JP2018026891A - 回転電機制御装置、および、これを用いた電動パワーステアリング装置 - Google Patents

回転電機制御装置、および、これを用いた電動パワーステアリング装置 Download PDF

Info

Publication number
JP2018026891A
JP2018026891A JP2016155328A JP2016155328A JP2018026891A JP 2018026891 A JP2018026891 A JP 2018026891A JP 2016155328 A JP2016155328 A JP 2016155328A JP 2016155328 A JP2016155328 A JP 2016155328A JP 2018026891 A JP2018026891 A JP 2018026891A
Authority
JP
Japan
Prior art keywords
inverter
temperature
rotating electrical
electrical machine
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016155328A
Other languages
English (en)
Other versions
JP6737052B2 (ja
Inventor
遼 加納
Ryo Kano
遼 加納
崇志 鈴木
Takashi Suzuki
崇志 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016155328A priority Critical patent/JP6737052B2/ja
Priority to US15/670,992 priority patent/US10227085B2/en
Priority to DE102017213712.6A priority patent/DE102017213712B4/de
Publication of JP2018026891A publication Critical patent/JP2018026891A/ja
Application granted granted Critical
Publication of JP6737052B2 publication Critical patent/JP6737052B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0409Electric motor acting on the steering column
    • B62D5/0412Electric motor acting on the steering column the axes of motor and steering column being parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0403Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
    • B62D5/0406Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box including housing for electronic control unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0496Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures by using a temperature sensor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/68Controlling or determining the temperature of the motor or of the drive based on the temperature of a drive component or a semiconductor component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/25Devices for sensing temperature, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/64Controlling or determining the temperature of the winding

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

【課題】インバータ温度を適切に推定可能な回転電機制御装置、および、これを用いた電動パワーステアリング装置を提供する【解決手段】サーミスタ16は、それぞれのインバータ11、12の温度であるインバータ温度の推定のベースとなるベース温度を検出する。温度推定部53は、ベース温度、および、インバータ11、12への通電による温度変化量に基づいて、インバータ温度を推定する。第1インバータ11のスイッチング素子111〜116のオン抵抗は、第2インバータ12のスイッチング素子121〜126のオン抵抗より小さい。サーミスタ16は、第1インバータ11との距離が、第2インバータ12との距離よりも短い領域である第1領域B1に配置される。これにより、ベース温度Hbを適切に検出することができるので、インバータ温度H1、H2を適切に推定することができる。【選択図】 図3

