JP2017504179A - Surface texture structure of crystalline silicon solar cell and manufacturing method thereof - Google Patents

Surface texture structure of crystalline silicon solar cell and manufacturing method thereof Download PDF

Info

Publication number
JP2017504179A
JP2017504179A JP2016524403A JP2016524403A JP2017504179A JP 2017504179 A JP2017504179 A JP 2017504179A JP 2016524403 A JP2016524403 A JP 2016524403A JP 2016524403 A JP2016524403 A JP 2016524403A JP 2017504179 A JP2017504179 A JP 2017504179A
Authority
JP
Japan
Prior art keywords
silicon wafer
solar cell
texture structure
surface texture
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016524403A
Other languages
Japanese (ja)
Other versions
JP6392866B2 (en
Inventor
▲暁▼▲東▼ ▲蘇▼
▲暁▼▲東▼ ▲蘇▼
▲師▼ ▲鄒▼
▲師▼ ▲鄒▼
▲栩▼生 王
▲栩▼生 王
▲霊▼▲軍▼ 章
▲霊▼▲軍▼ 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Publication of JP2017504179A publication Critical patent/JP2017504179A/en
Application granted granted Critical
Publication of JP6392866B2 publication Critical patent/JP6392866B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

結晶シリコン太陽電池の表面テクスチャ構造の製造方法であって、(1)シリコンウエハを洗浄して、テクスチャリングする工程と、(2)シリコンウエハを金属イオンを含有する溶液に浸漬して、シリコンウエハの表面に金属ナノ粒子層をコーティングする工程と、(3)シリコンウエハの表面を腐食して、ナノレベルの表面テクスチャ構造を形成する工程と、(4)シリコンウエハを洗浄して、金属粒子を除去する工程と、(5)シリコンウエハを第2化学エッチング液に浸漬して、微細構造に対し修正エッチングを行う工程と、(6)シリコンウエハを洗浄して、スピン乾燥させる工程と、を含む結晶シリコン太陽電池の表面テクスチャ構造の製造方法。試験によれば、本発明に係る表面テクスチャ構造は、サイズが100〜500nmであり、孔径が大きく深さが浅いナノ孔状又は角付きのナノピラミッド又は角付きのナノ円錐体又は角付きのナノピット状構造である。CN102610692Aに開示されているナノ—ミクロン複合テクスチャ構造に比べて、セルの変換効率を0.2〜0.5%程度向上させ、予想できない効果を取得した。A method for producing a surface texture structure of a crystalline silicon solar cell, comprising: (1) a step of cleaning and texturing a silicon wafer; and (2) dipping the silicon wafer in a solution containing metal ions. Coating the surface of the substrate with a metal nanoparticle layer; (3) corroding the surface of the silicon wafer to form a nano-level surface texture structure; and (4) cleaning the silicon wafer to remove the metal particles. A step of removing, (5) a step of immersing the silicon wafer in a second chemical etching solution to perform correction etching on the fine structure, and (6) a step of cleaning the silicon wafer and spin-drying. A method for producing a surface texture structure of a crystalline silicon solar cell. According to tests, the surface texture structure according to the present invention is a nanoporous or angular nanopyramid or angular nanoconical or angular nanopit having a size of 100 to 500 nm and a large pore diameter and shallow depth. It is a shape structure. Compared with the nano-micron composite texture structure disclosed in CN102610692A, the cell conversion efficiency was improved by about 0.2 to 0.5%, and an unexpected effect was obtained.

Description

本発明は、結晶シリコン太陽電池の表面テクスチャ構造及びその製造方法に関し、太陽エネルギー利用技術の分野に属する。   The present invention relates to a surface texture structure of a crystalline silicon solar cell and a manufacturing method thereof, and belongs to the field of solar energy utilization technology.

太陽電池モジュールの幅広く応用につれて、太陽光発電がニューエナジーの分野において益々大きな割合を占め、急速に発展している。現在実用化されている太陽電池製品のうち、結晶シリコン(単結晶シリコンと多結晶シリコン)太陽電池は、マーケットシェアが最大であり、85%以上の市場占有率を維持している。   With the wide application of solar cell modules, photovoltaic power generation is increasingly growing in the field of new energy and is developing rapidly. Of the solar cell products currently in practical use, crystalline silicon (single crystal silicon and polycrystalline silicon) solar cells have the largest market share and maintain a market share of 85% or more.

従来、太陽電池の生産プロセスにおいて、シリコンウエハの表面におけるテクスチャ構造は、太陽電池の表面反射率を効果的に低下でき、太陽電池の光電変換効率に影響する要因の一つとなる。結晶シリコン太陽電池の表面に優れたテクスチャ構造を形成して、良好な反射防止効果を実現するために、多くの方法を試してみた。機械彫刻法、レーザエッチング法、反応性イオンエッチング法(RIE)、化学エッチング法(即ちウェットエッチング)等が一般的な方法である。その中で、機械彫刻法は、低表面反射率が得られるが、該方法ではシリコンウエハの表面に対する機械的損傷が深刻であり、且つ歩留まりが悪く、そのため、工業生産において使用されることが少ない。レーザエッチング法は、レーザにより異なる彫刻模様が製造され、縞状、逆ピラミッド状の表面が既に形成され、その反射率が8.3%へと低下するが、それにより製造される電池の効率が低く、生産へ効果的に応用できない。RIE方法は、異なるテンプレートを使用してエッチングすることができ、エッチングとして一般的にドライエッチングが使用され、シリコンウエハの表面にいわゆる「ブラックシリコン」構造を形成することができ、その反射率が7.9%、更に4%へと低下することができるが、装置が高価であり、生産コストが高まるため、工業生産への使用が少ない。化学エッチング法は、プロセスが簡単であり、安価で品質が高く、従来のプロセスとの互換性が良い等の特徴を有し、現在、工業において最も多く使用される方法となる。   Conventionally, in the production process of a solar cell, the texture structure on the surface of the silicon wafer can effectively reduce the surface reflectance of the solar cell, and is one of the factors affecting the photoelectric conversion efficiency of the solar cell. A number of methods have been tried to form an excellent texture structure on the surface of a crystalline silicon solar cell to achieve a good antireflection effect. A mechanical engraving method, a laser etching method, a reactive ion etching method (RIE), a chemical etching method (that is, wet etching), etc. are common methods. Among them, the mechanical engraving method can obtain a low surface reflectance, but in this method, mechanical damage to the surface of the silicon wafer is serious and the yield is poor, and therefore, it is rarely used in industrial production. . In the laser etching method, different engraving patterns are manufactured by laser, and a striped and inverted pyramid-shaped surface is already formed, and its reflectance is reduced to 8.3%. Low and cannot be effectively applied to production. The RIE method can be etched using different templates, and dry etching is generally used as the etching, so that a so-called “black silicon” structure can be formed on the surface of the silicon wafer, and its reflectance is 7 Although it can be reduced to 0.9% and further 4%, the apparatus is expensive and the production cost is increased, so that it is less used for industrial production. The chemical etching method has features such as a simple process, low cost, high quality, and good compatibility with conventional processes, and is currently the most frequently used method in industry.

従来、ウェットエッチング法により製造される結晶シリコン太陽電池の表面テクスチャ構造は、一般的にミクロンレベルとなる。現在の通常手法は、以前と同じようにその表面反射率を更に低下させる。中国特許出願公開第102610692号明細書(特許文献1)において、結晶シリコンのナノ−ミクロン複合テクスチャの製造方法が開示されている。その製造プロセスは、(1)結晶シリコンウエハを洗浄し腐食して、ミクロンレベルの表面テクスチャ構造を形成する工程と、(2)シリコンウエハの表面に、非連続的な貴金属ナノ粒子層を均一にコーティングする工程と、(3)化学エッチング液でシリコンウエハの表面を選択的に腐食して、ナノレベルの表面テクスチャ構造を形成する工程と、(4)化学溶液で貴金属粒子を除去するする工程と、を含む。しかしながら、上記製造方法により製造されるナノ−ミクロン複合テクスチャでは、そのナノ構造がナノ孔状となり、即ち、その孔径が小さく、深さが深い。文献報告及び試験によれば、このような複合テクスチャ構造は、その表面反射率が12%以下まで低下するが、その後の表面不動態化に不利であり、且つ製造されるセルは、生産ラインで通常のテクスチャリング方法を用いたセルより変換効率が低いことが確証した。   Conventionally, the surface texture structure of a crystalline silicon solar cell manufactured by a wet etching method is generally on the micron level. The current normal approach further reduces its surface reflectivity as before. In Chinese Patent Application No. 1026161092 (Patent Document 1), a method for producing a nano-micron composite texture of crystalline silicon is disclosed. The manufacturing process consists of (1) cleaning and corroding the crystalline silicon wafer to form a micron-level surface texture structure, and (2) uniformly discontinuous noble metal nanoparticle layer on the surface of the silicon wafer. Coating, (3) selectively corroding the surface of the silicon wafer with a chemical etching solution to form a nano-level surface texture structure, and (4) removing noble metal particles with the chemical solution. ,including. However, in the nano-micron composite texture produced by the above production method, the nanostructure is nanoporous, that is, the pore diameter is small and the depth is deep. According to literature reports and tests, such composite texture structures have their surface reflectivity reduced to below 12%, but are disadvantageous for subsequent surface passivation, and the cells produced are It is confirmed that the conversion efficiency is lower than that of the cell using the normal texturing method.

中国特許出願公開第102610692号明細書Chinese Patent Application No. 102610692

本発明は、結晶シリコン太陽電池の表面テクスチャ構造及びその製造方法を提供することを目的とする。   An object of this invention is to provide the surface texture structure of a crystalline silicon solar cell, and its manufacturing method.

