe 163 and the ph liquid passes through the ph liquid injection pipe. The medium is fed into the culture medium storage tank 11 via 164 and mixed with the culture medium, and the EC value and ph value of the culture liquid are always maintained at the set levels. When the EC value or the ph value rises, the culture solution adjustment pump 15 operates to send water from the irrigation storage tank 12 to the culture solution storage tank 11 to lower the EC value or ph value of the culture solution. When the water in the irrigation storage tank 12 is insufficient, the irrigation control valve 123 is turned on, and the water is stored in the irrigation storage tank 12 to prepare for necessity.

図3は、本発明の一実施形態による水耕栽培部を示した模式図である。水耕栽培部2は、培養液供給管21、多孔水耕栽培管22、培養液回収管23および人工照明装置24を備える。培養液供給管21および培養液平衡管211の機能は、培養液加圧ポンプ13から供給される培養液を迅速に多孔水耕栽培管22内の培養液設定液位まで満たし、野菜を迅速に成長させることである。野菜の収穫前の一定期間、同じように培養液加圧ポンプ13を利用して、本来培養液を満たす空間に水を供給し、野菜に基本的な新陳代謝を行なわせ、光合成を行なわせ、野菜の茎葉内に蓄積された硝酸態窒素を迅速に消費させる。多孔水耕栽培管22は、直線を呈し、一定の間隔をあけて一列に並んだ複数の円形栽培孔221があり、野菜の根部を一列に並んだ複数の円形栽培孔221の1つに通して多孔水耕栽培管22内に入れ、培養液を吸収させ、迅速に成長させる。収穫前の一定期間、水だけを吸収させ、野菜に基本的な新陳代謝を行なわせ、十分に光合成を行なわせ、野菜の茎葉内に蓄積された硝酸態窒素を迅速に消費させ、硝酸態窒素の含有量を450ppm以下に抑える。培養液の供給を停止した収穫前の一定期間内において、曇りや雨などの天気が連続し、深刻な日照不足になり、野菜が浴びる一日の累積日照量が300,000LUX./hr.に満たないと、人工照明装置24が作動し、多孔水耕栽培管22の日照量を300,000LUX./hr.まで増加させる。人工照明装置24の作動は、光センサ241が日照量を測定し、光信号伝達線242を介して信号を人工照明装置24に送信し計算を行なう。日中の12時間において、日照量を計算するが、不足している場合は、夜間の12時間を利用して、日照量を補充する(本実施形態では15,000LUX./hr.)。電線243を介して電源を高出力水銀灯群244に供給し高出力水銀灯群244を作動させ、不足した日照量を補充し、野菜に人工照明のエネルギーを吸収させ、茎葉内に蓄積された硝酸態窒素を迅速に消費させると、天候の変化の影響を受けずに、健康に良くて、自然の環境下または従来の技術では生産することができない低硝酸態窒素野菜を毎日収穫することができる。人工照明システムは、特殊な不良天候下において作動し、当日の日照量が不足した場合にのみ、不足量を補充し、むやみに人工照明システムを作動させ、貴重なエネルギーを浪費しているわけではない。培養液回収管23は、培養液回収弁231を介して培養液回収ポンプ14に接続していて、培養液回収弁231は常時オン状態に設定されて、培養液の回収およびEC値およびph値調整液の補充を行なう。システムが循環に設定されていない場合、培養液回収弁231はオフ状態で、排水弁232が排水のため、オン状態に設定され、多孔水耕栽培管22内で使用された水は水処理装置(本発明の申請内容にない)に送られ、消毒、殺菌および濾過処理後、再利用される。   FIG. 3 is a schematic diagram showing a hydroponic cultivation unit according to an embodiment of the present invention. The hydroponic cultivation unit 2 includes a culture solution supply tube 21, a porous hydroponic cultivation tube 22, a culture solution recovery tube 23, and an artificial lighting device 24. The functions of the culture solution supply pipe 21 and the culture solution equilibrium pipe 211 are to quickly fill the culture solution supplied from the culture solution pressurizing pump 13 up to the culture solution set liquid level in the porous hydroponic cultivation tube 22, and quickly feed vegetables. It is to grow. For a certain period of time before the harvest of vegetables, the culture medium pressurizing pump 13 is similarly used to supply water to the space that is originally filled with the culture medium, to cause the vegetables to undergo basic metabolism, to perform photosynthesis, It quickly consumes nitrate nitrogen accumulated in the foliage. The porous hydroponic tube 22 has a plurality of circular cultivating holes 221 that form a straight line and are arranged in a line at regular intervals, and the roots of vegetables are passed through one of the circular cultivating holes 221 that are arranged in a line. Then, it is placed in the porous hydroponics tube 22 to absorb the culture solution and grow rapidly. For a certain period of time before harvesting, only water is absorbed, allowing the vegetable to carry out basic metabolism, to fully perform photosynthesis, to quickly consume nitrate nitrogen accumulated in the foliage of the vegetable, The content is suppressed to 450 ppm or less. Within a certain period of time before harvesting when the supply of the culture solution was stopped, the weather such as cloudy and rainy continued, severe sunshine shortage, and the cumulative amount of sunshine per day in which vegetables are bathed is 300,000 LUX. / Hr. Otherwise, the artificial lighting device 24 is activated, and the amount of sunlight of the porous hydroponic cultivation tube 22 is set to 300,000 LUX. / Hr. Increase to. The operation of the artificial lighting device 24 is performed by the optical sensor 241 measuring the amount of sunlight and transmitting a signal to the artificial lighting device 24 via the optical signal transmission line 242 for calculation. The amount of sunshine is calculated at 12 hours during the day, but if it is insufficient, the amount of sunshine is replenished using 12 hours at night (15,000 LUX./hr. In this embodiment). The power is supplied to the high-power mercury lamp group 244 via the electric wire 243, the high-power mercury lamp group 244 is operated, the insufficient amount of sunlight is supplemented, the energy of artificial lighting is absorbed by the vegetables, and the nitrate state accumulated in the foliage The quick consumption of nitrogen allows daily harvesting of low nitrate nitrogen vegetables that are healthy and that are not affected by weather changes and that cannot be produced in a natural environment or by conventional techniques. Artificial lighting systems are operating under special bad weather conditions, and only when the amount of sunshine on the day is insufficient, the artificial lighting system is inadvertently replenished and wastes valuable energy. Absent. The culture medium recovery tube 23 is connected to the culture medium recovery pump 14 via the culture medium recovery valve 231, and the culture medium recovery valve 231 is always set to the on state so that the culture medium recovery, EC value, and ph value are set. Replenish the adjustment solution. When the system is not set to circulation, the culture medium recovery valve 231 is turned off and the drain valve 232 is turned on for drainage, and the water used in the porous hydroponic tube 22 is a water treatment device. (Not in the application content of the present invention) and reused after disinfection, sterilization and filtration.

