JP2017508019A - レーザー焼結にとって好適な優れた鋳造性/癒合性バランスを可能にするポリアリーレンエーテルケトンケトンの粉末組成物 - Google Patents

レーザー焼結にとって好適な優れた鋳造性/癒合性バランスを可能にするポリアリーレンエーテルケトンケトンの粉末組成物 Download PDF

Info

Publication number
JP2017508019A
JP2017508019A JP2016541113A JP2016541113A JP2017508019A JP 2017508019 A JP2017508019 A JP 2017508019A JP 2016541113 A JP2016541113 A JP 2016541113A JP 2016541113 A JP2016541113 A JP 2016541113A JP 2017508019 A JP2017508019 A JP 2017508019A
Authority
JP
Japan
Prior art keywords
powder
hydrophilic
polyarylene ether
fluidizing agent
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016541113A
Other languages
English (en)
Other versions
JP6591420B2 (ja
Inventor
ブノワ ブリュレ,
ブノワ ブリュレ,
エルヴェ ステル,
エルヴェ ステル,
シリル マチュー,
シリル マチュー,
ナディーヌ デクラメル,
ナディーヌ デクラメル,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of JP2017508019A publication Critical patent/JP2017508019A/ja
Application granted granted Critical
Publication of JP6591420B2 publication Critical patent/JP6591420B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints
    • C09D5/033Powdery paints characterised by the additives
    • C09D5/037Rheology improving agents, e.g. flow control agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2071/00Use of polyethers, e.g. PEEK, i.e. polyether-etherketone or PEK, i.e. polyetherketone or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/251Particles, powder or granules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group
    • C08G2650/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing oxygen in addition to the ether group containing ketone groups, e.g. polyarylethylketones, PEEK or PEK
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Paints Or Removers (AREA)

Abstract

記述的要約:レーザー焼結にとって好適な優れた鋳造性/癒合性バランスを可能にするポリアリーレンエーテルケトンケトンの粉末組成物。本発明は、99.6〜99.99重量%の少なくとも1種のポリアリーレンエーテルケトンの少なくとも1種の粉末と、0.01〜0.4重量%の親水性流動化剤とを含む組成物に関する。この親水性流動化剤は、相対湿度95%における5日間の調整後の0.5%超の質量増加(吸収された水の量)によって特徴付けられる。流動化剤のこの質量増加は、170℃における5分間の処理による水の脱離後にカールフィッシャー測定によって決定される。この組成物は、レーザー焼結にとって好適である。具体的には、それは粉末に優れた鋳造性/癒合性バランスを提供する。【選択図】図1