上記目的を達成するために、本発明に係る技術的手段として、結晶シリコン太陽電池の表面テクスチャ構造の製造方法であって、以下の工程を含む結晶シリコン太陽電池の表面テクスチャ構造の製造方法を提供する。
(1)多結晶シリコンウエハを洗浄し、腐食してミクロンレベルの表面テクスチャ構造を形成する工程。
(2)上記シリコンウエハを金属イオンを含有する溶液に浸漬して、シリコンウエハの表面に金属ナノ粒子層をコーティングする工程。
ただし、前記金属イオンは、金イオン、銀イオン及び銅イオンから選ばれる1種である。
(3)第1化学エッチング液でシリコンウエハの表面を腐食して、ナノレベルの表面テクスチャ構造を形成する工程。
ただし、前記第1化学エッチング液は、HFとHの混合溶液、HFとHNOの混合溶液、HFとHCrOの混合溶液から選ばれる1種であり、
HFの濃度は1〜15mol/Lであり、H、HNO又はHCrOの濃度は0.05〜0.5mol/Lである。
(4)それぞれ第1洗浄液、第2洗浄液、脱イオン水を使用して上記シリコンウエハを洗浄して、金属粒子を除去する工程。
ただし、前記第1洗浄液は27〜69質量%の硝酸溶液であり、洗浄時間は60〜1200秒であり、洗浄温度は5〜85℃であり、
前記第2洗浄液は1〜10質量%のフッ化水素酸溶液であり、洗浄時間は60〜600秒であり、洗浄温度は5〜45℃である。
(5)上記シリコンウエハを第2化学エッチング液に浸漬して、微細構造の修正エッチングを行う工程。
ただし、前記第2化学エッチング液は、NaOH溶液、KOH溶液、テトラメチルアンモニウムヒドロキシド溶液、HNOとHF酸の混合溶液から選ばれる1種であり、
前記第2化学エッチング液はNaOH溶液である場合、その濃度は0.001〜0.1mol/Lであり、反応時間は10〜1000秒であり、反応温度は5〜85℃であり、
前記第2化学エッチング液はKOH溶液である場合、その濃度は0.001〜0.1mol/Lであり、反応時間は10〜1000秒であり、反応温度は5〜85℃であり、
前記第2化学エッチング液はテトラメチルアンモニウムヒドロキシド溶液である場合、その濃度は0.001〜0.1mol/Lであり、反応時間は10〜1000秒であり、反応温度は5〜85℃であり、
前記第2化学エッチング液はHNOとHF酸の混合溶液である場合、HFとHNOの濃度は、それぞれ0.05〜0.5mol/L、1〜10mol/Lであり、反応時間は10〜1000秒であり、反応温度は5〜45℃である。
(6)上記シリコンウエハを洗浄して、スピン乾燥し、結晶シリコン太陽電池の表面テクスチャ構造を得る工程。
In order to achieve the above object, as a technical means according to the present invention, there is provided a method for producing a surface texture structure of a crystalline silicon solar cell, the method comprising: To do.
(1) A process in which a polycrystalline silicon wafer is cleaned and corroded to form a micron level surface texture structure.
(2) A step of immersing the silicon wafer in a solution containing metal ions to coat the surface of the silicon wafer with a metal nanoparticle layer.
However, the said metal ion is 1 type chosen from a gold ion, a silver ion, and a copper ion.
(3) A step of corroding the surface of the silicon wafer with the first chemical etching solution to form a nano-level surface texture structure.
However, the first chemical etching solution is one selected from a mixed solution of HF and H 2 O 2, a mixed solution of HF and HNO 3, and a mixed solution of HF and H 2 CrO 4 .
The concentration of HF is 1 to 15 mol / L, and the concentration of H 2 O 2 , HNO 3 or H 2 CrO 4 is 0.05 to 0.5 mol / L.
(4) A step of removing the metal particles by cleaning the silicon wafer using a first cleaning liquid, a second cleaning liquid, and deionized water, respectively.
However, the first cleaning liquid is a 27-69 mass% nitric acid solution, the cleaning time is 60-1200 seconds, the cleaning temperature is 5-85 ° C.,
The second cleaning liquid is a 1 to 10% by mass hydrofluoric acid solution, the cleaning time is 60 to 600 seconds, and the cleaning temperature is 5 to 45 ° C.
(5) A step of performing a correction etching of the fine structure by immersing the silicon wafer in a second chemical etching solution.
However, the second chemical etching solution is one selected from a NaOH solution, a KOH solution, a tetramethylammonium hydroxide solution, and a mixed solution of HNO 3 and HF acid,
When the second chemical etching solution is a NaOH solution, the concentration thereof is 0.001 to 0.1 mol / L, the reaction time is 10 to 1000 seconds, the reaction temperature is 5 to 85 ° C.,
When the second chemical etching solution is a KOH solution, the concentration thereof is 0.001 to 0.1 mol / L, the reaction time is 10 to 1000 seconds, the reaction temperature is 5 to 85 ° C.,
When the second chemical etching solution is a tetramethylammonium hydroxide solution, the concentration is 0.001 to 0.1 mol / L, the reaction time is 10 to 1000 seconds, and the reaction temperature is 5 to 85 ° C. Yes,
When the second chemical etching solution is a mixed solution of HNO 3 and HF acid, the concentrations of HF and HNO 3 are 0.05 to 0.5 mol / L and 1 to 10 mol / L, respectively, and the reaction time is 10 -1000 seconds and the reaction temperature is 5-45 ° C.
(6) A step of cleaning the silicon wafer and spin drying to obtain a surface texture structure of the crystalline silicon solar cell.

上記技術的手段において、前記工程(2)では、金属ナノ粒子層における金属ナノ粒子の濃度が0.0001〜0.1mol/Lである。   In the above technical means, in the step (2), the concentration of the metal nanoparticles in the metal nanoparticle layer is 0.0001 to 0.1 mol / L.

上記技術的手段において、前記工程(2)では、浸漬時間が10〜1000秒であり、溶液温度が5〜85℃である。   In the above technical means, in the step (2), the immersion time is 10 to 1000 seconds, and the solution temperature is 5 to 85 ° C.

上記技術的手段において、前記工程(3)では、腐食時間が30〜3000秒であり、反応温度が5〜45℃である。   In the above technical means, in the step (3), the corrosion time is 30 to 3000 seconds, and the reaction temperature is 5 to 45 ° C.

本発明は上記製造方法により得られる結晶シリコン太陽電池の表面テクスチャ構造を保護することを更に請求する。   The present invention further claims to protect the surface texture structure of the crystalline silicon solar cell obtained by the above manufacturing method.

上記技術的手段において、前記結晶シリコン太陽電池は、多結晶シリコン太陽電池であり、その表面テクスチャ構造の反射率が12%〜20%である。   In the above technical means, the crystalline silicon solar cell is a polycrystalline silicon solar cell, and the reflectance of the surface texture structure is 12% to 20%.

上記技術的手段において、前記結晶シリコン太陽電池は、単結晶シリコン太陽電池であり、その表面テクスチャ構造の反射率が5%〜15%である。   In the above technical means, the crystalline silicon solar cell is a single crystal silicon solar cell, and the reflectance of the surface texture structure is 5% to 15%.

テストした結果、本発明に係る多結晶シリコン太陽電池の表面テクスチャ構造は、サイズが100〜500nmであり、表面反射率が12〜20%であり、中国特許出願公開第102610692号明細書に開示されているナノ−ミクロン複合テクスチャ構造に比べて、セルの変換効率が0.2〜0.5%程度向上することができ、予想できない効果を取得した。本発明に係るナノレベルの表面テクスチャ構造は、現在の生産ラインで多結晶シリコン太陽電池の製造プロセスに更に適し、表面反射率を低下させると同時に、その後の表面不動態化プロセスに悪影響を及ぼさない。   As a result of the test, the surface texture structure of the polycrystalline silicon solar cell according to the present invention has a size of 100 to 500 nm and a surface reflectance of 12 to 20%, which is disclosed in Chinese Patent Application No. 102610692. Compared with the nano-micron composite texture structure, the cell conversion efficiency can be improved by about 0.2 to 0.5%, and an unexpected effect was obtained. The nano-level surface texture structure according to the present invention is more suitable for the manufacturing process of polycrystalline silicon solar cells in the current production line and does not adversely affect the subsequent surface passivation process while reducing the surface reflectivity. .

本発明の原理では、従来のミクロンレベルの表面テクスチャ構造を形成した上で、先ず、シリコンウエハの表面に、均一に分布している金属ナノ粒子層をコーティングし、その後、表面に金属ナノ粒子が分布しているシリコンウエハを、酸化剤(H又はHNO又はHCrO)がシリコンウエハを酸化する役割を果す第1化学エッチング液に浸漬し、同時にエッチング液中のフッ化水素酸は、シリコンウエハが酸化されて生成したSiOをヘキサフルオロケイ酸とするように溶液へ輸送し、金属粒子の触媒作用下で、その近傍におけるシリコンウエハが迅速に反応し、反応速度の差異でシリコンウエハの表面に線状又は深孔状の微細構造を形成し、最後に、第2化学エッチング溶液でシリコンウエハの表面に対し修正エッチングを行い、即ちアルカリ溶液(NaOH溶液、KOH溶液、テトラメチルアンモニウムヒドロキシド溶液又は混合酸(HFとHNO))で、製造された線状又は深孔状の微細構造に対してエッチング修正を行う。アルカリ溶液は、主に上記線状又は深孔状の微細構造に対して異方性エッチングを行い、このような異方性エッチングは、元の線状又は深孔状の微細構造に沿って優先的に行い、そのエッチング結果として、元の線状又は深孔状の微細構造が角付きのナノピラミッド又はナノ円錐体又はナノピット状構造に修正され、混合酸(HFとHNO)は、主に上記線状又は深孔状の微細構造に対して等方性エッチングを行い、このような等方性エッチングは、元の線状又は深孔状の微細構造に沿って優先的に行い、そのエッチング結果として、元の線状又は深孔状の微細構造が孔径の大きくかつ深さの浅いナノ孔状構造に修正され、該修正エッチングを行うことで、優れた結晶性シリコン太陽電池のナノテクスチャを製造する。 In the principle of the present invention, after forming a conventional micron-level surface texture structure, the surface of the silicon wafer is first coated with a uniformly distributed metal nanoparticle layer, and then the metal nanoparticles are formed on the surface. The distributed silicon wafer is immersed in a first chemical etching solution in which an oxidizing agent (H 2 O 2 or HNO 3 or H 2 CrO 4 ) plays a role of oxidizing the silicon wafer, and at the same time, hydrogen fluoride in the etching solution. The acid is transported to the solution so that SiO 2 produced by oxidation of the silicon wafer becomes hexafluorosilicic acid, and the silicon wafer in the vicinity reacts rapidly under the catalytic action of the metal particles, and the difference in reaction rate. To form a linear or deep hole microstructure on the surface of the silicon wafer. Perform ring, i.e. an alkaline solution (NaOH solution, KOH solution, tetramethylammonium hydroxide solution or a mixed acid (HF and HNO 3)), the etching modifications to manufactured linear or deep hole-shaped fine structure Do. Alkaline solutions primarily perform anisotropic etching on the linear or deep pore microstructures, and such anisotropic etching takes precedence over the original linear or deep pore microstructures. As a result of the etching, the original linear or deep pore microstructure is modified into a horned nanopyramid or nanocone or nanopit structure, and the mixed acid (HF and HNO 3 ) is mainly Isotropic etching is performed on the linear or deep hole microstructure, and the isotropic etching is performed preferentially along the original linear or deep hole microstructure. As a result, the original linear or deep pore microstructure is modified to a nanopore structure having a large pore diameter and a shallow depth, and by performing the modified etching, a nanotexture of an excellent crystalline silicon solar cell can be obtained. To manufacture.