本実施形態の野菜の硝酸態窒素含有量を制御する方法は、自然法則を利用した技術の高度な発明で、そのメカニズムは本発明の特許請求範囲に採用されている。水耕栽培システムに培養液供給中断法を用いて、野菜を収穫する前の一定期間、光合成を行なわせ、野菜の茎葉内に蓄積された硝酸態窒素を充分に消費させる。また、野菜を収穫する前の一定期間内に、培養液の回収を行ない、水のみを野菜に供給する。本発明の「培養液供給停止法」は、野菜の茎葉内に蓄積された硝酸態窒素を強制的に消費させるもので、そのメカニズムは以下のようになっている。
(硝酸基NO3−)((光合成の転化)((アミノ酸amino acid)((光合成の合成)((タンパク質protein)
注:本実施形態の培養液供給中断法期間内における総日照量は、900,000LUX.以上である。培養液供給中断法の期間は、収穫前の72時間である。生産された野菜の茎葉内に蓄積された硝酸態窒素含有量は、358ppmである。検査方法については、NIEA W415.52Bを参照。検査機関は、国立中興大学農業及自然資源学院である。
The method for controlling the nitrate nitrogen content of vegetables according to the present embodiment is an advanced invention of technology utilizing the laws of nature, and the mechanism is employed in the claims of the present invention. The hydroponic cultivation system uses the broth supply interruption method to allow photosynthesis to occur for a certain period before harvesting the vegetables and to sufficiently consume nitrate nitrogen accumulated in the foliage of the vegetables. In addition, the culture solution is collected within a certain period before the vegetables are harvested, and only water is supplied to the vegetables. The “culture solution supply stop method” of the present invention forcibly consumes nitrate nitrogen accumulated in the foliage of vegetables, and its mechanism is as follows.
(Nitrate group NO 3- ) ((Conversion of photosynthesis) ((Amino acid) ((Synthesis of photosynthesis) ((Protein protein)
Note: The total amount of sunshine during the culture broth supply interruption method of this embodiment is 900,000 LUX. That's it. The period of the culture supply interruption method is 72 hours before harvesting. The nitrate nitrogen content accumulated in the stems and leaves of the produced vegetables is 358 ppm. See NIEA W415.52B for inspection methods. The inspection organization is National Chukoh University, Faculty of Agriculture and Natural Resources.