Description

本発明は、回転電機制御装置、および、これを用いた電動パワーステアリング装置に関する。
従来、モータコイル、又は、電力変換器を構成する電子部品の温度を推定し、例えば電流指令値を制限することにより過熱を防止するモータ制御装置が知られている。例えば特許文献1では、温度センサのセンサ値に温度変化量を加算することで、温度推定値を演算している。
特開2016−92944号公報
巻線組およびインバータの組み合わせを「系統」とすると、特許文献1は、1系統での温度推定について開示されている。特許文献1では、複数系統での温度推定については、なんら言及されていない。また、複数系統のときの温度センサの配置についても何ら言及されていない。
本発明は、上述の課題に鑑みてなされたものであり、その目的は、インバータ温度を適切に推定可能な回転電機制御装置、および、これを用いた電動パワーステアリング装置を提供することにある。
本発明の回転電機制御装置は、複数の巻線組(81、82)を有する回転電機(80)の駆動を制御するものであって、複数のインバータ(11、12)と、温度検出素子(16)と、制御部(30)と、を備える。
インバータは、巻線組ごとに対応して設けられる。
温度検出素子は、それぞれのインバータの温度であるインバータ温度の推定のベースとなるベース温度を検出する。
制御部は、温度推定部(53)を有する。温度推定部は、ベース温度、および、インバータへの通電による温度変化量に基づいて、インバータ温度を推定する。
複数のインバータの1つである第1インバータ(11)のスイッチング素子(111〜116)のオン抵抗は、他のインバータである第2インバータ(12)のスイッチング素子(121〜126)のオン抵抗より小さい。
温度検出素子は、第1インバータとの距離が、第2インバータとの距離よりも短い領域に配置される。
温度検出素子をオン抵抗が小さいスイッチング素子で構成される第1インバータ側に配置しているので、オン抵抗が大きいスイッチング素子で構成される第2インバータ側に配置する場合と比較して、インバータからのもらい熱を受けにくい。したがって、ベース温度を適切に検出できるので、インバータ温度を適切に推定することができる。
本発明の一実施形態によるステアリングシステムの概略構成図である。 本発明の一実施形態によるモータ制御装置を示す回路図である。 本発明の一実施形態によるインバータおよびサーミスタの配置を示す平面図である。 本発明の一実施形態による制御部を説明するブロック図である。 本発明の一実施形態による温度推定部を説明するブロック図である。 本発明の一実施形態によるベース温度の上昇分の内訳を説明するタイムチャートである。 本発明の一実施形態による温度推定値を説明するタイムチャートである。 本発明の一実施形態による片系統駆動時の温度推定値を説明するタイムチャートである。
以下、本発明による回転電機制御装置を図面に基づいて説明する。
(一実施形態)
本発明の一実施形態を図1〜図8に示す。
図1に示すように、回転電機制御装置としてのモータ制御装置10は、回転電機としてのモータ80とともに、運転者によるステアリング操作を補助する電動パワーステアリング装置8に適用される。
図1は、電動パワーステアリング装置8を備えるステアリングシステム90の構成を示す。ステアリングシステム90は、操舵部材であるステアリングホイール91、ステアリングシャフト92、ピニオンギア96、ラック軸97、車輪98、および、電動パワーステアリング装置8等を有する。
ステアリングホイール91は、ステアリングシャフト92と接続される。ステアリングシャフト92には、運転者がステアリングホイール91を操作することにより入力される操舵トルクを検出するトルクセンサ94が設けられる。ステアリングシャフト92の先端には、ピニオンギア96が設けられる。ピニオンギア96は、ラック軸97に噛み合っている。ラック軸97の両端には、タイロッド等を介して一対の車輪98が連結される。
運転者がステアリングホイール91を回転させると、ステアリングホイール91に接続されたステアリングシャフト92が回転する。ステアリングシャフト92の回転運動は、ピニオンギア96によってラック軸97の直線運動に変換される。一対の車輪98は、ラック軸97の変位量に応じた角度に操舵される。
電動パワーステアリング装置8は、モータ80、モータ80の回転を減速してステアリングシャフト92に伝える動力伝達部材である減速ギア89、および、モータ制御装置10等を備える。本実施形態の電動パワーステアリング装置8は、所謂「コラムアシストタイプ」であるが、モータ80の回転をラック軸97に伝える所謂「ラックアシストタイプ」としてもよい。すなわち、本実施形態では、ステアリングシャフト92が「駆動対象」に対応するが、ラック軸97を「駆動対象」としてもよい。
モータ80は、運転者によるステアリングホイール91の操舵を補助する補助トルクを出力するものであって、電源としてのバッテリ5(図2参照)から電力が供給されることにより駆動され、減速ギア89を正逆回転させる。
図2に示すように、モータ80は、3相ブラシレスモータであって、2組の巻線組81、82を有する。
第1巻線組81は、第1U相コイル811、第1V相コイル812、および、第1W相コイル813を有する。コイル811、812、813は、一端が第1インバータ11と接続され、他端が結線される。
第2巻線組82は、第2U相コイル821、第2V相コイル822、および、第2W相コイル823を有する。コイル821、822、823は、一端が第2インバータ12と接続され、他端が結線される。
本実施形態では、第1巻線組81と第2巻線組82とは、所定の電気角(例えば30°)分、ずれて配置され、巻線組81、82には、電気角のずれに応じて位相をずらした電力が供給される。
モータ制御装置10は、第1インバータ11、第2インバータ12、温度検出素子としてのサーミスタ16、および、制御部30等を備える。インバータ11、12、サーミスタ16、および、制御部30は、基板20に実装される。モータ制御装置10は、モータ80の軸方向の一方側に設けられ、モータ80を軸方向に投影した投影領域Bmに収まるように設けられている(図1参照)。本実施形態では、モータ80とモータ制御装置10とが一体であり、所謂「機電一体型」となっている。
第1インバータ11は、第1巻線組81に対応して設けられ、第2インバータ12は、第2巻線組82に対応して設けられる。以下、第1巻線組81、および、第1巻線組81に対応して設けられる第1インバータ11等の組み合わせを第1系統とする。また、第2巻線組82、および、第2巻線組82に対応して設けられる第2インバータ12等の組み合わせを第2系統とする。以下適宜、第1系統に係る構成等に「第1」、第2系統に係る構成等に「第2」を付す。また、第1系統に係るパラメータ等に、添え字の「1」を付し、第2系統に係るパラメータ等に、添え字の「2」を付す。
第1インバータ11は、3相インバータであり、第1スイッチング素子111〜116を有する。スイッチング素子111〜113が高電位側に接続され、スイッチング素子114〜116が低電位側に接続される。
対になるU相のスイッチング素子111、114の接続点は、第1U相コイル811に接続される。対になるV相のスイッチング素子112、115の接続点は、第1V相コイル812に接続される。対になるW相のスイッチング素子113、116の接続点は、第1W相コイル813に接続される。
第2インバータ12は、3相インバータであり、第2スイッチング素子121〜126を有する。スイッチング素子121〜123が高電位側に接続され、スイッチング素子124〜126が低電位側に接続される。