従来技術に比べて、上記技術的手段に係る本発明は下記利点を有する。   Compared with the prior art, the present invention according to the above technical means has the following advantages.

1.本発明は、新しい結晶シリコン太陽電池の表面テクスチャ構造の製造方法を開発した。即ち、従来のミクロンレベルの表面テクスチャ構造を形成した上で、第1化学エッチング液でシリコンウエハの表面を腐食し、ナノレベルの表面テクスチャ構造を形成し、洗浄後に更に第2化学エッチング液に浸漬して微細構造に対し修正エッチングを行い、結晶シリコン太陽電池に一層適したテクスチャ構造を得る。試験によれば、本発明に係る多結晶シリコン太陽電池の表面テクスチャ構造は、サイズが100〜500nmであり、孔径が大きく深さが浅いナノ孔状又は角付きのナノピラミッド又は角付きのナノ円錐体又は角付きのナノピット状構造となりその表面反射率が12〜20%である。中国特許出願公開第102610692号明細書に開示されているナノ―ミクロン複合テクスチャ構造に比べて、セルの変換効率が0.2〜0.5%程度向上でき、予想できない効果を取得した。   1. The present invention has developed a method for producing a surface texture structure of a new crystalline silicon solar cell. That is, after forming a conventional micron-level surface texture structure, the surface of the silicon wafer is corroded with the first chemical etching solution to form a nano-level surface texture structure, which is further immersed in the second chemical etching solution after cleaning. Then, the fine structure is subjected to correction etching to obtain a texture structure more suitable for a crystalline silicon solar cell. According to the test, the surface texture structure of the polycrystalline silicon solar cell according to the present invention has a nanoporous or angular nanopyramid or angular nanocone having a size of 100 to 500 nm and a large pore diameter and a shallow depth. It becomes a body or a nanopit-like structure with corners, and its surface reflectance is 12 to 20%. Compared to the nano-micron composite texture structure disclosed in Chinese Patent Application No. 102610692, the cell conversion efficiency can be improved by about 0.2 to 0.5%, and an unexpected effect was obtained.

2.本発明に係る製造方法は、簡単で実施しやすく、従来の工業化生産プロセスとの互換性が良く、工業化生産に迅速に応用でき、普及や応用化に適する。   2. The manufacturing method according to the present invention is simple and easy to implement, has good compatibility with conventional industrialized production processes, can be quickly applied to industrialized production, and is suitable for popularization and application.

本発明の実施例1に係る多結晶シリコンウエハのテクスチャのSEM走査図(5K倍拡大)である。It is a SEM scanning figure (5K expansion) of the texture of the polycrystalline silicon wafer which concerns on Example 1 of this invention. 本発明の実施例1に係る多結晶シリコンのテクスチャと通常の酸テクスチャにより得られた多結晶シリコンのテクスチャの反射スペクトルの比較図である。It is a comparison figure of the reflection spectrum of the texture of the polycrystalline silicon obtained by the texture of the polycrystalline silicon which concerns on Example 1 of this invention, and a normal acid texture. 本発明の実施例2に係る多結晶シリコンウエハのテクスチャのSEM走査図(5K倍拡大)である。It is a SEM scanning figure (5K expansion) of the texture of the polycrystalline silicon wafer which concerns on Example 2 of this invention. 本発明の実施例2に係る多結晶シリコンのテクスチャと通常の酸テクスチャにより得られた多結晶シリコンのテクスチャの反射スペクトルの比較図である。It is a comparison figure of the reflection spectrum of the texture of the polycrystalline silicon obtained by the texture of the polycrystalline silicon which concerns on Example 2 of this invention, and a normal acid texture. 本発明の実施例3に係る多結晶シリコンウエハのテクスチャのSEM走査図(5K倍拡大)である。It is a SEM scanning figure (5K expansion) of the texture of the polycrystalline silicon wafer which concerns on Example 3 of this invention. 本発明の実施例3に係る多結晶シリコンのテクスチャと通常の酸テクスチャにより得られた多結晶シリコンのテクスチャの反射スペクトルの比較図である。It is a comparison figure of the reflection spectrum of the texture of the polycrystalline silicon obtained by the texture of the polycrystalline silicon which concerns on Example 3 of this invention, and a normal acid texture. 本発明の実施例4に係る多結晶シリコンウエハのテクスチャのSEM走査図(5K倍拡大)である。It is a SEM scanning figure (5K expansion) of the texture of the polycrystalline silicon wafer which concerns on Example 4 of this invention. 本発明の実施例4に係る多結晶シリコンウエハのテクスチャに対して修正エッチングを行うSEM走査図(50K倍拡大)である。It is a SEM scanning figure (50K expansion) which performs correction etching with respect to the texture of the polycrystalline silicon wafer which concerns on Example 4 of this invention. 本発明の比較例2において修正エッチングを行わない多結晶シリコンのテクスチャと実施例4において修正エッチングを行った多結晶シリコンのテクスチャの反射スペクトルの比較図である。It is a comparison figure of the reflection spectrum of the texture of the polycrystalline silicon which does not perform correction etching in the comparative example 2 of this invention, and the texture of the polycrystalline silicon which performed correction etching in Example 4. FIG. 本発明の比較例2に係る多結晶シリコンウエハのテクスチャに対して修正エッチングを行わないSEM走査図(5K倍拡大)である。It is a SEM scanning figure (5K expansion) which does not perform correction etching with respect to the texture of the polycrystalline silicon wafer which concerns on the comparative example 2 of this invention. 本発明の比較例2に係る多結晶シリコンウエハのテクスチャに対して修正エッチングを行わないSEM走査図(50K倍拡大)である。It is a SEM scanning figure (50K expansion) which does not perform correction etching with respect to the texture of the polycrystalline silicon wafer which concerns on the comparative example 2 of this invention. 本発明の実施例5に係る単結晶シリコンウエハのテクスチャのSEM走査図(5K倍拡大)である。It is a SEM scanning figure (5K expansion) of the texture of the single crystal silicon wafer which concerns on Example 5 of this invention. 本発明の実施例5に係る単結晶シリコンウエハのテクスチャのSEM走査図(50K倍拡大)である。It is a SEM scanning figure (50K expansion) of the texture of the single crystal silicon wafer which concerns on Example 5 of this invention. 本発明の比較例3において修正エッチングを行わない単結晶シリコンのテクスチャと実施例5において修正エッチングを行った単結晶シリコンのテクスチャの反射スペクトルの比較図である。It is a comparison figure of the reflection spectrum of the texture of the single crystal silicon which does not perform correction etching in the comparative example 3 of this invention, and the texture of the single crystal silicon which performed correction etching in Example 5. FIG. 本発明の比較例3に係る単結晶シリコンウエハのテクスチャに対して修正エッチングを行わないSEM走査図(5K倍拡大)である。It is a SEM scanning figure (5K expansion) which does not perform correction etching with respect to the texture of the single crystal silicon wafer which concerns on the comparative example 3 of this invention. 本発明の比較例3に係る単結晶シリコンウエハのテクスチャに対して修正エッチングを行わないSEM走査図(50K倍拡大)である。It is a SEM scanning figure (50K expansion) which does not perform correction etching with respect to the texture of the single crystal silicon wafer which concerns on the comparative example 3 of this invention.

以下、実施例を参照して本発明を更に説明する。   Hereinafter, the present invention will be further described with reference to examples.

実施例1
多結晶シリコン太陽電池の表面テクスチャ構造の製造方法であって、
(1)厚みが180±10μmであり、サイズが156mm×156mmであるP型多結晶シリコンウエハの損傷層を除去して洗浄した後、腐食してテクスチャリングし、ミクロンレベルの表面テクスチャ構造を形成し、その後、濃度が0.008mol/LであるAgNO溶液に浸漬して、20℃の条件下で60s反応させる工程と、
(2)前記工程(1)で処理されたシリコンウエハを濃度が3mol/LであるHFと濃度が0.1mol/LであるHの混合溶液に浸漬して、20℃の条件下で300s反応させる工程と、
(3)前記工程(2)で処理されたコンウエハを69質量%の硝酸溶液に投入して、20℃の洗浄温度下で300s洗浄する工程と、
(4)前記工程(3)で処理されたシリコンウエハを5質量%のフッ化水素酸溶液に投入して、20℃の洗浄温度下で200s洗浄する工程と、
(5)前記工程(4)で処理されたシリコンウエハを0.05mol/LのKOH溶液に浸漬して、20℃の条件下で300s反応させる工程と、
(6)前記工程(5)で処理されたシリコンウエハを洗浄して、スピン乾燥し、多結晶シリコン太陽電池の表面テクスチャ構造を得る工程と、を含む多結晶シリコン太陽電池の表面テクスチャ構造の製造方法。
Example 1
A method of manufacturing a surface texture structure of a polycrystalline silicon solar cell,
(1) After removing and cleaning the damaged layer of the P-type polycrystalline silicon wafer having a thickness of 180 ± 10 μm and a size of 156 mm × 156 mm, it is corroded and textured to form a micron level surface texture structure. And then immersing in an AgNO 3 solution having a concentration of 0.008 mol / L and reacting at 20 ° C. for 60 s,
(2) The silicon wafer processed in the step (1) is immersed in a mixed solution of HF having a concentration of 3 mol / L and H 2 O 2 having a concentration of 0.1 mol / L, and the condition is set at 20 ° C. A step of reacting for 300 s,
(3) A step of putting the conwafer processed in the step (2) into a 69% by mass nitric acid solution and cleaning it at a cleaning temperature of 20 ° C. for 300 s;
(4) A step of putting the silicon wafer processed in the step (3) into a 5 mass% hydrofluoric acid solution and cleaning it for 200 s at a cleaning temperature of 20 ° C .;
(5) A step of immersing the silicon wafer treated in the step (4) in a 0.05 mol / L KOH solution and reacting it at 20 ° C. for 300 s;
(6) manufacturing the surface texture structure of the polycrystalline silicon solar cell, including cleaning and spin drying the silicon wafer treated in the step (5) to obtain a surface texture structure of the polycrystalline silicon solar cell. Method.

