JP2017501417A - 原子炉用減震システム - Google Patents

原子炉用減震システム Download PDF

Info

Publication number
JP2017501417A
JP2017501417A JP2016544112A JP2016544112A JP2017501417A JP 2017501417 A JP2017501417 A JP 2017501417A JP 2016544112 A JP2016544112 A JP 2016544112A JP 2016544112 A JP2016544112 A JP 2016544112A JP 2017501417 A JP2017501417 A JP 2017501417A
Authority
JP
Japan
Prior art keywords
reactor
containment vessel
seismic
vessel
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016544112A
Other languages
English (en)
Other versions
JP2017501417A5 (ja
JP6416267B2 (ja
Inventor
タマス リズカイ
タマス リズカイ
セス カデル
セス カデル
Original Assignee
ニュースケール パワー エルエルシー
ニュースケール パワー エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニュースケール パワー エルエルシー, ニュースケール パワー エルエルシー filed Critical ニュースケール パワー エルエルシー
Publication of JP2017501417A publication Critical patent/JP2017501417A/ja
Publication of JP2017501417A5 publication Critical patent/JP2017501417A5/ja
Application granted granted Critical
Publication of JP6416267B2 publication Critical patent/JP6416267B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/04Means for suppressing fires ; Earthquake protection
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/02Details
    • G21C13/024Supporting constructions for pressure vessels or containment vessels
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/02Details
    • G21C13/032Joints between tubes and vessel walls, e.g. taking into account thermal stresses
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/02Details
    • G21C13/04Arrangements for expansion and contraction
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C5/00Moderator or core structure; Selection of materials for use as moderator
    • G21C5/02Details
    • G21C5/10Means for supporting the complete structure
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/04Safety arrangements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/003One-shot shock absorbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/32Integral reactors, i.e. reactors wherein parts functionally associated with the reactor but not essential to the reaction, e.g. heat exchangers, are disposed inside the enclosure with the core
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/32Integral reactors, i.e. reactors wherein parts functionally associated with the reactor but not essential to the reaction, e.g. heat exchangers, are disposed inside the enclosure with the core
    • G21C1/322Integral reactors, i.e. reactors wherein parts functionally associated with the reactor but not essential to the reaction, e.g. heat exchangers, are disposed inside the enclosure with the core wherein the heat exchanger is disposed above the core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Architecture (AREA)
  • Environmental & Geological Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

地震力を減衰するシステムは、核燃料を含む原子炉圧力容器(2250)と、原子炉圧力容器(2250)を収容する格納容器(2260)とを備える。原子炉圧力容器(2250)及び格納容器(2260)はいずれも、底部ヘッド(2210,2220)を備えてもよい。また、本システムは、格納容器(2260)が実質的に縦向きに配置される支持体表面(2240)に接触するように構成された、基部支持体(2270)を備えてもよい。減衰装置(2255,2265)は、原子炉圧力容器(2250)の底部ヘッド(2210)と格納容器(2260)の底部ヘッド(2220)との間に位置してもよい。格納容器(2260)を介して基部支持体(2240)から原子炉圧力容器(2250)へと伝わる地震力は、減衰装置(2255,2265)によって格納容器(2260)の縦向きに対して実質的に横方向に減衰されてもよい。