Description

本発明は、99.6重量%〜99.99重量%の少なくとも1種のポリアリーレンエーテルケトンの少なくとも1種の粉末と、0.01重量%〜0.4重量%の親水性流動化剤とを含む組成物に関する。この親水性流動化剤は、相対湿度95%における5日間の調整後の0.5%超の質量増加(吸収された水の量)によって特徴付けられる。流動化剤のこの質量増加は、170℃における15分間の処理による水の脱離後にカールフィッシャー測定によって決定される。この組成物は、レーザー焼結にとって好適である。具体的には、粉末にとって優れた鋳造性/癒合性中間物を可能にする。
ポリアリーレンエーテルケトン、より特定するとポリエーテルケトンケトン(PEKK)は、高効率の材料である。それらは、温度の制約、及び/又は機械的制約、若しくは更には化学的制約を伴う用途において使用される。これらのポリマーは、航空機、海洋掘削、及び医療用インプラントなどの様々な分野において見付けられる。これらのポリマーは、特に、塑造、押出、圧縮、スピニング、又はレーザー焼結で使用することができる。しかしながら、後者のプロセスにおけるそれらの使用は、下に記載されるように、レーザー焼結プロセスにおける実装を可能にする良好な流動性を確実にする粉末調製条件を必要とする。
レーザービーム下での粉末焼結の技術は、試作品及び模型などの三次元の物体を製造するのに役立つが、また、特に自動車、船舶、航空機、航空宇宙機、医療(補綴、聴覚システム、細胞組織等)、織物、衣類、ファッション、及び装飾分野、電子機器用の包装、電話、ホームオートメーション、情報技術、並びに照明における機能部品の製造にも役立つ。
ある特定の温度に加熱されたチャンバ内に維持される水平板上に粉末の薄層を堆積させる。レーザーは、例えば、メモリ内に物体の形状を有し、この形状をスライスの形態で表すコンピュータにより、物体に対応する幾何学的形状に、粉末の層内の様々な点の粉末粒子を焼結するのに必要なエネルギーを供給する。次に、水平板を、粉末の層の厚さに対応する値(例えば、0.05〜2mm、一般的には約0.1mm)だけ下降させ、次いで、粉末の新しい層を堆積させる。レーザーは、物体のこの新しいスライスに対応する幾何学的形状に粉末粒子を焼結するのに必要なエネルギー等を供給する。物体全体が製造されるまで、この手順が繰り返される。
レーザービームの下での粉末焼結のこのプロセスにおいて、良好な流動性をもつ利用可能な粉末を有することが肝要であり、これによって該粉末の良好な積層が可能になる。また、製造される物体の機械的特性を最大化するためには、レーザーによって誘発される融解後の粉末の良好な癒合性が必要である。
したがって、第1に良好な流動性、及び第2に焼結プロセス中の良好な癒合性を有する粉末が希求される。
レーザー焼結の分野においては、粉末の流動性を向上するために流動化剤を添加することは一般的な方法である。
米国特許出願第2004/0204531号は、親水性シリカに対する疎水性シリカのポリアミドについての利点について記載している。具体的には、親水性シリカを用いる場合、湿分の摂取後に流動性が低下する一方で、疎水性シリカを用いる場合、流動性は変化しない。
ポリアリーレンエーテルケトン(PAEK)の分野においては、好適な熱処理を用いることにより流動性が向上することが知られている。
米国特許7847057号は、ポリアリーレンエーテルケトン粉末の熱処理のためのプロセスに関し、このプロセスは、ポリマーのガラス転移温度よりも20℃高い温度における30分間の熱処理に粉末を曝露することからなる。
ポリエーテルエーテルケトン(PEEK)に対して適用されるこの処理によって、レーザー焼結プロセスにとって許容可能である流動性をもつ粉末を得ることが可能になる。該特許において癒合性の態様については考察されておらず、特に、癒合性が有効であり、熱処理によって修正されたか、あるいは向上したかについてはどの実施例も実証していない。
国際公開第2012/047613号もまた、より特定するとポリエーテルケトンケトン(PEKK)粉末に対して適用される熱処理について記載しており、この熱処理は、様々な結晶相の転移温度の間における数時間の熱処理に粉末を曝露することからなり、より特定すると、最も高い温度で転移する結晶形態に対応するポリマーの融解温度に近づけることによる。それによって、粉末の流動性は向上し、この処理に起因する結晶化度は焼結プロセス中保存され、焼結された物体にある特定の有利な物理的特性を与えるが、ある特定の用途にとっては不十分であるようである。該特許において癒合性の態様については考察されておらず、特に、癒合性が有効であり、熱処理によって修正されたか、あるいは向上したかについてはどの実施例も実証していない。