本実施例で製造された多結晶シリコン太陽電池の表面テクスチャ構造は、寸法が100〜200nm(図1に示す)であり、400〜1050nmの波長範囲において、その表面の平均反射率が13.4%である。   The surface texture structure of the polycrystalline silicon solar cell manufactured in this example has a size of 100 to 200 nm (shown in FIG. 1), and the average reflectance of the surface in the wavelength range of 400 to 1050 nm is 13.4. %.

比較例1
多結晶シリコン太陽電池の表面テクスチャ構造の製造方法であって、
(1)厚みが180±10μmであり、サイズが156mm×156mmであるP型多結晶シリコンウエハの損傷層を除去して洗浄した後、腐食してテクスチャリングし、ミクロンレベルの表面テクスチャ構造を形成する工程と、
(2)洗浄して、スピン乾燥させ、多結晶シリコン太陽電池の表面テクスチャ構造を得る工程と、を含む多結晶シリコン太陽電池の表面テクスチャ構造の製造方法。
Comparative Example 1
A method of manufacturing a surface texture structure of a polycrystalline silicon solar cell,
(1) After removing and cleaning the damaged layer of the P-type polycrystalline silicon wafer having a thickness of 180 ± 10 μm and a size of 156 mm × 156 mm, it is corroded and textured to form a micron level surface texture structure. And a process of
(2) A method for producing a surface texture structure of a polycrystalline silicon solar cell, comprising: washing and spin drying to obtain a surface texture structure of the polycrystalline silicon solar cell.

実施例1に係る多結晶シリコンのテクスチャと比較例1に係る通常の酸テクスチャにより得られた多結晶シリコンのテクスチャの反射スペクトルの比較図は、図2に示す。   A comparison diagram of the reflection spectra of the texture of the polycrystalline silicon obtained by the texture of the polycrystalline silicon according to Example 1 and the ordinary acid texture according to Comparative Example 1 is shown in FIG.

実施例2
多結晶シリコン太陽電池の表面テクスチャ構造の製造方法であって、
(1)厚みが180±10μmであり、サイズが156mm×156mmであるP型多結晶シリコンウエハの損傷層を除去して洗浄した後、腐食してテクスチャリングし、ミクロンレベルの表面テクスチャ構造を形成し、その後、濃度が0.008mol/LであるAgNO溶液に浸漬して、20℃の条件下で60s反応させる工程と、
(2)前記工程(1)で処理されたシリコンウエハを濃度が3mol/LであるHFと濃度が0.1mol/LであるHの混合溶液に浸漬して、20℃の条件下で300s反応させる工程と、
(3)前記工程(2)で処理されたシリコンウエハを69質量%の硝酸溶液に投入して、20℃の洗浄温度下で300s洗浄する工程と、
(4)前記工程(3)で処理されたシリコンウエハを5質量%のフッ化水素酸溶液に投入して、20℃の洗浄温度下で200s洗浄する工程と、
(5)前記工程(4)で処理されたシリコンウエハを0.025mol/Lのテトラメチルアンモニウムヒドロキシド溶液(TMAH溶液)に浸漬して、20℃の条件下で、300s反応させる工程と、
(6)前記工程(5)で処理されたシリコンウエハを脱イオン水で洗浄してスピン乾燥させる工程と、を含む多結晶シリコン太陽電池の表面テクスチャ構造の製造方法。
Example 2
A method of manufacturing a surface texture structure of a polycrystalline silicon solar cell,
(1) After removing and cleaning the damaged layer of the P-type polycrystalline silicon wafer having a thickness of 180 ± 10 μm and a size of 156 mm × 156 mm, it is corroded and textured to form a micron level surface texture structure. And then immersing in an AgNO 3 solution having a concentration of 0.008 mol / L and reacting at 20 ° C. for 60 s,
(2) The silicon wafer processed in the step (1) is immersed in a mixed solution of HF having a concentration of 3 mol / L and H 2 O 2 having a concentration of 0.1 mol / L, and the condition is set at 20 ° C. A step of reacting for 300 s,
(3) A step of putting the silicon wafer processed in the step (2) into a 69% by mass nitric acid solution and cleaning it at a cleaning temperature of 20 ° C. for 300 s;
(4) A step of putting the silicon wafer processed in the step (3) into a 5 mass% hydrofluoric acid solution and cleaning it for 200 s at a cleaning temperature of 20 ° C .;
(5) a step of immersing the silicon wafer treated in the step (4) in a 0.025 mol / L tetramethylammonium hydroxide solution (TMAH solution) and reacting it at 20 ° C. for 300 s;
(6) A method for producing a surface texture structure of a polycrystalline silicon solar cell, comprising: washing the silicon wafer treated in the step (5) with deionized water and spin-drying the silicon wafer.

本実施例で製造された多結晶シリコン太陽電池のテクスチャ微細構造は、寸法が150〜300nm(図3に示す)であり、400〜1050nmの波長範囲において、その表面の平均反射率が12.1%である。   The texture microstructure of the polycrystalline silicon solar cell produced in this example has a dimension of 150 to 300 nm (shown in FIG. 3), and an average reflectance of its surface in the wavelength range of 400 to 1050 nm is 12.1. %.

実施例2に係る多結晶シリコンのテクスチャと比較例1に係る通常の酸テクスチャにより得られた多結晶シリコンのテクスチャの反射スペクトルの比較図は、図4に示す。   A comparison diagram of the reflection spectra of the polycrystalline silicon texture according to Example 2 and the polycrystalline silicon texture obtained with the normal acid texture according to Comparative Example 1 is shown in FIG.

実施例3
多結晶シリコン太陽電池の表面テクスチャ構造の製造方法であって、
(1)厚みが180±10μmであり、サイズが156mm×156mmであるP型多結晶シリコンウエハの損傷層を除去して洗浄した後、腐食してテクスチャリングし、ミクロンレベルの表面テクスチャ構造を形成し、その後、濃度が0.008mol/LであるAgNO溶液に浸漬して、20℃の条件下で、60s反応させる工程と、
(2)前記工程(1)で処理されたシリコンウエハを濃度が3mol/LであるHFと濃度が0.1mol/LであるHの混合溶液に浸漬し、20℃の条件下で300s反応させる工程と、
(3)前記工程(2)で処理されたシリコンウエハを69質量%の硝酸溶液に投入して、20℃の洗浄温度下で300s洗浄する工程と、
(4)前記工程(3)で処理されたシリコンウエハを5質量%のフッ化水素酸溶液に投入して、20℃の洗浄温度下で200s洗浄する工程と、
(5)前記工程(4)で処理されたシリコンウエハを濃度が0.1mol/LであるHFと濃度が5mol/LであるHNOの混合溶液に浸漬して、20℃の条件下で、150s反応させる工程と、
(6)前記工程(5)で処理されたシリコンウエハを脱イオン水で洗浄してスピン乾燥させる工程と、を含む多結晶シリコン太陽電池の表面テクスチャ構造の製造方法。
Example 3
A method of manufacturing a surface texture structure of a polycrystalline silicon solar cell,
(1) After removing and cleaning the damaged layer of the P-type polycrystalline silicon wafer having a thickness of 180 ± 10 μm and a size of 156 mm × 156 mm, it is corroded and textured to form a micron level surface texture structure. And then immersing in an AgNO 3 solution having a concentration of 0.008 mol / L and reacting at 20 ° C. for 60 s,
(2) The silicon wafer processed in the step (1) is immersed in a mixed solution of HF having a concentration of 3 mol / L and H 2 O 2 having a concentration of 0.1 mol / L, A step of reacting for 300 s;
(3) A step of putting the silicon wafer processed in the step (2) into a 69% by mass nitric acid solution and cleaning it at a cleaning temperature of 20 ° C. for 300 s;
(4) A step of putting the silicon wafer processed in the step (3) into a 5 mass% hydrofluoric acid solution and cleaning it for 200 s at a cleaning temperature of 20 ° C .;
(5) The silicon wafer processed in the step (4) is immersed in a mixed solution of HF having a concentration of 0.1 mol / L and HNO 3 having a concentration of 5 mol / L. A step of reacting for 150 s;
(6) A method for producing a surface texture structure of a polycrystalline silicon solar cell, comprising: washing the silicon wafer treated in the step (5) with deionized water and spin-drying the silicon wafer.

本実施例で製造された多結晶シリコン太陽電池のテクスチャの微細構造は、寸法が150〜300nm(図5に示す)であり、400〜1050nmの波長範囲において、その表面の平均反射率が10%である。   The microstructure of the texture of the polycrystalline silicon solar cell manufactured in this example has a dimension of 150 to 300 nm (shown in FIG. 5), and an average reflectance of the surface of 10% in the wavelength range of 400 to 1050 nm. It is.

実施例3に係る多結晶シリコンのテクスチャ面と比較例1に係る通常の酸テクスチャにより得られた多結晶シリコンのテクスチャの反射スペクトルの比較図は図6に示す。   A comparative diagram of the reflection spectrum of the texture of the polycrystalline silicon obtained by the texture surface of the polycrystalline silicon according to Example 3 and the ordinary acid texture according to Comparative Example 1 is shown in FIG.

