JP2017227755A - 電気光学装置、電気光学装置の駆動方法、および電子機器 - Google Patents

電気光学装置、電気光学装置の駆動方法、および電子機器 Download PDF

Info

Publication number
JP2017227755A
JP2017227755A JP2016123529A JP2016123529A JP2017227755A JP 2017227755 A JP2017227755 A JP 2017227755A JP 2016123529 A JP2016123529 A JP 2016123529A JP 2016123529 A JP2016123529 A JP 2016123529A JP 2017227755 A JP2017227755 A JP 2017227755A
Authority
JP
Japan
Prior art keywords
potential
gradation
storage capacitor
reference potential
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016123529A
Other languages
English (en)
Inventor
久仁 山村
Kuni Yamamura
久仁 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2016123529A priority Critical patent/JP2017227755A/ja
Publication of JP2017227755A publication Critical patent/JP2017227755A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】細かい精度のデータ信号を必要とせずに発光素子に供給する電流を精度良く制御することが可能であり、かつ、データ信号の電位の保持容量および圧縮用の保持容量の小容量化を実現する。
【解決手段】一端がデータ線14に接続される第3保持容量44と、第3保持容量44の他端に接続され、当該他端に基準電位Viniを供給するトランスミッションゲート43と、指定階調のデータ信号の電位を保持する第4保持容量41と、第3保持容量44の他端と、第4保持容量41の一端との導通状態をスイッチングするトランスミッションゲート42とを備え、基準電位Viniとして、指定階調が第1の階調(例えば黒)の際は第1の基準電位(例えば5V)を用い、指定階調が第2の階調(例えば白)の際は第2の基準電位(例えば3V)を用いる。
【選択図】図5

Description

本発明は、電気光学装置、電気光学装置の駆動方法、および電子機器に関する。
近年、有機発光ダイオード(Organic Light Emitting Diode、以下「OLED」という)素子などの発光素子を用いた電気光学装置が各種提案されている。この電気光学装置では、走査線とデータ線との交差に対応して、上記発光素子やトランジスターなどを含む画素回路が、表示すべき画像の画素に対応して設けられる構成が一般的である。このような構成において、画素の階調レベルに応じた電位のデータ信号がトランジスターのゲートに印加されると、当該トランジスターは、ゲート・ソース間の電圧に応じた電流を発光素子に供給する。これにより、当該発光素子は、階調レベルに応じた輝度で発光する。また、電気光学装置に対して、表示サイズの小型化や表示の高精細化が要求されることが多い。表示サイズの小型化と表示の高精細化とを両立するためには、画素回路を微細化する必要があるので、電気光学装置を例えばシリコン集積回路に設ける技術も提案されている。
ところで、画素回路を微細化したとき、発光素子への供給電流を微小領域で制御する必要がある。発光素子に供給される電流は、トランジスターのゲート・ソース間の電圧によって制御されるが、微小領域では、ゲート・ソース間の電圧のわずかな変化に対して、発光素子に供給される電流が大きく変化してしまう。一方、データ信号を出力する回路は、データ線を短時間で充電するために、その駆動能力が高められている。このように高い駆動能力を有する回路において、非常に細かい精度でデータ信号を出力させることは困難である。
そこで、例えば、特許文献1のように、一端をデータ線に接続した第1保持容量と、データ線の電位を保持する第2保持容量と、データ信号の電位を保持する第3保持容量とを備えた電気光学装置が提案された。特許文献1の装置では、第1保持容量の他端に所定の基準電位を供給した後に、第3保持容量に保持された階調レベルに応じた電位のデータ信号を、第1保持容量の他端に供給する。その結果、駆動トランジスターのゲートの電位は、第1保持容量の他端における電位変動を第1保持容量および第2保持容量の容量比で分圧した分だけ圧縮される。この装置では、駆動トランジスターのゲートにおける電位範囲を、データ信号の電位範囲に対し狭められるので、駆動トランジスターのゲート・ソース間の電圧変化に対する電流変化が大きい場合にも、正確に電流を制御することができる。
特開2013−088611号公報
しかしながら、特許文献1のような電気光学装置において比較的大きな圧縮率を得るためには、第2保持容量および第3保持容量を大きくする必要があった。その結果、回路規模が大きくなっていた。
本発明は上述した事情に鑑みてなされたものであり、その目的は、細かい精度のデータ信号を必要とせずに発光素子に供給する電流を精度良く制御することが可能であり、かつ、データ信号の電位の保持容量および圧縮用の保持容量の小容量化を実現することである。