対になるU相のスイッチング素子121、124の接続点は、第2U相コイル821に接続される。対になるV相のスイッチング素子122、125の接続点は、第2V相コイル822に接続される。対になるW相のスイッチング素子123、126の接続点は、第2W相コイル823に接続される。
本実施形態では、スイッチング素子111〜116、121〜126はMOSFETであって、第1スイッチング素子111〜116と第2スイッチング素子121〜126とは、オン抵抗が異なるものが用いられている。本実施形態では、第1スイッチング素子111〜116のオン抵抗R1は、第2スイッチング素子121〜126のオン抵抗R2より小さい。すなわち、R1<R2である。そのため、スイッチング素子111〜116、121〜126に同様に通電した場合、第2スイッチング素子121〜126は、第1スイッチング素子111〜116よりも昇温しやすい。
スイッチング素子111〜113の高電位側を接続する高電位ラインLp1は、バッテリ5の正極に接続される。高電位ラインLp1には、電源リレー71が設けられる。スイッチング素子121〜123の高電位側を接続する高電位ラインLp2は、バッテリ5の正極に接続される。高電位ラインLp2には、電源リレー72が設けられる。電源リレー71、72は、メカリレーであってもよいし、スイッチング素子111等と同様、MOSFET等であってもよい。なお、電源リレー71、72としてMOSFETを用いる場合、バッテリ5が誤って逆向きに接続されたときに逆向きの電流が流れるのを避けるべく、寄生ダイオードの向きが反対向きとなるように接続される逆接保護リレーを設けることが望ましい。
コンデンサ73は、インバータ11、12と並列に接続される。
第1電流検出部13は、電流検出素子131〜133を有する。電流検出素子131は、スイッチング素子114とグランドラインLg1との間に設けられ、第1U相コイル811に流れる第1U相電流Iu1を検出する。電流検出素子132は、スイッチング素子115とグランドラインLg1との間に設けられ、第1V相コイル812に流れる第1V相電流Iv1を検出する。電流検出素子133は、スイッチング素子116とグランドラインLg1との間に設けられ、第1W相コイル813に流れる第1W相電流Iw1を検出する。
第2電流検出部14は、電流検出素子141〜143を有する。電流検出素子141は、スイッチング素子124とグランドラインLg2との間に設けられ、第2U相コイル821に流れる第2U相電流Iu2を検出する。電流検出素子142は、スイッチング素子125とグランドラインLg2との間に設けられ、第2V相コイル822に流れる第2V相電流Iv2を検出する。電流検出素子143は、スイッチング素子126とグランドラインLg2との間に設けられ、第2W相コイル823に流れる第2W相電流Iw2を検出する。
本実施形態では、電流検出素子131〜133、141〜143は、シャント抵抗であるが、ホール素子等としてもよい。電流検出部13、14の検出値は、制御部30に出力される。
サーミスタ16は、スイッチング素子111〜116、121〜126の過渡温度上昇におけるベース温度Hbを検出する。本実施形態では、ヒートシンク15の温度をベース温度Hbとする。サーミスタ16の検出値であるベース温度検出値Hb_snsは、制御部30に出力される。
図3に示すように、スイッチング素子111〜116、121〜126、電流検出素子131〜133、141〜143、サーミスタ16、制御部30、電源リレー71、72等は、基板20のヒートシンク15側の面201(図1参照)に実装される。スイッチング素子111〜116、121〜126等は、ヒートシンク15に放熱可能に設けられる。
図1では、ヒートシンク15は、モータ制御装置10に設けられているが、例えばモータ80のモータ制御装置10側に設けられるフレーム部材をヒートシンクとして用いてもよい。
基板20には、コイル811〜813と接続される図示しないモータ線がそれぞれ挿通されるモータ線挿通孔21が形成される。また、基板20には、コイル821〜823と接続される図示しないモータ線がそれぞれ挿通されるモータ線挿通孔22が接続される。基板20とモータ線とは、例えばはんだ等により電気的に接続される。
基板20の中心Oを通る中心線Cで基板20を2つの領域に分け、第1スイッチング素子111〜116、電流検出素子131〜133および電源リレー71が実装され、モータ線挿通孔21が形成される側の領域を第1領域B1、第2スイッチング素子121〜126、電流検出素子141〜143および電源リレー72が実装され、モータ線挿通孔22が形成される側の領域を第2領域B2とする。すなわち、第1系統に係る部品が第1領域B1に設けられ、第2系統に係る部品が第2領域B2に設けられる。
本実施形態のサーミスタ16は、基板20のヒートシンク15側の面201であって、第1領域B1に実装される。サーミスタ16は、図示した箇所に限らず、ヒートシンク15の温度を検出可能な第1領域B1のいずれの箇所に配置してもよい。また、サーミスタ16は、第1領域B1内であって、大電流が通電されるスイッチング素子111〜116、電流検出素子131〜133、電源リレー71、および、モータ線からできるだけ離した箇所に配置することが望ましい。
図2〜図4に示すように、制御部30は、マイコン等を主体として構成される。制御部30における各処理は、ROM等の実体的なメモリ装置に予め記憶されたプログラムをCPUで実行することによるソフトウェア処理であってもよいし、専用の電子回路によるハードウェア処理であってもよい。
制御部30は、トルクセンサ94から取得される操舵トルクTs、回転角センサ75から取得される電気角θe、および、電流検出部13、14から取得される相電流Iu1、Iv1、Iw1、Iu2、Iv2、Iw2等に基づく電流フィードバック制御により、モータ80の駆動を制御する。
図4に示すように、制御部30は、3相2相変換部31、41、減算器32、33、42、43、制御器34、44、2相3相変換部35、45、異常判定部51、パラメータ設定部としての応答定数設定部52、温度推定部53、および、電流制限部56、57を有する。
第1系統3相2相変換部31は、電気角θeに基づき、相電流Iu1、Iv1、Iw1をdq変換し、第1d軸電流検出値Id1および第1q軸電流検出値Iq1を演算する。
減算器32は、第1d軸電流指令値Id1*と第1d軸電流検出値Id1との偏差ΔId1を演算する。減算器33は、第1q軸電流指令値Iq1*と第1q軸電流検出値Iq1との偏差ΔIq1を演算する。
制御器34は、偏差ΔId1、ΔIq1が0に収束するように、PI演算等により、第1d軸電圧指令値Vd1*および第1q軸電圧指令値Vq1*を演算する。
第1系統2相3相変換部35は、第1d軸電圧指令値Vd1*および第1q軸電圧指令値Vq1*を電気角θeに基づいて逆dq変換し、3相の第1電圧指令値Vu1*、Vv1*、Vw1*を演算する。
第2系統3相2相変換部41は、電気角θeに基づき、相電流Iu2、Iv2、Iw2をdq変換し、第2d軸電流検出値Id2および第2q軸電流検出値Iq2を演算する。
減算器42は、第2d軸電流指令値Id2*と第2d軸電流検出値Id2との偏差ΔId2を演算する。減算器43は、第2q軸電流指令値Iq2*と第2q軸電流検出値Iq2との偏差ΔIq2を演算する。
制御器44は、偏差ΔId2、ΔIq2が0に収束するように、PI演算等により、第2d軸電圧指令値Vd2*および第2q軸電圧指令値Vq2*を演算する。
第2系統2相3相変換部45は、第2d軸電圧指令値Vd2*および第2q軸電圧指令値Vq2*を電気角θeに基づいて逆dq変換し、3相の第2電圧指令値Vu2*、Vv2*、Vw2*を演算する。