実施例4
多結晶シリコン太陽電池の表面テクスチャ構造の製造方法であって、
(1)厚みが180±10μmであり、サイズが156mm×156mmであるP型多結晶シリコンウエハの損傷層を除去して洗浄した後、腐食してテクスチャリングし、ミクロンレベルの表面テクスチャ構造を形成し、その後、濃度が0.008mol/LであるAgNO溶液に浸漬して、20℃の条件下で120s反応させる工程と、
(2)前記工程(1)で処理されたシリコンウエハを濃度が3mol/LであるHFと濃度が0.1mol/LであるHの混合溶液に浸漬し、20℃の条件下で、600s反応させる工程と、
(3)前記工程(2)で処理されたシリコンウエハを69質量%の硝酸溶液に投入して、20℃の洗浄温度下で300s洗浄する工程と、
(4)前記工程(3)で処理されたシリコンウエハを5質量%のフッ化水素酸溶液に投入して、20℃の洗浄温度下で200s洗浄する工程と、
(5)前記工程(4)で処理されたシリコンウエハを0.025mol/LのTMAH溶液に浸漬して、20℃の条件下で300s反応させる工程と、
(6)前記工程(5)で処理されたシリコンウエハを脱イオン水で洗浄してスピン乾燥させる工程と、を含む多結晶シリコン太陽電池の表面テクスチャ構造の製造方法。
Example 4
A method of manufacturing a surface texture structure of a polycrystalline silicon solar cell,
(1) After removing and cleaning the damaged layer of the P-type polycrystalline silicon wafer having a thickness of 180 ± 10 μm and a size of 156 mm × 156 mm, it is corroded and textured to form a micron level surface texture structure. And then immersing in an AgNO 3 solution having a concentration of 0.008 mol / L and reacting at 20 ° C. for 120 s,
(2) The silicon wafer processed in the step (1) is immersed in a mixed solution of HF having a concentration of 3 mol / L and H 2 O 2 having a concentration of 0.1 mol / L, , Reacting for 600 s,
(3) A step of putting the silicon wafer processed in the step (2) into a 69% by mass nitric acid solution and cleaning it at a cleaning temperature of 20 ° C. for 300 s;
(4) A step of putting the silicon wafer processed in the step (3) into a 5 mass% hydrofluoric acid solution and cleaning it for 200 s at a cleaning temperature of 20 ° C .;
(5) A step of immersing the silicon wafer treated in the step (4) in a 0.025 mol / L TMAH solution and reacting it at 20 ° C. for 300 s;
(6) A method for producing a surface texture structure of a polycrystalline silicon solar cell, comprising: washing the silicon wafer treated in the step (5) with deionized water and spin-drying the silicon wafer.

比較例2
多結晶シリコン太陽電池の表面テクスチャ構造の製造方法であって、
(1)厚みが180±10μmであり、サイズが156mm×156mmであるP型多結晶シリコンウエハの損傷層を除去して洗浄した後、腐食してテクスチャリングし、ミクロンレベルの表面テクスチャ構造を形成し、その後、濃度が0.008mol/LであるAgNO溶液に浸漬して、20℃の条件下で、60s反応させる工程と、
(2)前記工程(1)で処理されたシリコンウエハを濃度が3mol/LであるHFと濃度が0.1mol/LであるHの混合溶液に浸漬し、20℃の条件下で、300s反応させる工程と、
(3)前記工程(2)で処理されたシリコンウエハを69質量%の硝酸溶液に投入して、20℃の洗浄温度下で300s洗浄する工程と、
(4)前記工程(3)で処理されたシリコンウエハを5質量%のフッ化水素酸溶液に投入して、20℃の洗浄温度下で200s洗浄する工程と、
(5)前記工程(4)で処理されたシリコンウエハを洗浄して、スピン乾燥させ、多結晶シリコン太陽電池の表面テクスチャ構造を得る工程と、を含む多結晶シリコン太陽電池の表面テクスチャ構造の製造方法。
Comparative Example 2
A method of manufacturing a surface texture structure of a polycrystalline silicon solar cell,
(1) After removing and cleaning the damaged layer of the P-type polycrystalline silicon wafer having a thickness of 180 ± 10 μm and a size of 156 mm × 156 mm, it is corroded and textured to form a micron level surface texture structure. And then immersing in an AgNO 3 solution having a concentration of 0.008 mol / L and reacting at 20 ° C. for 60 s,
(2) The silicon wafer processed in the step (1) is immersed in a mixed solution of HF having a concentration of 3 mol / L and H 2 O 2 having a concentration of 0.1 mol / L, , Reacting for 300 s,
(3) A step of putting the silicon wafer processed in the step (2) into a 69% by mass nitric acid solution and cleaning it at a cleaning temperature of 20 ° C. for 300 s;
(4) A step of putting the silicon wafer processed in the step (3) into a 5 mass% hydrofluoric acid solution and cleaning it for 200 s at a cleaning temperature of 20 ° C .;
(5) manufacturing the surface texture structure of the polycrystalline silicon solar cell, including: cleaning the silicon wafer processed in the step (4) and spin drying to obtain a surface texture structure of the polycrystalline silicon solar cell. Method.

実施例4では、NaOH溶液で修正エッチングを行った多結晶シリコン太陽電池の表面テクスチャ構造は、寸法が150〜300nm(図7、8に示す)であり、400〜1050nmの波長範囲において、その表面の平均反射率が15.6%(図9に示す)である。   In Example 4, the surface texture structure of the polycrystalline silicon solar cell subjected to the correction etching with the NaOH solution has a dimension of 150 to 300 nm (shown in FIGS. 7 and 8), and the surface texture structure in the wavelength range of 400 to 1050 nm. The average reflectance is 15.6% (shown in FIG. 9).

比較例2では、修正エッチングを行わずに製造されたナノレベルの表面テクスチャ構造は、ナノ深孔状構造であり、孔径が50nm程度(図10、11に示す)だけであり、400〜1050nmの波長範囲において、その表面の平均反射率が5.9%(図9に示す)である。前記「修正エッチングを行わない」とは、中国特許出願公開第102610692号明細書に記載の方法のように、製造されたナノ−ミクロン複合テクスチャ構造は、上記工程(5)の修正エッチングを行わないことを意味する。   In Comparative Example 2, the nano-level surface texture structure manufactured without performing the correction etching is a nano-deep hole-like structure, the pore diameter is only about 50 nm (shown in FIGS. 10 and 11), and 400 to 1050 nm. In the wavelength range, the average reflectance of the surface is 5.9% (shown in FIG. 9). The “does not perform the correction etching” means that the manufactured nano-micron composite texture structure does not perform the correction etching in the above step (5) as in the method described in Chinese Patent Application No. 102610692. Means that.

実施例5
単結晶シリコン太陽電池のナノテクスチャの製造方法であって、
(1)厚みが180±10μmであり、サイズが156mm×156mmであるP型単結晶シリコンウエハの損傷層を除去して洗浄した後、腐食してテクスチャリングし、ミクロンレベルの表面テクスチャ構造を形成し、その後、濃度が0.008mol/LであるAgNO溶液に浸漬し、20℃の条件下で、120s反応させる工程と、
(2)前記工程(1)で処理されたシリコンウエハを濃度が3mol/LであるHFと濃度が0.1mol/LであるHの混合溶液に浸漬し、20℃の条件下で、600s反応させる工程と、
(3)前記工程(2)で処理されたシリコンウエハを69質量%の硝酸溶液に投入して、20℃の洗浄温度下で300s洗浄する工程と、
(4)前記工程(3)で処理されたシリコンウエハを5質量%のフッ化水素酸溶液に投入して、20℃の洗浄温度下で200s洗浄する工程と、
(5)前記工程(4)で処理されたシリコンウエハを0.025mol/LのTMAH溶液に浸漬して、20℃の条件下で、300s反応させる工程と、
(6)前記工程(5)で処理されたシリコンウエハを脱イオン水で洗浄してスピン乾燥させる工程と、を含む単結晶シリコン太陽電池のナノテクスチャの製造方法。
Example 5
A method for producing a nano-texture of a single crystal silicon solar cell,
(1) After removing the damaged layer of a P-type single crystal silicon wafer having a thickness of 180 ± 10 μm and a size of 156 mm × 156 mm, it is corroded and textured to form a micron level surface texture structure. And then immersing in an AgNO 3 solution having a concentration of 0.008 mol / L and reacting at 120 ° C. for 120 s,
(2) The silicon wafer processed in the step (1) is immersed in a mixed solution of HF having a concentration of 3 mol / L and H 2 O 2 having a concentration of 0.1 mol / L, , Reacting for 600 s,
(3) A step of putting the silicon wafer processed in the step (2) into a 69% by mass nitric acid solution and cleaning it at a cleaning temperature of 20 ° C. for 300 s;
(4) A step of putting the silicon wafer processed in the step (3) into a 5 mass% hydrofluoric acid solution and cleaning it for 200 s at a cleaning temperature of 20 ° C .;
(5) a step of immersing the silicon wafer treated in the step (4) in a 0.025 mol / L TMAH solution and reacting it at 20 ° C. for 300 s;
(6) A method for producing a nano-texture of a single crystal silicon solar cell, comprising: a step of washing the silicon wafer treated in the step (5) with deionized water and spin drying.