Description

発明の詳細な説明
[関連事項の説明]
本出願は、「原子炉システムに対する動的外力への対処」と題され2013年12月31日に出願された米国特許仮出願第61/922,541号に基づく優先権を主張する、「原子炉用減震システム」と題された2014年10月30日に出願された米国特許出願第14/528,123号に基づく優先権を主張するものであり、米国特許出願第14/528,123号の全開示内容を本願に引用して援用する。
[技術分野]
本開示は、概して、原子炉システム又はその他の構造体に対する動的外力及び/又は地震力を減衰するシステム、装置、及び方法に関する。
[背景]
免震は、垂直方向及び水平方向の地表面入力動又は加速度に対する、構成部品又は構造体の応答を制御又は抑制するために利用できる。これは、免震により基礎構造の駆動動作から構成部品/構造体の動作を分離することで達成できる。いくつかの例では、基礎構造と上部構造との間にハードウェア(例えば、ばね)が設置されてもよい。こうしたハードウェアを用いることにより、構成部品又は構造体に対する振動の基本周期を増大させて構造体の動的応答を最小限に抑えることができ、結果的に構造内の加速度及び外力を低減させる。応答スペクトル振幅(例えば、たわみ、外力)をさらに抑制するために、最大振幅を対処可能なレベルまで効果的に抑制する別のメカニズムが用いられてもよい。
発電施設内の原子炉と、二次冷却システム又はその他のシステムとの間には配管やその他の接続部が設けられてもよい。地震又はその他の地震活動が起きた場合には、顕著な外力又は振動がこの接続部に伝達される、又は、この接続部によって伝達されることがあり、接続部には大きな圧力がかかり得る。また、熱膨張に起因する外力も接続部に圧力をかける。これら接続部の一体性を維持することにより、放射性物質又はその他の物質が種々のシステムから不用意に放出することを阻止し易くし、そうでなければ接続部の1つ又は複数が破綻した場合に生じ得る保守管理又は損害を低減させる。
地震事象の間、動的外力及び/又は地震力は、地表面、支持体表面、又は周りを囲む格納建造物から原子炉モジュールへと伝達され得る。原子炉モジュールへ伝達される地震力は、当該地震力が原子炉モジュールに到達するまでに通過する、介在する構造体及び/又はシステムの、数及び/又は長さに応じて、振幅及び/又は周波数の累積的な増加及び/又は増幅を経験することもある。地震力が十分大きくなれば、炉心及び/又は燃料要素が損害を受けることもある。
本発明は、これらの問題及びその他の問題に対処する。
図1A−1Bは、それぞれ、1つ以上の免震組立体を備える原子炉システムの例を示すブロック図の側面図及び上面図である。 図2A−2Bは、免震組立体の実装例を示す。 図3A−3Bは、免震組立体の実装例の一部を示す。 図4は、免震組立体の実装例を示す。 図5は、免震組立体の実装例に関する力−たわみ図を示す。 図6は、支持構造を備える電力モジュールアセンブリの一例を示す。 図7は、図6の電力モジュールアセンブリの側面図を示す。 図8は、免震格納容器を備える電力モジュールアセンブリ用の支持構造の一例の部分図を示す。 図9は、弾性ダンピング装置を多数備える免震格納容器用の支持構造の一例の部分図を示す。 図10は、弾性ダンピング及び保持構造の一例の部分図を示す。 図11は、縦方向の力に応答する、図10に示す弾性ダンピング及び保持構造の部分図を示す。 図12は、横方向の力に応答する、図10に示す弾性ダンピング及び保持構造の部分図を示す。 図13は、免震電力モジュール用の、弾性ダンピング及び保持構造の一例の部分図を示す。 図14は、電力モジュールを免震化するシステム例を示す。 図15は、原子炉圧力容器の一例を示す。 図16は、格納容器と原子炉圧力容器集合体とを備える原子炉モジュールの一例の部分切欠き図を示す。 図17は、原子炉圧力容器と格納容器とを備える原子炉モジュールの一例の断面図を示す。 図18は、半径方向カギ部を備えるシステム例を示す。 図19は、半径方向緩衝材を備えるシステム例を示す。 図20は、図19に示すシステム例を、原子炉圧力容器と共に図示したものを示す。 図21は、垂直方向カギ部を備えるシステム例を示す。 図22は、垂直方向カギ部を備える別のシステム例を示す。 図23は、垂直方向カギ部を代替の力伝達路と共に備えるシステム例を示す。 図24は、垂直方向カギ部を代替の力伝達路と共に備える別のシステム例を示す。 図25は、一体化した垂直方向カギ部と横方向支持部とを備えるシステム例を示す。 図26は、円錐形状のカギ部を備えるシステム例を示す。 図27は、RPVが熱膨張中である図26のシステム例の拡大部分図を示す。 図28は、膨張状態にある図26のシステム例の拡大部分図を示す。 図29は、円錐形状カギ部を備える別のシステム例を示す。 図30は、原子炉モジュール構造を介した動的外力又は地震力の伝達の作用例を示す。 図31は、階段形状カギ部を備えるシステム例を示す。 図32は、膨張状態にある図31のシステム例を示す。
[詳細な説明]
図1は、1つ又は複数の免震組立体25を有する原子炉システム100(例えば、原子炉等)を示すブロック図である。いくつかの態様において、原子炉システム100は、炉心を冷却して炉心から1つ又は複数の熱交換器を介して二次冷却材へと熱を移動させるために一次冷却材の自然循環を利用する、商用発電用加圧水型原子炉である。二次冷却材(例えば、水)は、一旦(例えば、蒸気、加熱蒸気、又はそれ以外へと)加熱されると、凝縮されて1つ又は複数の熱交換器に戻される前に、例えば蒸気タービン又はそれ以外のもの等の発電設備を駆動させることができる。
原子炉システム100に関して、炉心20は、円筒形状又はカプセル形状の原子炉容器70の下部に位置する。炉心20は、多量の核燃料集合体、つまり核燃料棒(例えば、制御棒との併用で制御核反応を発生させる核分裂性物質)と、任意で1つ又は複数の制御棒(図示せず)とを備える。上述のとおり、いくつかの実施例では、原子炉システム100は、通常運転の間、又はたとえ緊急状態であっても、少なくとも予め規定された期間程度はオペレーターの介入又は監督なしで確実に原子炉100の安全な運転が維持されるように、物理法則を利用した(例えば、一次冷却材用に循環ポンプを備えない)受動運転システムを備えて設計される。
原子炉隔室5内において、円筒形状又はカプセル形状の格納容器10は、原子炉容器70の周りを囲み、例えば水位線90より下(つまり、隔室5の上面35の位置、又はそのすぐ下であってもよい)等、部分的又は完全に原子炉プールに沈んでいてもよい。原子炉容器70と格納容器10との間の容積は、原子炉容器70から原子炉プールへの熱伝導を抑制するために、部分的又は完全に真空にされてもよい。しかしながら、別の実施例において、原子炉容器70と格納容器10との間の容積は、原子炉と格納容器との間の熱伝導を増大させる気体及び/又は液体で少なくとも部分的に充填されてもよい。
図示した実施例においては、炉心20は、例えば水等の液体に沈んでおり、この液体はホウ素又は他の添加物を含んでいてもよく、炉心の面と接触した後、導管30内へと上昇する。加熱された冷却材の上昇運動を、導管30内(例えば、ライザー30)の矢印40で表す(例えば、一次冷却材40)。冷却材は熱交換器50及び60の上を移動し、濃度差によって原子炉容器70の内壁沿いに下方に引き込まれ、したがって、冷却材は熱交換器50及び60に熱を付与することができる。冷却材は、原子炉容器70の下部に到達した後、炉心20との接触により加熱され、加熱された冷却材は再度導管30通って上昇する。図1において、熱交換器50及び60は2つの異なる要素として示されているが、熱交換器50及び60は、導管30の少なくとも一部分の周囲に巻き付けられる、任意の数の螺旋(又は他の形状の)コイルであってもよい。
原子炉モジュールの通常運転は、加熱された冷却材が導管30を通って上昇し熱交換器50及び60と接触するように実施される。冷却材は、熱交換器50及び60に接触した後、原子炉容器70内の冷却材が大気圧より高い圧力を保つように原子炉容器70の底部に向かって沈む。こうして、冷却材は蒸発(例えば、沸騰)することなく高温を維持することができる。
熱交換器50及び60内の冷却材の温度が上昇するにしたがって、冷却材が沸騰し始める場合がある。熱交換器50及び60内の冷却材が沸騰し始めるにしたがって、水蒸気等の蒸発した冷却材は、蒸気の熱ポテンシャルエネルギーを電気エネルギーに変換する1つ又は複数のタービンを駆動するために用いられてもよい。冷却材は、凝縮後に熱交換器50及び60の基部に近い位置に戻される。
図示した実施例では、反射体15と原子炉容器70との間の下降管領域が、一次冷却材40用の流体流路を提供し、一次冷却材40は、(例えば、熱交換器50及び60の上を通過した後)容器70の上端から、ライザー30と原子炉容器70との間の環状部を流れ、更に、容器70の下端(例えば、炉心20より下)を流れる。流体流路は、反射体15を冷却するために、まだ炉心20内を再循環していない一次冷却材40を、反射体15の少なくとも1面と対流接触させるように搬送する。
図示したように、格納容器10は、1つ又は複数の免震組立体25を介して原子炉隔室10と接続されていてもよい。図1Bに示すように、各免震組立体25は、原子炉隔室5の内部表面27から延びる埋設体29内に又は埋設体29上に取り付けられてもよい。図1Bには(隔室5の内部表面27の壁1面につき1つずつ)4つの免震組立体25が示されているが、免震組立体25は、格納容器10を支持するために必要に応じてこれより多くても又は少なくてもよい。この実施例において、格納容器10は、免震組立体25に隣接する埋設体29に設置される支持突起33を備える。
いくつかの実施例において、免震組立体25、埋設体29、及び支持突起33は、格納容器10を通る、格納容器10のおよそ重心(CG)と交差する軸上、若しくは、CGよりも僅かに上と交差する軸上、又はその軸近辺に位置してもよい。格納容器10(及びその内部部品)は、格納容器10に作用する液体90のプールの浮力と共に、免震組立体25、埋設体29、及び支持突起33によって支持されてもよい。
一般的に、図示した免震組立体25(詳細図は図2A−2B及び3A−3Bに示す)は、結果的に格納容器10にかかる力となる地震事象(又はその他の運動を誘因する事象)に応答して塑性変形を経験する、1つ又は複数の構成部品を含んでもよい。例えば、地震事象の場合、地震エネルギーは、組立体25の1つ又は複数の部分を貫通及び収縮して塑性変形することによって、組立体25の1つ又は複数の部分(例えば、凸状の面や要素によって囲まれた、連続した円錐形状又はその他の形状)を介して消散されてもよい。エネルギーは、塑性変形及び組立体25の可動要素間の摩擦によって吸収されてもよい。
いくつかの実施例において、組立体25の剛性は、塑性変形可能な要素をサイズ調整することで制御されてもよい。例えば、(塑性変形可能な要素としての)多数の円錐体、ダイ、及び円筒体は、図3A−3Bに詳細に示されるように筐体内に配置されることができる。組立体25の筐体は、支持突起29(又は、別の原子炉隔室埋設体)に対して移動してもよい。地震等の地震事象の場合、免震組立体25は、冷却可能な形状を維持しながら原子炉システム100の安全な停止に寄与してもよい。いくつかの実施例において、免震組立体25は、摺動力が運転基準地震(OBE)に伴う力を上回るようにサイズ調整されてもよい。OBEは、一般的に、安全停止地震(SSE)に伴う力の3分の1から2分の1であってもよい。SSE事象は、損傷状態、つまりサービスレベルDとして分類される。OBE事象は、異常状態、つまりサービスレベルBとして分類される。
原子炉システム100がOBEの規模に満たない地震にさらされた場合は、大規模な修繕又は点検を何らすることなく、事象後間もなく運転が再開されてもよい。結果として、免震組立体25は、OBEの間に全く塑性変形しない場合がある。例えば、OBEの間に免震組立体25が線形に留まって(例えば、全く塑性変形を経験せずに、又はごく僅かしか塑性変形を経験せずに)いれば、免震組立体25の交換は必要ない場合がある。原子炉システム100がSSEにさらされるときは、免震組立体25は、塑性的に動かされる場合があり、除去及び/又は交換され得る。しかしながら、免震組立体25の交換は(例えば、原子炉システム100の)他の部品の交換よりもかなり安価であり得る。
図2A−2Bに免震組立体200の実装例を図示する。いくつかの側面では、免震組立体200は図1A−1Bに示す免震組立体25として使用されてもよい。図2Aには、埋設体29に取り付けられた数個の免震組立体200の等角図を、図2Bには、埋設体29に取り付けられた免震組立体200の上面図を、詳細を表すために一部の内部部品を明らかにして示す。
図2Aに示すように、埋設体29の垂直面に対して数個(例えば、3つの)免震組立体200が取り付けられ、それによって(例えば、格納容器10の支持突起を収容するための)ポケットが画定されてもよい。各免震組立体200は、垂直面の1つに貼り付けられてもよく、又は、垂直面に接して埋設体29に単純に置かれているだけでもよい。この実装例において、免震組立体200の筐体205は、テーパ状の、又は傾斜した頂部を有する長方形の直方体状部分を備える。しかしながら、本開示からその他の形状が考えられる。いくつかの態様では、1つ又は複数の塑性変形可能な要素が少なくとも部分的に、直方体状部分201内に取り付けられても、及び/又は、含まれてもよい。
図2Bに、各免震組立体200の1つ又は複数の内部部品を示す。図示するとおり、各免震組立体200は円錐状伸張要素210と、収縮ダイ215と、円筒状可塑性要素220と、を含んでもよい。いくつかの態様では、図2Bに示すとおり、円錐状伸張要素210と、収縮ダイ215と、円筒状可塑性要素220との一式が数組(例えば、2組から5組)あってもよい。また、本開示からその他の組数も考えられ、組数は、少なくとも部分的に、その特定の免震組立体200のサイズ(例えば、図2Aに示すX又はZ方向の寸法)に依存してもよい。
図示された実施例において、円筒状可塑性要素220の一部分は筐体205から延びて、埋設体29に(また、延長によって原子炉隔室5へと)(例えば、溶接によって、例えば強固に、又は半強固に)取り付けられてもよい。したがって、いくつかの態様において、原子炉隔室5を通過して伝達する動的外力(例えば、地震力)は、円筒状可塑性要素220を介して免震組立体200が受けてもよい。
いくつかの態様において、各免震組立体200の全体的な剛性は、少なくとも部分的に、円錐状伸張要素210、収縮ダイ215、及び円筒状可塑性要素220の組数、並びに、筐体205内の円錐状伸張要素210、収縮ダイ215、及び円筒状可塑性要素220のうちの1つ又は複数の相対的な寸法に基づいてもよい。例えば、免震組立体200の実装例の例示的な理想化された画像400である図4を簡単に参照する。
図4に示すとおり、ばねスライダー及びダンパーは並行に設置される。画像400には、原子炉建屋壁埋設体(例えば、埋設体29)を表すノード「I」と、免震組立体200の筐体205を表すノード「J」とが含まれている。可塑性要素(例えば、円錐状伸張要素210、収縮ダイ215、及び円筒状可塑性要素220)の剛性は、(抵抗素子として示される)K1によって表される。
また、図4に示すように、いくつかの側面においてその他の「抵抗」素子が考えられてもよい。例えば、油圧減衰特性は減衰係数Cによって表される。さらなる剛性要素(例えば、ばね、皿ばねワッシャー、又はその他等)もまた、原子炉システム100で(例えば、筐体205内に取り付けられて、又は、筐体205と埋設体29との間に取り付けられて)(例えば、免震組立体200と並行して)地震力を消散するために用いられてもよく、概してK2によって表される。
また、免震組立体200と埋設体29との間(例えば、ノードJとIとの間)に、空間(例えば、気体又は液体で充填された空間)を表すギャップも示されている。図に示すFSLIDE値は、摺動が生じる前に超えなければならないばね力の絶対値を表す。摺動力は、(例えば、円錐状伸張要素210、収縮ダイ215、及び円筒状可塑性要素220のうちの1つ又は複数の)塑性変形及び摩擦力に起因するものであり得る。
いくつかの側面においては、特定のFSLIDEを得るためにK1が選択されてもよく、また、場合によってはK1が、K2及び/又はCと並行して選択されてもよい。この特定のFSLIDEは、ある事象(例えば、OBE又はSSE事象、若しくはその他の事象)からのノードIで作用する地震力がFSLIDEを超えないように、ひいては、当該地震力を完全に又はほとんど、K1において生じる弾性変形で(いくつかの例においては、K2及びCの、それぞればね及び減衰材でも)受けるように十分大きくてもよい。
図5を簡単に参照すると、力−たわみ図500は、免震組立体200にかかる地震力とたわみとの(K2及びCの影響なしでの)関係を示す。図示のとおり、FSLIDE力未満では、システムは線形である(免震組立体200と埋設体29との間にはギャップがないものとする)。摺動が生じると、吸収されたエネルギーは摺動力に摺動距離を乗じた値に比例する。
この図では、K1及びK2のばねが線形(比例)のばねとして示されているが、あらゆる種類の非線形の(非弾性の、比例しない)ばねに一般化可能である。例えば、別の図においては、ばね−ダンパー−スライダー要素の数は、任意の数及び組み合わせであることも可能である。
図2Aに戻る。図示された免震組立体200は、円筒状可塑性要素220を介して埋設体29に取り付けられる。図のとおり、円錐状伸張要素210、収縮ダイ215、及び円筒状可塑性要素220の組み合わせが複数、筐体205内に垂直に配置されていてもよい。隔室5(ひいては、隔室5を含むあらゆる構造及び隔室5と接触するあらゆる構造)に対する筐体205の相対運動が、埋設体29と円筒状可塑性要素220との接触により駆動されてもよい。
各筐体205内の可塑性メカニズムの数(例えば、円錐状伸張要素210、収縮ダイ215、及び円筒状可塑性要素220の組み合わせ)は、地震事象の間、構造(例えば、隔室5又は他の構造)の十分なダンピングを達成するために必要な散逸エネルギー量の関数である。筐体205のサイズは、構造に対する原子炉システム100の許容相対移動によって決定されてもよい(例えば、最大許容移動として約4インチ)。各免震組立体200のサイズは、むしろ小型でよい。
いくつかの態様においては、図2Aに示すように、円錐状伸張要素210及び円筒状可塑性要素220は、X及びZ方向の力を消散するために共同して機能してもよい。例えば、円錐状伸張要素210は、X及びZ方向の力に応答して、円筒状可塑性要素220を塑性変形させることによって(例えば、埋設体29に向かって要素210内に移動することによって)エネルギーを消散してもよい。いくつかの態様においては、収縮ダイ215は、円錐状伸張要素210の移動と共に移動してもよい。別の態様においては、収縮ダイ215は独立した構成部品ではなく、ただ単に、円筒状可塑性要素220が延在して埋設体29に接触するために通る、筐体205の孔であってもよい。