上記目的を達成するために本発明に係る電気光学装置の一態様は、第1の方向に延在する第1の導電層と、前記第1の方向と交差した第2の方向に延在する第2の導電層と、前記第2の導電層に供給される電位を保持する第1保持容量と、前記第1の導電層と前記第2の導電層との各々の交差に対応して配列された画素回路と、前記画素回路を駆動する駆動回路と、を備え、前記画素回路は、一端が第1電源層に接続された発光素子と、ソースまたはドレインが第2電源層と接続され、前記第2電源層に接続されたソースまたはドレイン以外のソースまたはドレインが前記発光素子の他端と直接または間接に接続され、前記発光素子に対する駆動電流を生成する駆動トランジスターと、一端が前記駆動トランジスターのゲートと接続され、他端が前記駆動トランジスターの前記ソースまたはドレインと接続され、指定階調のデータ信号の電位に対応する電位を保持する第2保持容量と、ゲートが前記第1の導電層と接続され、ソースまたはドレインが前記前記駆動トランジスターのゲートと前記第2保持容量との接続ノードに接続され、前記接続ノードに接続されるソースまたはドレイン以外のソースまたはドレインが前記第2の導電層に接続される書込みトランジスターと、を備え、前記駆動回路は、一端が前記第2の導電層に接続される第3保持容量と、前記第3保持容量の他端に接続され、当該他端に基準電位を供給する第1スイッチング素子と、前記指定階調のデータ信号の電位を保持する第4保持容量と、前記第3保持容量の前記他端と、前記第4保持容量の一端との導通状態をスイッチングする第2スイッチング素子と、を備え、前記基準電位として、前記指定階調が第1の階調の際は第1の基準電位を用い、前記指定階調が第2の階調の際は第2の基準電位を用いる、ことを特徴とする。
この態様によれば、第1スイッチング素子により第3保持容量の他端に基準電位が供給され、第2スイッチング素子により第3保持容量の他端と第4保持容量の一端とが導通されると、第3保持容量には第4保持容量から指定階調のデータ信号の電位が供給される。このとき、駆動トランジスターのゲートの電位は、第3保持容量の他端における電位変動を第3保持容量および第1保持容量の容量比で分圧した分に、第4保持容量の容量を含む係数を掛けた分だけ圧縮される。第3保持容量の他端における電位変動は、指定階調のデータ信号の電位から、基準電位を差し引くことにより求められる。この態様においては、当該基準電位として、指定階調が第1の階調の際は第1の基準電位を用い、指定階調が第2の階調の際は第2の基準電位を用いる。したがって、基準電位を固定値とした場合に比べて、駆動トランジスターのゲートの電位として所望の電位を得るために、第3保持容量の容量および第4保持容量の容量を小さくすることが可能となる。また、指定階調を得るためのデータ信号の電位の振幅を小さくすることが可能となる。
前記態様において、前記駆動回路は、前記基準電位として、前記指定階調が前記第1の階調と前記第2の階調の中間の階調の際は第3の基準電位を用いてもよい。この態様によれば、第3保持容量の容量および第4保持容量の容量を小さくした場合でも、前記基準電位として第3の基準電位を用いるので、第1の階調と第2の階調の中間の階調が得られる。
上記目的を達成するために本発明に係る電気光学装置の駆動方法の一態様は、第1の方向に延在する第1の導電層と、前記第1の方向と交差した第2の方向に延在する第2の導電層と、前記第2の導電層に供給される電位を保持する第1保持容量と、前記第1の導電層と前記第2の導電層との各々の交差に対応して配列された画素回路と、前記画素回路を駆動する駆動回路と、を備え、前記画素回路は、一端が第1電源層に接続された発光素子と、ソースまたはドレインが第2電源層と接続され、前記第2電源層に接続されたソースまたはドレイン以外のソースまたはドレインが前記発光素子の他端と直接または間接に接続され、前記発光素子に対する駆動電流を生成する駆動トランジスターと、一端が前記駆動トランジスターのゲートと接続され、他端が前記駆動トランジスターの前記ソースまたはドレインと接続され、前記指定階調のデータ信号の電位に対応する電位を保持する第2保持容量と、ゲートが前記第1の導電層と接続され、ソースまたはドレインが前記前記駆動トランジスターのゲートと前記第2保持容量との接続ノードに接続され、前記接続ノードに接続されるソースまたはドレイン以外のソースまたはドレインが前記第2の導電層に接続される書込みトランジスターと、を備え、前記駆動回路は、一端が前記第2の導電層に接続される第3保持容量と、前記第3保持容量の他端に接続され、当該他端に基準電位を供給する第1スイッチング素子と、前記指定階調のデータ信号の電位を保持する第4保持容量と、前記第3保持容量の前記他端と、前記第4保持容量の一端との導通状態をスイッチングする第2スイッチング素子と、を備える電気光学装置の駆動方法であって、前記指定階調が第1の階調の際は、前記第1スイッチング素子により前記基準電位として第1の基準電位を前記第3保持容量の前記他端に供給し、前記指定階調が第2の階調の際は、前記第1スイッチング素子により前記基準電位として第2の基準電位を前記第3保持容量の前記他端に供給し、前記第2スイッチング素子により、前記第3保持容量の前記他端と、前記第4保持容量の一端とを導通させる、ことを特徴とする。
この態様によれば、第1スイッチング素子により第3保持容量の他端に基準電位が供給され、第2スイッチング素子により第3保持容量の他端と第4保持容量の一端とが導通されると、第3保持容量には第4保持容量から指定階調のデータ信号の電位が供給される。このとき、駆動トランジスターのゲートの電位は、第3保持容量の他端における電位変動を第3保持容量および第1保持容量の容量比で分圧した分に、第4保持容量の容量を含む係数を掛けた分だけ圧縮される。第3保持容量の他端における電位変動は、指定階調のデータ信号の電位から、基準電位を差し引くことにより求められる。この態様においては、当該基準電位として、指定階調が第1の階調の際は第1の基準電位を用い、指定階調が第2の階調の際は第2の基準電位を用いる。したがって、基準電位を固定値とした場合に比べて、駆動トランジスターのゲートの電位として所望の電位を得るために、第3保持容量の容量および第4保持容量の容量を小さくすることが可能となる。また、指定階調を得るためのデータ信号の電位の振幅を小さくすることが可能となる。