本発明では好適な実施形態を前述の通りに開示したが、これらは決して本発明を限定するものではなく、当該技術を熟知する者は誰でも、本発明の精神と領域を脱しない範囲内で各種の変更や修正を加えることができる。従って、本発明の保護の範囲は、特許請求の範囲で指定した内容を基準とする。   Although preferred embodiments of the present invention have been disclosed as described above, they are not intended to limit the present invention in any way, and anyone skilled in the art is within the spirit and scope of the present invention. Various changes and modifications can be made. Therefore, the scope of protection of the present invention is based on the contents specified in the claims.

本発明の一実施形態による野菜の硝酸態窒素含有量の制御方法のシステムを示した模式図である。It is the schematic diagram which showed the system of the control method of the nitrate nitrogen content of vegetables by one Embodiment of this invention. 本発明の一実施形態による培養液の供給および循環システムを示した模式図である。It is the schematic diagram which showed the supply and circulation system of the culture solution by one Embodiment of this invention. 本発明の一実施形態による水耕栽培部を示した模式図である。It is the schematic diagram which showed the hydroponic cultivation part by one Embodiment of this invention. 本発明の一実施形態による多孔水耕栽培管の側面図。The side view of the porous hydroponic cultivation tube by one Embodiment of this invention. 本発明の一実施形態および従来の水耕栽培の水需要量の比較図。The comparison figure of the water demand of one Embodiment of this invention and the conventional hydroponics.

符号の説明Explanation of symbols

1 培養液の供給および循環システム
11 培養液貯留タンク
111 培養液制御弁
112 培養液液位制御装置
12 灌水貯留タンク
121 灌水制御弁
122 灌水水位制御装置
13 培養液加圧ポンプ
14 培養液回収ポンプ
15 培養液調整ポンプ
16 EC/ph値検知制御装置
161 EC液容器
162 ph液容器
163 EC液注入管
164 ph液注入管
165 EC/ph値検知線
166 EC/ph値制御線
17 UV紫外線殺菌灯
18 精密濾過器
2 水耕栽培部
21 培養液供給管
211 培養液平衡管
22 多孔水耕栽培管
221 一列に並んだ複数の円形栽培孔
23 培養液回収管
231 培養液回収弁
232 排水弁
24 人工照明装置
241 光センサ
242 光信号伝達線
243 電線
244 高出力水銀灯群
DESCRIPTION OF SYMBOLS 1 Supply and circulation system of culture solution 11 Culture solution storage tank 111 Culture solution control valve 112 Culture solution liquid level control device 12 Irrigation storage tank 121 Irrigation control valve 122 Irrigation water level control device 13 Culture solution pressurization pump 14 Culture solution collection pump 15 Culture liquid adjustment pump 16 EC / ph value detection controller 161 EC liquid container 162 ph liquid container 163 EC liquid injection pipe 164 ph liquid injection pipe 165 EC / ph value detection line 166 EC / ph value control line 17 UV ultraviolet germicidal lamp 18 Microfilter 2 Hydroponic cultivation section 21 Culture fluid supply pipe 211 Culture fluid equilibrium tube 22 Porous hydroponic culture tube 221 Multiple circular cultivation holes 23 arranged in a row 23 Culture fluid recovery tube 231 Culture fluid recovery valve 232 Drain valve 24 Artificial lighting Device 241 Optical sensor 242 Optical signal transmission line 243 Electric wire 244 High power mercury lamp group