十分な地震力に基づいた、円筒状可塑性要素220内への(例えば、図3Aに示すように、孔230内への)円錐状伸張要素210の移動が、結果として円筒状可塑性要素220の半永久的な、又は永久的な塑性変形をもたらしてもよい。さらに、円筒状可塑性要素220の塑性変形の間(及びその後)、地震力は、円錐状伸張要素210と円筒状可塑性要素220との間の摩擦、及びそれに伴う熱を介して消散されてもよい。
図3A−3Bは、免震組立体200の実装例を部分的に示す。図3Aは、筐体205に取り付けられた塑性変形可能な要素の近接図を示す。図3Aにさらに示すとおり、筐体205及び塑性変形可能な要素の一部は、液体90のプール(例えば、水、又は他の液体)で囲まれていてもよい。上述のとおり、液体90は、地震力の消散、及び、塑性変形可能な要素が地震力に応答して摺動/変形するときにその摩擦力によって生じる熱の消散を助ける、油圧減衰特性(例えば、図4の減衰係数Cによって表される)を有するものであってもよい。
いくつかの側面においては、円筒状可塑性要素220の孔230は、作動流体(例えば、空気等の気体、又は水等の液体)を封入してもよい。作動流体は、免震組立体200が受けるあらゆる地震力に対する、さらなる散逸作用をもたらしてもよい。例えば、作動流体は、円錐状伸張要素210が円筒状可塑性要素220の孔230内に圧入されるにしたがって、孔230内で圧縮されることにより、地震事象のエネルギーの一部を消散してもよい。
図3Bを参照すると、孔230と原子炉プール90とを流体的に接続する流体口225を含む、別の実施例が示されている。この態様においては、作動流体はプール90の一部であってもよい。図3A−3Bに示す両方の実施例における作動流体は、地震力及びこうした力に起因する移動を消散するためのさらなる油圧ダンピングを備えてもよい。例えば、円錐状伸張要素210が円筒状可塑性要素220の孔230内へ移動する間に、孔230から作動流体を放出することで、油圧ダンピングによって地震エネルギーをさらに消散してもよい。
図1−5に関連する実施例をいくつか説明してきたが、それでもなお種々の修正が行われてもよいと理解されよう。例えば、開示される技術の手順は異なる順序で実行されてもよく、開示されるシステム内の構成部品は異なる方法で組み合わせられてもよく、及び/又は、構成部品は別の構成部品によって置き換えられても補完されてもよい。したがって、別の実施例が、以下の例の範囲内にある。
原子炉免震組立体は、地震事象によって生じ、原子炉格納容器を収容する構造体を介して当該組立体に伝達されるエネルギーに応答して、塑性変形し、地震エネルギーを少なくとも部分的に消散する1つ又は複数の変形可能な要素を備えてもよい。いくつかの態様では、エネルギーの一部が、塑性変形によって消散され、一方では、エネルギーの別の一部が、当該組立体の2つ以上の構成部品間の摩擦によって消散される。さらに別の態様では、地震エネルギーの一部を消散するために、作動流体が当該組立体内で圧縮されてもよい。
原子炉システムは、本開示に従う1つ又は複数の免震組立体を備えてもよく、構造体(例えば、格納プール構造又は建屋構造)上の反力(又は複数の反力)を摺動力に制限してもよい。開示される免震組立体は、地理的に中立であってもよく、故に、世界中の原子炉システムにおいて利用され得る。別の例としては、免震組立体は、能動型免震装置よりもむしろ受動型免震装置であってもよく、それにより維持及び検査の複雑さが低減される(例えば、目視検査、又はその他に制限することによって)。別の例としては、開示される免震組立体は、原子炉システム構造体用のモジュール式建築物設計に適応しても、又は、これを促進してもよい。
原子炉免震組立体は、容積を画定する筐体と、当該容積内に少なくとも部分的に取り付けられる塑性変形可能な材料とを備えてもよい。伸張材料が、筐体に作用する動的外力に応答して塑性変形可能な材料を塑性変形するために、筐体内で移動可能であってもよい。筐体は、原子炉格納容器の一部に取付け可能であってもよい。動的外力は、地震性の力を含んでもよい。
いくつかの例においては、塑性変形可能な材料は、筐体内に取り付けられる第1の部分と、ダイ部材を通って筐体の外側まで延在する第2の部分と、を備えてもよい。第2の部分は、溶接可能な部分を備えてもよい。さらに、ダイ部材は、筐体に作用する動的外力に応答して伸張材料と共に移動可能であってもよい。
伸張材料は、塑性変形可能な材料を通って延在する孔の一部分内に取り付けられてもよい。孔の一部分は、伸張材料の外法寸法とほぼ等しい第1の直径を備えてもよく、孔は、第1の直径よりも小さい第2の直径を有する別の部分を備えてもよい。さらに、第2の直径は、筐体に作用する動的外力に応答した、孔を通じた伸張要素の移動に基づき、第1の直径とほぼ等しくなるように伸張されてもよい。
いくつかの例において、孔は、少なくとも部分的に作動流体を封入してもよく、作動流体は、筐体に作用する動的外力によって生じるエネルギーの少なくとも一部を、筐体に作用する動的外力に応答した当該孔を通じた伸張要素の移動に基づいて、消散する。作動流体は、原子炉隔室に封入された流体の一部を含んでもよい。
動的外力に対処するため、及び/又は、地震力を減衰するための方法は、原子炉圧力容器に接する免震組立体上で力を受けることを含んでもよく、当該力は少なくとも部分的に地震事象によって生じ得る。受けた力は、免震組立体の筐体を介して伸張材料へと伝達されてもよく、更に、伸張材料は、受けた力に基づき筐体内で移動されてもよい。
当該方法は、少なくとも部分的に筐体内に封入される変形可能部材を伸張材料と共に塑性変形することと、変形可能な部材を塑性変形することに基づいて、受けた力の少なくとも一部を消散することと、をさらに含んでもよい。
また、当該方法は、受けた力に基づく変形可能な部材内への伸張材料の反復移動に基づいて、変形可能な部材と伸張材料との間に摩擦を生じさせることと、生じた摩擦に基づいて、受けた力の別の一部を消散することとを含んでもよい。
いくつかの例においては、変形可能な要素の空洞内に封入された作動流体は、受けた力に基づく変形可能な部材内への伸張材料の移動に基づき圧縮されてもよく、また、受けた力の別の一部は、作動流体の圧縮に基づいて消散されてもよい。作動流体は、当該空洞と原子炉隔室とを流体的に接続する液体通路を介して、液体を封入する原子炉隔室へと放出されてもよい。さらに、受けた力の別の一部は、原子炉隔室に封入された液体を介して消散されてもよい。
1つ又は複数のばね部材は、受けた力に基づく変形可能な部材内への伸張材料の移動に基づいて圧縮されてもよく、また、受けた力の別の一部は、1つ又は複数のばね部材の圧縮に基づいて消散されてもよい。いくつかの例においては、受けた力は、原子炉圧力容器を収容する構造体と接する変形可能な部材を介して伝達されてもよい。
原子炉システムは、液体を封入する原子炉隔室と、原子炉隔室の埋設体に位置する突起によって原子炉隔室内に固定される原子炉格納容器と、を備えてもよい。さらに、当該システムは、埋設体内において埋設体の突起と壁との間に取り付けられた免震組立体を備えてもよい。当該免震組立体はそれぞれ、容積を画定する筐体と、当該容積内に少なくとも部分的に取り付けられる塑性変形可能な材料と、原子炉隔室に作用する動的外力に応答して塑性変形可能な材料を塑性変形するために筐体内で移動可能な伸張材料と、を備えてもよい。
塑性変形可能な材料は、筐体内に取り付けられる第1の部分と、ダイ部材を通って埋設体のうちの1つの壁へと延在する第2の部分と、を備えてもよい。第2の部分は、壁に固定されてもよい。いくつかの例においては、ダイ部材は、原子炉隔室に作用する動的外力に応答して、伸張材料と共に移動可能であってもよい。
また、伸張材料は、塑性変形可能な材料を通って延在する孔の一部分内に取り付けられてもよい。孔の一部分は、伸張材料の外法寸法とほぼ等しい第1の直径と、第1の直径よりも小さい第2の直径を有する別の部分とを備えてもよい。いくつかの例においては、第2の直径は、原子炉隔室に作用する動的外力に応答した、当該孔を通じた伸張要素の移動に基づき、第1の直径とほぼ等しくなるように伸張されてもよい。
孔は、少なくとも部分的に作動流体を封入してもよく、作動流体は、筐体に作用する動的外力によって生じるエネルギーの少なくとも一部を、原子炉隔室に作用する動的外力に応答した当該孔を通じた伸張要素の移動に基づいて消散する。原子炉システムは、孔を、原子炉隔室によって画定された容積と流体的に接続する通路をさらに備えてもよい。作動流体は、原子炉隔室に封入された流体の一部を含んでもよい。
図6に、格納容器624、原子炉容器622、及び支持構造620を備える電力モジュールアセンブリの一例を示す。格納容器624は、形状が円筒形でもよく、楕円体、又はドーム形、又は半球形の上端部626及び下端部628を有してもよい。電力モジュールアセンブリ625は、その全体が、効果的なヒートシンクの働きをする液体636(例えば、水)のプールに沈められてもよい。別の例においては、電力モジュールアセンブリ625は、部分的に液体636のプールに沈められてもよい。液体636のプールは、原子炉隔室627内に保持される。原子炉隔室627は、鉄筋コンクリート又はその他の従来材料で構成されてもよい。液体636のプール及び格納容器624は、さらに地表面609より下に設置されてもよい。いくつかの例において、格納容器624の上端626は、完全に液体636のプールの表面より下方に設置されてもよい。格納容器624は、液体及び気体が電力モジュールアセンブリ625から漏れたり、電力モジュールアセンブリ625に入ったりしないように、周囲に対して溶接又は封止されてもよい。
格納容器624は、液体636のプール内において、原子炉隔室627の下面よりも上で、1つ又は複数の支持構造620によって吊るされている状態で図示されている。格納容器624は、ステンレス鋼又は炭素鋼で作られてもよく、クラッディングが含まれてもよい。電力モジュールアセンブリ625は、鉄道車両での輸送ができるようにサイズ決めされてもよい。例えば、格納容器624は、直径が約4.3メートル、高さ(長さ)が17.7メートルになるように建造されてもよい。炉心の交換は、電力モジュールアセンブリ625全体を、例えば鉄道車両で又は海外に輸送して、新規供給された燃料棒を備える新品の又は再生された電力モジュールアセンブリと交換することによって行われてもよい。
格納容器624は、炉心を密閉し、条件によっては、炉心を冷却する。格納容器624は、比較的小さく、高い強度を有し、その総容量が小さいことにも一部起因して、従来の格納容器設計の6倍又は7倍の圧力に耐えることが可能であり得る。仮に電力モジュールアセンブリ625の一次冷却システムに破損が生じたとしても、核分裂生成物は一切周囲に放出されない。
電力モジュールアセンブリ625及び格納容器624は、液体636のプールに完全に沈められた状態で図示されている。格納容器624は、その頂部及び底部を含む全ての側面が液体636に接触し、包囲された状態で図示されている。しかしながら、いくつかの例においては、格納容器624の一部のみが液体636のプールに沈められてもよい。1つ又は複数の支持構造620が、格納容器624の略中間地点に位置する。いくつかの例において、1つ又は複数の支持構造620は、電力モジュール625の略重心(CG)、又はCGよりも僅かに上方に位置する。電力モジュール625は、格納容器624に作用する液体636のプールの浮力と組み合わせられて、支持構造620によって支持される。いくつかの例においては、電力モジュールアセンブリ625は、2つの支持構造620によって支持される。第1の支持構造は、第2の支持構造の向かい側となる電力モジュールアセンブリ625の側部に位置してもよい。
1つ又は複数の支持構造620は、格納容器624と原子炉容器622とを両方支持するように構成されてもよい。sにおいては、1つ又は複数の支持構造620が、原子炉容器622の略CGに、又はCGよりも僅かに上方に位置する。
図7は、図6の電力モジュールアセンブリ625の側面図を示す。格納容器624は、原子炉容器622と共に、電力モジュール625に作用する回転力RFにより、支持構造620を軸として回るように構成されてもよい。いくつかの例において、支持構造620は、電力モジュール625のCGよりも僅かに上方に位置し、それにより下端部628は、回転力RFが低下した後、重力によって原子炉隔室627内で底部を向いた位置に戻るように傾向付けられる。また、格納容器624の回転によって、電力モジュールアセンブリ625の原子炉隔室627への設置、又は、原子炉隔室627からの撤去の際に、操縦性をより高くすることも可能になる。いくつかの例においては、格納容器624は、電力モジュールアセンブリ625の縦の向き又は位置と、横の向き又は位置の間で回転してもよい。
電力モジュール625は、さらに、基部スカート730等の、格納容器624の下端部628に位置する基部支持体を備えるものとして示される。基部スカート730は、格納容器624に強固に固定されても、溶接されても、及び/又は、格納容器624の不可分の部分となってもよい。いくつかの例において、基部スカート730は、基部スカート730が例えば輸送装置上又は燃料補給所において地表面に設置される場合に、電力モジュール625の重量を支持するように設計されてもよい。電力モジュール625の通常運転(例えば、動力運転)の間、基部スカート730が外部の部品又は面と全く接触しないように、基部スカート730は、地表面から離れて吊るされてもよいし、原子炉隔室627の底部より上方に配置されてもよい。
電力モジュール625が支持構造620の周りを回転するとき、格納容器625の下端部628は横方向、つまり横断方向Loに移動する傾向がある。格納容器624が支持構造620を軸に所定量回るとき、基部スカート730は、液体636のプールに設けられたアライメント装置375に接触するように構成されてもよい。例えば、アライメント装置735は、電力モジュール625がある移動範囲内で又は特定の回転角度内で自由に回転するようにサイズ決めされてもよい。
アライメント装置735は、基部スカート730の内径よりも小さい外径を備えてもよい。アライメント装置735は、電力モジュール625が静止しているときに基部スカート730がアライメント装置735に接触しないように、基部スカート730に収まるようにサイズ決めされてもよい。いくつかの例においては、格納容器624が支持構造620を軸に回るとき、基部スカート730は、アライメント装置735に接触するように構成されてもよい。基部スカート730は、縦の力が電力モジュール625に作用する場合には、格納容器623の縦範囲の移動を妨げてはならない。アライメント装置735は、(例えば、ボルト留め、溶接、又はその他の方法による取付けによって)原子炉隔室627の底部に強固に固定されてもよい。いくつかの例においては、電力モジュール625が軸中心で旋回するとき、又は回転するときに、基部スカート730とアライメント装置735との間の接触力を減衰するために、基部スカート730とアライメント装置735との間に1つ又は複数の緩衝材638が設けられる。1つ又は複数の緩衝材738が、アライメント装置735(図示のとおり)又は基部スカート730に固定されても又は他のかたちで取り付けられてもよい。
図8は、免震格納容器824を備える電力モジュールアセンブリに対する支持構造840の一例の部分図を示す。支持構造840は、支持アーム845と、取り付け構造847とを備える。支持アーム845は、格納容器824の略中間地点に設けられてもよい。取り付け構造847は、液体(例えば、水)に沈められてもよい。また、取り付け構造847は、原子炉隔室627の壁の延長部分であっても、原子炉隔室627の壁に取り付けられていても、埋設されていても、原子炉隔室627の壁と一体となっていてもよい(図6)。
ダンピング装置846は、支持アーム845と取り付け構造847との間に設けられてもよい。格納容器824の重量の少なくとも一部分は、ダンピング装置846を介して支持構造847へ伝達されてもよい。ダンピング装置846は、弾性を有しても、復元性を有しても、又は、変形可能であってもよく、また、ばね、空圧式若しくは油圧式ショックアブソーバ、又は、当該分野で周知のその他の振動減衰若しくは力減衰装置を備えてもよい。いくつかの例においては、ダンピング装置846は、天然ゴム又は合成ゴムを備える。ダンピング装置846は、石油又はその他の化学化合物から製造され、放射線又は湿気にさらされた場合に材料破損に耐えられる弾性材料を備えてもよい。さらに他の例においては、ダンピング装置846は、軟質の変形可能な金属、又はコルゲート型金属を備える。
ダンピング装置846は、支持アーム845と取り付け構造847とによって、及び支持アーム845と取り付け構造847との間で伝達される動的外力又は地震力を減衰するように構成されてもよい。例えば、格納容器824の縦方向つまり長さ方向に沿って作用する上下方向つまり縦方向力FVは、ダンピング装置846を介して作用してもよい。また、水平方向つまり横方向力FHは、縦方向力FVに直交するあらゆる方向でダンピング装置846に作用する。横方向力FHは、例示の座標系48のX及びZ座標によって画定される平面に位置する方向ベクトルを含むものと理解されてもよく、それに対して縦方向力FVは、Y座標へ向けられた方向ベクトルを含むものと理解されてもよい。Y座標は例示の座標系848の平面X−Zに直交する。
いくつかの例においては、支持アーム845を格納容器824の略重心に配置することによって、電力モジュール625に作用する横方向力FHが、格納容器824を回転ではなくてむしろ摺動させる傾向がある。支持アーム845を特定の高さ又は特定の位置で格納容器824上に設けることにより、格納容器824が1つ以上の力FH、FV、又はRFを受けるときの格納容器824の挙動の制御性が提供される。
ダンピング装置846は、縦方向力FVを吸収又は減衰するために垂直方向に圧縮してもよい。いくつかの例において、ダンピング装置846は、横方向力FHを減衰するために、水平方向に圧縮又は屈曲するように構成されてもよい。また、ダンピング装置846は、地震又は爆発等の地震活動の間、平面X−Z内で取り付け構造847に沿って摺動するように構成されてもよい。力FV及びFHは、また、格納容器824を含む電力モジュール625の1つ又は複数の構成部品の三次元X、Y、Zのいずれか又は全てにおける熱膨張にも起因すると理解されてもよい。
ダンピング装置846の圧縮又は移動の結果として、取り付け構造847から格納容器824へ、又は格納容器824から取り付け構造847へと伝達される力FV及びFHは小さくなる。格納容器824は、支持アーム845が取り付け構造847に強固に取り付けられた、又は直接接していた場合に伝達されたであろう衝撃よりも激しさが緩和された衝撃を経験する。格納容器824は、電力モジュール625に作用する回転力RF(図7)によって水平軸Xの周りを回転するように構成されてもよい。