比較例3
単結晶シリコン太陽電池の表面テクスチャ構造の製造方法であって、
(1)厚みが180±10μmであり、サイズが156mm×156mmであるP型単結晶シリコンウエハの損傷層を除去して洗浄した後、腐食してテクスチャリングし、ミクロンレベルの表面テクスチャ構造を形成し、その後、濃度が0.008mol/LであるAgNO溶液に浸漬し、20℃の条件下で、120s反応させる工程と、
(2)前記工程(1)で処理されたシリコンウエハを濃度が3mol/LであるHFと濃度が0.1mol/LであるHの混合溶液に浸漬し、20℃の条件下で600s反応させる工程と、
(3)前記工程(2)で処理されたシリコンウエハを69質量%の硝酸溶液に投入して、20℃の洗浄温度下で300s洗浄する工程と、
(4)前記工程(3)で処理されたシリコンウエハを5質量%のフッ化水素酸溶液に投入して、20℃の洗浄温度下で200s洗浄する工程と、
(5)前記工程(4)で処理されたシリコンウエハを洗浄して、スピン乾燥させ、前記単結晶シリコン太陽電池の表面テクスチャ構造を得る工程と、を含む単結晶シリコン太陽電池の表面テクスチャ構造の製造方法。
Comparative Example 3
A method for producing a surface texture structure of a single crystal silicon solar cell,
(1) After removing the damaged layer of a P-type single crystal silicon wafer having a thickness of 180 ± 10 μm and a size of 156 mm × 156 mm, it is corroded and textured to form a micron level surface texture structure. And then immersing in an AgNO 3 solution having a concentration of 0.008 mol / L and reacting at 120 ° C. for 120 s,
(2) The silicon wafer processed in the step (1) is immersed in a mixed solution of HF having a concentration of 3 mol / L and H 2 O 2 having a concentration of 0.1 mol / L, A step of reacting for 600 s;
(3) A step of putting the silicon wafer processed in the step (2) into a 69% by mass nitric acid solution and cleaning it at a cleaning temperature of 20 ° C. for 300 s;
(4) A step of putting the silicon wafer processed in the step (3) into a 5 mass% hydrofluoric acid solution and cleaning it for 200 s at a cleaning temperature of 20 ° C .;
(5) cleaning the silicon wafer processed in the step (4) and spin-drying to obtain a surface texture structure of the single crystal silicon solar cell. Production method.

実施例5では、NaOH溶液で修正エッチングを行った単結晶シリコン太陽電池の表面テクスチャ構造は、寸法が150〜300nm(図12、13に示す)であり、400〜1050nmの波長範囲において、その表面の平均反射率が6.4%(図14に示す)である。   In Example 5, the surface texture structure of a single crystal silicon solar cell that has been subjected to correction etching with an NaOH solution has dimensions of 150 to 300 nm (shown in FIGS. 12 and 13), and the surface texture structure in the wavelength range of 400 to 1050 nm. The average reflectance is 6.4% (shown in FIG. 14).

比較例3では、修正エッチングを行わずに製造されたナノレベルの表面テクスチャ構造は、ナノ深孔状構造であり、孔径が50nm程度(図15、16に示す)だけであり、400〜1050nmの波長範囲において、その表面の平均反射率が5.0%(図14に示す)である。前記「修正エッチングを行わない」とは、中国特許出願公開第102610692号明細書に記載の方法のように、製造されたナノ−ミクロン複合テクスチャ構造は、上記工程(5)の修正エッチングを行わないことを意味する。   In Comparative Example 3, the nano-level surface texture structure manufactured without performing the correction etching is a nano-deep hole structure, and the pore diameter is only about 50 nm (shown in FIGS. 15 and 16), and 400 to 1050 nm. In the wavelength range, the average reflectance of the surface is 5.0% (shown in FIG. 14). The “does not perform the correction etching” means that the manufactured nano-micron composite texture structure does not perform the correction etching in the above step (5) as in the method described in Chinese Patent Application No. 102610692. Means that.

Claims (7)

結晶シリコン太陽電池の表面テクスチャ構造の製造方法であって、
(1)多結晶シリコンウエハを洗浄し、腐食してテクスチャリングし、ミクロンレベルの表面テクスチャ構造を形成する工程と、
(2)前記工程(1)で処理されたシリコンウエハを、金イオン、銀イオン及び銅イオンから選ばれるいずれか1種の金属イオンを含有する溶液に浸漬して、シリコンウエハの表面に金属ナノ粒子層をコーティングする工程と、
(3)HFの濃度を1〜15mol/Lとし、H、HNO又はHCrOの濃度を0.05〜0.5mol/Lとし、HFとHの混合溶液、HFとHNOの混合溶液、HFとHCrOの混合溶液から選ばれるいずれか1種である第1化学エッチング液を使用して、前記工程(2)で処理されたシリコンウエハの表面を腐食し、ナノレベルの表面テクスチャ構造を形成する工程と、
(4)順に、洗浄時間を60〜1200秒とし、洗浄温度を5〜85℃とする27〜69質量%の硝酸溶液である第1洗浄液と、
洗浄時間を60〜600秒とし、洗浄温度を5〜45℃とする1〜10質量%のフッ化水素酸溶液である第2洗浄液と、
脱イオン水とを使用して、前記工程(3)で処理されたシリコンウエハを洗浄して、金属粒子を除去する工程と、
(5)NaOH溶液、KOH溶液、テトラメチルアンモニウムヒドロキシド溶液、HNOとHF酸の混合溶液から選ばれるいずれか1種であり、
NaOH溶液である場合、その濃度を0.001〜0.1mol/Lとし、反応時間を10〜1000秒とし、反応温度を5〜85℃として、
KOH溶液である場合、その濃度を0.001〜0.1mol/Lとし、反応時間を10〜1000秒とし、反応温度を5〜85℃として、
テトラメチルアンモニウムヒドロキシド溶液である場合、その濃度を0.001〜0.1mol/Lとし、反応時間を10〜1000秒とし、反応温度を5〜85℃として、
HNOとHF酸の混合溶液である場合、HFとHNOの濃度をそれぞれ0.05〜0.5mol/L、1〜10mol/Lとし、反応時間を10〜1000秒とし、反応温度を5〜45℃とする、
第2化学エッチング液に、前記工程(4)で処理されたシリコンウエハを浸漬して、微細構造に対し修正エッチングを行う工程と、
(6)前記工程(5)で処理されたシリコンウエハを洗浄して、スピン乾燥させ、結晶シリコン太陽電池の表面テクスチャ構造を得る工程と、を含むことを特徴とする結晶シリコン太陽電池の表面テクスチャ構造の製造方法。
A method for producing a surface texture structure of a crystalline silicon solar cell,
(1) cleaning, corroding and texturing the polycrystalline silicon wafer to form a micron level surface texture structure;
(2) The silicon wafer treated in the step (1) is immersed in a solution containing any one kind of metal ions selected from gold ions, silver ions, and copper ions, and metal nano particles are formed on the surface of the silicon wafer. Coating the particle layer;
(3) The concentration of HF is 1 to 15 mol / L, the concentration of H 2 O 2 , HNO 3 or H 2 CrO 4 is 0.05 to 0.5 mol / L, and a mixed solution of HF and H 2 O 2 , The surface of the silicon wafer treated in the step (2) is used by using a first chemical etching solution which is any one selected from a mixed solution of HF and HNO 3 and a mixed solution of HF and H 2 CrO 4. Corroding and forming a nano-level surface texture structure;
(4) In order, the 1st washing | cleaning liquid which is a 27-69 mass% nitric acid solution which makes washing | cleaning time 60-1200 second and makes washing | cleaning temperature 5-85 degreeC,
A second cleaning liquid that is a 1 to 10% by mass hydrofluoric acid solution with a cleaning time of 60 to 600 seconds and a cleaning temperature of 5 to 45 ° C .;
Cleaning the silicon wafer treated in the step (3) using deionized water to remove metal particles;
(5) It is any one selected from NaOH solution, KOH solution, tetramethylammonium hydroxide solution, mixed solution of HNO 3 and HF acid,
In the case of an NaOH solution, the concentration is 0.001 to 0.1 mol / L, the reaction time is 10 to 1000 seconds, the reaction temperature is 5 to 85 ° C.,
In the case of a KOH solution, the concentration is 0.001 to 0.1 mol / L, the reaction time is 10 to 1000 seconds, the reaction temperature is 5 to 85 ° C.,
In the case of a tetramethylammonium hydroxide solution, the concentration is 0.001 to 0.1 mol / L, the reaction time is 10 to 1000 seconds, the reaction temperature is 5 to 85 ° C.,
In the case of a mixed solution of HNO 3 and HF acid, the concentrations of HF and HNO 3 are 0.05 to 0.5 mol / L, 1 to 10 mol / L, the reaction time is 10 to 1000 seconds, and the reaction temperature is 5 ˜45 ° C.,
Immersing the silicon wafer processed in the step (4) in a second chemical etching solution and performing correction etching on the microstructure;
(6) cleaning the silicon wafer processed in the step (5), spin drying, and obtaining a surface texture structure of the crystalline silicon solar cell, the surface texture of the crystalline silicon solar cell, Structure manufacturing method.
前記工程(2)では、金属ナノ粒子層における金属ナノ粒子の濃度が0.0001〜0.1mol/Lであることを特徴とする請求項1に記載の製造方法。   In the said process (2), the density | concentration of the metal nanoparticle in a metal nanoparticle layer is 0.0001-0.1 mol / L, The manufacturing method of Claim 1 characterized by the above-mentioned. 前記工程(2)では、浸漬時間が10〜1000秒であり、溶液温度が5〜85℃であることを特徴とする請求項1に記載の製造方法。   In the said process (2), immersion time is 10 to 1000 second, and solution temperature is 5-85 degreeC, The manufacturing method of Claim 1 characterized by the above-mentioned. 前記工程(3)では、腐食時間が30〜3000秒であり、反応温度が5〜45℃であることを特徴とする請求項1に記載の製造方法。   In the said process (3), corrosion time is 30 to 3000 second, and reaction temperature is 5-45 degreeC, The manufacturing method of Claim 1 characterized by the above-mentioned. 請求項1に記載の製造方法により得られる結晶シリコン太陽電池の表面テクスチャ構造。   A surface texture structure of a crystalline silicon solar cell obtained by the manufacturing method according to claim 1. 前記結晶シリコン太陽電池は多結晶シリコン太陽電池であり、その表面テクスチャ構造の反射率が12%〜20%であることを特徴とする請求項5に記載の結晶シリコン太陽電池の表面テクスチャ構造。   6. The surface texture structure of a crystalline silicon solar cell according to claim 5, wherein the crystalline silicon solar cell is a polycrystalline silicon solar cell, and the reflectance of the surface texture structure is 12% to 20%. 前記結晶シリコン太陽電池は単結晶シリコン太陽電池であり、その表面テクスチャ構造の反射率が5%〜15%であることを特徴とする請求項5に記載の結晶シリコン太陽電池の表面テクスチャ構造。   6. The surface texture structure of a crystalline silicon solar cell according to claim 5, wherein the crystalline silicon solar cell is a single crystal silicon solar cell, and the reflectance of the surface texture structure is 5% to 15%.
JP2016524403A 2013-04-12 2013-11-15 Surface texture structure of crystalline silicon solar cell and manufacturing method thereof Active JP6392866B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201310127230.X 2013-04-12
CN201310127230.XA CN103219428B (en) 2013-04-12 2013-04-12 Suede structure of a kind of crystal silicon solar energy battery and preparation method thereof
PCT/CN2013/087239 WO2014166256A1 (en) 2013-04-12 2013-11-15 Crystalline silicon solar cell textured structure and manufacturing method for same