前記態様において、前記指定階調が前記第1の階調と前記第2の階調の中間の階調の際は、前記第1スイッチング素子により前記基準電位として第3の基準電位を前記第3保持容量の前記他端に供給してもよい。この態様によれば、第3保持容量の容量および第4保持容量の容量を小さくした場合でも、前記基準電位として第3の基準電位を用いるので、第1の階調と第2の階調の中間の階調が得られる。
なお、本発明は、電気光学装置のほか、当該電気光学装置を有する電子機器として概念することも可能である。電子機器としては、典型的にはヘッドマウントディスプレイ(HMD)や電子ビューファイダーのなどの表示装置が挙げられる。
本発明の第1実施形態に係る電気光学装置の構成を示す斜視図である。 電気光学装置の構成を示すブロック図である。 デマルチプレクサーおよびレベル調整回路の構成を示す回路図である。 画素回路および駆動回路のデマルチプレクサー並びにレベル調整回路を示す回路図である。 画素回路および駆動回路のデマルチプレクサー並びにレベル調整回路を示す回路図である。 画素回路および駆動回路のデマルチプレクサー並びにレベル調整回路を示す回路図である。 画素回路および駆動回路のデマルチプレクサー並びにレベル調整回路を示す回路図である。 画素回路および駆動回路のデマルチプレクサー並びにレベル調整回路を示す回路図である。 書込期間の開始前における各ノードの電位変化について説明するための説明図である。 書込期間の開始後における各ノードの電位変化について説明するための説明図である。 第1実施形態における中間調表示時の各ノードの電位と基準電位とデータ信号の電位とを示す図である。 第1実施形態における黒表示時の各ノードの電位と基準電位とデータ信号の電位とを示す図である。 第1実施形態における白表示時の各ノードの電位と基準電位とデータ信号の電位とを示す図である。 比較例における中間調表示時の各ノードの電位と基準電位とデータ信号の電位とを示す図である。 比較例における黒表示時の各ノードの電位と基準電位とデータ信号の電位とを示す図である。 比較例における白表示時の各ノードの電位と基準電位とデータ信号の電位とを示す図である。 本発明の第2実施形態における中間調表示時の各ノードの電位と基準電位とデータ信号の電位とを示す図である。 第2実施形態における黒表示時の各ノードの電位と基準電位とデータ信号の電位とを示す図である。 第2実施形態における白表示時の各ノードの電位と基準電位とデータ信号の電位とを示す図である。 変形例における画素回路および駆動回路のデマルチプレクサー並びにレベル調整回路を示す回路図である。 変形例における画素回路および駆動回路のデマルチプレクサー並びにレベル調整回路を示す回路図である。 電子機器の例を示す説明図である。 電子機器の他の例を示す説明図である。 電子機器の他の例を示す説明図である。
<第1実施形態>
以下、本発明を実施するための形態について図面を参照して説明する。図1は、本発明の第1実施形態に係る電気光学装置1の構成を示す斜視図である。電気光学装置1は、例えばヘッドマウントディスプレイにおいて画像を表示するマイクロ・ディスプレイである。
図1に示すように、電気光学装置1は、表示パネル2と、表示パネル2の動作を制御する制御回路3とを備える。表示パネル2は、複数の画素回路と、当該画素回路を駆動する駆動回路とを備える。本実施形態において、表示パネル2が備える複数の画素回路及び駆動回路は、シリコン基板に形成され、画素回路には、発光素子の一例であるOLEDが用いられる。また、表示パネル2は、例えば、表示部で開口する枠状のケース82に収納されるとともに、FPC(Flexible Printed Circuits)基板84の一端が接続される。
FPC基板84には、半導体チップの制御回路3が、COF(Chip On Film)技術によって実装されるとともに、複数の端子86が設けられて、図示省略された上位回路に接続される。
図2は、実施形態に係る電気光学装置1の構成を示すブロック図である。上述のとおり、電気光学装置1は、表示パネル2と、制御回路3とを備える。
制御回路3には、図示省略された上位回路よりデジタルの画像データVideoが同期信号に同期して供給される。ここで、画像データVideoとは、表示パネル2(厳密には、後述する表示部100)で表示すべき画像の画素の階調レベルを例えば8ビットで規定するデータである。また、同期信号とは、垂直同期信号、水平同期信号、及び、ドットクロック信号を含む信号である。
制御回路3は、同期信号に基づいて、各種制御信号を生成し、これを表示パネル2に対して供給する。具体的には、制御回路3は、表示パネル2に対して、制御信号Ctrと、負論理の制御信号/Giniと、これと論理反転の関係にある正論理の制御信号Giniとを供給する。また、制御回路3は、表示パネル2に対して、正論理の制御信号Gcplと、これと論理反転の関係にある負論理の制御信号/Gcplとを供給する。さらに、制御回路3は、表示パネル2に対して、制御信号Sel(1)、Sel(2)、Sel(3)と、これらの信号に対して論理反転の関係にある制御信号/Sel(1)、/Sel(2)、/Sel(3)と、を供給する。ここで、制御信号Ctrとは、パルス信号や、クロック信号、イネーブル信号など、複数の信号を含む信号である。なお、制御信号Sel(1)、Sel(2)、Sel(3)を、制御信号Selと総称し、制御信号/Sel(1)、/Sel(2)、/Sel(3)を、制御信号/Selと総称する場合がある。