支持アーム845は、格納容器824に強固に取り付けられてもよい。1つ又は複数の弾性ダンピング装置846は、液体636内に位置する支持アーム845と取り付け構造847との間に、及び、支持アーム845と取り付け構造847との両方に接して配置されてもよい(図6)。弾性ダンピング装置846は、支持アーム845と支持構造847との間に回転の中心点を備えてもよく、そこにおいて、格納容器24は、図7に図示したものと同様に、弾性ダンピング装置846を軸として回る、又はその周りを回転する。格納容器824の重量は、部分的に液体636の浮力によって支持されてもよい。周りを囲む液体636(図6)は、格納容器824に作用する横方向力FH、縦方向力FV、及び回転力RFの全てを減衰するのにも役立つ。
いくつかの例において、支持アーム845は、中空シャフト829を備える。中空シャフト829は、予備又は二次冷却システム用の貫通路を提供するように構成されてもよい。例えば、配管が、中空シャフト829を介して格納容器824を出てもよい。
図9は、支持アーム955と多数の弾性ダンピング装置952、954とを備える、免震格納容器924用の支持構造950の部分図を示す。第1の弾性ダンピング装置952は、支持アーム955と下部取り付け構造957との間に位置してもよい。第2の弾性ダンピング装置954は、支持アーム955と上部取り付け構造958との間に位置してもよい。いくつかの例においては、第1及び第2の弾性ダンピング装置952、954は、支持アーム955に固定されるか、又は他の方法で取り付けられる。別の例においては、第1及び第2の弾性ダンピング装置952、954のうちの1つ又は両方は、それぞれ下部及び上部取り付け構造957、958に取り付けられる。
格納容器924の重量の少なくとも一部分は、第1の弾性ダンピング装置952を介して下部支持構造957へと伝達されてもよい。第1の弾性ダンピング装置952は、格納容器924が静止しているときに圧縮していてもよい。第1の弾性ダンピング装置952は、支持アーム955と下部取り付け構造957との間に作用する縦方向力を減衰するものと理解されてもよい。第2の弾性ダンピング装置952は、また、支持アーム955と上部取り付け構造958との間に作用する縦方向力を減衰するものと理解されてもよい。格納容器924の縦つまり上下移動は、下部及び上部取り付け構造957、958によって、これらがそれぞれ第1及び第2の弾性ダンピング装置952、954と接触するのにしたがって、又は、これらがそれぞれ第1及び第2の弾性ダンピング装置952、954の圧縮を引き起こすのにしたがって抑制されてもよい。第1及び第2の弾性ダンピング装置952、954は、従来のショックアブソーバにおけるスナバ、又は、1組のスナバと同様の機能を備えてもよい。
いくつかの例においては、下部取り付け構造957は、凹部956を備えてもよい。凹部956は、第1の弾性ダンピング装置952の外部寸法又は直径よりも大きい内部寸法又は直径を有するようにサイズ決めされてもよい。第1の弾性ダンピング装置952は、凹部956内に据え付けられる又は設けられるものとして図示される。凹部956は、格納容器924の1つ又は複数の左右方向つまり横方向への移動を抑制するように作用してもよい。第1の弾性ダンピング装置952は、凹部956の壁に対して押し上げられるときに圧縮又は屈曲するように構成されてもよい。いくつかの例においては、格納容器924が左右つまり横方向力を経験するときに、凹部956は、第1の弾性ダンピング装置952が下部取り付け構造957上を摺動できる量又は距離を制限してもよい。
図10に、免震格納容器1024に対する弾性ダンピング及び保持構造1060の部分図を示す。ダンピング及び保持構造1060は、変形可能部1066を備える。変形可能部1066は、ドーム形、楕円形、又は半球形であってもよい。取り付け構造1067は、凹部1068を備えてもよく、変形可能部1066は、凹部1068内に据え付けられても配置されてもよい。変形可能部1066及び凹部1068は、ボールジョイントと同様に機能するものと理解されてもよく、そこにおいて、変形可能部1066は、凹部1068内を回転する、又は、凹部1068内で軸回転する。
凹部1068は、凹形状として図示されている。取り付け構造1067は、例示の座標系1048の平面X−Zとして特定される横平面において作用する横方向力FHに起因する格納容器1024の移動を抑制するように構成されてもよい。また、取り付け構造1067は、平面X−Zに直交するY方向にかかる縦方向力FVに起因する格納容器1024の縦移動を抑制するように構成されてもよい。格納容器1024は、電力モジュール625に作用する回転力RFにより水平軸Xの周りを回転するように構成されてもよい(図7)。いくつかの例においては、凹部1068は、半球形、ドーム形、又は楕円形のボウル型を形成する。格納容器1024の下端に位置する基部スカート630(図6)等の基部支持体は、変形可能部1066が凹部1068内で軸回転又は回転する際に、格納容器1024の回転を抑制するように構成されてもよい。
取り付け構造1067は、電力モジュールの重量のいくらか又は全てを支持するように構成されてもよい。いくつかの例においては、液体636の浮力が電力モジュールの重量のほぼ全てを支持し、それにより、取り付け構造1067の凹部1068が、主に電力モジュールの所望の位置を調心又は維持するように作用する。
図11に、縦方向力FVに応答する図10の弾性ダンピング及び保持構造1060の部分図を示す。取り付け構造1067の凹部1068は、格納容器1024が静止しているとき、ダンピング及び保持構造1060の変形可能部1066の曲率半径R1よりも大きい曲率半径R2を備えてもよい。縦方向力FVは、格納容器1024の上下移動に起因して、又は、取り付け構造1067から格納容器1024へ伝達される力に起因して支持アーム1065に加えられ得る(図10)。縦方向力は、例えば地震又は爆発に起因してもよい。
動的縦方向力FVが支持アーム1065にかかるとき、ダンピング装置は参照番号1066を付して実線で示した静的状態から、参照番号1066Aを付して点線で示した動的状態へと圧縮するように構成されてもよい。動的状態1066Aでは、変形可能部1066の曲率半径は、一時的に凹部1068の曲率半径R2に近づく。変形可能部1066の有効半径が大きくなるにしたがって、結果として変形可能部1066と凹部1068との間に形成される接触面が増大する。接触面が増大するにしたがって、これが変形可能な半球形部1066のさらなる圧縮に抵抗し、又は、さらなる圧縮を低減する働きをし、縦方向力FVを減衰する。いくつかの例においては、変形可能な半球形部1066の有効曲率半径は、縦方向力FVの増大とともに大きくなる。動的縦方向力FVが減衰したときに、変形可能部1066はその最初の曲率半径R1を保持するように構成されてもよい。
図12に、横方向力FHに応答する図10の弾性ダンピング及び保持構造1060の部分図を示す。凹部1068は、変形可能部1066の移動を少なくとも二自由度で抑制するように構成され得る。例えば、変形可能部1066の移動は、図10の例示の座標系1048のX及びZ方向に抑制されてもよい。変形可能部1066は、凹部1068の壁に対して押し上げられるときに圧縮又は屈曲するように構成されてもよい。変形可能部1066の圧縮又は変形が、水平力FHを減衰する。いくつかの例においては、格納容器1024が横方向力FHを経験するときに、凹部1068は、変形可能部1066が取り付け構造1067上を摺動できる量又は距離を制限してもよい。横方向力FHが支持アーム1065にかかるとき、ダンピング装置は、参照番号1066を付して実線で示した静的状態から、参照番号1066Bを付して点線で示した動的状態へと移動又は摺動する。
凹部956、1068が図9及び図10において取り付け構造957、1067に形成されるものとして図示されているのに対して、別の例は、凹部956、1068が支持アーム955、1065に形成され、ダンピング装置952、1066が取り付け構造957、1067に取り付けられるものを含んでもよい。また、これらの代替例は図9又は図10に図示される例と同様に、格納容器924、1024の横及び縦方向のうちの一方、又は両方への移動を抑制するように作用してもよい。
図13は、免震電力モジュール1380に対する弾性ダンピング及び保持構造1370の部分図を示す。電力モジュール1380は、原子炉容器1322と格納容器1324とを備える。弾性ダンピング及び保持構造1370は、1つ又は複数の支持アーム又はトラニオン(trunnion)と、1つ又は複数の取り付け構造とを備える。第1のトラニオン1375は、原子炉容器1322から突出又は延在する。原子炉容器トラニオン1375は、図6−10に関連する上述した支持アームの1つ又は複数と同様の機能を備える。第2トラニオン1385は、格納容器1324から突出又は延在する。原子炉容器トラニオン1375は、格納容器トラニオン1385と同一で単一の回転軸に沿っている。回転軸Xを例示の座標系1348に示す。原子炉容器1322及び格納容器1324のうちの一方又は両方は、回転力RFが電力モジュール1325に作用するとき、回転軸Xの周りを回転してもよい。原子炉容器1322及び格納容器1324は、互いに同一の又は逆の回転方向に回転してもよい。
原子炉容器トラニオン1375は、第1の取り付け構造1377に支持されて示されている。取り付け構造1377は、格納容器1324から突出又は延在する。原子炉容器トラニオン1375は、水平力FH1又はFH2が電力モジュール1380に作用するとき、取り付け構造1377に沿って移動又は摺動するように構成されてもよい。第1のダンピング要素1376が、原子炉容器1322及び格納容器1324によって、又は原子炉容器1322と格納容器1324との間に伝達される水平力FH2の衝撃を減衰する又は抑制するように構成されてもよい。第1のダンピング要素1376はまた、電力モジュール1380が静止しているとき、又は静的状態にあるとき、原子炉容器1322と格納容器1324との間のそれぞれの位置又は距離の調心又は維持を助ける。
格納容器トラニオン1385は、第2の取り付け構造1387に支持されて示されている。いくつかの例において、取り付け構造1387は原子炉隔室壁1327から突出又は延在する。格納容器トラニオン1385は、水平力FH1又はFH2が電力モジュール1380に作用するとき、取り付け構造1387に沿って移動又は摺動してもよい。第2のダンピング要素1386が、格納容器1324及び原子炉隔室壁1327によって、又は格納容器1324と原子炉隔室壁1327との間に伝達される水平力FH1の衝撃を減衰する又は抑制するように構成されてもよい。第2のダンピング要素1386はまた、電力モジュール1380が静止しているとき、又は静的状態にあるとき、格納容器1324と原子炉隔室壁1327との間のそれぞれの位置又は距離の調心又は維持を助ける。
第1のダンピング要素1376は、原子炉容器トラニオン1375に収容された状態で示されている。原子炉容器保持ピン1390は、原子炉容器トラニオン1375内に位置し、第1のダンピング要素1376に対する接触面を提供する。原子炉容器保持ピン1390は、例えば、格納容器1324又は格納容器トラニオン1385の延長部分であってもよい。いくつかの例においては、原子炉容器保持ピン1390は格納容器1324に強固に接続される。原子炉容器保持ピン1390は、格納容器1324の両側を通って延在してもよい。
水平力FH2は、原子炉容器保持ピン1390及び第1のダンピング要素1376を介して、原子炉容器1322及び格納容器1324によって、又は原子炉容器1322と格納容器1324との間に伝達されてもよい。原子炉容器1322及び格納容器の上下移動は、原子炉容器トラニオン1375と、原子炉容器保持ピン90と、取り付け構造1377との間の相互作用によって抑制されてもよい。原子炉容器1322及び格納容器1324の上下移動は、格納容器トラニオン1385と取り付け構造1387との間の相互作用によってさらに抑制されてもよい。
弾性ダンピング及び保持構造1370は、電力モジュール1380用の熱緩衝材を設けるようにさらに構成されてもよい。減衰、ダンピング、又は、その他の抑制であって、動的外力及び地震力の電力モジュール1380の構成部品への伝達、又は構成部品間の伝達を抑制することに加えて、弾性ダンピング及び保持構造1370は、原子炉容器1322と格納容器1324との間の熱伝達を抑制してもよい。例えば、第1及び第2の取り付け構造1377、1387の一方又は両方が断熱材と並べられてもよい。
図14に、電力モジュールを免震するためのプロセス例1400を示す。システム1400は、これに制限はされないが、図1−13として本明細書に示した種々の例に関連して示した又は説明した方法で作動するものと理解されてもよい。
オペレーション1410では、電力モジュールが支持構造に支持される。支持構造は、電力モジュールの略中間地点若しくは略重心に、又はそれより僅かに上方に位置してもよい。
オペレーション1420では、電力モジュールの回転が抑制される。支持構造は、回転の中心点として機能してもよい。
オペレーション1430では、支持構造を介して電力モジュールに伝達される地震力が弱められる又は減衰される。いくつかの例においては、地震力は弾性材料を備えるダンピング装置によって減衰される。
オペレーション1440では、1つ又は複数の横方向への電力モジュールの移動が、一定の移動範囲内に抑制される。横方向力が減衰すると、電力モジュールは、元の停止位置に戻る。いくつかの例においては、ダンピング装置は曲面を備え、支持構造は、当該曲面を収容するように構成された丸みを帯びた凹部を備える。
オペレーション1450では、電力モジュールの縦方向への移動が、一定の移動範囲内に抑制される。縦方向力が減衰すると、電力モジュールは、元の停止位置に戻る。縦方向は、オペレーション1440の1つ又は複数の横方向に直交する。
図1−14に関連する例をいくつか説明してきたが、それでもなお種々の変更が行われてもよいと理解されよう。例えば、開示される技術の手順は異なる順序で実行されてもよく、開示されるシステム内の構成部品は異なる方法で組み合わせられてもよく、及び/又は、構成部品は別の構成部品に置き換えられても補完されてもよい。したがって、別の実施例は、以下の例の範囲内のものである。
電力モジュールは、液体のプールに完全に沈められた格納容器と、格納容器に収容された原子炉容器と、格納容器の両側に接続された支持アームを備える支持構造とを備えてもよい。液体のプールは、地面よりも下方に設けられてもよい。つまり、プールは地下にあってもよい。また、格納容器は、格納容器に作用する横方向の力に応答してほぼ左右方向に摺動するように構成されてもよい。
支持構造は格納容器の略中間地点に位置してもよく、また、原子炉容器又は格納容器のうちの少なくとも一方を、支持アームの間且つ格納容器の略中間地点を通って延在する軸の周りを回転させるように構成されてもよい。また、電力モジュールは、支持構造と、格納容器に作用する液体のプールの浮力との組み合わせによって支持されてもよい。
支持構造は、格納容器の第1の側に設けられた第1の支持構造を備えてもよく、電力モジュールは、第1の側と向かい合う格納容器の第2の側に設けられた第2の支持構造をさらに備えてもよい。
いくつかの例においては、支持構造は、電力モジュールの略重心に、又はそれより僅かに上方に位置してもよい。いくつかの例においては、支持構造は弾性ダンピング装置を備えてもよい。支持アームは、格納容器に強固に取り付けられてもよい。また、弾性ダンピング装置は、液体のプール内の支持アームの1つと取り付け構造との間に、支持アームの1つ及び取り付け構造に接触して位置してもよい。
弾性ダンピング装置は、支持アームと取り付け構造とが共に押されることに応答して圧縮するように構成されてもよい。また、弾性ダンピング装置は、支持アームと取り付け構造とが共に押されることに応答して、支持アーム及び取り付け構造のうち少なくとも1つに対して反作用力を及ぼすように構成されてもよい。
いくつかの例においては、取り付け構造は、少なくとも部分的に液体のプールを封入する原子炉隔室に強固に接続されてもよく、取り付け構造は、原子炉隔室のほぼ垂直な壁から、当該ほぼ垂直な壁と格納容器との間の液体のプール内における一地点まで延在してもよい。支持アームは、中空シャフトを備えてもよい。また、取り付け構造は、弾性ダンピング装置の一部分を受けるように構成された凹部を備えてもよい。
回転中心は、支持構造と取り付け構造との境界に位置してもよい。例えば、当該回転の中心は、弾性ダンピング装置に、又はその近辺に位置してもよく、格納容器は、格納容器に作用する回転力に応答して、当該回転中心の周りを回転するように構成されてもよい。
電力モジュールは、格納容器の下端部に基部支持体又は基部スカートをさらに備えてもよい。格納容器は、支持アームを軸として回転するように構成されてもよく、基部支持体は、格納容器が支持アームを軸として回転する場合には、液体のプール内のアライメント装置と接触するように構成されてもよい。
基部支持体は、格納容器の外面の周囲で、格納容器の下端部に強固に接続されてもよい。アライメント装置は、少なくとも部分的に液体のプールを封入する原子炉隔室の底面から液体のプール内へ延在してもよく、アライメント装置の頂部は、基部支持体によって画定される容積内に設けられてもよい。また、電力モジュールは、アライメント装置の頂部と基部支持体との間、及び基部支持体の容積内に設けられる、少なくとも1つの吸収材を備えてもよい。
吸収材は、アライメント装置と基部支持体との接触に応答して圧縮するように構成されてもよく、また、当該接触に応答して、吸収材は、アライメント装置又は基部支持体のうち少なくとも1つに対して反作用力を及ぼすように構成されてもよい。
電力モジュールは、原子炉容器と格納容器との間に介在する第1のダンピング装置と、格納容器とプール壁との間に介在する第2のダンピング装置とをさらに備えてもよい。第1及び第2のダンピング装置は、電力モジュールに作用する動的外力及び/又は地震力を減衰するように構成されてもよい。
図15に、ほぼ円筒形状の胴体1550のいずれかの端に取り付けられた頂部ヘッド1510と底部ヘッド1520とを備える、原子炉圧力容器(RPV)1500の例を示す。底部ヘッド1520は、RPV1500の組み立て、設置、燃料交換、及び/又は、その他のオペレーションモードの間、取り外し可能に胴体1550に取り付けられてもよい。底部ヘッド1520は、ボルト留めされたフランジによって胴体1550に取り付けられてもよい。また、RPV1500は、胴体1550の外周の周りに位置する1つ又は複数の支持構造1530を備えてもよい。いくつかの例においては、RPV1500は、胴体1550の周りに90度刻みで設けられる4つの支持構造1530を備える。