良好な流動性及び良好な癒合性をもつ利用可能な粉末を有するための必要条件を満たすために、本出願人は、一連の試験を実行し、ポリアリーレンエーテルケトンに関して、親水性流動化剤の添加が第1に良好な流動性を可能にし、第2に、多湿雰囲気中に存在した後でもこの流動性が維持されることを実証した。後者の結果は予期せぬものであり、従来技術(米国特許出願第2004/0204531号)の見地からは非常に驚くべきことである。
加えて、本出願人は、そのような組成物に関して、親水性流動化剤を補充したこれらのポリアリーレンエーテルケトン粉末の癒合性が、疎水性流動化剤を補充したポリアリーレンエーテルケトン粉末の癒合性よりも優れていることを発見した。
本発明は、99.6重量%〜99.99重量%の少なくとも1種のポリアリーレンエーテルケトンの少なくとも1種の粉末と、0.01重量%〜0.4重量%の親水性流動化剤、好ましくは0.01重量%〜0.2重量%の親水性流動化剤、より特定すると、好ましくは0.01重量%〜0.1重量%の親水性流動化剤とを含む組成物に関する。この親水性流動化剤は、相対湿度95%における5日間の調整後の0.5%超、好ましくは0.8%超の質量増加(吸収された水の量)によって特徴付けられる。流動化剤のこの質量増加は、170℃における15分間の処理による水の脱離後にカールフィッシャー測定によって決定される。
本発明はまた、本発明の組成物の使用に関し、また、これらの組成物の補助によって、特にレーザー焼結プロセスを用いて製造される物体に関する。
実施例で使用した17又は12mmの開口部をもつガラス漏斗 実施例4の冷却された3枚の鋼板表面のPEKKコーティングの目視画像 実施例4の冷却された3枚の鋼板表面のPEKKコーティングの両眼画像(両眼装置(ZeissのStemi SV11)の下で観察したもの)
本発明において使用されるポリアリーレンエーテルケトン(PAEK)は、以下の式:
(−Ar−X−)及び(−Ar−Y−)
を有する単位を含み、式中、
Ar及びArはそれぞれ、二価芳香族基を意味し、
これらの単位のうちの少ない割合(<10%)を2を超える結合価をもつ基で置き換えて、分岐を導入してもよい。
Ar及びArは、好ましくは、1,3−フェニレン、1,4−フェニレン、4,4’−ビフェニレン、1,4−ナフチレン、1,5−ナフチレン、及び2,6−ナフチレンから選択され得、
Xは電子求引基を意味し、好ましくは、カルボニル基及びスルホニル基から選択され得、
Yは酸素原子、硫黄原子、−CH−及びイソプロピリデンなどのアルキレン基から選択される基を意味する。
これらの単位X及びYにおいて、基Xのうちの少なくとも50%、好ましくは少なくとも70%、より特定すると少なくとも80%がカルボニル基であり、基Yのうちの少なくとも50%、好ましくは少なくとも70%、より特定すると少なくとも80%が酸素原子を表す。
好ましい実施態様によれば、基Xのうちの100%がカルボニル基を意味し、基Yのうちの100%が酸素原子を表す。
より優先的には、ポリアリーレンエーテルケトン(PAEK)は以下から選択される:
式Iの単位を含む、PEEKとしても知られるポリエーテルエーテルケトン
式I
シーケンスは完全にパラ(式I)であってもよいが、部分的又は完全にメタのシーケンスを導入することは、本発明の文脈からの逸脱を構成するわけではない。2つの例(非限定的列挙)を以下に示す:
又は
式IIの単位を含む、PEKとしても知られるポリエーテルケトン
式II
同様に、シーケンスは完全にパラ(式II)であってもよいが、部分的又は完全にメタのシーケンスを導入することは、本発明の文脈からの逸脱を構成するわけではない。
又は
式IIIA、式IIIB、及びそれらの混合物の単位を含む、PEKKとしても知られるポリエーテルケトンケトン
式IIIA
式IIIB
並びに、式IVの単位を含む、PEEKKとしても知られるポリエーテルエーテルケトンケトン
式IV
同様に、本発明から逸脱することなく、メタシーケンスをこの構造中に導入することができる。
カルボニル基及び酸素原子の他の配置もまた可能である。それ故に、それらを使用することは、本発明の文脈からの逸脱を構成するわけではない。