また、制御回路3は、表示パネル2に対して、各種電位を供給する。具体的には、制御回路3は、表示パネル2に対して、所定の基準電位Vini等を供給する。
さらに、制御回路3は、画像データVideoに基づいて、アナログの画像信号Vidを生成する。具体的には、制御回路3には、画像信号Vidの示す電位、及び、表示パネル2が備える発光素子(後述するOLED130)の輝度を対応付けて記憶したルックアップテーブルが設けられる。そして、制御回路3は、当該ルックアップテーブルを参照することで、画像データVideoに規定される発光素子の輝度に対応した電位を示す画像信号Vidを生成し、これを表示パネル2に対して供給する。
図2に示すように、表示パネル2は、表示部100と、これを駆動する駆動回路(データ線駆動回路10及び走査線駆動回路20)とを備える。
表示部100には、表示すべき画像の画素に対応した画素回路110がマトリクス状に配列されている。詳細には、表示部100において、m行の第1の導電層としての走査線12が図において横方向(X方向)に延在して設けられる。また、3列毎にグループ化された(3n)列の第2の導電層としてのデータ線14が図において縦方向(Y方向)に延在し、かつ、各走査線12と互いに電気的な絶縁を保って設けられている。そして、m行の走査線12と(3n)列のデータ線14との交差部に対応して画素回路110が設けられている。このため、本実施形態において画素回路110は、縦m行×横(3n)列でマトリクス状に配列されている。
ここで、m、nは、いずれも自然数である。走査線12及び画素回路110のマトリクスのうち、行(ロウ)を区別するために、図において上から順に1、2、3、…、(m−1)、m行と呼ぶ場合がある。同様にデータ線14及び画素回路110のマトリクスの列(カラム)を区別するために、図において左から順に1、2、3、…、(3n−1)、(3n)列と呼ぶ場合がある。また、データ線14のグループを一般化して説明するために、1以上n以下の整数jを用いると、左から数えてj番目のグループには、(3j−2)列目、(3j−1)列目及び(3j)列目のデータ線14が属している、ということになる。
なお、同一行の走査線12と同一グループに属する3列のデータ線14との交差に対応した3つの画素回路110は、それぞれR(赤)、G(緑)、B(青)の画素に対応して、これらの3画素が表示すべきカラー画像の1ドットを表現する。すなわち、本実施形態では、RGBに対応したOLEDの発光によって1ドットのカラーを加法混色で表現する構成となっている。
また、表示パネル2には、1列目〜(3n)列目のデータ線14の各々に対応して、(3n)個の第1保持容量としての保持容量50が設けられる。保持容量50は2つの電極を有する。保持容量50の一方の電極はデータ線14に接続され、他方の電極は第1電源層63に接続される。第1電源層63には、低電位側の電源電位Vctが供給される。すなわち、保持容量50は、データ線14の電位を保持する第1保持容量として機能する。なお、以下では、保持容量50の容量値をCdtと表記する。
図2において、保持容量50は、表示部100の外側に設けられているが、これはあくまでも等価回路であり、表示部100の内側に設けてもよい。また、保持容量50は、表示部100の内側から外側にわたって設けられてもよい。
走査線駆動回路20は、フレームの期間にわたって走査線12を1行毎に順番に走査するための走査信号Gwrを、制御信号Ctrにしたがって生成する。ここで、1、2、3、…、m行目の走査線12に供給される走査信号Gwrを、それぞれGwr(1)、Gwr(2)、Gwr(3)、…、Gwr(m-1)、Gwr(m)と表記している。
なお、走査線駆動回路20は、走査信号Gwr(1)〜Gwr(m)のほかにも、当該走査信号Gwrに同期した各種制御信号を行毎に生成して表示部100に供給するが、図2においては図示を省略している。また、フレームの期間とは、電気光学装置1が1カット(コマ)分の画像を表示するのに要する期間をいい、例えば同期信号に含まれる垂直同期信号の周波数が120Hzであれば、その1周期分の8.3ミリ秒の期間である。
データ線駆動回路10は、(3n)列のデータ線14の各々と1対1に対応して設けられる(3n)個のレベル調整回路LM、各グループを構成する3列のデータ線14毎に設けられるn個のデマルチプレクサーDM、及び、データ信号供給回路70を備える。
データ信号供給回路70は、制御回路3より供給される画像信号Vidと制御信号Ctrとに基づいて、データ信号Vd(1)、Vd(2)、…、Vd(n)を生成する。すなわち、データ信号供給回路70は、データ信号Vd(1)、Vd(2)、…、Vd(n)を時分割多重した画像信号Vidに基づいて、データ信号Vd(1)、Vd(2)、…、Vd(n)を生成する。そして、データ信号供給回路70は、データ信号Vd(1)、Vd(2)、…、Vd(n)を、1、2、…、n番目のグループに対応するデマルチプレクサーDMに対して、それぞれ供給する。また、データ信号Vd(1)〜Vd(n)が取り得る電位の最高値をVmaxとし、最低値をVminとする。
図3は、デマルチプレクサーDMとレベル調整回路LMとの構成を説明するための回路図である。なお、図3は、j番目のグループに属するデマルチプレクサーDMと、当該デマルチプレクサーDMに接続された3個のレベル調整回路LMとを、代表的に表している。なお、以下では、j番目のグループに属するデマルチプレクサーDMを、DM(j)と表記する場合がある。
以下では、図2に加えて図3を参照しながら、デマルチプレクサーDMおよびレベル調整回路LMの構成について説明する。図3はデマルチプレクサーDMおよびレベル調整回路LMの構成を示す回路図である。