支持構造1530は、RPV1500に取り付けられた支持部材1535と、1つ又は複数の取り付け基台1532とを備えてもよい。支持部材1535は、胴体1550と1つ又は複数の取り付け基台1532との間に間隙を設けるために、胴体1550から離れるように角度を付けて延在してもよい。例えば、1つ又は複数の取り付け基台1532は、RPV1500の他の全ての構成部品よりも胴体1550から離れて放射状に位置するように配置されてもよい。支持構造1530は、基本的に、上下方向つまり縦方向にRPV1500を支持するように構成されてもよい。いくつかの例においては、支持構造1530はまた、基本的に、水平方向、横断方向、半径方向、及び/又は、横方向にRPV1500を支持するように構成されてもよい。
支持構造1530は、RPV1500用の熱の「アンカー」を備えるように構成されてもよい。例えば、RPV1500の熱膨張の間、支持構造1530と隣接するRPV1500の部分において、少なくとも上下方向つまり縦方向に熱膨張がないものとしてもよい。むしろ、RPV1500は、支持構造1530からの距離の関数として、基本的に縦方向に膨張するものと理解されてもよい。支持構造1530に対して、RPV1500の頂部ヘッドは上向きに移動してもよく、RPV1500の底部ヘッドは下向きに移動してもよい。
更に、1つ又は複数のラジアルマウント1540が胴体1550に取り付けられてもよい。いくつかの例においては、RPV1500は、胴体1550の周りに90度刻みで設けられる4つのラジアルマウント1540を備えてもよい。ラジアルマウント1540は、RPV1500の横方向支持及び/又は回転支持を提供するように構成されてもよい。いくつかの例においては、ラジアルマウント1540は、胴体1550から突出する径方向のリンク又は突起として構成されてもよい。ラジアルマウント1540は、図1−14に示す免震及び/又はダンピングシステムのうちの1つ又は複数と共に実施可能であり得る。
図16は、格納容器(CNV)1600と、例えば図15のRPV1500のようなRPV組立体とを備える、原子炉モジュール例1650の部分切欠き図を示す。CNV1600は、支持構造1530及びラジアルマウント1540のいずれか一方、又は両方の位置でRPV1500を支持するように構成されてもよい。CNV1600はプラットフォーム1630を備えてもよく、プラットフォーム1630は、RPV1500に向かって内側に突出して、支持構造1530が設置される土台として機能する。支持構造1530は、プラットフォーム1630によって垂直方向に制限されてもよく、また、CNV1600の内壁によって横方向又は半径方向に制限されてもよい。別の例においては、支持構造1530からプラットフォーム1630へと横荷重を伝達するために、ボルト留めされたインタフェースが利用されてもよい。CNV1600は、CNV1600の蒸気発生器のプレナムレベルにてRPV1500の支持構造1530を支持するように構成されてもよい。
CNV1600は、頂部ヘッド1610と底部ヘッド1620とを備えてもよい。いくつかの例において、底部ヘッド1620は、ボルト留めされたフランジ1640の位置でCNV1600に取り外し可能に取り付けられてもよい。CNV1600は、フランジ1640の近傍にてRPV1500のラジアルマウント1540を支持するように構成されてもよい。ラジアルマウント1540は、CNV1600内で縦方向、半径方向、及び/又は周方向に制限されてもよい。ラジアルマウント1540は、RPV1500とCNV1600との間の熱膨張を許容するように構成されてもよい。いくつかの例において、ラジアルマウント1540は、RPV1500の下半分の位置で、RPV1500とCNV1660との間に水平にピンで留められてもよい。
原子炉モジュール1650が経験する地震及び/又は動的荷重は、結果として燃料加速及び/又は燃料衝撃荷重となる場合がある。特に燃料加速は、RPV1500の下半分又はその近辺に位置するラジアルマウント1540等の支持の提供により、顕著に低減され得る。
CNV1600は、RPV1500を備え、これを支持するように構成されてもよい。また、CNV1600は、原子炉冷却システムと、内部配管と、内部バルブと、原子炉モジュール1650のその他の構成部品とを収容してもよい。支持構造1530は、ラジアルマウント1540と組み合わせられて、原子炉モジュール1650内で、熱過渡及び熱膨張による荷重に耐え、地震荷重及びその他の動的荷重による横荷重を支持するように構成されてもよい。例えば、原子炉モジュール1650は、先に議論したように、安全停止地震(SSE)事象、及び運転基準地震(OBE)事象を含む、少なくとも2種類の地震状態に耐えるように、及び/又は、応答するように構成されてもよい。
底部ヘッド1620は、基部スカート1670等の基部支持体を備えても、及び/又は、これに取り付けられてもよい。基部スカート1670は、CNV1600に強固に取り付けられても、溶接されても、及び/又は、その不可分の部分となってもよい。基部スカート1670は、地表面上に、及び/又は、原子炉隔室の下面に設置されるように構成されてもよい。いくつかの例においては、原子炉モジュール1650の重量のほぼ全てが基部スカート1670によって支持されてもよい。
1つ又は複数のラジアルマウント1645は、CNV1600に取り付けられてもよい。いくつかの例においては、CNV1600は、90度刻みで設けられる4つのラジアルマウント1645を備えてもよい。ラジアルマウント1645は、主にCNV1600の横方向支持及び/又は回転支持を主に提供するように構成されてもよい。いくつかの例において、ラジアルマウント1645は、CNV1600から突出する径方向のリンク又は突起として構成されてもよい。ラジアルマウント1645は、図1−14に示す免震及び/又はダンピングシステムの1つ又は複数と共に実施可能であってもよい。
図17に、RPV1750とCNV1760とを備える原子炉モジュール1700の例の断面図を示す。RPV1750は、第1の直径D1と関連付けられてもよく、同様に、CNV1760は、第1の直径D1よりも大きい第2の直径D2と関連付けられてもよい。RPV1750の底部ヘッド1755は、CNVの底部ヘッド1765から距離1790だけ離されても、又は、距離1790を空けて配置されてもよい。距離1790は、断熱部がRPV1750を実質的に覆うための空間を備えてもよい。いくつかの例においては、断熱部は部分真空を含み得る。
距離1790によって設けられた空間は、さらに、CNV1760内におけるRPV1750の熱膨張及び/又は熱過渡をもたらすように構成されてもよい。CNV1760は、少なくとも部分的に水中に沈められてもよく、また、作動温度の差異に基づいて、RPV1750の熱膨張量はCNV1760の熱膨張量よりもかなり大きくてもよい。さらに、距離1790は、地震事象の間、これらの容器が互いに接触しないようにするために、RPV1750とCNV1760との間に間隙を備えてもよい。
炉心1710は、RPV1750内に収容されてもよい。炉心1710は、RPV1750から距離1720を空けて配置されてもよい。距離1720によって形成された空間は、RPV1750内で炉心1710を通過する冷却材の循環を促進するように構成されてもよい。また、距離1720は、動的事象若しくは地震事象の間、又は、熱膨張及び/若しくは熱過渡に対応するために、RPV1750と炉心1710との間に間隙を設けてもよい。
地震事象の間、地表面1775内部から生じる地震力、及び/又は、周りを囲む格納建造物の床等の支持体表面1740の下方から生じる地震力は、CNV1760の基部スカート1770等の基部支持体へと伝達されてもよい。地震力は、伝達路1705を通って、CNV1760の容器壁を上方へと伝わってもよく、この地震力は、支持構造1530及び/又はラジアルマウント1540等の1つ又は複数の取り付け点を介してRPV1750に伝達されてもよい(図15)。伝達路1705は、地震力の発生源に始まり最終的にRPV1750内に位置する燃料集合体へと続く、地震力が伝達される例示的通路全体の少なくとも一部分を示し得る。その他の構成部品は、異なる例示的伝達路を経験してもよい。
CNV1760の底面1730は、地表面1775及び/又は支持体表面1740から少し離れた上方に位置してもよい。いくつかの例においては、CNV1760と支持体表面1740との間に位置する空間は、周りを囲む水がCNV1760の外部面を冷却するための場所となってもよい。
図18は、半径方向カギ部1840として構成される減震装置を備えるシステム例1800を示す。半径方向カギ部1840は、RPV1850からその半径について外向きに延在して、第1のブラケット1810及び第2のブラケット1820等の1つ又は複数のブラケットと係合する、1つ又は複数の柱を備えてもよい。ブラケットは、周りを囲むCNV1860から内向きに延在してもよい。半径方向カギ部1840は、RPV1850の底部ヘッド1855に、又はその近辺に位置してもよい。各半径方向カギ部1840は、第1のブラケット1810及び第2のブラケット1820等の、1組のブラケットの間に挿入されてもよい。ブラケットは、CNV1860の底部ヘッド1865に、又はその近辺に位置してもよい。いくつかの例においては、3つ又はそれ以上の半径方向カギ部が、CNV1860の周辺部内に位置する対応する組数のブラケットと係合するように、RPV1850の周囲に間隔を空けて配置されてもよい。
半径方向カギ部1840は、RPV1850が経験する全ての動的外力又は地震力を安定させる、吸収する、減衰する、抑制する、又は、そうでなければ緩和するように構成されてもよい。地震事象の間、半径方向カギ部1840は、RPV1850の周方向1830への移動/回転を制限又は禁止するために、第1のブラケット1810及び第2のブラケット1820のうち一方又は両方と接触するように構成されてもよい。当該ブラケットのうちの1つ又は複数との接触は、また、RPV1650の横断方向つまり半径方向1880への移動、例えばCNV1860の内壁に向かう移動、に抵抗する又はそれを低減する摩擦力を付与してもよい。いくつかの例においては、CNV1860の内壁は、RPV1850の半径方向1880への移動を抑制してもよい。
CNV1860の底部に取り付けられる基部スカート1870等の基部支持体は、CNV1860とRPV850とを備える原子炉モジュールの重量を支持するように構成されてもよい。地震事象の間、地震力は、基部スカート1870から、CNV1860の容器壁を通って上方に、伝達路1805を通って伝達されてもよく、伝達路1805は、地震力を第1のブラケット1810及び/又は第2のブラケット1820等の1つ又は複数のブラケットを介して、RPV1850の半径方向カギ部1840へと伝達してもよい。伝達路1805は、地震力の発生源に始まり最終的にRPV1850内に位置する燃料集合体へと続く、地震力が伝達される例示的通路全体の少なくとも一部分を示し得る。
地震力を底部ヘッド近くでRPV1850に伝達することにより、伝達路1805は、伝達路1705(図17)よりかなり短くなり得る。いくつかの例においては、伝達路を縮小することにより、そうでない場合にRPV1750、並びに、炉心及び/又は燃料棒等の全ての内部部品へと付与される動的外力及び/又は地震力がより小さな量になる場合がある。動的外力/地震力の振幅及び/又は規模は、力が、1つ又は複数の中間構造体を介して、地表面又は支持体表面からRPVへと伝達されるにしたがって、伝達路の長さの関数として増幅され得る。
図19は、半径方向緩衝材1910として構成される減震装置を備えるシステム例1900を示す。半径方向緩衝材1910は、CNV1960の内壁から延在してもよい。CNV1960の底部に取り付けられる基部スカート1970等の基部支持体は、CNV1960を備える原子炉モジュールの重量を支持するように構成されてもよい。半径方向緩衝材1910は、CNV1960の底部ヘッド1920の位置又はその近くでCNV1960に取り付けられてもよい。いくつかの例において、半径方向緩衝材1910は、基部スカート1970の上方に位置するCNV1960の円筒形の壁1950に取り付けられてもよい。
図20は、RPV2050と共に図19のシステム例1900を示す。半径方向緩衝材1910は、RPV1950が経験する全ての動的外力又は地震力を安定させる、吸収する、減衰する、抑制させる、又は、そうでなければ緩和するように構成されてもよい。地震事象の間、半径方向緩衝材1910は、RPV1950の外面に接触し、RPV1950の横断方向つまり半径方向への移動を制限又は禁止するように構成されてもよい。1つ又は複数の当該緩衝材1910との接触はまた、RPV1950の周方向への移動/回転に抵抗する又はそれを低減するための摩擦力を付与してもよい。
地震事象の間、地震力は、基部スカート1970からCNV1960の容器壁を通って上方に、伝達路2005を通って伝達されてもよく、伝達路2005は、地震力を1つ又は複数の半径方向緩衝材1910を介してRPV2050に伝達してもよい。いくつかの例においては、半径方向緩衝材1910及び/又は半径方向カギ部1840(図18)は、図1−14の1つ又は複数に示す免震及び/又はダンピングシステムの1つ又は複数と作用するように、及び/又は、それを備えるように構成されてもよい。
図21に、垂直方向カギ部2155として構成される減震装置を備えるシステム例2100を示す。いくつかの例においては、垂直方向カギ部2155は、RPV2150の底部ヘッド2110上に位置する円筒又は円錐柱として構成されてもよい。垂直方向カギ部2155は、CNV2160の底部ヘッド2120に位置する凹部2165内に収まるように構成されてもよい。凹部2165は、垂直方向カギ部2155を受けるように寸法決めされた円孔を備えてもよい。
垂直方向カギ部2155は、横断方向つまり半径方向2135に、RPV2150の横方向支持を提供するように構成されてもよい。また、ギャップ2130は、RPV2150の長手方向2115への熱膨張を可能にするため、垂直方向カギ部2155と凹部2165との間に設けられてもよい。いくつかの例においては、ギャップ2130は、長手方向に約4インチから6インチであってもよい。RPV2150の熱膨張の間、垂直方向カギ部2155の大部分が凹部2165に挿入されてもよく、ギャップ2130を効果的に2インチ又はそれ以上縮小してもよい。いくつかの例においては、RPV2150は、内圧の上昇により膨張してもよい。RPV150が周囲温度であるとき、例えば、あるノミナル運転状態のとき、又は、熱膨張が最低量のときに、垂直方向カギ部2155は、凹部2165内に少なくとも部分的に挿入されたままであってもよい。
垂直方向カギ部2155に関連する直径は、取り付けの際に間隙及び/又はトレランスを設けるように、凹部2165の直径よりも十分に小さくてもよい。いくつかの例においては、垂直方向カギ部2155の直径は1フィートから2フィートの間であってもよく、凹部2165内における、垂直方向カギ部2155と接触点2125との間の間隙は、約8分の1インチ、16分の1インチ、又はそれより小さくてもよい。さらに別の例では、垂直方向カギ部2155が実質的に間隙を有さずに凹部2165内に圧入されてもよいように、当該直径同士の差異は、ほんの僅かであってもよい。
原子炉モジュール組立体は、原子炉モジュールが停止(つまり、冷温)運転状態であるのか、全出力(つまり、高温)運転状態であるのかに応じて変化する差動的な熱成長を経験してもよい。したがって、上述した減震装置の1つ又は複数は、高温及び冷温運転状態の両方において、RPV及び/又は炉心が経験する全ての動的外力又は地震力を安定させる、吸収する、減衰する、抑制させる、又はそうでなければ緩和するように構成されてもよい。差動的な径方向の成長を許容するために、1つ又は複数の減震装置と隣接する容器面との間に半径方向ギャップ及び/又は間隔が設けられてもよい。いくつかの例においては、垂直方向カギ部2155の半径方向2135への熱膨張を許容するために、垂直方向カギ部2155と接触点2125との間に半径方向ギャップが設けられてもよい。半径方向ギャップの距離は、垂直方向カギ部の直径によって異なってもよい。
垂直方向カギ部2155は、組み立て、設置、燃料交換、及び/又は、その他のオペレーションモードの間、凹部2165に挿入されても、及び/又は、凹部2165から外されてもよい。図21に示すシステム2100は、周方向の位置合わせとは無関係に、RPV2150をCNV2160と共に組み立てるように構成されてもよい。例えば、垂直方向カギ部2155は、RPV2150の回転の向きに関わらず、凹部2165内に設置されるように構成されてもよい。また、垂直方向カギ部2155の下方隅は、凹部2165内への位置合わせ及び/又は進入を容易にするためにテーパ状であってもよい。
垂直方向カギ部2155は、RPV2150が経験する全ての動的外力又は地震力を安定させる、吸収する、減衰する、抑制させる、又はそうでなければ緩和するように構成されてもよい。地震事象の間、垂直方向カギ部2155は、RPV2150の半径方向2135への移動/回転を制限又は禁止するために、1つ又は複数の側部接触点2125にて凹部2165に接触するように構成されてもよい。いくつかの例においては、垂直方向カギ部2155と凹部2165との間の接触は、CNV2160内におけるRPV2150の回転移動に抵抗する摩擦力、及び/又は、RPV2150の長手方向2115への上下移動に抵抗する摩擦力を付与してもよい。
CNV2160の底部に取り付けられる基部スカート2170等の基部支持体は、CNV2160とRPV2150とを備える原子炉モジュールの重量を支持するように構成されてもよい。地震事象の間、地震力は、基部スカート2170から伝達路2105を通って、伝達されてもよく、伝達路2105は、地震力を凹部2165内の1つ又は複数の側部接触点2125を介してRPV2150の垂直方向カギ部2155に伝達し得る。
垂直方向カギ部2155は、底部ヘッド2110の長手方向中心線において、RPV2150から下方に向かって延在してもよい。CNV2160の底部ヘッド2120は、底部ヘッド2120の材料の追加又は壁厚の増大等によって補強されてもよい。いくつかの例においては、凹部2165は、CNV2160の底部ヘッド2120の内面から削り出されてもよい。
RPV2150の底部ヘッド2110に垂直方向カギ部2155等の減震装置を配置することによっては、地震加速度及び燃料集合体への衝撃荷重(例えば、6倍又はそれ以上)を、図15に示すラジアルマウント1540を使用することと比較して顕著に抑制し得る。比較的短い伝達路は、発生源(地盤振動)と燃料集合体との間に設けられる1つ又は複数のサブシステムを通過する伝達路と比較して、力の伝達率を効果的に消去又は低減し得る。
いくつかの例においては、垂直方向カギ部2155は、RPV2150の底部ヘッド2110の不可分の部分として加工されてもよい。垂直方向カギ部2155が底部ヘッド2110に取り付けられる、例えば溶接される例では、垂直方向カギ部2155は、底部ヘッド2110と同一の材料から製造されてもよい。例えば、RPV2150、底部ヘッド2110、及び/又は、垂直方向カギ部2155は、SA−508、グレード3、クラス1の鋼鍛造品又はその他の適切な材料から製造されてもよい。