また、以下の式を有するフタラジノン式の二価の基を構造内に組み込むことも可能である。
本発明に従って使用され得るポリアリーレンエーテルケトンは、半結晶質又は非晶質であり得る。好ましくは、ポリアリーレンエーテルケトンは、テレフタル酸単位とイソフタル酸単位との合計に対して、テレフタル酸単位の質量百分率が55%〜85%、好ましくは55%〜70%、理想的には60%であるように単位IIIA及びIIIBの混合物を含む、ポリエーテルケトンケトンである。用語「テレフタル酸単位」及び「イソフタル酸単位」は、それぞれ、テレフタル酸及びイソフタル酸の式を意味する。
これらのポリアリーレンエーテルケトンは、摩砕又は沈殿によって調製できる粉末の形態である。
様々なポリアリーレンエーテルケトン粉末の混合物が、本発明の文脈から除外されるわけではない。好みに応じて、様々なポリアリーレンエーテルケトン粉末の混合物は、別のポリアリーレンエーテルケトンと組み合わされたポリエーテルケトンケトン、又は異なる化学構造の2つのPEKKの混合物を含む。したがって、ポリアリーレンエーテルケトンは、PEK、PEEKEK、PEEK、PEKEKK、又はPEKKと組み合わされることになる。好ましい形態によれば、PEKKは、PEK、PEEKEK、PEEK、若しくはPEKEKK、又は異なる化学式のPEKKと組み合わされることになり、PEKKは50質量%超を表し、限界値は含まれる。
本発明の文脈において使用される親水性流動化剤は、シリカ及びアルミナから好ましくは選択される無機顔料であり得る。
本発明の文脈において使用される親水性シリカは、シリコン酸化物から構成される。親水性シリカは、ジメチルクロロシランとのグラフティング等の化学的処理を受けたヒュームドシリカである疎水性シリカとは異なり、いかなる特定の処理も伴わないヒュームドシリカである。別の製造方法を介して合成されたシリカを使用することは、本発明の文脈からの逸脱を構成するわけではない。
一般的に使用されるシリカは、商品名がAerosil(登録商標)(Evonikが供給)又はCab−O−Sil(登録商標)(Cabotが供給)である、市販製品である。
これらのシリカは、ナノメートル単位の一次粒子から構成される(ヒュームドシリカの場合、典型的には5〜50nm)。これらの一次粒子は、組み合わされて凝集体を形成する。流動化剤として使用する際、シリカは様々な形態(基本粒子及び凝集体)で見付けられる。
本発明の文脈において使用される親水性流動化剤を含む粉末又は粉末混合物は、適切な場合、様々な化合物を補充されるか、あるいはそれらを含有し得る。これらの化合物の中では、言及は、補強充填剤、特にカーボンブラック等の鉱物充填剤、炭素ベースであってもなくてもよいナノチューブ、摩砕されていてもいなくてもよい繊維(ガラス、カーボン等の繊維)、安定化剤(光安定化剤、具体的にはUV安定化剤、及び熱安定化剤)、蛍光増白剤、着色剤、顔料、エネルギー吸収添加剤(UV吸収剤を含む)、又はこれらの充填剤若しくは添加剤の組み合わせから構成される。
流動性の測定:
これらの粉末の流動性は、以下の様式で、ガラス漏斗中で決定された。
− 17又は12mmの開口部をもつガラス漏斗(図1)を、周縁から5mmまで粉末で充填する。底部の開口部を指で栓をする。
12mmの漏斗の場合:
=39.2mm
=12mm
h=106mm
=83mm
並びに、17mmの漏斗の場合:
=42.0mm
=17mm
h=112mm
=67mm
− 粉末の流下時間をクロノメーターで測定する。
− 流動が起こらない場合、漏斗をスパチュラを用いて軽く叩く。必要な場合、作業を繰り返す。
− 流下時間及びスパチュラで叩いた数を書き留める。
癒合性の評価
粉末の癒合性を、以下のプロトコルによって評価する。
− 鋼板上への粉末の堆積
− 粉末でコーティングされた板の340℃、15分間の焼成
− オーブンから取り出した後の冷却後のコーティングされた板の観察
粉末の癒合/膜形成後に鋼板が見えなくなればなるほど、癒合性は、比例して良好であると判断される。
実施例1
テレフタル酸単位とイソフタル酸単位との合計に対して60%のテレフタル酸単位を含有し、粒径が50μmプラス又はマイナス5μmのDv50を有するArkema社のKepstan(登録商標)6003 PL粉末を、100秒間、高速におけるMagimixキッチンブレンダー内で、0.4%のCab−O−Sil(登録商標)TS−610シリカで補充する。