図3に示すように、デマルチプレクサーDMは、列毎に設けられたトランスミッションゲート34の集合体であり、各グループを構成する3列に、データ信号を順番に供給するものである。ここで、j番目のグループに属する(3j−2)、(3j−1)、(3j)列に対応したトランスミッションゲート34の入力端は互いに共通接続されて、その共通端子にそれぞれデータ信号Vd(j)が供給される。j番目のグループにおいて左端列である(3j−2)列に設けられたトランスミッションゲート34は、制御信号Sel(1)がHレベルであるとき(制御信号/Sel(1)がLレベルであるとき)にオン(導通)する。同様に、j番目のグループにおいて中央列である(3j−1)列に設けられたトランスミッションゲート34は、制御信号Sel(2)がHレベルであるとき(制御信号/Sel(2)がLレベルであるとき)にオンする。j番目のグループにおいて右端列である(3j)列に設けられたトランスミッションゲート34は、制御信号Sel(3)がHレベルであるとき(制御信号/Sel(3)がLレベルであるとき)にオンする。
レベル調整回路LMは、第4保持容量としての保持容量41、第3保持容量としての保持容量44、第2スイッチング素子としてのトランスミッションゲート42、第1スイッチング素子としてのトランスミッションゲート43の組を列毎に有する。レベル調整回路LMは、各列のトランスミッションゲート34の出力端から出力されるデータ信号の電位を圧縮するために用いられる。
ここで、保持容量44は2つの電極を有する。保持容量44の一方の電極は、対応する列のデータ線14と電気的に接続される。また、保持容量44の他方の電極は、トランスミッションゲート43の出力端に、ノードh1を介して電気的に接続される。すなわち、保持容量44は、一方の電極がデータ線14に電気的に接続された第3保持容量として機能する。なお、保持容量44の容量値をCrf1とする。
各列のトランスミッションゲート43の入力端は、給電線62に電気的に接続される。また、制御回路3は、各列のトランスミッションゲート43に対して制御信号Gini及び制御信号/Giniを共通に供給する。このため、各列のトランスミッションゲート43は、制御信号GiniがHレベルであるとき(制御信号/GiniがLレベルであるとき)に一斉にオンする。なお、給電線62には、制御回路3から基準電位Viniが供給される。
保持容量41は2つの電極を有する。保持容量41の一方の電極は、ノードh2を介してトランスミッションゲート42の入力端に電気的に接続される。また、トランスミッションゲート42の出力端は、ノードh2を介して、保持容量44の他方の電極に電気的に接続される。
制御回路3は、各列のトランスミッションゲート42に対して、制御信号Gcpl及び制御信号/Gcplを共通に供給する。このため、各列のトランスミッションゲート42は、制御信号GcplがHレベルであるとき(制御信号/GcplがLレベルであるとき)に一斉にオンする。
各列の保持容量41の一方の電極は、ノードh2を介して、トランスミッションゲート34の出力端、及び、トランスミッションゲート42の入力端に電気的に接続される。そして、トランスミッションゲート34がオンした際、保持容量41の一方の電極には、トランスミッションゲート34の出力端を介してデータ信号Vd(j)が供給される。また、各列の保持容量41の他方の電極は、第1電源層63に接続される。第1電源層63には、低電位側の電源電位Vctが供給される。保持容量41の容量値をCrf2とする。
図4を参照して画素回路110について説明する。図4は画素回路110および駆動回路のデマルチプレクサーDM並びにレベル調整回路LMを示す回路図である。各画素回路110については電気的にみれば互いに同一構成なので、ここでは、i行目に位置し、且つ、j番目のグループのうち左端列の(3j−2)列目に位置する、i行(3j−2)列の画素回路110を例にとって説明する。なお、iは、画素回路110が配列する行を一般的に示す場合の記号であって、1以上m以下の整数である。
図4に示されるように、画素回路110は、PチャネルMOS型の駆動トランジスター121、書込みトランジスター122、補償トランジスター123、発光制御トランジスター124と、OLED130と、第2保持容量としての保持容量132とを含む。この画素回路110には、走査信号Gwr(i)、制御信号Gcmp(i)、Gel(i)が供給される。ここで、走査信号Gwr(i)、制御信号Gcmp(i)、Gel(i)は、それぞれi行目に対応して走査線駆動回路20によって供給されるものである。
なお、図2では図示省略したが、表示パネル2(表示部100)には、図2において横方向(X方向)に延在するm行の制御線143、および横方向に延在するm行の制御線144が設けられる。そして、走査線駆動回路20は、1、2、3、…、m行目の制御線143に対して、それぞれ、制御信号Gcmp(1)、Gcmp(2)、Gcmp(3)、…、Gcmp(m)を供給する。また、走査線駆動回路20は、1、2、3、…、m行目の制御線144に対して、それぞれ、制御信号Gel(1)、Gel(2)、Gel(3)、…、Gel(m)を供給する。すなわち、走査線駆動回路20は、i行目に位置する(3n)個の画素回路に対して、走査信号Gwr(i)、制御信号Gel(i)、Gcmp(i)を、それぞれ、i行目の走査線12、制御線143、144を介して、共通に供給する。