吸込管2190が、凹部2165内に位置する流体を除去するように構成されてもよい。いくつかの例においては、RPV2150とCNV2160との間の環状空間2175は、原子炉モジュールの作動中、減圧されてもよい。吸込管2190を介した流体及び/又は気体の除去は、RPV2150を実質的に囲む真空排気チャンバの作成及び/又は維持を容易にしてもよい。
図22は、垂直方向カギ部又は柱2265として構成される減震装置を備える別のシステム例2200を示す。いくつかの例においては、垂直方向カギ部2265は、CNV2260の底部ヘッド2220に位置する円筒又は円錐柱として構成されてもよい。垂直方向カギ部2265は、隣接するRPV2250の底部ヘッド2210に位置する凹部2255内に収まるように構成されてもよい。凹部2255は、垂直方向カギ部2265を受けるように寸法決めされた円孔を備えてもよい。
垂直方向カギ部2265は、横断方向つまり半径方向2235にRPV2250の横方向支持を提供するように構成されてもよい。また、ギャップ2230は、RPV2250の長手方向2215への熱膨張を許容するために、垂直方向カギ部2265と凹部2255との間に設けられてもよい。垂直方向カギ部2265に関連する直径は、取り付けの際に間隙及び/又はトレランスを設けるように、凹部2255の直径よりも十分小さくてもよい。いくつかの例においては、間隙は、約16分の1インチ又はそれより小さくてもよい。さらに別の例においては、垂直方向カギ部2265が実質的に間隙を有さずに凹部2255内に圧入されてもよいように、当該直径同士の差異はほんの僅かであってもよい。
垂直方向カギ部2265は、組み立て、設置、燃料交換、及び/又は、その他のオペレーションモードの間、凹部2255に挿入されても、及び/又は、凹部2255から外されてもよい。図22に示すシステム2200は、周方向の位置合わせとは無関係に、RPV2250をCNV2260と共に組み立てるように構成されてもよい。例えば、垂直方向カギ部2265は、RPV2250の回転の向きに関わらず、凹部2255内に設置されるように構成されてもよい。また、垂直方向カギ部2265の下方隅は、凹部2255内への位置合わせ及び/又は進入を容易にするためにテーパ状であってもよい。
垂直方向カギ部2265は、RPV2250が経験する全ての動的外力又は地震力を安定させる、吸収する、減衰する、抑制させる、又はそうでなければ緩和するように構成されてもよい。地震事象の間、垂直方向カギ部2265は、RPV2250の半径方向2235への移動/回転を制限又は禁止するために、1つ又は複数の横接触点2225にて凹部2255に接触するように構成されてもよい。いくつかの例においては、垂直方向カギ部2265と凹部2255との間の接触は、CNV2260内におけるRPV2250の回転移動に抵抗する摩擦力、及び/又は、RPV2250の長手方向2215への上下移動に抵抗する摩擦力を付与してもよい。
垂直方向カギ部2230は、底部ヘッド2220の長手方向中心線2290において、CNV2260から上方に向かって延在してもよい。RPV2250の底部ヘッド2210は、底部ヘッド2210の材料の追加又は壁厚の増大等によって補強されてもよい。いくつかの例においては、凹部2255は、RPV2250の底部ヘッド2220の外面から削り出されてもよい。
CNV2260の底部に取り付けられる基部スカート2270等の基部支持体は、CNV2260とRPV2250とを備える原子炉モジュールの重量を支持するように構成されてもよい。地震事象の間、地震力は、垂直方向カギ部2230から凹部2255内の1つ又は複数の横接触点2225への力の伝達によって、基部スカート2270から底部ヘッド2220を介してRPV2250へと伝達されてもよい。
基部スカート2270は、鉄筋コンクリートを含む床2240上に設けられてもよい。また、基部スカート2270は、底部ヘッド2220の周囲に接続された環形状の構造を備えてもよい。基部スカート2270は、1つ又は複数の止め具2280に隣接して設けられるように構成されてもよい。いくつかの例においては、1つ又は複数の止め具2280は、床2240に取り付けられた環リング形状の構造を備えてもよい。1つ又は複数の止め具2280は、床2240上に設けられるとき、RPV2250を整列させるように構成されてもよい。また、1つ又は複数の止め具2280は、CNV2260の半径方向2235への横移動を制限及び/又は禁止するように構成されてもよい。
CNV2260の底部ヘッド2220は、基部スカート2270が上に設置される床2240から、距離2245程度離れた上方に位置してもよい。いくつかの例において、距離2245は6インチから1フィートの間でもよい。CNV2260と床2240との間に位置する空間は、周りを囲む水がCNV2260の外部面を冷却するための場所となってもよい。また、基部スカート2270は、底部ヘッド2220を冷却するために基部スカート2270内の空間に水が入れるように、1つ又は複数の貫通孔2275を備えてもよい。
いくつかの例においては、垂直方向カギ部2265は、CNV2260の底部ヘッド2220の不可分の部分として加工されてもよい。垂直方向カギ部2265が底部ヘッド2220に取り付けられる、例えば溶接される例においては、垂直方向カギ部2265は底部ヘッド2220と同一の材料から製造されてもよい。例えば、CNV2260、底部ヘッド2220、及び/又は、垂直方向カギ部2255は、SA−508、グレード3、クラス1の鋼鍛造品又はその他の適切な材料から製造されてもよい。
垂直方向カギ部2265の周りに径方向の間隔及び/又は間隙を設けることで、CNV2260内におけるRPV2250の僅かな横移動に備えて、可撓性の又は非剛性の安定化システムを提供してもよい。RPV2250は、移動が可能であってもよいが、それでもやはり、横移動の量を制限するために凹部2255によって抑制されるとよい。可撓性の安定化システムは、強固に接続されたシステムよりも、小さな力を付与、及び/又は、伝達し得る。
上述した減震装置の1つ又は複数は、RPVとCNVとの間の差動的な熱成長を制限することなく、横方向又は半径方向等への全ての動的外力又は地震力を安定させる、吸収する、減衰する、抑制させる、又は、そうでなければ緩和するように構成されてもよい。例えば、RPV2250等のRPVの熱成長は、周囲条件と原子炉モジュールの設定温度との間の温度変化に基づいてもよく、設定温度は、いくつかの例においては華氏約650度である。その一方で、CNV2260等のCNVの熱成長は、CNVが、周囲温度に近い温度の水のプールに沈められている、又は少なくとも部分的に囲まれているとき、本質的に存在しなくてもよい。
垂直方向カギ部2265をCNV2260に取り付けることによって、RPV2250の熱膨張の結果、凹部2230の内径が増大し得る一方で、垂直方向カギ部2265の外径は、RPV2250内における作動温度に関係なく本質的に一定を保ち得る。したがって、垂直方向カギ部2265と凹部2230との間の側部間隙は、組み立て及び/又は取り付けを容易にするのにちょうど十分な大きさに作られてもよいが、必ずしもRPV2250及び/又は垂直方向カギ部2265の半径方向2235への熱膨張に対応する必要はない。いくつかの例においては、RPV2250とCNV2260とは、垂直方向カギ部2265と凹部2230との間の全ての付随的な接続に関わらず、本質的に、互いに熱的に隔離されていると考えられてもよい。
図23に、代替的な力伝達路2305を有する垂直方向カギ部又は柱2365として構成される減震装置を備えるシステム例2300を示す。地震事象の間、地震力は、1つ又は複数の止め具2380及び/又は地表面2305から基部スカート2370等の基部支持体へ伝達されてもよい。1つ又は複数の止め具2305から基部スカート2370へ横向きに伝達された力は、伝達路2305を通り、続いてCNV2360の底部ヘッド2320に沿って進んだ後に、RPV2250の凹部2255と垂直方向カギ部2365の半径方向面との間の1つ又は複数の横接触点2325を介してRPV2250に伝達されてもよい。
基部スカート2370を、垂直方向カギ部2365及び/又は凹部2255が整列され得るRPV2250及び/又はCNV2360の長手方向中心線2390の近くに配置することによって、1つ又は複数の止め具2380とRPV2250との間の伝達路2305は、システム2200に関連する伝達路(図22)と比較して短く作成されてもよい。
図24は、代替的な力伝達路2405を有する垂直方向カギ部又は柱2465を備える減震装置を備える別のシステム例2400を示す。地震事象の間、横方向の力は、1つ又は複数の止め具2470から基部スカート2470等の基部支持体へ伝達されてもよい。伝達路2405は、基部スカート2470から、CNV2460の底部ヘッド2420及び垂直方向カギ部2465の両方を介して、実質的に直線方向に続いた後に、RPV2250の凹部2255と垂直方向カギ部2465の半径方向面との間の1つ又は複数の横接触点2425を介して、RPV2250に移動してもよい。
基部スカート2470を、RPV2250及び/又はCNV2460の長手方向中心線2490の近くに設けることによって、システム2400に関連する伝達路2405は、システム2300に関連する伝達路2305(図23)と比較して短く作成されてもよい。いくつかの例においては、基部スカート2470は、半径方向カギ部2465の少なくとも一部分の真下に位置してもよい。別の例においては、基部スカート2470は、凹部2255の少なくとも一部分の真下に位置してもよい。伝達路2405は、地表面、又は支持体表面からRPV2250への、本質的にダイレクトな直線通路を提供するものと理解されてもよい。
いくつかの例においては、凹部2255は、底部ヘッド2210からRPV2250の内側に延在する隆起部2450に形成されてもよい。隆起部2450は、炉心に進入する冷却材の均一な質量流量分布を促進するために、冷却材の流れ2256を上り方向に導くように構成された、1つ又は複数の湾曲又は傾斜した面2252を備えてもよい。いくつかの例においては、隆起部2450は、冷却材の流れ2256の少なくとも一部分を炉心の周辺部に導くように構成されてもよい。
図25に、垂直方向カギ部2565と横方向支持部2575との一体型として構成された減震装置を備える、システム例2500を示す。垂直方向カギ部2565は、CNV2560の内面から、CNV2560内に包含されるRPV2250の隣接する凹部2255内へと、実質的に垂直方向に、上向きに延在してもよい。横方向支持部2575は、CNV2560の外面から支持体表面2540に向かって、実質的に垂直方向に、下向きに延在してもよい。いくつかの例においては、垂直方向カギ部2565及び横方向支持部2575は両方とも、CNV2560及びRPV2250のうちの一方又は両方の長手方向の中心線2590に沿って、縦方向に整列されてもよい。
RPV2250の重量は、図19の基部スカート1970と同様の基部スカート2570等の基部支持体によって主に支持されてもよい。システム2500は、力伝達路2505を備えてもよい。地震事象の間、横方向の力は、1つ又は複数の止め具2580から横方向支持部2575へ伝達されてもよい。伝達路2505は、横方向支持部2575から、CNV2560の底部ヘッド2520及び垂直方向カギ部2565の両方を介して、実質的に直線方向に続いた後に、RPV2250の凹部2255と垂直方向カギ部2565の半径方向面との間の1つ又は複数の横接触点を介して、RPV2250へ移動してもよい。
いくつかの例においては、横方向支持部2575は、半径方向カギ部2565及び/又は凹部2255の少なくとも一部分の真下に位置してもよい。伝達路2505は、支持体表面2540からRPV2250への、本質的にダイレクトな直線通路を提供するものと理解されてもよい。横方向支持部2575は、支持体表面2540に直接接触することなく、1つ又は複数の止め具2580と接触するように構成されてもよい。いくつかの例においては、垂直方向カギ部2565及び横方向支持部2575のうちのどちらも、RPV2250又はCNV2560の重量を支持するように構成されていない。
図26に、円錐形状面2685を有する垂直方向カギ部2680として構成される減衰装置を備える、システム例2600を示す。カギ部2680は、相補形状の円錐状内面2675を有する凹部2670内に収まるように構成されてもよい。円錐面2675、2685の傾斜又は角度のある輪郭により、カギ部2680と凹部2670との間に側部間隙2690が設けられてもよい。また、円錐面2675、2685は、RPV2650を備える原子炉モジュール及び周りを囲むCNV2660の取り付け及び/又は組み立てを容易にしてもよい。いくつかの例においては、図26は、ノミナル状態又は非膨張状態にあるRPV2650及び/又はCNV2660を備える原子炉モジュールを示すものと考えられてもよい。
図27は、熱膨張中のRPV2650を有する、図26のシステム例2600の拡大部分図を示す。熱膨張中のRPV2750は点線で示されており、長手方向及び半径方向の両方への熱膨張を表している。例えば、RPV2650に関連する第1の長さ2710は、熱膨張中のRPV2750に関連する第2の長さ2720まで増大してもよい。同様に、RPV2650は、拡大された円錐形状面2775を含む熱膨張した凹部2770に関連する、拡大された直径2730によって示されるように、径方向に膨張してもよい。
図28は、膨張状態にある、図26のシステム例2600の拡大部分図を示す。円錐面2685、2775の傾斜又は角度のある輪郭により、CNV2660のカギ部2680と熱膨張した凹部2770との間に側部間隙2890が設けられてもよい。熱膨張したRPV2750に関連する側部間隙2890は、ノミナル状態又は非膨張状態にあるRPV2650に関連する側部間隙2690(図26)とほぼ等しくてもよい。いくつかの例においては、側部間隙2890は、約16分の1インチ又はそれより小さくてもよい。別の例においては、側部間隙2890は、約8分の1インチ又はそれより小さくてもよい。本明細書では、その他の寸法及び/又はより大きい寸法も意図される。側部間隙をある所定の寸法よりも小さく保つことにより、RPV2650とCNV2660との間の動的衝撃力の決定に関して、カギ部2680と凹部2670の間の全ての横移動を効果的に無視できるものにしてもよい。
図29は、円錐形状面2985を有する円錐形状のカギ部2980として構成される減衰装置を備える、別のシステム例2900を示す。カギ部2980は、相補形状の円錐状内面2975を有する凹部2970内に収まるように構成されてもよい。カギ部2980は、RPV2950の外面から、隣接し周りを囲むCNV2960の凹部2970内へと、実質的に垂直方向に、下向きに延在してもよい。円錐面2975,2985の傾斜又は角度のある輪郭により、カギ部2980と凹部2970との間の側部間隙2990が設けられてもよい。また、円錐面2975,2985は、RPV2950及びCNV2960を備える原子炉モジュールの取り付け及び/又は組み立てを容易にしてもよい。
図30は、原子炉モジュール構造を介して動的外力又は地震力を伝達するためのオペレーション例3000を示す。原子炉モジュール構造は、原子炉圧力容器を収容する格納容器を備えてもよい。原子炉容器は、環状の格納容器容積によって格納容器から間隔を空けて配置されてもよい。いくつかの例においては、環状の格納容器容積は、格納容器と原子炉圧力容器との間を断熱するために真空にされてもよい。
オペレーション3010では、格納容器内の原子炉圧力容器の重量のいくらか又は実質的に全てが、支持構造によって支持されてもよい。支持構造は、環状の格納容器容積を通り抜けてもよい。
オペレーション3020では、地震力は格納容器へ伝達されてもよい。格納容器は、格納容器の底部ヘッドの近くに位置する基部支持体によって支持されてもよい。いくつかの例においては、基部支持体は基部スカートを備えてもよい。
オペレーション3030では、原子炉圧力容器によって受けられた地震力は、減衰装置によって減衰されてもよい。いくつかの例においては、減衰装置は、原子炉圧力容器の重量を支持するように構成されなくてもよい。減衰装置は、環状の格納容器容積を通り抜けてもよい。いくつかの例においては、減衰装置は、原子炉圧力容器の長手方向の中心線、及び/又は、格納容器の長手方向中心線に沿って位置してもよい。減衰装置は、長手方向中心線を横断する方向に地震力を減衰するように構成されてもよい。
また、減衰装置は、地震力を格納容器から原子炉圧力容器へと伝達する地震力減衰経路の一部を形成してもよい。地震力減衰経路は、格納容器の底部ヘッドの近くに位置する基部支持体を通り抜ける、垂直部を備えてもよい。減衰装置は、地震力減衰経路の垂直部を実質的に横断する方向に地震力を減衰してもよい。
図31に、階段形状カギ部3180として構成される減衰装置を備えるシステム例3100を示す。カギ部3180は、相補形状の階段状内面を有する凹部3170内に収まるように構成されてもよい。カギ部3180は、CNV3160の内面から、隣接するRPV3150の凹部3170へと実質的に垂直方向に、上向きに延在してもよい。カギ部3180の階段形状は、第1の直径を有する第1の階段3182と、第2の直径を有する第2の大階段3184とを備えてもよい。いくつかの例において、図31は、ノミナル状態又は非膨張状態にあるRPV3150及び/又はCNV3160を備える原子炉モジュールを図示しているものと見なされてもよく、当該状態では側部間隙が第1の階段3182と凹部3170との間に設けられる。
図32に、拡大又は膨張状態のRPV3150を有する図31のシステム例3100の拡大部分図を示す。図31に示すように、膨張状態にあるカギ部3180と凹部3170との間の側部間隙3250は、ノミナル状態又は非膨張状態にあるRPV3150に関連する側部間隙とほぼ等しくてもよい。
本明細書にて提供した例の少なくともいくつかは、主に、加圧水型原子炉及び/又は軽水炉を説明したものであるが、当該例が他の種類の発電システムに適用されてもよいことは、当業者には明らかなはずである。例えば、前記の例若しくはその変形例のうちの1つ又は複数は、沸騰水型原子炉、液体金属ナトリウム原子炉、ガス冷却炉、ぺブルベッド型原子炉、及び/又は、他の種類の原子炉設計で実施可能とされてもよい。
前記の例が、核反応で熱を発生させるために採用される、又は、核反応に関連する、いかなる特定の種類の燃料にも制限されないことは、留意されるべきである。本明細書内で説明した全ての比率及び値は、ほんの一例として提供されるものである。その他の比率及び値は、原子炉システムの原寸模型又は縮尺模型の建築等の実験を通して決定されてもよい。
明細書において種々の例を説明及び図示したが、その他の例が、配置及び詳細について変更されてもよいことは明らかであるべきである。以下の請求項の趣旨及び範囲に基づく全ての変更及び変形を権利主張する。