Dv50は、体積中位径としても知られ、これは調査される粒子の集団をちょうど2つに分ける粒径の値に対応する。Dv50は、規格ISO 9276のPart1〜6に従って測定する。本記載においては、Malvern Mastersizer 2000粒径分析器が使用され、測定は、粉末におけるレーザー回折によって、液体経路で為される。
シリカ、Cab−O−Sil(登録商標)TS−610は、ジメチルクロロシランによる処理によって疎水性となったヒュームドシリカである。これは以下、「TS−610」と呼ばれる。
粉末は優れた流動性(時間<10s、17mm漏斗の場合、叩いた回数0回)を有するが、上に記載された通りに評価した癒合性は非常に乏しく、鋼板は未だにはっきりと見える。
したがって、このシリカは、高い含有量において抗コアレッサであり得る。
実施例2
テレフタル酸単位とイソフタル酸単位との合計に対して60%のテレフタル酸単位を含有し、粒径が50μmプラス又はマイナス5μmのDv50を有するArkema社のKepstan(登録商標)6003 PL粉末を、100秒間、高速におけるMagimixキッチンブレンダー内で、0.4%のCab−O−Sil(登録商標)TS−610シリカで補充する。
同じKepstan粉末の第2の試料は、同じプロトコルに従って、Cab−O−Sil(登録商標)M−5シリカを補充する。シリカ、Cab−O−Sil(登録商標)M−5は、いかなる特定の処理も受けていない、親水性ヒュームドシリカである。これは以下、「M−5」と呼ばれる。
2つの補充された粉末についての流動性の結果を、シリカを含まない粉末と比較して表1に示す。
用語「多数」は、漏斗を連続的に叩くときに使用される。
2種類のシリカが流動性を向上させ、したがってそれらの両方がPEKKにとっての潜在的な流動化剤であることが確認される。
実施例3
Magimixブレンダー内で、Arkema社の別のKepstan(登録商標)6003 PL粉末を、0.05%のCab−O−Sil(登録商標)TS−610シリカで、あるいは0.05%のCab−O−Sil(登録商標)M−5シリカの何れかで補充する。
これらの粉末を、一方では、23℃及び湿分飽和に対して50%の相対湿度で保管する(例えば、機械使用前の粉末の保管の場合)。含水量はカールフィッシャー法で測定する(250℃、20分間の処理によってKepstan(登録商標)粉末から水を脱離する)。他方では、粉末は140℃で夜通し乾燥させる。含水量はまた、カールフィッシャー法で測定する(上記と同一のプロトコル)。
異なる含水量を有する2つの補充された粉末についての流動性の結果を表2に示す。
0.5%及び0.53%の含水量は、23℃及び50%の相対湿度における湿分で飽和された材料の状態に対応する。
0.25%の含水量は、140℃で夜通し乾燥した後の材料の状態に対応する。
含水量は、シリカの性質による影響を受けない。
使用されるシリカに関係なく、流動性は含水量による影響を受けないことが明らかになる。具体的には、湿分で飽和された粉末(23℃、50%の相対湿度)について、流動化剤として親水性シリカを使用する場合においても、流動性のいかなる低下も観察されない。
実施例4
実施例2の3つの試料(補充無し、0.2%の疎水性シリカ(TS−610)による補充、0.2%の親水性シリカ(M−5)による補充)を、3枚の鋼板上に堆積させる。
これらのコーティングされた板を、340℃に維持されるオーブン内に15分間置く。
次いで、それらを冷却し、その後板の表面のPEKKコーティングを、視覚的に、並びに両眼装置(ZeissのStemi SV11)の下で観察する(図2及び3)。
視覚的には(図2)、親水性シリカ(M−5)が使用される場合、より滑らかな表面が観察され、オーブン処理中の粉末の良好な癒合性が実証される。シリカを伴わない場合、並びにTS−610シリカを伴う場合、コーティングは連続的ではなく、結果として、鋼板は局所的に見えるままである。
両眼画像(図3)は先行の観察を裏付け、補充されていない粉末及び0.2%のTS−610シリカを補充した粉末の場合には、鋼板は局所的に見えるままである領域が存在する一方で、M−5シリカを補充した粉末の場合には、鋼板は最早見えなくなっている。これは、オーブン処理中のM−5を補充した粉末のより良好な癒合性を裏付けるものである。