制御部30は、第1電圧指令値Vu1*、Vv1*、Vw1*に基づき、第1インバータ11の駆動に係る制御信号を生成し、駆動回路28(図2参照)を経由して、スイッチング素子111〜116のオンオフ作動を制御する。また制御部30は、第2電圧指令値Vu2*、Vv2*、Vw2*に基づき、第2インバータ12の駆動に係る制御信号を生成し、駆動回路28を経由して、スイッチング素子121〜126のオンオフ作動を制御する。
図4および図5に示すように、異常判定部51では、第1系統および第2系統に異常が生じているか否かを判定する。ここでは、例えば天絡、地絡、断線、ならびに、スイッチング素子のショート故障およびオープン故障等が判定される。ここでの異常判定は、公知の方法にてなされる。第1系統および第2系統が共に正常である場合、第1系統および第2系統を用いてモータ80を駆動する。第1系統に異常が生じている場合、第1系統を停止し、第2系統を用いてモータ80の駆動を継続可能である。第2系統に異常が生じている場合、第2系統を停止し、第1系統を用いてモータ80の駆動を継続可能である。第1系統および第2系統の両方に異常が生じている場合、モータ80の駆動を停止する。以下、第1系統および第2系統を用いてモータ80を駆動することを「両系統駆動」、第1系統または第2系統を用いてモータ80を駆動することを「片系統駆動」とする。
図5に示すように、応答定数設定部52は、ゲイン設定部521および時定数設定部522を有する。
ゲイン設定部521は、温度推定に用いるゲインKnを設定する。
時定数設定部522は、温度推定に用いる時定数τnを設定する。
以下、ゲインKnの「n」には、系統を示す添え字が入るものとし、第1系統の温度推定に係るゲインを第1ゲインK1、第2系統の温度推定に係るゲインを第2ゲインK2とする。また、時定数τnの「n」には系統を示す添え字が入るものとし、第1系統の温度推定に係る時定数を第1時定数τ1、第2系統の温度推定に係る時定数を第2時定数τ2とする。
本実施形態では、ゲインKnおよび時定数τnを「応答定数」とし、ゲインおよび時定数の少なくとも一方を変更することが「応答定数を変更する」ことに対応する。
温度推定部53は、系統ごとの温度である第1インバータ温度H1および第2インバータ温度H2を推定する。
具体的には、温度推定部53は、一次遅れ演算器531、532、および、加算器536、537を有し、第1温度推定値H1_estおよび第2温度推定値H2_estを演算する。本実施形態では、第1温度推定値H1_estは第1インバータ11の温度推定値であり、第2温度推定値H2_estは第2インバータ12の温度推定値である。
一次遅れ演算器531は、電流二乗値(Id1)2、(Iq1)2、ゲインK1、および、時定数τ1が入力され、入力された電流二乗値または電流二乗値の積算値の時間平均に対し、伝達関数{K1/(τ1s+1)}による一次遅れ応答を演算し、温度変化量ΔH1を出力する。一次遅れ演算器531には、電流二乗値として、(Id1)2、(Iq1)2がそれぞれ入力されてもよいし、電流二乗値の和(すなわち(Id1)2+(Iq1)2)が入力されるようにしてもよい。
一次遅れ演算器532は、電流二乗値(Id2)2、(Iq2)2、ゲインK2、および、時定数τ2が入力され、入力された電流二乗値または電流二乗値の積算値の時間平均に対し、伝達関数{K2/(τ2s+1)}による一次遅れ応答を演算し、温度変化量ΔH2を出力する。一次遅れ演算器532には、電流二乗値として、(Id2)2、(Iq2)2がそれぞれ入力されてもよいし、電流二乗値の和(すなわち(Id2)2+(Iq2)2)が入力されるようにしてもよい。
加算器536は、ベース温度検出値Hb_snsと温度変化量ΔH1とを加算し、第1温度推定値H1_estを演算する。第1温度推定値H1_estは、第1電流制限部56に出力される。
加算器537は、ベース温度検出値Hb_snsと温度変化量ΔH2とを加算し、第2温度推定値H2_estを演算する。第2温度推定値H2_estは、第2電流制限部57に出力される。
すなわち、温度推定値H1_est、H2_estは、式(1)、(2)で表される。
H1_est=Hb_sns+ΔH1 ・・・(1)
H2_est=Hb_sns+ΔH2 ・・・(2)
第1電流制限部56は、第1温度推定値H1_estに基づき、第1q軸電流制限値Iq1_limを決定する。電流制限値Iq1_limは、温度推定値H1_estが大きいほど、すなわち第1インバータ温度H1が高いほど、小さくなるように決定される。第1電流制限部56は、トルク指令値等に基づいて決定される第1制限前q軸電流指令値Iq1*_bが第1q軸電流制限値Iq1_limより大きい場合、第1q軸電流指令値Iq1*を第1q軸電流制限値Iq1_limとする。第1制限前q軸電流指令値Iq1*_bが第1q軸電流制限値Iq1_lim以下の場合、第1制限前q軸電流指令値Iq1*_bをそのまま第1q軸電流指令値Iq1*とする。
第2電流制限部57は、第2温度推定値H2_estに基づき、第2q軸電流制限値Iq2_limを決定する。電流制限値Iq2_limは、温度推定値H2_estが大きいほど、すなわち第2インバータ温度H2が高いほど、小さくなるように決定される。第2電流制限部57は、トルク指令値等に基づいて決定される第2制限前q軸電流指令値Iq2*_bが第2q軸電流制限値Iq2_limより大きい場合、第2q軸電流指令値Iq2*を第2q軸電流制限値Iq2_limとする。第2制限前q軸電流指令値Iq2*_bが第2q軸電流制限値Iq2_lim以下の場合、第2制限前q軸電流指令値Iq2*_bをそのまま第2q軸電流指令値Iq2*とする。
ここでは、q軸電流指令値Iq1*、Iq2*について説明したが、q軸電流に係る値に替えて、d軸電流に係る値を用いることで、d軸電流指令値Id1*、Id2*も同様に演算される。
ここで、サーミスタ16の検出値であるベース温度検出値Hb_snsについて説明する。
図6は、同様の正弦波電流を巻線組81、82に通電したときのベース温度検出値Hb_snsの上昇分の内訳を説明する図である。図6では、ヒートシンク15の初期温度H0を横軸とし、通電に伴うインバータ11、12の発熱以外の要因については無視した。図6において、(a)はサーミスタ16を第1領域B1に配置した場合であり、(b)はサーミスタ16を第2領域B2に配置した場合の参考例である。
本実施形態と参考例について説明しておく。以下、距離L1は、サーミスタ16の最も近くに配置される第1インバータ11のスイッチング素子111〜116とサーミスタ16との距離とする。距離L2は、サーミスタ16の最も近くに配置される第2インバータ12のスイッチング素子121〜126とサーミスタ16との距離とする。また、距離L1、L2は、それぞれインバータ11、12の実装領域の中心とサーミスタ16との距離としてもよい。
本実施形態では、サーミスタ16が第1領域B1に配置されているので、サーミスタ16と第1インバータ11との距離L1は、サーミスタ16と第2インバータ12との距離L2より小さい。すなわち、L1<L2である。
一方、参考例では、サーミスタ16と第1インバータ11との距離L1は、サーミスタ16と第2インバータ12との距離L2より大きい。すなわち、L1>L2である。
ベース温度検出値Hb_snsは、式(3)のように表される。
Hb_sns=f(R1)+g(R2)+H0 ・・・(3)
式中のf(R1)は、第1インバータ11からの受熱による温度変化量、g(R2)は、第2インバータ12からの受熱による温度変化量、H0はヒートシンク15の初期温度である。以下、通電によりインバータ11、12が昇温することでサーミスタ16が受ける熱を「もらい熱」という。