Publications (2)

Publication Number Publication Date
JP2017504179A true JP2017504179A (en) 2017-02-02
JP6392866B2 JP6392866B2 (en) 2018-09-19

Family

ID=48817046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016524403A Active JP6392866B2 (en) 2013-04-12 2013-11-15 Surface texture structure of crystalline silicon solar cell and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP6392866B2 (en)
CN (1) CN103219428B (en)
WO (1) WO2014166256A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018526835A (en) * 2015-07-09 2018-09-13 ▲蘇▼州阿特斯▲陽▼光▲電▼力科技有限公司 Method for manufacturing local back contact solar cell
KR101919487B1 (en) * 2017-09-14 2018-11-19 한국과학기술연구원 Method for texturing semiconductor substrate, semiconductor substrate manufactured by the method and solar cell comprising the same
CN109727895A (en) * 2018-12-25 2019-05-07 保定光为绿色能源科技有限公司 A kind of crystalline silicon metal cleaning equipment
KR102046255B1 (en) * 2018-06-21 2019-11-18 한국생산기술연구원 Method for fabricating selar cell having nano texturing structure

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219428B (en) * 2013-04-12 2015-08-19 苏州大学 Suede structure of a kind of crystal silicon solar energy battery and preparation method thereof
CN103456804B (en) * 2013-09-24 2016-04-27 上海大学 Form the method for inverted pyramid type porous surface nanometer texture on the polysilicon and prepare the method for shortwave enhancement mode solar cell
CN103474518B (en) * 2013-10-10 2015-09-09 常州天合光能有限公司 Multi-hole pyramid anti-reflection structure preparation method and HIT solar cell preparation technology
CN104576813B (en) * 2013-10-14 2017-10-13 中国科学院宁波材料技术与工程研究所 A kind of nanostructured matte on photoelectric material surface and preparation method thereof
CN103578966B (en) * 2013-10-29 2016-06-15 浙江工业大学 A kind of wet chemistry preparation method of the cone-shaped black silicon in surface
CN103647000B (en) * 2013-12-20 2016-08-24 天威新能源控股有限公司 A kind of crystal-silicon solar cell Surface Texture metallization processes
CN103956395B (en) * 2014-05-09 2017-11-10 中国科学院宁波材料技术与工程研究所 Array structure matte and its preparation method and application
CN104409564B (en) * 2014-10-31 2017-01-11 浙江大学 N-type nanometer black silicon manufacturing method and solar cell manufacturing method
CN104393114A (en) * 2014-11-17 2015-03-04 中国电子科技集团公司第四十八研究所 Preparation method of polycrystalline black silicon of micro-nano composite suede structure
CN104891497B (en) * 2015-05-06 2017-12-19 苏州旦能光伏科技有限公司 A kind of magnanimity preparation method of the ultra-pure nano silica fume of solar-grade
CN104992991A (en) * 2015-05-27 2015-10-21 上饶光电高科技有限公司 Method for preparing black silicon solar cell
CN105154982A (en) * 2015-07-08 2015-12-16 中国科学院宁波材料技术与工程研究所 Polycrystalline black silicon texturization treatment fluid, polysilicon chip texturization method applying treatment fluid, and polycrystalline black silicon texturization product
CN104966762B (en) * 2015-07-09 2018-03-09 苏州阿特斯阳光电力科技有限公司 The preparation method of crystal silicon solar energy battery suede structure
CN108054224B (en) * 2015-07-09 2020-03-03 苏州阿特斯阳光电力科技有限公司 Textured structure of crystalline silicon solar cell and preparation method thereof
CN104979430A (en) * 2015-07-09 2015-10-14 苏州阿特斯阳光电力科技有限公司 Method for preparing suede-like surface structure of crystalline silicon solar cell
CN105006496B (en) * 2015-08-10 2017-03-22 苏州旦能光伏科技有限公司 Single nanometer pile face preparation method of crystalline silicon solar cell
CN105161553B (en) * 2015-08-19 2017-04-19 常州天合光能有限公司 Preparation method of all back electrode crystalline silicon solar cell
CN105133038B (en) * 2015-08-28 2018-05-15 中国电子科技集团公司第四十八研究所 The preparation method and applications of polysilicon with efficient nano suede structure
CN105226114A (en) * 2015-08-31 2016-01-06 南京航空航天大学 A kind of black silicon passivating structure and preparation method thereof
CN105070792B (en) * 2015-08-31 2018-06-05 南京航空航天大学 A kind of preparation method of the polycrystalline solar cell based on solwution method
CN105140343B (en) * 2015-08-31 2018-02-13 南京航空航天大学 A kind of black silicon structure of polycrystalline and its liquid phase preparation process
CN105070772B (en) * 2015-09-01 2017-07-04 常州时创能源科技有限公司 The wet chemical method of uniform inverted pyramid matte is prepared in monocrystalline silicon surface
CN105226112B (en) * 2015-09-25 2017-09-05 中节能太阳能科技(镇江)有限公司 A kind of preparation method of efficient crystal silicon solar batteries
CN105206709A (en) * 2015-10-10 2015-12-30 浙江晶科能源有限公司 Treatment method used for optimizing black silicon surface structure
CN105543979A (en) * 2015-12-11 2016-05-04 奥特斯维能源(太仓)有限公司 Wet texturizing process for diamond wire sawed polycrystalline silicon wafer under catalysis of metal
CN105463583A (en) * 2015-12-11 2016-04-06 奥特斯维能源(太仓)有限公司 Texturizing method of diamond wire cut polycrystalline silicon wafers
CN105702803A (en) * 2015-12-21 2016-06-22 合肥晶澳太阳能科技有限公司 Process for manufacturing efficient polycrystalline cell
CN105696084B (en) * 2016-02-01 2018-07-24 浙江晶科能源有限公司 A kind of etching method of diamond wire silicon chip and application
CN105742409B (en) * 2016-04-08 2017-09-22 江苏荣马新能源有限公司 A kind of black Silicon Surface Cleaning method and black silion cell preparation method
CN105839193B (en) * 2016-04-27 2018-09-21 新疆中硅科技有限公司 A kind of preparation method of textured mono-crystalline silicon
CN105810761B (en) * 2016-04-29 2018-07-27 南京工业大学 A kind of etching method of Buddha's warrior attendant wire cutting polysilicon chip
CN105810762A (en) * 2016-05-23 2016-07-27 协鑫集成科技股份有限公司 Crystal silicon wafer nanometer textured surface structure and preparation method therefor
CN106098840B (en) * 2016-06-17 2017-09-22 湖洲三峰能源科技有限公司 A kind of black silicon preparation method of wet method
JP2017228595A (en) * 2016-06-20 2017-12-28 株式会社ジェイ・イー・ティ Method for manufacturing solar battery
CN106521635A (en) * 2016-11-17 2017-03-22 上海交通大学 All-solution preparation method of nanoscale pyramid suede on silicon surface
CN106601836A (en) * 2016-12-16 2017-04-26 上海电机学院 Technology for manufacturing light trapping structure in surface of photovoltaic cell based on nano-particles
CN108511539B (en) * 2017-02-28 2020-02-04 比亚迪股份有限公司 Preparation method of solar cell
CN108735594A (en) 2017-04-13 2018-11-02 Rct解决方法有限责任公司 Device and method of the chemical treatment with semiconductor substrate being formed by sawing or by the molding surface texture of semiconductor melt
DE102017206432A1 (en) 2017-04-13 2018-10-18 Rct Solutions Gmbh Apparatus and method for chemically treating a semiconductor substrate having a sawn surface structure
CN107177889A (en) * 2017-05-22 2017-09-19 嘉兴尚能光伏材料科技有限公司 A kind of surface matte preparation method of monocrystaline silicon solar cell
CN107598183B (en) * 2017-08-14 2020-06-12 嘉兴尚能光伏材料科技有限公司 Macroscopic quantity preparation method of nano-silver particles
CN107546285A (en) * 2017-08-24 2018-01-05 嘉兴尚能光伏材料科技有限公司 A kind of preparation method of crystal silicon solar energy battery surface micronano structure
CN107338480A (en) * 2017-08-24 2017-11-10 嘉兴尚能光伏材料科技有限公司 A kind of monocrystalline silicon silicon wafer fine hair making method and its flocking additive
CN107623053A (en) * 2017-09-11 2018-01-23 中节能太阳能科技(镇江)有限公司 Diamond wire silicon chip based on chain-type texture-etching equipment receives micro- matte preparation method
CN107681011A (en) * 2017-09-15 2018-02-09 张家港协鑫集成科技有限公司 The etching method and application of class monocrystalline silicon piece texture structure and suede structure
CN108807569B (en) * 2018-06-20 2020-02-14 通威太阳能(合肥)有限公司 Preparation method of surface micron/nano composite structure of single crystal battery piece
CN108987497A (en) * 2018-07-23 2018-12-11 宁夏大学 A kind of preparation method of the novel light trapping structure of monocrystaline silicon solar cell
CN109698246A (en) * 2018-12-25 2019-04-30 嘉兴尚能光伏材料科技有限公司 PERC solar cell and preparation method thereof
CN109473487B (en) * 2018-12-25 2024-04-02 嘉兴尚能光伏材料科技有限公司 Crystalline silicon solar cell based on composite light trapping structure and preparation method thereof
CN111769175B (en) * 2019-03-15 2022-08-26 中国科学院物理研究所 PERC single crystalline silicon solar cell and preparation method thereof
CN110371984A (en) * 2019-08-29 2019-10-25 贵州大学 A method of impurity B in silicon is absorbed using oxygen-containing porous layer
CN110467184A (en) * 2019-08-30 2019-11-19 贵州大学 A kind of method of impurity P in hydro-thermal erosion removal metallurgical grade silicon
CN112838140B (en) * 2019-11-22 2022-05-31 阜宁阿特斯阳光电力科技有限公司 Polycrystalline silicon solar cell, preparation method thereof and method for preparing textured structure of polycrystalline silicon solar cell
CN111128714B (en) * 2019-12-31 2022-06-03 杭州中欣晶圆半导体股份有限公司 Acid etching process for reducing heavily boron-doped color spots
CN112466995A (en) * 2020-11-23 2021-03-09 宁波尤利卡太阳能股份有限公司 Monocrystalline texturing method of PERC battery
CN114551614A (en) * 2020-11-24 2022-05-27 苏州阿特斯阳光电力科技有限公司 Silicon wafer composite suede manufacturing method and silicon wafer manufactured by same
CN112635591A (en) * 2020-12-22 2021-04-09 泰州隆基乐叶光伏科技有限公司 Preparation method of solar cell and solar cell
CN112885928B (en) * 2021-03-30 2022-11-15 东南大学 Method for quickly forming octagonal pyramid structure on silicon wafer
CN113857216B (en) * 2021-09-29 2022-11-15 中国科学院城市环境研究所 Method for recycling waste photovoltaic modules
CN113937172B (en) * 2021-10-19 2023-10-10 温州大学 Preparation method of novel composite suede structure of crystalline silicon solar cell
CN114035253A (en) * 2021-11-23 2022-02-11 西安知微传感技术有限公司 MEMS (micro-electromechanical system) micro-mirror with stray light elimination function, laser scanning equipment and manufacturing method of micro-mirror
CN114551644A (en) * 2022-02-22 2022-05-27 江西中弘晶能科技有限公司 Design of surface micron-nano composite structure for improving conversion efficiency of high-efficiency battery piece
CN116722054A (en) 2022-06-10 2023-09-08 浙江晶科能源有限公司 Solar cell, preparation method of solar cell and photovoltaic module
CN115161032A (en) * 2022-07-05 2022-10-11 北京师范大学 Etching solution and method suitable for monocrystalline silicon wafer
CN116004233A (en) * 2022-12-12 2023-04-25 嘉兴市小辰光伏科技有限公司 Etching additive for improving uniformity of textured surface of silicon wafer and use method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003105209A1 (en) * 2002-06-06 2003-12-18 関西ティー・エル・オー株式会社 Method for producing polycrystalline silicon substrate for solar cell
JP2005183505A (en) * 2003-12-17 2005-07-07 Kansai Tlo Kk Method of manufacturing silicon substrate with porous layer
US20070151944A1 (en) * 2004-12-31 2007-07-05 Industrial Technology Research Institute Method for making solar cell
JP2007194485A (en) * 2006-01-20 2007-08-02 Osaka Univ Manufacturing method of silicon substrate for solar battery
JP2010245568A (en) * 2010-07-21 2010-10-28 Mitsubishi Electric Corp Method of manufacturing solar cell
CN102610692A (en) * 2012-03-09 2012-07-25 润峰电力有限公司 Method for preparing crystalline silicon nanometer and micrometer composite texture surface
WO2012157179A1 (en) * 2011-05-17 2012-11-22 株式会社Sumco Method for manufacturing wafer for solar cell, method for manufacturing solar cell, and method for manufacturing solar cell module
WO2013051329A1 (en) * 2011-10-07 2013-04-11 株式会社ジェイ・イー・ティ Method for manufacturing solar cell