書込みトランジスター122は、ゲートがi行目の走査線12に電気的に接続され、ソースまたはドレインの一方が(3j−2)列目のデータ線14に電気的に接続されている。また、保持容量132は2つの電極を有する。書込みトランジスター122は、ソースまたはドレインの他方が、駆動トランジスター121のゲートと、保持容量132の一方の電極とに、それぞれ電気的に接続されている。すなわち、書込みトランジスター122は、駆動トランジスター121のゲートとデータ線14との間に電気的に接続され、駆動トランジスター121のゲートとデータ線14との間の電気的な接続を制御する。なお、以下において、駆動トランジスター121のゲート、駆動トランジスター121のソースまたはドレインの他方、および保持容量132の一方の電極を電気的に接続する配線を、ゲートノードgと称する場合がある。
駆動トランジスター121は、ソースが第2電源層としての給電線116に電気的に接続され、ドレインが発光制御トランジスター124のソースにそれぞれ電気的に接続されている。ここで、給電線116には、画素回路110において高位側の電源電位Velが給電される。この駆動トランジスター121は、駆動トランジスター121のゲートおよびソース間の電圧に応じた電流を流すトランジスターとして機能する。
補償トランジスター123は、ゲートが制御線143に電気的に接続され、制御信号Gcmp(i)が供給される。この補償トランジスター123は、ソースがデータ線14に電気的に接続され、ドレインが発光制御トランジスター124のソースにそれぞれ電気的に接続されている。補償トランジスター123は、後述する補償期間において、ゲートノードgの電位を所定の電位に補償するトランジスターとして機能する。詳しくは後述する。
発光制御トランジスター124は、ゲートが制御線144に電気的に接続され、制御信号Gel(i)が供給される。また、発光制御トランジスター124は、ドレインがOLED130のアノード130aに電気的に接続されている。この発光制御トランジスター124は、駆動トランジスター121のドレインと、OLED130のアノード130aとの間の電気的な接続を制御する。
本実施形態において表示パネル2はシリコン基板に形成されるので、駆動トランジスター121、書込みトランジスター122、補償トランジスター123、および発光制御トランジスター124の基板電位については電位Velとしている。
なお、駆動トランジスター121、書込みトランジスター122、補償トランジスター123、および発光制御トランジスター124のソース、ドレインは各トランジスターのチャネル型、電位の関係に応じて入れ替わってもよい。また、トランジスターは薄膜トランジスターであっても電界効果トランジスターであってもよい。
保持容量132は、一方の電極が駆動トランジスター121のゲートに電気的に接続され、他方の電極が給電線116に電気的に接続される。このため、保持容量132は、駆動トランジスター121のゲート・ソース間の電圧を保持する第2保持容量として機能する。なお、保持容量132の容量値をCpixと表記する。このとき、保持容量50の容量値Cdtと、保持容量44の容量値Crf1と、保持容量132の容量値Cpixとは、
Cdt>Crf1>>Cpix
となるように設定される。すなわち、CdtはCrf1よりも大きく、CpixはCdtおよびCrf1よりも十分に小さくなるように設定される。なお、保持容量132としては、駆動トランジスター121のゲートノードgに寄生する容量を用いても良いし、シリコン基板において互いに異なる導電層で絶縁層を挟持することによって形成される容量を用いても良い。
OLED130のアノード130aは、画素回路110毎に個別に設けられる画素電極である。これに対して、OLED130のカソードは、画素回路110のすべてにわたって共通に設けられる共通電極118であり、画素回路110において電源の低位側となる電位Vctに保たれている。OLED130は、上記シリコン基板において、アノード130aと光透過性を有するカソードとで白色有機EL層を挟持した素子である。そして、OLED130の出射側(カソード側)にはRGBのいずれかに対応したカラーフィルターが重ねられる。
このようなOLED130において、アノード130aからカソードに電流が流れると、アノード130aから注入された正孔とカソードから注入された電子とが有機EL層で再結合して励起子が生成され、白色光が発生する。このときに発生した白色光は、シリコン基板(アノード130a)とは反対側のカソードを透過し、カラーフィルターによる着色を経て、観察者側に視認される構成となっている。
<実施形態の動作>
図4ないし図8を参照して電気光学装置1の動作について説明する。図4ないし図8は電気光学装置1の画素回路110および駆動回路のデマルチプレクサーDM並びにレベル調整回路LMを示す回路図である。走査線駆動回路20は、走査信号Gwr(1)〜Gwr(m)を順次Lレベルに切り替えて、1フレームの期間において1〜m行目の走査線12を1水平走査期間(H)毎に順番に走査する。1水平走査期間(H)での動作は、各行の画素回路110にわたって共通である。そこで以下については、i行目が水平走査される走査期間において、特にi行(3j−2)列の画素回路110について着目して動作を説明する。
本実施形態ではi行目の走査期間は、大別すると、(a)発光期間、(b)初期化期間、(c)補償期間、(d)印加期間、(e)書込期間とに分けられる。1フレームの期間経過後に再びi行目の走査期間に至る。時間の順でいえば、発光期間→初期化期間→補償期間→印加期間→書込期間→発光期間というサイクルの繰り返しとなる。
なお、i行目に対し1行前の(i−1)行目に対応する走査信号Gwr(i-1)、制御信号Gel(i-1)、Gcmp(i-1)の各々は、i行目に対応する走査信号Gwr(i)、制御信号Gel(i)、Gcmp(i)よりも、それぞれ時間的に1水平走査期間(H)だけ時間的に先行した波形となる。
<発光期間>