また、式(3)中のf(R1)は、スイッチング素子111〜116のオン抵抗R1に基づく関数であることを意味し、第1インバータ11とサーミスタ16との距離L1が小さいほど、大きい値となる。また、g(R2)は、スイッチング素子121〜126のオン抵抗R2に基づく関数であることを意味し、第2インバータ12とサーミスタ16との距離L2が小さいほど、大きい値となる。
モータ制御装置10の温度が飽和するまでの過渡期において、サーミスタ16の配置箇所によって、式(3)中のf(R1)、g(R2)が異なる値となるため、ベース温度検出値Hb_snsは、サーミスタ16の配置箇所によって異なる値となる。なお、通電開始からモータ制御装置10の温度が飽和するのに要する時間が経過した後は、サーミスタ16の配置箇所によらず、ベース温度検出値Hb_snsは等しくなる。
図6(a)の例では、サーミスタ16が第1領域B1に配置されているので、第1スイッチング素子111〜116の発熱の影響を受けやすい。図6(b)の例では、サーミスタ16が第2領域B2に配置されているので、第2スイッチング素子121〜126の発熱の影響を受けやすい。また、R1<R2であるので、サーミスタ16を第2領域B2に配置した場合、第1領域B1に配置した場合と比較し、過渡期におけるベース温度検出値Hb_snsの上昇幅が大きい。
また、温度推定値H1_est、H2_estは、ベース温度検出値Hb_snsに温度変化量ΔH1、ΔH2を加算することで演算される(式(1)、(2)参照)。そのため、ベース温度検出値Hb_snsがもらい熱により上昇すると、温度推定値H1_est、H2_estが実際より高く推定される虞がある。
本実施形態では、図6および図7に示すように、サーミスタ16を第1領域B1に配置することで、第2領域B2に配置する場合と比較し、スイッチング素子111〜116、121〜126からのもらい熱によるベース温度検出値Hb_snsの上昇を抑えている。
したがって、サーミスタ16を第1領域B1に配置した場合、第1温度推定値H1_estと実際の第1インバータ温度H1との差である推定誤差E1は、サーミスタ16を第2領域B2に配置した場合より小さい。同様に、サーミスタ16を第1領域B1に配置した場合、第2温度推定値H2_estと実際の第2インバータ温度H2との差である推定誤差E2は、サーミスタ16を第2領域B2に配置した場合より小さい。すなわち、サーミスタ16を第1領域B1に配置することで、第2領域B2に配置する場合と比較し、精度よく温度推定値H1_est、H2_estが演算される。
片系統駆動時の温度推定を図8に基づいて説明する。図8(a)は第1系統に異常が生じ、第2系統で片系統駆動する場合であり、図8(b)は第2系統に異常が生じ、第1系統で片系統駆動する場合である。また、図8(a)では、両系統駆動時と同じゲインおよび時定数を用いて温度変化量ΔH2を演算した場合の温度推定値を、H2_est_aとした。また、片系統駆動時において、駆動している側のインバータ温度H1、H2は、両系統駆動時と同様であるものとする。
図8(a)に示すように、第2系統を用いて片系統駆動する場合、第1インバータ11を駆動しないため、第1インバータ11からのもらい熱による昇温が生じず、両系統駆動時と比較し、ベース温度検出値Hb_snsが小さくなる。そのため、第2系統での片系統駆動時において、両系統駆動時と同じゲインおよび時定数を用いて温度変化量ΔH2を演算すると、温度推定値H2_est_aは、両系統駆動時よりも小さい値となり、実温度との差が大きく、推定精度が低下する。そこで、第2系統を用いて片系統駆動する場合、応答定数設定部52は、両系統駆動時よりもゲインK2を大きくし、時定数τ2を小さくする。これにより、精度よく温度推定値H2_estを演算することができる。
図8(b)に示すように、第1系統を用いて片系統駆動する場合、ベース温度検出値Hb_snsは、両系統駆動時と比較して若干小さくなる、或いは、略同様となる。そのため、第1系統を用いて片系統駆動する場合、両系統駆動時と同じゲインK1および時定数τ1を用いて温度変化量ΔH1を演算しても、比較的精度よく温度推定値H1_estを演算することができる。
なお、第1系統を用いて片系統駆動する場合においても、両系統駆動時とは異なるゲインK1および時定数τ1を用いてもよい。上述の通り、第1系統での片側駆動時のベース温度検出値と両系統駆動時のベース温度検出値との差は、第2系統での片側駆動時のベース温度検出値と両系統駆動時のベース温度検出値との差より小さいので、ゲインK1および時定数τ1の変更幅は微小とすることが望ましい。換言すると、両系統駆動時における応答定数と第2系統での片側駆動時における応答定数との差は、両系統駆動時における応答定数と第1系統での片側駆動時における応答定数との差より大きい。
以上説明したように、本実施形態のモータ制御装置10は、複数の巻線組81、82を有するモータ80の駆動を制御するものであって、複数のインバータ11、12と、サーミスタ16と、制御部30と、を備える。
第1インバータ11は、第1巻線組81に対応して設けられる。第2インバータ12は、第2巻線組82に対応して設けられる。
サーミスタ16は、それぞれのインバータ11、12の温度であるインバータ温度H1、H2の推定のベースとなるベース温度Hbを検出する。
制御部30は、温度推定部53を有する。温度推定部53は、ベース温度Hbの検出値であるベース温度検出値Hb_sns、および、インバータ11、12への通電による温度変化量ΔH1、ΔH2に基づいて、インバータ温度H1、H2を推定する。具体的には、温度推定部53は、ベース温度検出値Hb_snsおよび温度変化量ΔH1に基づき、第1インバータ11の温度推定値である第1温度推定値H1_estを演算する。また、温度推定部53は、ベース温度検出値Hb_snsおよび温度変化量ΔH2に基づき、第2インバータ12の温度推定値である第2温度推定値H2_estを演算する。
本実施形態では、複数のインバータのうちの1つである第1インバータ11のスイッチング素子111〜116のオン抵抗は、他のインバータである第2インバータ12のスイッチング素子121〜126のオン抵抗より小さい。
また、サーミスタ16は、第1インバータ11との距離が、第2インバータ12との距離よりも短い領域である第1領域B1に配置される。
本実施形態では、サーミスタ16をオン抵抗が小さい素子で構成される第1インバータ11側である第1領域B1に配置しているので、オン抵抗が大きい素子で構成される第2インバータ12側である第2領域B2に配置する場合と比較し、インバータからのもらい熱の影響を受けにくい。したがって、ベース温度Hbを適切に検出することができるので、インバータ温度H1、H2を適切に推定することができる。
また、巻線組81、82および対応して設けられる部品の組み合わせを系統とする。すなわち、第1巻線組81および第1巻線組81に対応して設けられる第1インバータ11等の部品の組み合わせを第1系統とし、第2巻線組82および第2巻線組82に対応して設けられる第2インバータ12を第2系統とする。
制御部30は、一部の系統に異常が生じた場合、異常が生じていない系統を用いてモータ80の駆動を継続する。
温度推定部53は、一部の系統を用いてモータ80の駆動を継続する場合、全ての系統を用いて回転電機を駆動する場合とは、インバータ温度の推定に用いるパラメータを変更する。これにより、片系統駆動時においても、インバータ温度を精度よく推定することができる。