Claims (12)

水耕法により栽培された野菜であって、
培養液を供給して成長させ、収穫に先立って培養液の供給を止めて、水により栽培して植物体内に蓄積された硝酸態窒素を消費させることにより、硝酸態窒素の含有量を450ppm以下に低下させた、
ことを特徴とする低硝酸態窒素野菜。
A vegetable cultivated by hydroponics,
Feeding and growing the culture solution, stopping the supply of the culture solution prior to harvesting, consuming the nitrate nitrogen accumulated in the plant body by cultivating with water, the content of nitrate nitrogen is 450 ppm or less Reduced to,
A low nitrate nitrogen vegetable.
水耕法による野菜栽培において、
培養液により野菜を成育して一定期間栽培後、その収穫に先立って培養液の供給を停止、回収し、
替わって水を供給して光合成を行なわせて植物体内に蓄積された硝酸態窒素を消費させて、
硝酸態窒素の含有量を450ppm以下に減少させることを特徴とする低硝酸態窒素野菜栽培方法。
In vegetable cultivation by hydroponics,
After growing the vegetables with the culture solution and cultivating for a certain period, the supply of the culture solution is stopped and recovered prior to harvesting,
Instead, water is supplied and photosynthesis is performed to consume nitrate nitrogen accumulated in the plant body.
A method for cultivating a low nitrate nitrogen vegetable, wherein the content of nitrate nitrogen is reduced to 450 ppm or less.
培養液を水耕栽培部に供給して回収すると共に、培養液に替えて水を供給して回収する培養液供給及び循環システムと水耕栽培部とからなることを特徴とする低硝酸態窒素野菜栽培システム。   Low nitrate nitrogen, comprising a culture solution supply and circulation system and a hydroponic cultivation unit that supplies and collects a culture solution to a hydroponic cultivation unit and supplies and recovers water instead of the culture solution Vegetable cultivation system. 前記培養液供給および循環システムは、培養液貯留タンク、灌水貯留タンク、培養液加圧ポンプ、培養液回収ポンプ、培養液調整ポンプ、EC/ph値検知制御装置、UV紫外線殺菌灯および精密濾過器を備えることを特徴とする請求項3に記載の低硝酸態窒素野菜栽培システム。   The culture solution supply and circulation system includes a culture solution storage tank, an irrigation storage tank, a culture solution pressurization pump, a culture solution recovery pump, a culture solution adjustment pump, an EC / ph value detection control device, a UV ultraviolet germicidal lamp, and a microfilter. The low nitrate nitrogen vegetable cultivation system of Claim 3 characterized by the above-mentioned. 前記水耕栽培部は、培養液供給管、野菜を植え込む孔を備えた多孔水耕栽管、培養液回収管および人工照明装置を備えることを特徴とする請求項3に記載の低硝酸態窒素野菜栽培システム。   4. The low nitrate nitrogen according to claim 3, wherein the hydroponic cultivation unit includes a culture solution supply tube, a porous hydroponic tube having a hole for planting a vegetable, a culture solution recovery tube, and an artificial lighting device. Vegetable cultivation system. 前記培養液貯留タンクは、培養液制御弁および培養液液位制御装置を備えることを特徴とする請求項4に記載の低硝酸態窒素野菜栽培システム。   5. The low nitrate nitrogen vegetable cultivation system according to claim 4, wherein the culture solution storage tank includes a culture solution control valve and a culture solution level control device. 灌水貯留タンクは、灌水制御弁および灌水水位制御装置を備えることを特徴とする請求項4に記載の低硝酸態窒素野菜栽培システム。   The low nitrate nitrogen vegetable cultivation system according to claim 4, wherein the irrigation storage tank includes an irrigation control valve and an irrigation water level control device. 前記EC/ph値検知制御装置は、EC液容器、ph液容器、EC液注入管、ph液注入管、EC/ph値検知線およびEC/ph値制御線を備えることを特徴とする請求項4に記載の低硝酸態窒素野菜栽培システム。   The EC / ph value detection control device includes an EC liquid container, a ph liquid container, an EC liquid injection pipe, a ph liquid injection pipe, an EC / ph value detection line, and an EC / ph value control line. 4. The low nitrate nitrogen vegetable cultivation system according to 4. 前記培養液供給管は、培養液平衡管を備えることを特徴とする請求項5に記載の低硝酸態窒素野菜栽培システム。   The low nitrate nitrogen vegetable cultivation system according to claim 5, wherein the culture solution supply tube includes a culture solution equilibrium tube. 前記多孔水耕栽管は、一列に並んだ複数の円形栽培孔を備えることを特徴とする請求項5に記載の低硝酸態窒素野菜栽培システム。   The low nitrate nitrogen vegetable cultivation system according to claim 5, wherein the porous water cultivation tube includes a plurality of circular cultivation holes arranged in a row. 前記培養液回収管は、培養液回収弁および排水弁を備えることを特徴とする請求項5に記載の低硝酸態窒素野菜栽培システム。   6. The low nitrate nitrogen vegetable cultivation system according to claim 5, wherein the culture solution recovery tube includes a culture solution recovery valve and a drain valve. 前記人工照明装置は、光センサ、光信号伝達線、電源および高出力水銀灯群を備えることを特徴とする請求項5に記載の低硝酸態窒素野菜栽培システム。   6. The low nitrate nitrogen vegetable cultivation system according to claim 5, wherein the artificial lighting device includes an optical sensor, an optical signal transmission line, a power source, and a high output mercury lamp group.
JP2006242680A 2006-09-07 2006-09-07 Vegetable with low nitrate nitrogen, and method and system for cultivating the same Pending JP2008061570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006242680A JP2008061570A (en) 2006-09-07 2006-09-07 Vegetable with low nitrate nitrogen, and method and system for cultivating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006242680A JP2008061570A (en) 2006-09-07 2006-09-07 Vegetable with low nitrate nitrogen, and method and system for cultivating the same