説明の便宜上、初期化期間の前提となる発光期間から説明する。i行目の発光期間において、走査線駆動回路20は、i行目の走査線12に所定の第2電位V2を供給し、i行目の制御線144に所定の第1電位V1を供給し、i行目の制御線143に第2電位V2を供給する。なお、本実施形態では、第1電位V1は、第2電位V2よりも低く設定される。例えば、第1電位V1は、制御回路3が供給する制御信号(制御信号Gini等)のLレベルに相当するものであればよく、第2電位V2は、制御回路3が供給する制御信号のHレベルに相当するものであればよい。i行目の発光期間において、走査信号Gwr(i)はHレベルに設定され、制御信号Gel(i)はLレベルに設定され、制御信号Gcmp(i)はHレベルに設定される。
このため、i行(3j−2)列の画素回路110においては、発光制御トランジスター124がオンする一方、書込みトランジスター122、補償トランジスター123がオフする。したがって、駆動トランジスター121は、図4に示すように、ゲート・ソース間の電圧Vgsに応じた電流IdsをOLED130に供給する。後述するように、本実施形態において発光期間での電圧Vgsは、データ信号の電位をレベルシフト(圧縮)した値である。このため、OLED130には、階調レベルに応じた電流が駆動トランジスター121の閾値電圧を補償した状態で供給されることになる。
なお、i行目の発光期間は、i行目以外が水平走査される期間であるから、データ線14の電位は適宜変動する。ただし、i行目の画素回路110において、書込みトランジスター122がオフしているので、ここでは、データ線14の電位変動を考慮していない。また、図4においては、発光期間における動作説明で重要となる経路を太線で示している。
<初期化期間>
次にi行目の走査期間に至ると、まず、第1期間として(b)の初期化期間が開始する。i行目の初期化期間において、走査線駆動回路20は、i行目の走査線12に第2電位V2を供給して走査信号Gwr(i)をHレベルに設定し、i行目の制御線144に第2電位V2を供給して制御信号Gel(i)をHレベルに設定する。また、走査線駆動回路20は、i行目の制御線143に第2電位V2を供給して制御信号Gcmp(i)をHレベルに設定する。このため、i行(3j−2)列の画素回路110において、補償トランジスター123、発光制御トランジスター124がオフする。これによってOLED130に供給される電流の経路が遮断される。
一方、i行目の初期化期間において、制御回路3は、制御信号GiniをHレベルに、制御信号GcplをLレベルに、それぞれ設定する。このため、トランスミッションゲート43がオンした状態となる。これにより、保持容量44の一方の電極と給電線62とが電気的に接続され、図5に示すように、保持容量44の他方の電極(及びノードh1)は基準電位Viniに初期化される。
本実施形態において基準電位Viniは、(Vel−Vini)が駆動トランジスター121の閾値電圧|Vth|よりも大きくなるように設定される。なお、駆動トランジスター121はPチャネル型であるので、ソースの電位を基準とした閾値電圧Vthは負である。そこで、高低関係の説明で混乱が生じるのを防ぐために、閾値電圧については、絶対値の|Vth|で表し、大小関係で規定することにする。
<補償期間>
i行目の走査期間では、次に(c)補償期間となる。i行目の補償期間において、制御回路3は、制御信号GiniをHレベルに、制御信号GcplをLレベルに、それぞれ設定する。このため、トランスミッションゲート43はオンした状態となる。これにより、保持容量44の他方の電極と給電線62とが電気的に接続され、ノードh1が基準電位Viniに維持される。
また、i行目の補償期間において、走査線駆動回路20は、i行目の走査線12に第1電位V1を供給して走査信号Gwr(i)をLレベルに設定する。また、走査線駆動回路20は、i行目の制御線144に第2電位V2を供給して制御信号Gel(i)をHレベルに設定し、i行目の制御線143に第1電位V1を供給して制御信号Gcmp(i)をLレベルに設定する。このため、補償トランジスター123および書込みトランジスター122がオンするので、駆動トランジスター121はダイオード接続となる。これにより、図6に示すように、駆動トランジスター121にはドレイン電流が流れて、ゲートノードg及びデータ線14を充電する。詳細には、電流が、給電線116→駆動トランジスター121→補償トランジスター123→(3j−2)列目のデータ線14→書込みトランジスター122という経路で流れる。従って、駆動トランジスター121のオンによって互いに接続状態にあるデータ線14及びゲートノードgは、基準電位Viniから上昇する。ただし、上記経路に流れる電流は、ゲートノードgが電位(Vel−|Vth|)に近づくにつれて流れにくくなるので、補償期間の終了に至るまでに、データ線14及びゲートノードgは電位(Vel−|Vth|)で飽和する。
したがって、保持容量132は、補償期間の終了時には、駆動トランジスター121の閾値電圧|Vth|を保持することになる。
<印加期間>
補償期間の後、(d)印加期間に至る。i行目の印加期間において、走査線駆動回路20は、制御線143に供給する電位を、第1電位V1から第2電位V2に切り替えることで、制御信号Gcmp(i)をLレベルからHレベルに変更する。これにより、駆動トランジスター121のダイオード接続が解除される。
なお、走査線駆動回路20は、制御信号Gcmp(i)がLレベルからHレベルに変化する際の波形を、HレベルからLレベルに変化する際の波形に比べて緩やかにするように、制御線143に供給する電位を切り替える。
また、制御回路3は、制御信号GiniをHレベルからLレベルに変更するので、トランスミッションゲート43がオフする。このため、(3j−2)列目のデータ線14からi行(3j−2)列の画素回路110におけるゲートノードgに至るまでの経路は、フローティング状態になるものの、当該経路の電位は、保持容量50、132によって(Vel−|Vth|)に維持される。