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8178419B2 (en) * 2008-02-05 2012-05-15 Twin Creeks Technologies, Inc. Method to texture a lamina surface within a photovoltaic cell
CN101752450B (en) * 2008-12-08 2012-02-08 湖南天利恩泽太阳能科技有限公司 Multiplex velvet making method for crystalline silicon solar battery slice
US20110070744A1 (en) * 2009-09-18 2011-03-24 Zhi-Wen Sun Silicon Texturing Formulations for Solar Applications
CN101661972B (en) * 2009-09-28 2011-07-20 浙江大学 Process for manufacturing monocrystalline silicon solar cell texture with low surface reflectivity
CN102034900A (en) * 2010-10-27 2011-04-27 晶澳太阳能有限公司 Texture etching method for quasi-monocrystalline silicon wafer
CN102130205A (en) * 2010-12-10 2011-07-20 上海太阳能电池研究与发展中心 Method for performing surface catalytic texturing on polycrystalline silicon solar cell
CN102544199A (en) * 2011-12-15 2012-07-04 浙江鸿禧光伏科技股份有限公司 Method for acid-etching honeycomb structure of crystalline silicon cell
CN102618937A (en) * 2012-04-10 2012-08-01 苏州阿特斯阳光电力科技有限公司 Texture etching technology of single crystalline silicon solar cell
CN102703989B (en) * 2012-05-28 2015-12-02 天威新能源控股有限公司 Class monocrystalline solar cells leather producing process
CN103219428B (en) * 2013-04-12 2015-08-19 苏州大学 Suede structure of a kind of crystal silicon solar energy battery and preparation method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003105209A1 (en) * 2002-06-06 2003-12-18 関西ティー・エル・オー株式会社 Method for producing polycrystalline silicon substrate for solar cell
JP2005183505A (en) * 2003-12-17 2005-07-07 Kansai Tlo Kk Method of manufacturing silicon substrate with porous layer
US20070151944A1 (en) * 2004-12-31 2007-07-05 Industrial Technology Research Institute Method for making solar cell
JP2007194485A (en) * 2006-01-20 2007-08-02 Osaka Univ Manufacturing method of silicon substrate for solar battery
JP2010245568A (en) * 2010-07-21 2010-10-28 Mitsubishi Electric Corp Method of manufacturing solar cell
WO2012157179A1 (en) * 2011-05-17 2012-11-22 株式会社Sumco Method for manufacturing wafer for solar cell, method for manufacturing solar cell, and method for manufacturing solar cell module
WO2013051329A1 (en) * 2011-10-07 2013-04-11 株式会社ジェイ・イー・ティ Method for manufacturing solar cell
CN102610692A (en) * 2012-03-09 2012-07-25 润峰电力有限公司 Method for preparing crystalline silicon nanometer and micrometer composite texture surface

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
K.TSUJINO: "Texturization of multicrystalline silicon wafers for solar cells by chemical treatment using metalli", SOLAR ENERGY MATERIALS & SOLAR CELLS, vol. Vol.90, JPN6017045741, 2006, pages 100 - 110, XP028002054, DOI: doi:10.1016/j.solmat.2005.02.019 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018526835A (en) * 2015-07-09 2018-09-13 ▲蘇▼州阿特斯▲陽▼光▲電▼力科技有限公司 Method for manufacturing local back contact solar cell
KR101919487B1 (en) * 2017-09-14 2018-11-19 한국과학기술연구원 Method for texturing semiconductor substrate, semiconductor substrate manufactured by the method and solar cell comprising the same
WO2019054555A1 (en) * 2017-09-14 2019-03-21 한국과학기술연구원 Method for texturing semiconductor substrate, semiconductor substrate manufactured by same method and solar cell comprising same semiconductor substrate
US11527673B2 (en) * 2017-09-14 2022-12-13 Korea Institute Of Science And Technology Method of texturing semiconductor substrate, semiconductor substrate manufactured using the method, and solar cell including the semiconductor substrate
KR102046255B1 (en) * 2018-06-21 2019-11-18 한국생산기술연구원 Method for fabricating selar cell having nano texturing structure
CN109727895A (en) * 2018-12-25 2019-05-07 保定光为绿色能源科技有限公司 A kind of crystalline silicon metal cleaning equipment

Also Published As

Publication number Publication date
WO2014166256A1 (en) 2014-10-16
JP6392866B2 (en) 2018-09-19
CN103219428A (en) 2013-07-24
CN103219428B (en) 2015-08-19

Similar Documents

Publication Publication Date Title
JP6392866B2 (en) Surface texture structure of crystalline silicon solar cell and manufacturing method thereof
KR101962469B1 (en) A method for producing a textured structure of a crystalline silicon solar cell
CN108054224B (en) Textured structure of crystalline silicon solar cell and preparation method thereof
TWI669830B (en) Method for manufacturing local back contact solar cell
Li et al. Structure and antireflection properties of SiNWs arrays form mc-Si wafer through Ag-catalyzed chemical etching
CN107338480A (en) A kind of monocrystalline silicon silicon wafer fine hair making method and its flocking additive
CN101937946B (en) Surface texture method of solar battery silicon slice
CN106229386B (en) A kind of method that silver-bearing copper bimetallic MACE method prepares black silicon structure
CN106098810B (en) A kind of preparation method of crystal silicon solar energy battery suede structure
CN106024988A (en) One-step wet black silicon preparation and surface treatment method
CN104966762B (en) The preparation method of crystal silicon solar energy battery suede structure
CN104576813B (en) A kind of nanostructured matte on photoelectric material surface and preparation method thereof
Cao et al. Texturing a pyramid-like structure on a silicon surface via the synergetic effect of copper and Fe (III) in hydrofluoric acid solution
CN105140343A (en) Polycrystalline black silicon structure and liquid phase preparation method thereof
CN105133038B (en) The preparation method and applications of polysilicon with efficient nano suede structure
CN106340446A (en) Method for removing surface line marks of diamond linear cutting polycrystalline silicon chip through wet method
CN103979485A (en) Preparation method of micro nano porous silicon material
CN107316917A (en) A kind of method for the monocrystalline silicon suede structure for preparing antiradar reflectivity
CN110518075B (en) Black silicon passivation film, and preparation method and application thereof
CN102856434B (en) Preparation method for square silicon nano-porous array
CN107546285A (en) A kind of preparation method of crystal silicon solar energy battery surface micronano structure
CN106057972A (en) Preparation method of crystalline silicon solar cell textured structure
CN204167329U (en) Metallurgy polycrystalline silicon solar battery sheet and solar panel
CN103022247B (en) The method of silicon nanometer line solar battery blemish layer is removed in a kind of oxide etch
Zou et al. Metal-catalyzed chemical etching using DIO3 as a hole injection agent for efficient submicron-textured multicrystalline silicon solar cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180823

R150 Certificate of patent or registration of utility model

Ref document number: 6392866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250