Publications (1)

Publication Number Publication Date
JP2008061570A true JP2008061570A (en) 2008-03-21

Family

ID=39284820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006242680A Pending JP2008061570A (en) 2006-09-07 2006-09-07 Vegetable with low nitrate nitrogen, and method and system for cultivating the same

Country Status (1)

Country Link
JP (1) JP2008061570A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100935229B1 (en) * 2009-06-19 2010-01-06 주식회사 서원양행 Irrigation system
WO2010046958A1 (en) * 2008-10-20 2010-04-29 株式会社フェアリーエンジェル Method of hydroponically cultivating plant
WO2010140632A1 (en) * 2009-06-03 2010-12-09 日本山村硝子株式会社 Method for producing high functionality plants in hydroponic cultivation
JP2011250722A (en) * 2010-06-01 2011-12-15 Yokote Seiko Kk Hydroponic device
CN104106450A (en) * 2014-06-10 2014-10-22 湖北省农业科学院果树茶叶研究所 Method for obtaining pollen by isolated culturing of pear branches
JP2015136367A (en) * 2014-08-29 2015-07-30 富士通株式会社 Hydroponics method
JP2015136357A (en) * 2014-01-24 2015-07-30 富士通株式会社 Hydroponics system
JP2015136356A (en) * 2014-01-24 2015-07-30 富士通株式会社 plant cultivation system
WO2015111487A1 (en) * 2014-01-24 2015-07-30 富士通株式会社 Hydroponic cultivation system, hydroponic cultivation method, plant cultivation method, and plant cultivation apparatus
WO2015155914A1 (en) * 2014-04-11 2015-10-15 パナソニックIpマネジメント株式会社 Method for hydroponically cultivating low-potassium vegetable, and low-potassium vegetable
JP2016136895A (en) * 2015-01-28 2016-08-04 有限会社 グリーン・グリーン Plant cultivation method
JPWO2015178046A1 (en) * 2014-05-21 2017-04-20 三菱樹脂アグリドリーム株式会社 Plant cultivation methods and facilities
JP2018033368A (en) * 2016-08-31 2018-03-08 エスペックミック株式会社 Hydroponic method and hydroponic device
JP2020036572A (en) * 2018-08-31 2020-03-12 有限会社バベッジ Hydroponic cultivation apparatus
KR20230001888A (en) * 2021-06-29 2023-01-05 한서대학교 산학협력단 Hydroponics cultivation system capable of selectively supplying two types of nutrion liquid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105625A (en) * 1992-09-29 1994-04-19 Shikoku Sogo Kenkyusho:Kk Method for water-culturing vegetable