Claims (49)

  1. 原子炉集合体における地震力を減衰するためのシステムであって、
    支持体表面上に配置されるように構成される格納容器と、
    前記格納容器内に取り付けられる原子炉圧力容器と、
    前記原子炉圧力容器の長手方向の中心線に沿って位置し、前記支持体表面から前記格納容器を介して前記原子炉圧力容器へと伝達される地震力を減衰するように構成される減衰装置であって、当該減衰装置によって前記地震力が前記長手方向の中心線に対して実質的に横断方向に減衰される減衰装置と、
    を備えるシステム。
  2. 請求項1に記載のシステムであって、
    前記減衰装置は、前記格納容器内における前記原子炉圧力容器の熱膨張に備えるように構成されるシステム。
  3. 請求項2に記載のシステムであって、
    前記減衰装置は、隣接する容器凹部内に延びる実質的に垂直な突起を備え、
    前記容器凹部は、前記長手方向の中心線に沿った前記原子炉圧力容器の前記熱膨張に対応するために、垂直方向の間隙を備えるシステム。
  4. 請求項3に記載のシステムであって、
    前記垂直な突起は、直径を有し、
    前記容器凹部は、前記垂直な突起の前記直径の前記熱膨張に対応するために、環状の間隙をさらに備えるシステム。
  5. 請求項1に記載のシステムであって、
    前記格納容器の上半分に位置し、前記格納容器内で前記原子炉圧力容器を支持するように構成された支持構造をさらに備え、
    前記減衰装置は前記格納容器の下半分に位置するシステム。
  6. 請求項5に記載のシステムであって、
    原子炉圧力重量部の大部分は、前記支持構造に支持され、
    前記原子炉圧力重量部は、実質的に前記減衰装置に支持されないシステム。
  7. 請求項1に記載のシステムであって、
    前記格納容器は、前記支持体表面と接触する円筒形状の支持スカートを備え、
    前記格納容器の底部ヘッドは、前記支持体表面から上方に少し離れて位置し、
    前記支持スカートは、冷却材が前記支持スカートを通って流れ、前記底部ヘッドに接触できるように構成された貫通孔を備えるシステム。
  8. 地震力を減衰するシステムであって、
    核燃料を含む原子炉圧力容器であって、底部ヘッドを備える原子炉圧力容器と、
    前記原子炉圧力容器を収容する格納容器であって、底部ヘッドを備える格納容器と、
    前記格納容器が実質的に縦向きに配置される支持体表面に接触するように構成される基部支持体と、
    前記原子炉圧力容器の前記底部ヘッドと前記格納容器の前記底部ヘッドとの間に位置する減衰装置であって、前記基部支持体から前記原子炉圧力容器へと前記格納容器を介して伝わる地震力が、当該減衰装置によって前記格納容器の前記縦向きに対して実質的に横方向に減衰される減衰装置と、
    を備えるシステム。
  9. 請求項8に記載のシステムであって、
    前記格納容器の上半分に位置し、原子炉圧力重量部の大部分を支持するように構成される支持構造をさらに備え、
    前記原子炉圧力重量部は、実質的に前記減衰装置に支持されないシステム。
  10. 請求項9に記載のシステムであって、
    前記減衰装置は、前記原子炉圧力容器の長手方向の中心線に沿って位置する垂直な柱を備え、
    前記垂直な柱は、隣接する容器凹部に挿入されるシステム。
  11. 請求項10に記載のシステムであって、
    前記垂直な柱は、前記原子炉圧力容器の前記底部ヘッドから前記格納容器の前記隣接する容器凹部内へと下向きに延在するシステム。
  12. 請求項10に記載のシステムであって、
    前記垂直な柱は、前記格納容器の前記底部ヘッドから前記原子炉圧力容器の前記隣接する容器凹部内へと上向きに延在するシステム。
  13. 請求項9に記載のシステムであって、
    前記原子炉圧力容器と前記格納容器とは、環状の格納容器容積によって互いに間隔を空けて配置され、
    前記減衰装置は、前記環状の格納容器容積内に位置する1つ又は複数の緩衝材を備えるシステム。
  14. 請求項9に記載のシステムであって、
    前記原子炉圧力容器と前記格納容器とは、環状の格納容器容積によって互いに間隔を空けて配置され、
    前記減衰装置は、
    前記原子炉圧力容器から外向きに突出し、前記環状の格納容器容積内に位置する1つ又は複数の径方向の柱と、
    前記1つ又は複数の径方向の柱を、周方向に制限するように構成される1組又は複数組のブラケットと、を備えるシステム。
  15. 地震力を、格納容器であって、環状の格納容器容積によって前記格納容器から間隔を空けて配置される原子炉圧力容器を収容する格納容器に伝達する手段と、
    前記格納容器内で前記原子炉圧力容器の重量を支持する手段であって、前記環状の格納容器容積を通り抜ける手段と、
    前記原子炉圧力容器が受ける前記地震力を減衰する手段であって、前記原子炉圧力容器の重量を支持しない手段と、
    を備える装置。
  16. 請求項15に記載の装置であって、
    前記減衰する手段は、前記環状の格納容器容積を通り抜ける装置。
  17. 請求項15に記載の装置であって、
    前記減衰する手段は、前記格納容器の長手方向の中心線に沿って位置する装置。
  18. 請求項15に記載の装置であって、
    前記減衰する手段は、前記地震力を前記格納容器から前記原子炉圧力容器へと伝達する地震力減衰経路の一部を形成する装置。
  19. 請求項18に記載の装置であって、
    前記地震力減衰経路は、前記伝達する手段を通り抜ける垂直部分を備え、
    前記減衰する手段は、前記地震力減衰経路の前記垂直部分を実質的に横断する方向において、前記地震力を減衰する手段を備える装置。
  20. 格納容器内に収容される原子炉圧力容器であって、環状の格納容器容積によって前記格納容器から間隔を空けて配置される原子炉圧力容器の重量を、前記環状の格納容器容積を通り抜ける支持構造を用いて、支持することと、
    前記格納容器を介して地震力を伝達することと、
    前記原子炉圧力容器が前記格納容器から受ける前記地震力を、前記原子炉圧力容器の長手方向の中心線に沿って位置する減衰装置であって、前記長手方向の中心線を横断する方向に前記地震力を減衰し、前記原子炉圧力容器の前記重量を支持しない減衰装置を用いて、減衰することと、
    を備える方法。
  21. 原子炉免震組立体であって、
    容積を画定する筐体と、
    前記容積内に少なくとも部分的に取り付けられる塑性変形可能な部材と、
    前記筐体に作用する動的外力に応答して、前記塑性変形可能な部材を塑性変形するために、前記筐体内で移動可能な伸張部材と、
    を備える原子炉免震組立体。
  22. 請求項21に記載の原子炉免震組立体であって、
    前記塑性変形可能な部材は、前記筐体内に取り付けられる第1の部分と、ダイ部材を通って前記筐体の外側まで延在する第2の部分と、を備える原子炉免震組立体。
  23. 請求項22に記載の原子炉免震組立体であって、
    前記第2の部分は、溶接可能な部分を備える原子炉免震組立体。
  24. 請求項22に記載の原子炉免震組立体であって、
    前記ダイ部材は、前記筐体に作用する前記動的外力に応答して、前記伸張部材と共に移動可能である原子炉免震組立体。
  25. 請求項21に記載の原子炉免震組立体であって、
    前記伸張部材は、前記塑性変形可能な部材を通って延在する孔の一部分に取り付けられる原子炉免震組立体。
  26. 請求項25に記載の原子炉免震組立体であって、
    前記孔の一部分は、前記伸張部材の外法寸法とほぼ等しい第1の直径を有し、前記孔は、前記第1の直径よりも小さい第2の直径を有する別の部分を備える原子炉免震組立体。
  27. 請求項26に記載の原子炉免震組立体であって、
    前記第2の直径は、前記筐体に作用する前記動的外力に応答した、前記伸張要素の前記孔を通じた移動に基づき、前記第1の直径とほぼ等しくなるように伸張される原子炉免震組立体。
  28. 請求項25に記載の原子炉免震組立体であって、
    前記孔は、前記筐体に作用する前記動的外力に応答した、前記孔を通じた前記伸張要素の移動に基づき、前記筐体に作用する前記動的外力によって生じるエネルギーの少なくとも一部を消散する作動流体を、少なくとも部分的に封入する原子炉免震組立体。
  29. 請求項25に記載の原子炉免震組立体であって、
    前記筐体の前記外側に前記孔を流体的に接続する流体通路をさらに備える原子炉免震組立体。
  30. 請求項29に記載の原子炉免震組立体であって、
    前記作動流体は、原子炉隔室に封入された流体の一部を含む原子炉免震組立体。
  31. 請求項21に記載の原子炉免震組立体であって、
    前記筐体は、原子炉格納容器の一部に取り付け可能である原子炉免震組立体。
  32. 原子炉圧力容器に接する免震組立体にかかる力を受けることであって、少なくとも部分的に地震事象によって生じる力を受けることと、
    前記受けた力を、前記免震組立体の筐体を介して伸張部材へ伝達することと、
    前記受けた力に基づき、前記伸張部材を前記筐体内で移動させることと、
    前記伸張部材を用いて、前記筐体に少なくとも部分的に封入された変形可能な部材を塑性変形することと、
    前記変形可能な部材を塑性変形することに基づき、前記受けた力の少なくとも一部分を消散することと、
    を備える方法。
  33. 請求項32に記載の方法であって、
    前記受けた力に基づく前記変形可能な部材内への前記伸張部材の反復移動に基づいて、前記変形可能な部材と前記伸張部材との間に摩擦を発生させることと、
    前記発生した摩擦に基づいて、前記受けた力の別の一部を消散することと、
    をさらに備える方法。
  34. 請求項32に記載の方法であって、
    前記受けた力に基づく前記変形可能な部材内への前記伸張部材の移動に基づき、前記変形可能な要素のチャンバに封入された作動流体を圧縮することと、
    前記作動流体の前記圧縮に基づき、前記受けた力の別の一部を消散することと、
    をさらに備える方法。
  35. 請求項34に記載の方法であって、
    前記作動流体を、液体を封入する原子炉隔室に、前記チャンバと前記原子炉隔室とを流体的に接続する液体通路を通じて放出すること
    をさらに備える方法。
  36. 請求項35に記載の方法であって、
    前記受けた力の別の一部を前記原子炉隔室に封入された前記液体を通じて消散すること
    をさらに備える方法。
  37. 請求項32に記載の方法であって、
    前記受けた力に基づく前記変形可能な部材内への前記伸張部材の移動に基づき、1つ又は複数のばね部材を圧縮することと、
    前記1つ又は複数のばね部材の前記圧縮に基づき、前記受けた力の別の一部を消散することと、
    をさらに備える方法。
  38. 請求項32に記載の方法であって、
    前記受けた力を、前記免震組立体の筐体を介して伸張部材へと伝達することは、前記受けた力を、前記原子炉圧力容器を収容する構造と接する前記変形可能な部材を介して伝達することを含む方法。
  39. 原子炉システムであって、
    液体を封入する原子炉隔室と、
    前記原子炉隔室の埋設体に配置される突起によって、前記原子炉隔室内に取り付けられる原子炉格納容器と、
    前記突起と前記埋設体の壁との間において、前記埋設体に取り付けられる免震組立体と、
    を備え、前記免震組立体のそれぞれは、
    容積を画定する筐体と、
    前記容積内に少なくとも部分的に取り付けられる塑性変形可能な部材と、
    前記原子炉隔室に作用する動的外力に応答して前記塑性変形可能な部材を塑性変形するために、前記筐体内で移動可能な伸張部材と、
    を備える原子炉システム。
  40. 請求項39に記載の原子炉システムであって、
    前記塑性変形可能な部材は、前記筐体内に取り付けられる第1の部分と、ダイ部材を通って前記埋設体のうちの1つの壁へと延在する第2の部分と、を備える原子炉システム。
  41. 請求項40に記載の原子炉システムであって、
    前記第2の部分は前記壁に固定される原子炉システム。
  42. 請求項39に記載の原子炉システムであって、
    前記ダイ部材は、前記原子炉隔室に作用する前記動的外力に応答して前記伸張部材と共に移動可能である原子炉システム。
  43. 請求項39に記載の原子炉システムであって、
    前記伸張部材は、前記塑性変形可能な部材を通って延在する孔の一部分内に取り付けられる原子炉システム。
  44. 請求項43に記載の原子炉システムであって、
    前記孔の前記一部分は、前記伸張部材の外法寸法とほぼ等しい第1の直径を有し、前記孔は、前記第1の直径よりも小さい第2の直径を有する別の部分を備える原子炉システム。
  45. 請求項44に記載の原子炉システムであって、
    前記第2の直径は、前記原子炉隔室に作用する前記動的外力に応答した、前記孔を通じた前記伸張要素の移動に基づき、前記第1の直径とほぼ等しくなるように伸張される原子炉システム。
  46. 請求項43に記載の原子炉システムであって、
    前記孔は、前記原子炉隔室に作用する前記動的外力に応答した、前記孔を通じた前記伸張要素の移動に基づき、前記筐体に作用する前記動的外力によって生じるエネルギーの少なくとも一部を消散する作動流体を、少なくとも部分的に封入する原子炉システム。
  47. 請求項43に記載の原子炉システムであって、
    前記孔を前記原子炉隔室によって画定される容積と流体的に接続する流路、をさらに備える原子炉システム。
  48. 請求項47に記載の原子炉システムであって、
    前記作動流体は、前記容積に封入された流体の一部を備える原子炉システム。
  49. 請求項39に記載の原子炉システムであって、
    前記動的外力は地震性の力を含む原子炉システム。
JP2016544112A 2013-12-31 2014-10-30 原子炉用減震システム Active JP6416267B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361922541P 2013-12-31 2013-12-31
US61/922,541 2013-12-31
PCT/US2014/063127 WO2015102742A1 (en) 2013-12-31 2014-10-30 Seismic attenuation system for a nuclear reactor
US14/528,123 2014-10-30
US14/528,123 US9881703B2 (en) 2013-12-31 2014-10-30 Seismic attenuation system for a nuclear reactor