Claims (9)

  1. 99.6重量%〜99.99重量%の少なくとも1種のポリアリーレンエーテルケトンの少なくとも1種の粉末と、0.01重量%〜0.4重量%の親水性流動化剤とを含む組成物であって、前記親水性流動化剤が、相対湿度95%における5日間の調整後の0.5%超の質量増加(吸収された水の量)によって特徴付けられ、流動化剤の前記質量増加が、170℃における15分間の処理による水の脱離後にカールフィッシャー測定によって決定される、組成物。
  2. 親水性流動化剤が親水性シリカである、請求項1に記載の組成物。
  3. 少なくとも1種のポリアリーレンエーテルケトンがPEKKである、請求項1に記載の組成物。
  4. PEKKが、テレフタル酸単位とイソフタル酸単位との合計に対して55%〜85%のテレフタル酸単位の質量百分率を有する、請求項3に記載の組成物。
  5. PEKKに加えて、異なる化学構造のPEK、PEEKEK、PEEK、PEKEKK又はPEKK粉末が添加され、PEKKが50質量%超に相当し、限界値は含まれる、請求項3に記載の組成物。
  6. 充填剤を含有する、請求項1に記載の組成物。
  7. 少なくとも1種の添加剤を含有する、請求項1に記載の組成物。
  8. レーザー焼結プロセスにおける、請求項1から7の何れか一項に記載の組成物の使用。
  9. 請求項1から7の何れか一項に記載の組成物を用いて得られる物体。
JP2016541113A 2013-12-20 2014-12-17 レーザー焼結にとって好適な優れた鋳造性/癒合性バランスを可能にするポリアリーレンエーテルケトンケトンの粉末組成物 Active JP6591420B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1363201A FR3015506B1 (fr) 2013-12-20 2013-12-20 Composition de poudres de poly-arylene-ether-cetone-cetones autorisant un excellent compromis coulabilite et coalescence adaptees au frittage laser
FR1363201 2013-12-20
PCT/FR2014/053386 WO2015092272A1 (fr) 2013-12-20 2014-12-17 Composition de poudres de poly-arylene-ether-cetone-cetones autorisant un excellent compromis coulabilite et coalescence adaptees au frittage laser