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105625A (en) * 1992-09-29 1994-04-19 Shikoku Sogo Kenkyusho:Kk Method for water-culturing vegetable

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010046958A1 (en) * 2008-10-20 2010-04-29 株式会社フェアリーエンジェル Method of hydroponically cultivating plant
JPWO2010140632A1 (en) * 2009-06-03 2012-11-22 日本山村硝子株式会社 Production method of highly functional plants in hydroponics
WO2010140632A1 (en) * 2009-06-03 2010-12-09 日本山村硝子株式会社 Method for producing high functionality plants in hydroponic cultivation
JP5991705B2 (en) * 2009-06-03 2016-09-14 日本山村硝子株式会社 Production method of highly functional plants in hydroponics
CN102458097A (en) * 2009-06-03 2012-05-16 日本山村硝子株式会社 Method for producing high functionality plants in hydroponic cultivation
KR100935229B1 (en) * 2009-06-19 2010-01-06 주식회사 서원양행 Irrigation system
JP2011250722A (en) * 2010-06-01 2011-12-15 Yokote Seiko Kk Hydroponic device
US10342190B2 (en) 2014-01-24 2019-07-09 Fujitsu Limited Hydroponic cultivation system, hydroponic cultivation method, plant cultivation system, and plant cultivation apparatus
KR101929102B1 (en) * 2014-01-24 2018-12-13 후지쯔 가부시끼가이샤 Hydroponic cultivation system, hydroponic cultivation method, plant cultivation method, and plant cultivation apparatus
JP2015136357A (en) * 2014-01-24 2015-07-30 富士通株式会社 Hydroponics system
JP2015136356A (en) * 2014-01-24 2015-07-30 富士通株式会社 plant cultivation system
WO2015111487A1 (en) * 2014-01-24 2015-07-30 富士通株式会社 Hydroponic cultivation system, hydroponic cultivation method, plant cultivation method, and plant cultivation apparatus
KR101908882B1 (en) * 2014-01-24 2018-10-16 후지쯔 가부시끼가이샤 Hydroponic cultivation system, hydroponic cultivation method, plant cultivation method, and plant cultivation apparatus
KR20170141814A (en) * 2014-01-24 2017-12-26 후지쯔 가부시끼가이샤 Hydroponic cultivation system, hydroponic cultivation method, plant cultivation method, and plant cultivation apparatus
US10015941B2 (en) 2014-01-24 2018-07-10 Fujitsu Limited Hydroponic cultivation system
US9901045B2 (en) 2014-01-24 2018-02-27 Fujitsu Limited Hydroponic cultivation method
EP3097774A4 (en) * 2014-01-24 2017-04-26 Fujitsu Limited Hydroponic cultivation system, hydroponic cultivation method, plant cultivation method, and plant cultivation apparatus
JP2018139616A (en) * 2014-04-11 2018-09-13 パナソニックIpマネジメント株式会社 Low potassium leafy vegetables
JP6051414B2 (en) * 2014-04-11 2016-12-27 パナソニックIpマネジメント株式会社 Hydroponic cultivation method of low potassium leaf vegetable and low potassium leaf vegetable
JP2018139617A (en) * 2014-04-11 2018-09-13 パナソニックIpマネジメント株式会社 Low potassium leafy vegetables
WO2015155914A1 (en) * 2014-04-11 2015-10-15 パナソニックIpマネジメント株式会社 Method for hydroponically cultivating low-potassium vegetable, and low-potassium vegetable
JP2018161137A (en) * 2014-04-11 2018-10-18 パナソニックIpマネジメント株式会社 Low potassium leaf vegetables
JPWO2015178046A1 (en) * 2014-05-21 2017-04-20 三菱樹脂アグリドリーム株式会社 Plant cultivation methods and facilities
CN104106450A (en) * 2014-06-10 2014-10-22 湖北省农业科学院果树茶叶研究所 Method for obtaining pollen by isolated culturing of pear branches
JP2015136367A (en) * 2014-08-29 2015-07-30 富士通株式会社 Hydroponics method
JP2016136895A (en) * 2015-01-28 2016-08-04 有限会社 グリーン・グリーン Plant cultivation method
JP2018033368A (en) * 2016-08-31 2018-03-08 エスペックミック株式会社 Hydroponic method and hydroponic device
JP2020036572A (en) * 2018-08-31 2020-03-12 有限会社バベッジ Hydroponic cultivation apparatus
KR20230001888A (en) * 2021-06-29 2023-01-05 한서대학교 산학협력단 Hydroponics cultivation system capable of selectively supplying two types of nutrion liquid
KR102578635B1 (en) * 2021-06-29 2023-09-14 한서대학교 산학협력단 Hydroponics cultivation system capable of selectively supplying two types of nutrion liquid