第1系統に異常が生じており、第2系統にてモータ80の駆動を継続する場合に用いられる応答定数は、第2系統に異常が生じており、第1系統にてモータ80の駆動を継続する場合よりも、第1系統および第2系統を用いてモータ80を駆動する場合との変更幅が大きい。本実施形態では、第1インバータ11側にサーミスタ16が配置されているので、第1系統を用いずにモータ80を駆動する場合、第1系統を用いてモータ80を駆動する場合と比較し、ベース温度Hbが低く検出される。そこで、第2系統での片系統駆動時におけるパラメータの変更幅を大きくすることで、どちらの系統を用いて片系統駆動する場合であっても、インバータ温度H1、H2を精度よく推定することができる。
温度推定部53は、巻線組81、82に通電される電流についての電流二乗値または電流二乗値の積算値の時間平均を入力とし、一次遅れ応答を温度変化量ΔH1、ΔH2として出力する一次遅れ演算器531、532を有する。インバータ温度H1、H2の推定に用いられるパラメータは、一次遅れ演算器531、532におけるゲインKnおよび時定数τnである。
これにより、温度推定値H1_est、H2_estを適切に演算することができる。
複数のインバータ11、12、サーミスタ16、および、制御部30は、モータ80を軸方向に投影した投影領域内に配置されている。本実施形態の駆動装置は、いわゆる「機電一体型」であって、モータ80とモータ制御装置10とが一体に設けられている。そのため、比較的狭いスペースにモータ制御装置10に係る部品が配置されており、サーミスタ16はインバータ11、12からのもらい熱の影響を受けやすい。本実施形態では、オン抵抗の小さい素子で構成される第1インバータ11側にサーミスタ16を配置することで、比較的狭いスペースにモータ制御装置10に係る部品が配置されている場合においても、通電によるもらい熱の影響を抑えることができる。
電動パワーステアリング装置8は、モータ制御装置10と、モータ80と、減速ギア89と、を備える。モータ80は、運転者の操舵を補助する補助トルクを発生する。減速ギア89は、モータ80の回転をステアリングシャフト92に伝達する。
電動パワーステアリング装置8では、ロック通電等、短時間に大電流が通電される通電パターンが多いため、インバータ11、12が短時間で昇温することが多く、サーミスタ16は通電によるもらい熱の影響を受けやすい。本実施形態では、オン抵抗の小さい素子で構成される第1インバータ11側にサーミスタ16を配置することで、モータ制御装置10を電動パワーステアリング装置8に適用した場合であっても、通電によるもらい熱の影響を抑えることができる。
(他の実施形態)
(ア)温度推定部
上記実施形態では、片系統駆動の場合、温度変化量を演算する一次遅れ演算器のゲインおよび時定数を変更する。他の実施形態では、片系統駆動の場合、ゲインまたは時定数の一方を変更してもよい。また、片系統駆動の場合、インバータ温度の推定に用いられる一次遅れ演算器の応答定数以外のパラメータを変更してもよい。
上記実施形態では、温度推定部は、インバータごとの温度推定値を演算する。他の実施形態では、温度推定部は、スイッチング素子の温度である素子温度を推定し、素子温度そのもの、または、素子温度に基づいて演算される値(例えば最大値や平均値等)をインバータ温度としてもよい。
(イ)インバータ
上記実施形態では、複数のインバータが同一基板の同一面に設けられる。他の実施形態では、第1インバータを基板の一方の面に設け、第2インバータを基板の他方の面に設けてもよい。この場合、温度検出素子は、第1インバータが実装される側に設けられる。また他の実施形態では、第1インバータおよび第2インバータを、それぞれ異なる基板に設けてもよい。この場合、温度検出素子は、第1インバータが実装される基板に設けられる。
上記実施形態では、インバータ、電流検出素子、温度検出素子、電源リレー、および、制御部が、同一の基板の同一面に実装されている。他の実施形態では、これらの部品の一部を同一基板の異なる面に実装してもよいし、複数の基板に分散して実装してもよい。
上記実施形態では、回転電機制御装置には、2つのインバータが設けられる。他の実施形態では、インバータを3つ以上設けてもよい。この場合、インバータごとにスイッチング素子のオン抵抗が異なっていてもよい。また、オン抵抗が異なる2種類以上の素子が用いられていれば、一部のインバータのスイッチング素子のオン抵抗が等しくてもよい。例えば、インバータが3つであれば、2つのインバータのスイッチング素子のオン抵抗が等しく、残りの1つのインバータのスイッチング素子のオン抵抗が異なっている、といった具合である。インバータが3以上の場合、最もオン抵抗が小さい素子で構成されているインバータを「第1インバータ」とみなし、その他のインバータを「第2インバータ」とみなす。また、最もオン抵抗が小さい素子で構成されるインバータが複数ある場合、そのうちの1つを「第1インバータ」とみなして、当該インバータが配置される領域に温度検出素子を配置すればよい。
上記実施形態では、スイッチング素子は、MOSFETである。他の実施形態は、スイッチング素子は、IGBTやサイリスタ等、MOSFET以外のものを用いてもよい。また、第1インバータと第2インバータとで、例えば一方をMOSFETとし、他方をIGBTとする、といった具合に、異なる種類のデバイスを用いてもよい。
(ウ)温度検出素子
上記実施形態では、温度検出素子は、基板の第1インバータが実装される側の領域に設けられる。他の実施形態では、温度検出素子は、基板に実装されていなくてもよく、例えばヒートシンクに配置され、信号線等を経由して、検出値が制御部に出力されるようにしてもよい。
上記実施形態では、温度検出素子はサーミスタである。他の実施形態では、温度検出素子は、ベース温度を検出可能であれば、サーミスタに限らず、どのようなものを用いてもよい。また、上記実施形態では、温度検出素子は、ベース温度としてヒートシンクの温度を検出する。他の実施形態では、温度検出素子は、例えばインバータが設けられる基板の温度等、ヒートシンク以外の箇所の温度をベース温度として検出してもよい。
(エ)回転電機および回転電機制御装置
上記実施形態では、回転電機は、系統ごとの電流フィードバック制御により駆動が制御される。他の実施形態では、系統ごとの電流フィードバック制御に替えて、「2系統の電流の和と差」をフィードバック制御することで回転電機の駆動を制御してもよい。また、回転電機の制御方法は、電流フィードバック制御に限らず、どのような制御であってもよい。
上記実施形態では、回転電機は、2組の巻線組を有する。他の実施形態では、巻線組が3組以上であってもよい。すなわち、3系統以上であってもよい。上記実施形態では、回転電機は、3相のブラシレスモータである。他の実施形態では、回転電機は、3相に限らず、4相以上としてもよい。また、ブラシレスモータに限らず、どのようなモータとしてもよい。また、回転電機は、モータに限らず、発電機であってもよいし、電動機と発電機の機能を併せ持つ、所謂モータジェネレータであってもよい。
上記実施形態では、回転電機と回転電機制御装置とが一体に設けられる、いわゆる「機電一体型」である。他の実施形態では、回転電機と回転電機制御装置とが別々に設けられていてもよい。
上記実施形態では、回転電機は、電動パワーステアリング装置に適用される。他の実施形態では、回転電機駆動装置を電動パワーステアリング装置以外の装置に適用してもよい
以上、本発明は、上記実施形態になんら限定されるものではなく、発明の趣旨を逸脱しない範囲において種々の形態で実施可能である。
10・・・モータ制御装置(回転電機制御装置)
11・・・第1インバータ(インバータ)
111〜116・・・第1スイッチング素子
12・・・第2インバータ(インバータ)
121〜126・・・第2スイッチング素子
16・・・サーミスタ(温度検出素子)
30・・・制御部
53・・・温度推定部
80・・・モータ(回転電機)
81、82・・・巻線組