Publications (2)

Publication Number Publication Date
JP2017508019A true JP2017508019A (ja) 2017-03-23
JP6591420B2 JP6591420B2 (ja) 2019-10-16

Family

ID=50976694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016541113A Active JP6591420B2 (ja) 2013-12-20 2014-12-17 レーザー焼結にとって好適な優れた鋳造性/癒合性バランスを可能にするポリアリーレンエーテルケトンケトンの粉末組成物

Country Status (7)

Country Link
US (2) US20160333190A1 (ja)
EP (1) EP3083793B1 (ja)
JP (1) JP6591420B2 (ja)
CN (1) CN106103564B (ja)
FR (1) FR3015506B1 (ja)
RU (1) RU2685320C1 (ja)
WO (1) WO2015092272A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020534185A (ja) * 2017-09-15 2020-11-26 アーケマ・インコーポレイテッド Pekk押出積層造形法及び製品
JP2021507077A (ja) * 2017-12-20 2021-02-22 ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー 少なくとも1種のPEEK−PEmEKコポリマーを含むポリマー組成物の層を印刷することを含む、造形品を製造する方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3029830B1 (fr) * 2014-12-16 2017-07-28 Arkema France Procede de fabrication d'un objet par fusion d'une poudre de polymere dans un dispositif de frittage de poudre
US11186717B2 (en) 2015-12-21 2021-11-30 Shpp Global Technologies B.V. Enhanced powder flow and melt flow of polymers for additive manufacturing applications
US11998977B2 (en) 2018-03-15 2024-06-04 Hewlett-Packard Development Company, L.P. Build material composition with metal powder and freeze-dried heteropolymer
EP3659785A1 (en) * 2018-11-29 2020-06-03 Ricoh Company, Ltd. Powder for forming three-dimensional object, forming device, forming method, and powder
FR3101634B1 (fr) * 2019-10-08 2022-06-03 Arkema France Poudre de poly-aryl-éther-cétone(s) chargée, procédé de fabrication et utilisation correspondants
FR3109848B1 (fr) * 2020-04-30 2022-12-16 Arkema France Conducteur isolé apte à être utilisé dans un bobinage, bobinage en dérivant et procédés de fabrication correspondants.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08104514A (ja) * 1994-10-03 1996-04-23 Shin Etsu Chem Co Ltd シリカの表面改質方法
JP2003208052A (ja) * 2002-01-10 2003-07-25 Shin Etsu Chem Co Ltd 定着ロール用シリコーンゴム組成物及び定着ロール
JP2004156039A (ja) * 2002-11-07 2004-06-03 Degussa Ag ポリマー組成物、成形部品を被覆する方法および前記組成物の使用
JP2005139295A (ja) * 2003-11-06 2005-06-02 Denki Kagaku Kogyo Kk 金属酸化物粉末、その製造方法、用途
JP2007039631A (ja) * 2004-12-21 2007-02-15 Degussa Ag 三次元の粉末をベースとする型を使用しない製造方法におけるポリアリーレンエーテルケトン粉末の使用およびこれから製造される成形体
JP2010006057A (ja) * 2008-05-20 2010-01-14 Eos Gmbh Electro Optical Systems 構造修飾されたポリマーの選択的焼結
JP2010523364A (ja) * 2007-04-05 2010-07-15 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ 層状に三次元物体を製造する方法で使用するpaek粉末、及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004062762A1 (de) * 2004-12-21 2006-06-22 Degussa Ag Feinkörniges Polyarylenetherketonpulver
JP5099931B2 (ja) * 2007-08-10 2012-12-19 日本フッソ工業株式会社 フッ素樹脂複合材料及び該フッ素樹脂複合材料から得ることができるライニング被膜並びに該ライニング被膜を有する被膜体
FR2929512B1 (fr) * 2008-04-08 2010-12-31 Roquette Freres Composition pulverulente de maltitol cristallise de grande fluidite et non mottante
WO2012047613A1 (en) 2010-09-27 2012-04-12 Arkema Inc. Heat treated polymer powders
FR2982519B1 (fr) 2011-11-10 2020-02-21 Arkema France Procede de broyage de polyaryl ether cetones
FR2993567B1 (fr) * 2012-07-20 2015-09-25 Arkema France Procede de synthese de poly-aryl-ether-cetones

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08104514A (ja) * 1994-10-03 1996-04-23 Shin Etsu Chem Co Ltd シリカの表面改質方法
JP2003208052A (ja) * 2002-01-10 2003-07-25 Shin Etsu Chem Co Ltd 定着ロール用シリコーンゴム組成物及び定着ロール
JP2004156039A (ja) * 2002-11-07 2004-06-03 Degussa Ag ポリマー組成物、成形部品を被覆する方法および前記組成物の使用
JP2005139295A (ja) * 2003-11-06 2005-06-02 Denki Kagaku Kogyo Kk 金属酸化物粉末、その製造方法、用途
JP2007039631A (ja) * 2004-12-21 2007-02-15 Degussa Ag 三次元の粉末をベースとする型を使用しない製造方法におけるポリアリーレンエーテルケトン粉末の使用およびこれから製造される成形体
JP2010523364A (ja) * 2007-04-05 2010-07-15 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ 層状に三次元物体を製造する方法で使用するpaek粉末、及びその製造方法
JP2010006057A (ja) * 2008-05-20 2010-01-14 Eos Gmbh Electro Optical Systems 構造修飾されたポリマーの選択的焼結

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020534185A (ja) * 2017-09-15 2020-11-26 アーケマ・インコーポレイテッド Pekk押出積層造形法及び製品
JP7246380B2 (ja) 2017-09-15 2023-03-27 アーケマ・インコーポレイテッド Pekk押出積層造形法及び製品
JP2021507077A (ja) * 2017-12-20 2021-02-22 ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー 少なくとも1種のPEEK−PEmEKコポリマーを含むポリマー組成物の層を印刷することを含む、造形品を製造する方法