Publications (3)

Publication Number Publication Date
JP2017501417A true JP2017501417A (ja) 2017-01-12
JP2017501417A5 JP2017501417A5 (ja) 2018-06-14
JP6416267B2 JP6416267B2 (ja) 2018-10-31

Family

ID=52273472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016544112A Active JP6416267B2 (ja) 2013-12-31 2014-10-30 原子炉用減震システム

Country Status (6)

Country Link
US (2) US9881703B2 (ja)
JP (1) JP6416267B2 (ja)
KR (1) KR102366578B1 (ja)
CN (2) CN108711457B (ja)
CA (1) CA2926738C (ja)
WO (1) WO2015102742A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9875817B2 (en) * 2014-06-09 2018-01-23 Bwxt Mpower, Inc. Nuclear reactor support and seismic restraint with in-vessel core retention cooling features
US10191464B2 (en) * 2015-08-14 2019-01-29 Nuscale Power, Llc Notification management systems and methods for monitoring the operation of a modular power plant
CN106297912A (zh) * 2016-10-11 2017-01-04 中国核动力研究设计院 一种反应堆压力容器用带预埋件的裙式支承装置
CN107039093A (zh) * 2017-03-31 2017-08-11 哈尔滨工程大学 三代大型压水堆核电站安全壳隔离设计结构
US10755826B2 (en) 2017-11-10 2020-08-25 Nugen, Llc Integrated system for converting nuclear energy into electrical, rotational, and thermal energy
CN108877963B (zh) * 2018-07-09 2021-10-26 哈尔滨工程大学 双层安全壳大型核电站三维隔震结构
KR102128053B1 (ko) * 2018-12-26 2020-06-29 한국수력원자력 주식회사 원자력 시설의 해체 방법
US11798697B2 (en) * 2020-08-17 2023-10-24 Terrapower, Llc Passive heat removal system for nuclear reactors
WO2022073033A1 (en) * 2020-10-02 2022-04-07 University Of Virginia Patent Foundation Damping mechanism
US11421589B1 (en) 2021-05-18 2022-08-23 Nugen, Llc Integrated system for converting nuclear energy into electrical, mechanical, and thermal energy
CN113983854B (zh) * 2021-10-22 2022-10-28 中国原子能科学研究院 用于反应堆内热交换器的支承结构
KR102601029B1 (ko) * 2022-04-26 2023-11-09 한국수력원자력 주식회사 피동적으로 냉각수를 공급하는 원자력발전소

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157697U (ja) * 1980-04-24 1981-11-25
JPH0232994A (ja) * 1988-07-21 1990-02-02 Central Res Inst Of Electric Power Ind 耐震構造を有する大型容器及び原子炉
JPH11230249A (ja) * 1998-02-09 1999-08-27 Takenaka Komuten Co Ltd 大地震用のパッシブ型マスダンパー
JP2010037789A (ja) * 2008-08-04 2010-02-18 Takenaka Komuten Co Ltd 免震構造、建物及び免震建物
JP2012509468A (ja) * 2008-11-17 2012-04-19 ニュースケール パワー インコーポレイテッド 免震格納容器

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB835947A (en) * 1957-06-24 1960-05-25 Atomic Energy Authority Uk Improvements in or relating to cooling of nuclear reactors
US3599589A (en) 1967-12-29 1971-08-17 Mc Donnell Douglas Corp Earthquake-resistant nuclear reactor station
US3865688A (en) 1970-08-05 1975-02-11 Frank W Kleimola Passive containment system
FR2300253A1 (fr) 1975-02-06 1976-09-03 Commissariat Energie Atomique Dispositif
US4081323A (en) 1975-03-06 1978-03-28 Stone & Webster Engineering Corporation Subatmospheric double containment system
US4179104A (en) 1975-05-08 1979-12-18 Development Finance Corporation Of New Zealand Mechanical attenuator
FR2311388A1 (fr) 1975-05-12 1976-12-10 Commissariat Energie Atomique Dispositif de supportage d'une chaudiere nucleaire
US4008757A (en) * 1975-09-22 1977-02-22 The Babcock & Wilcox Company Industrial technique
DE2642352A1 (de) 1976-09-21 1978-03-23 Babcock Brown Boveri Reaktor Tragkonsole fuer behaelter
US4115194A (en) * 1977-02-22 1978-09-19 The Babcock & Wilcox Company Reactor pressure vessel support
FR2417611A1 (fr) * 1978-02-17 1979-09-14 Commissariat Energie Atomique Dispositif de fixation d'une enceinte sur un radier horizontal
FR2533064B2 (fr) 1981-11-09 1986-05-16 Alsthom Atlantique Local nucleaire avec chaudiere et enceinte de confinement resistant aux seismes
DE3221860C2 (de) 1982-06-09 1986-04-17 Kraftwerk Union AG, 4330 Mülheim Abstützeinrichtung an einem Druckbehälter, insbesondere einem Reaktordruckbehälter, gegen Horizontalkräfte
JPS60252299A (ja) * 1984-05-29 1985-12-12 三菱原子力工業株式会社 原子炉容器耐震振れ止め装置
FR2591020B1 (fr) 1985-12-03 1988-01-15 Jeumont Schneider Dispositif pour la liaison anti-seismes entre le bas de pompe et la sphere d'une centrale nucleaire
JPS62159094A (ja) * 1986-01-08 1987-07-15 財団法人 電力中央研究所 高速増殖炉の主容器振れ止め機構
JPS62187289A (ja) 1986-02-13 1987-08-15 株式会社東芝 原子炉の免震装置
JPS63229390A (ja) 1987-03-18 1988-09-26 株式会社日立製作所 原子炉
US5024804A (en) 1989-07-21 1991-06-18 Westinghouse Electric Corp. Swinging support for nuclear power plant pressurizer valves
JPH0453598A (ja) 1990-06-20 1992-02-21 Yozo Maejima 布類搬送機構に於るワークキャンセル装置
US5152253A (en) 1991-01-28 1992-10-06 Westinghouse Electric Corp. Vessel structural support system
US5217681A (en) * 1991-06-14 1993-06-08 Wedellsborg Bendt W Special enclosure for a pressure vessel
US5276720A (en) 1992-11-02 1994-01-04 General Electric Company Emergency cooling system and method
US5272732A (en) 1992-12-31 1993-12-21 Combustion Engineering, Inc. Reactor cavity seal joint
US5600689A (en) 1994-02-02 1997-02-04 Mpr Associates, Inc. Method and apparatus for repairing boiling water reactor shrouds utilizing tie-rods with multiple longitudinal members
JP2978732B2 (ja) 1994-12-12 1999-11-15 核燃料サイクル開発機構 原子炉機器の共通床方式上下免震構造
JPH11153184A (ja) 1997-11-21 1999-06-08 Mitsubishi Heavy Ind Ltd 浮揚式免震建屋
JPH11351325A (ja) 1998-06-11 1999-12-24 Okumura Corp 免震装置
JP2000055119A (ja) 1998-08-04 2000-02-22 Ichijyo Home Building Co Ltd 免震構造物のストッパ装置及びこの装置が設けられてなる軽重量構造物の免震構造
US6160864A (en) 1999-03-05 2000-12-12 General Electric Company Seismic isolators
JP2001073391A (ja) 1999-09-02 2001-03-21 Shimizu Corp 杭頭構造
JP3087897B1 (ja) * 1999-12-28 2000-09-11 川崎重工業株式会社 使用済ターゲット保管ラック
CN1096534C (zh) * 2000-03-10 2002-12-18 东南大学 工程结构竖向隔震装置
JP2001323686A (ja) 2000-05-15 2001-11-22 Kosumo Kensetsu Kk 軽量建築物の免震装置
US6356614B1 (en) 2000-06-19 2002-03-12 Westinghouse Electric Company Llc Anchor assembly for fuel bundle
US6795518B1 (en) 2001-03-09 2004-09-21 Westinghouse Electric Company Llc Integral PWR with diverse emergency cooling and method of operating same
WO2005017920A2 (en) * 2003-08-15 2005-02-24 Pebble Bed Modular Reactor (Proprietary) Limited A support arrangement
JP3811711B2 (ja) 2004-09-30 2006-08-23 スターツコーポレーション株式会社 建物の免震構造
US8687759B2 (en) 2007-11-15 2014-04-01 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Internal dry containment vessel for a nuclear reactor
CN201546235U (zh) * 2009-08-03 2010-08-11 上海核工程研究设计院 带闭锁功能的核电厂核岛结构基础隔震装置
US9324462B2 (en) * 2010-07-13 2016-04-26 Westinghouse Electric Company Llc Reactor head seismic support tie rod system
JP2012141298A (ja) 2010-12-13 2012-07-26 Toshiba Corp 原子炉の炉内構造物
US8424253B2 (en) 2010-12-28 2013-04-23 Ge-Hitachi Nuclear Energy Americas Llc Seismic and impact mitigation devices and systems
WO2013130105A1 (en) * 2012-03-02 2013-09-06 Nuscale Power, Llc Servicing a nuclear reactor module
CN103377735B (zh) * 2012-04-27 2016-08-03 上海核工程研究设计院 一种反应堆下部堆内构件
CN103474105B (zh) * 2012-06-08 2016-03-09 中国核动力研究设计院 一种反应堆压力容器模块式支座支承
CN203338768U (zh) * 2013-07-26 2013-12-11 中广核工程有限公司 核电站反应堆压力容器保护装置
US9875817B2 (en) * 2014-06-09 2018-01-23 Bwxt Mpower, Inc. Nuclear reactor support and seismic restraint with in-vessel core retention cooling features
US20150364222A1 (en) * 2014-06-11 2015-12-17 Bwxt Mpower, Inc. Nuclear reactor support and seismic restraint

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157697U (ja) * 1980-04-24 1981-11-25
JPH0232994A (ja) * 1988-07-21 1990-02-02 Central Res Inst Of Electric Power Ind 耐震構造を有する大型容器及び原子炉
JPH11230249A (ja) * 1998-02-09 1999-08-27 Takenaka Komuten Co Ltd 大地震用のパッシブ型マスダンパー
JP2010037789A (ja) * 2008-08-04 2010-02-18 Takenaka Komuten Co Ltd 免震構造、建物及び免震建物
JP2012509468A (ja) * 2008-11-17 2012-04-19 ニュースケール パワー インコーポレイテッド 免震格納容器

Also Published As

Publication number Publication date
CN106415730B (zh) 2018-04-20
KR102366578B1 (ko) 2022-02-23
CN106415730A (zh) 2017-02-15
WO2015102742A1 (en) 2015-07-09
CN108711457A (zh) 2018-10-26
CA2926738C (en) 2022-10-04
JP6416267B2 (ja) 2018-10-31
KR20160105411A (ko) 2016-09-06
US9881703B2 (en) 2018-01-30
CA2926738A1 (en) 2015-07-09
USRE47965E1 (en) 2020-04-28
US20180025795A9 (en) 2018-01-25
US20160125964A1 (en) 2016-05-05
CN108711457B (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
JP6416267B2 (ja) 原子炉用減震システム
EP3489967B1 (en) Seismic attenuation system for a nuclear reactor
JP5633879B2 (ja) 免震格納容器
JP5354988B2 (ja) 免震構造、建物及び免震建物
JP6693031B2 (ja) 原子炉モジュール支持構造物
JP2634739B2 (ja) 液体金属冷却原子炉プラント
JP6298939B2 (ja) 原子炉支持構造
KR102217380B1 (ko) 배관 지지용 안정화 장치
CN205047734U (zh) 一种核岛布置结构
JP2012088234A (ja) 核燃料貯蔵用ラック
WO2017064869A1 (ja) 原子炉支持構造
Kulak et al. Application of seismic isolation to the STAR-LM reactor.

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181003

R150 Certificate of patent or registration of utility model

Ref document number: 6416267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250