Claims (7)

  1. 複数の巻線組(81、82)を有する回転電機(80)の駆動を制御する回転電機制御装置であって、
    前記巻線組ごとに対応して設けられる複数のインバータ(11、12)と、
    それぞれの前記インバータの温度であるインバータ温度の推定のベースとなるベース温度を検出する温度検出素子(16)と、
    前記ベース温度および前記インバータへの通電による温度変化量に基づいて前記インバータ温度を推定する温度推定部(53)を有する制御部(30)と、
    を備え、
    複数の前記インバータのうちの1つである第1インバータ(11)のスイッチング素子(111〜116)のオン抵抗は、他の前記インバータである第2インバータ(12)のスイッチング素子(121〜126)のオン抵抗より小さく、
    前記温度検出素子は、前記第1インバータとの距離が、前記第2インバータとの距離よりも短い領域に配置される回転電機制御装置。
  2. 前記巻線組および対応して設けられる部品の組み合わせを系統とすると、
    前記制御部は、一部の前記系統に異常が生じた場合、異常が生じていない前記系統を用いて前記回転電機の駆動を継続する請求項1に記載の回転電機制御装置。
  3. 前記制御部は、前記温度推定部での演算に用いられるパラメータを設定するパラメータ設定部(52)を有し、
    前記パラメータ設定部は、一部の前記系統を用いて前記回転電機の駆動を継続する場合、全ての前記系統を用いて前記回転電機を駆動する場合とは、前記パラメータを変更する請求項2に記載の回転電機制御装置。
  4. 前記第1インバータに係る前記系統である第1系統に異常が生じており、前記第2インバータに係る前記系統である第2系統にて前記回転電機の駆動を継続する場合に用いる前記パラメータは、前記第2系統に異常が生じており、前記第1系統にて前記回転電機の駆動を継続する場合よりも、前記第1系統および前記第2系統を用いて前記回転電機を駆動する場合との変更幅が大きい請求項3に記載の回転電機制御装置。
  5. 前記温度推定部は、前記巻線組に通電される電流についての電流二乗値または電流二乗値の積算値の時間平均を入力とし、一次遅れ応答を前記温度変化量として出力する一次遅れ演算器(531、532)を有し、
    前記パラメータは、前記一次遅れ演算器における応答定数である請求項3または4に記載の回転電機制御装置。
  6. 複数の前記インバータ、前記温度検出素子、および、前記制御部は、前記回転電機を軸方向に投影した投影領域内に配置されている請求項1〜5のいずれか一項に記載の回転電機制御装置。
  7. 請求項1〜6のいずれか一項に記載の回転電機制御装置(10)と、
    運転者の操舵を補助する補助トルクを発生する前記回転電機と、
    前記回転電機の回転を駆動対象(92)に伝達する動力伝達部材(89)と、
    を備える電動パワーステアリング装置。
JP2016155328A 2016-08-08 2016-08-08 回転電機制御装置、および、これを用いた電動パワーステアリング装置 Active JP6737052B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016155328A JP6737052B2 (ja) 2016-08-08 2016-08-08 回転電機制御装置、および、これを用いた電動パワーステアリング装置
US15/670,992 US10227085B2 (en) 2016-08-08 2017-08-07 Rotary electric machine control apparatus and electric power steering apparatus using the same
DE102017213712.6A DE102017213712B4 (de) 2016-08-08 2017-08-07 Steuervorrichtung für eine drehende elektrische Maschine, und elektrische Servolenkung, bei der diese verwendet wird