Also Published As

Publication number Publication date
FR3015506B1 (fr) 2017-04-21
US20160333190A1 (en) 2016-11-17
US20190040269A1 (en) 2019-02-07
EP3083793A1 (fr) 2016-10-26
JP6591420B2 (ja) 2019-10-16
WO2015092272A1 (fr) 2015-06-25
EP3083793B1 (fr) 2021-04-07
RU2016129183A (ru) 2018-01-25
US11407906B2 (en) 2022-08-09
FR3015506A1 (fr) 2015-06-26
CN106103564B (zh) 2018-08-14
CN106103564A (zh) 2016-11-09
RU2685320C1 (ru) 2019-04-17

Similar Documents

Publication Publication Date Title
JP6591420B2 (ja) レーザー焼結にとって好適な優れた鋳造性/癒合性バランスを可能にするポリアリーレンエーテルケトンケトンの粉末組成物
Mozafari et al. Development of macroporous nanocomposite scaffolds of gelatin/bioactive glass prepared through layer solvent casting combined with lamination technique for bone tissue engineering
Wang et al. Improved mechanical properties of hydroxyapatite/poly (ɛ-caprolactone) scaffolds by surface modification of hydroxyapatite
Chen et al. Electrophoretic co-deposition of polyvinyl alcohol (PVA) reinforced alginate–Bioglass® composite coating on stainless steel: Mechanical properties and in-vitro bioactivity assessment
Molino et al. Electrophoretic deposition of spray-dried Sr-containing mesoporous bioactive glass spheres on glass–ceramic scaffolds for bone tissue regeneration
Taherkhani et al. Influence of strontium on the structure and biological properties of sol–gel-derived mesoporous bioactive glass (MBG) powder
Shao et al. Bioactive glass-reinforced bioceramic ink writing scaffolds: sintering, microstructure and mechanical behavior
Salama et al. Carboxymethyl cellulose/silica hybrids as templates for calcium phosphate biomimetic mineralization
Gu et al. Kinetics and mechanisms of converting bioactive borate glasses to hydroxyapatite in aqueous phosphate solution
Vahabi et al. Novel nanocomposites based on poly (ethylene-co-vinyl acetate) for coating applications: the complementary actions of hydroxyapatite, MWCNTs and ammonium polyphosphate on flame retardancy
US20160108229A1 (en) Composition of poly-arylene ether ketone ketone powders suitable for laser sintering
Poologasundarampillai et al. Compressive strength of bioactive sol–gel glass foam scaffolds
WO2019132006A1 (ja) コーテッドサンド及びその製造方法並びに鋳型の製造方法
Razavi et al. Micro‐arc oxidation and electrophoretic deposition of nano‐grain merwinite (Ca3MgSi2O8) surface coating on magnesium alloy as biodegradable metallic implant
Lam et al. In Vitro characterization of low modulus linoleic acid coated strontium‐substituted hydroxyapatite containing PMMA bone cement
Borilo et al. Study of Biological Properties of Thin-Film Materials on the Basis of the SIO2–P2O5–СaO System
US20160122527A1 (en) Method for the thermal treatment of poly-arylene ether ketone ketone powders suitable for laser sintering
Sahmani et al. Nonlinear resonance response of porous beam-type implants corresponding to various morphology shapes for bone tissue engineering applications
Hendrikx et al. Indirect rapid prototyping of sol-gel hybrid glass scaffolds for bone regeneration–Effects of organic crosslinker valence, content and molecular weight on mechanical properties
Chen et al. Electrophoretic co-deposition of cellulose nanocrystals-45S5 bioactive glass nanocomposite coatings on stainless steel
Zhang et al. DLP 3D printed silica-doped HAp ceramic scaffolds inspired by the trabecular bone structure
Wren et al. Fabrication of CaO–NaO–SiO 2/TiO 2 scaffolds for surgical applications
Liu et al. Hydrate salt/self‐curing acrylic resin form‐stable phase change materials with enhanced surface stability and thermal properties via the incorporation of graphene oxide
Nezafati et al. Effect of adding nano‐titanium dioxide on the microstructure, mechanical properties and in vitro bioactivity of a freeze cast merwinite scaffold
JP2023551616A (ja) PAEK(s)に基づく粉状組成物、焼結建造工程及びそれから誘導される物体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190606

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190918

R150 Certificate of patent or registration of utility model

Ref document number: 6591420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250