Similar Documents

Publication Publication Date Title
JP2008061570A (en) Vegetable with low nitrate nitrogen, and method and system for cultivating the same
Þórarinsdóttir et al. Aquaponics guidelines
CN102219332B (en) Novel technology for treating domestic sewage in rural area
CN101902904B (en) Aquaponics facility for producing vegetables and fish
CN212813624U (en) Cyclic utilization&#39;s sustainable fish dish intergrowth system
US20080115245A1 (en) Low nitrate vegetable and its cultivation system and method
CN104585081A (en) Underground water circulation water-saving type sturgeon ecological breeding method
CN109626766A (en) A kind of ecology of urban river is regulated and stored the construction method in lake
CN103250668A (en) System combining aquaculture and soilless agriculture planting
CN106508735A (en) Method for three-dimensional mixed culture of escargots and fish
Sayara et al. Hydroponic and aquaponic systems for sustainable agriculture and environment
CN109892232A (en) Aggregate species cultivating system and its application in scale animal and poultry cultivation treatment for cow manure
CN113031683A (en) Fish and vegetable symbiotic digital agricultural management system
CN105309388B (en) A kind of daphnia heatproof acclimation method and the method for carrying out restoration of the ecosystem to water body using daphnia
CN101543190A (en) Method for cultivating tilapia by sea ice water
CN108739329A (en) A kind of fish and vegetable symbiotic cultural method
CN112974505A (en) Method for restoring rice field soil cadmium pollution by using activator and nitrogen-fixing blue algae
JP5327952B2 (en) Method for producing pumice medium used for plant hydroponics, plant hydroponic device using pumice medium obtained from the method, and plant hydroponic method
CN108793646B (en) Landscape type domestic sewage ecological treatment system
CN116098109A (en) Industrial pond culture system
CN206767809U (en) Biogas slurry treatment system with vegetable hydroponic cooperative disposal is absorbed based on CO2
CN113040045B (en) Aquatic animal and plant internal circulation growth and reproduction co-culture system
US11483985B2 (en) Method and system for fungi production in an aquaponics system
CN211558496U (en) High-density fish culture system
CN109329132B (en) Method for breeding big mudskipper in mangrove forest area

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110811