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016155328A JP6737052B2 (ja) 2016-08-08 2016-08-08 回転電機制御装置、および、これを用いた電動パワーステアリング装置

Publications (2)

Publication Number Publication Date
JP2018026891A true JP2018026891A (ja) 2018-02-15
JP6737052B2 JP6737052B2 (ja) 2020-08-05

Family

ID=60996753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016155328A Active JP6737052B2 (ja) 2016-08-08 2016-08-08 回転電機制御装置、および、これを用いた電動パワーステアリング装置

Country Status (3)

Country Link
US (1) US10227085B2 (ja)
JP (1) JP6737052B2 (ja)
DE (1) DE102017213712B4 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109318982A (zh) * 2018-08-02 2019-02-12 江苏大学 一种混合动力转向系统参数匹配方法
WO2019160143A1 (ja) 2018-02-19 2019-08-22 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
KR20200001832A (ko) * 2018-06-28 2020-01-07 주식회사 만도 이중 인버터 시스템
US11070158B2 (en) 2018-05-17 2021-07-20 Denso Corporation Rotary electric machine control apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10793183B2 (en) * 2017-12-22 2020-10-06 Trw Automotive U.S. Llc Torque overlay steering apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014168341A (ja) * 2013-02-28 2014-09-11 Jtekt Corp モータ制御装置
JP2015061458A (ja) * 2013-09-20 2015-03-30 株式会社デンソー モータ制御装置
JP2016092946A (ja) * 2014-11-04 2016-05-23 株式会社デンソー 電力変換装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7857509B2 (en) * 2007-08-22 2010-12-28 Gm Global Technology Operations, Inc. Temperature sensing arrangements for power electronic devices
JP5605714B2 (ja) * 2011-06-21 2014-10-15 株式会社デンソー モータ駆動装置、およびこれを用いた電動パワーステアリング装置
JP6172217B2 (ja) 2014-07-31 2017-08-02 株式会社デンソー 駆動装置、および、これを用いた電動パワーステアリング装置
JP6274077B2 (ja) 2014-11-04 2018-02-07 株式会社デンソー モータ制御装置
JP2016155328A (ja) 2015-02-25 2016-09-01 株式会社日本触媒 透明導電性フィルム
JP6443245B2 (ja) * 2015-07-02 2018-12-26 株式会社デンソー 回転電機制御装置
JP6642285B2 (ja) * 2016-06-08 2020-02-05 株式会社デンソー 回転電機制御装置、および、これを用いた電動パワーステアリング装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014168341A (ja) * 2013-02-28 2014-09-11 Jtekt Corp モータ制御装置
JP2015061458A (ja) * 2013-09-20 2015-03-30 株式会社デンソー モータ制御装置
JP2016092946A (ja) * 2014-11-04 2016-05-23 株式会社デンソー 電力変換装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019160143A1 (ja) 2018-02-19 2019-08-22 日立化成株式会社 エポキシ樹脂、エポキシ樹脂組成物、エポキシ樹脂硬化物及び複合材料
US11070158B2 (en) 2018-05-17 2021-07-20 Denso Corporation Rotary electric machine control apparatus
US11870378B2 (en) 2018-05-17 2024-01-09 Denso Corporation Rotary electric machine control apparatus
KR20200001832A (ko) * 2018-06-28 2020-01-07 주식회사 만도 이중 인버터 시스템
KR102567785B1 (ko) 2018-06-28 2023-08-17 에이치엘만도 주식회사 이중 인버터 시스템
CN109318982A (zh) * 2018-08-02 2019-02-12 江苏大学 一种混合动力转向系统参数匹配方法
CN109318982B (zh) * 2018-08-02 2021-05-25 江苏大学 一种混合动力转向系统参数匹配方法

Also Published As

Publication number Publication date
DE102017213712A1 (de) 2018-02-08
DE102017213712B4 (de) 2019-08-08
JP6737052B2 (ja) 2020-08-05
US20180037253A1 (en) 2018-02-08
US10227085B2 (en) 2019-03-12

Similar Documents

Publication Publication Date Title
JP6443245B2 (ja) 回転電機制御装置
JP5904181B2 (ja) モータ制御装置
JP5760830B2 (ja) 3相回転機の制御装置
JP6737052B2 (ja) 回転電機制御装置、および、これを用いた電動パワーステアリング装置
JP6040963B2 (ja) 回転機の制御装置
JP6554811B2 (ja) 制御装置
JP5387630B2 (ja) 多相回転機の制御装置、及びこれを用いた電動パワーステアリング装置
JP6776951B2 (ja) 回転電機制御装置、および、これを用いた電動パワーステアリング装置
JP6711255B2 (ja) モータ制御装置、および、これを用いた電動パワーステアリング装置
JP6555430B2 (ja) 電動パワーステアリング装置
JP6642285B2 (ja) 回転電機制御装置、および、これを用いた電動パワーステアリング装置
JP6384634B1 (ja) 電動パワーステアリング装置
JP2014168341A (ja) モータ制御装置
JP5605334B2 (ja) 多相回転機の制御装置
JP5754088B2 (ja) 電動パワーステアリング装置
CN110890856B (zh) 用于三相旋转机械设备的控制装置
US10243489B2 (en) Rotary electric machine control apparatus and electric power steering apparatus using the same
JP2018137865A (ja) 制御装置およびこれを用いた電動パワーステアリング装置
JP2017229216A (ja) モータ制御装置
JP5927858B2 (ja) モータ制御装置及び車両の電動パワーステアリング装置
JP2014168340A (ja) モータ制御装置
JP2019119417A (ja) 電動パワーステアリング装置
JP6891755B2 (ja) 多相回転機の制御装置
JP2010252484A (ja) モータ制御装置および電動パワーステアリング装置
JP2019092342A (ja) モータ制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200629

R151 Written notification of patent or utility model registration

Ref document number: 6737052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250