データ信号供給回路70は、印加期間において、各デマルチプレクサーDM(1)、DM(2)、…、DM(n)、に対して、それぞれデータ信号Vd(1)、Vd(2)、…、Vd(n)、を供給する。すなわち、データ信号供給回路70は、j番目のグループでいえば、データ信号Vd(j)を順番に、i行(3j−2)列、i行(3j−1)列、i行(3j)列の画素の階調レベルに応じた電位に切り替える。
一方、制御回路3は、データ信号の電位の切り替えに合わせて制御信号Sel(1)、Sel(2)、Sel(3)を順番に排他的にHレベルとする。これによって、各デマルチプレクサーDMに設けられる3つのトランスミッションゲート34がそれぞれ左端列、中央列、右端列の順番でオンする。
初期化期間において、j番目のグループに属する左端列のトランスミッションゲート34が制御信号Sel(1)によってオンする場合、図7に示すように、データ信号Vd(j)が保持容量41の一方の電極に供給される。したがって、当該データ信号Vd(j)は、保持容量41によって保持される。
<書込期間>
印加期間の後、(e)書込期間に至る。i行目の書込期間において、制御回路3は、制御信号GiniをLレベルに、制御信号GcplをHレベルに、それぞれ設定する。このため、トランスミッションゲート42がオンするので、保持容量41に保持されたデータ信号Vd(j)が、図8に示すように、ノードh1を介して保持容量44の他方の電極に供給される。これにより、ノードh1および保持容量44の他方の電極は、基準電位Viniから変化する。
以下では、図9および図10を参照しつつ、書込期間の開始前後における、ゲートノードg、ノードh1、およびノードh2の電位の変化について詳述する。
図9は、書込期間の開始前における、ゲートノードg、ノードh1、およびノードh2の電位変化について説明するための説明図である。図10は、書込期間の開始後における、ゲートノードg、ノードh1、およびノードh2の電位変化について説明するための説明図である。図9および図10においては、トランスミッションゲート42をスイッチとして表している。
書込期間の開始前後におけるゲートノードgの電位変化量をΔV2とする。つまり、書込期間の開始後におけるゲートノードgの電位は(Vel−|Vth|+ΔV2)となる。また、書込期間の開始後におけるノードh1とノードh2の電位をV0とする。トランスミッションゲート42のオフ・オンの前後において、ノードh1とノードh2の電荷変化量は同じである。したがって、次式が成立する。
C3(V0-Vini)=Crf2(Vd(j)-V0)……(1)
ここで、C3は、保持容量50と保持容量44の合成容量である。
C3=1/((1/Cdt)+(1/Crf1)) ……(2)
また、ゲートノードgの電位変化量ΔV2は、ノードh1の電位変化量と、保持容量50と保持容量44の容量比で決まる。したがって、次式が成立する。
ΔV2=(V0-Vini)・(Crf1/(Cdt+Crf1))……(3)
保持容量50と保持容量44の容量比をkとする。
k=Crf1/(Cdt+Crf1) ……(4)
式(4)と式(2)から次式が成立する。
C3=kCdt ……(5)
式(5)と式(1)から次式が成立する。
kCdt(V0-Vini)=Crf2(Vd(j)-V0)……(6)
また、式(4)と式(3)から次式が成立する。
ΔV2=(V0-Vini)k……(7)
式(6)からV0は以下のようになる。
V0=(Crf2Vd(j)+ kCdtVini)/(kCdt+Crf2) ……(8)
式(8)と式(7)からゲートノードgの電位変化量ΔV2は以下のようになる。
ΔV2=Crf2(Vd(j)-Vini)k/(kCdt+Crf2)……(9)
式(9)から、保持容量41の容量Crf2と、容量比kに含まれる保持容量44の容量Crf1とを小さくしつつ、ゲートノードgの電位変化量ΔV2を所望の値にするためには、|Vd(j)-Vini|の値を大きくすればよいことがわかる。
そこで、本実施形態においては、書込期間の開始後におけるゲートノードgの電位(Vel−|Vth|+ΔV2)を増加させる第1の階調である黒表示時では、基準電位Viniとして、従前よりも電位を低減させた第1の基準電位を用いる。また、書込期間の開始後におけるゲートノードgの電位(Vel−|Vth|+ΔV2)を減少させる第2の階調である白表示時では、基準電位Viniとして、従前よりも電位を増加させた第2の基準電位を用いる。そして、第3の階調である中間調表示時では、基準電位Viniとして、従前と同じ電位の第3の基準電位を用いる。
一例として、高位側の電源電位Velを8V、駆動トランジスター121の閾値電圧Vthを1.5V、保持容量50の容量Cdtを2.7pF、保持容量44の容量Crf1を0.9pF、保持容量41の容量Crf2を1.2pFとした場合の基準電位Viniを説明する。
図11ないし図13は、それぞれ、中間調表示時、黒表示時、および白表示時における各ノードの電位と、基準電位Viniと、データ信号Vd(j)の電位とを示す図である。
図11に示すように、第3の階調である中間調表示時のデータ信号Vd(j)が例えば4Vとすると、基準電位Viniは第3の基準電位としての4Vとする。また、図12に示すように、第1の階調である黒表示時のデータ信号Vd(j)が例えば6Vとすると、基準電位Viniは第1の基準電位としての3Vとする。この場合、書込期間の開始後における黒表示時のゲートノードgの電位(Vel−|Vth|+ΔV2)は6.98Vになる。さらに、図13に示すように、第2の階調である白表示時のデータ信号Vd(j)が例えば2Vとすると、基準電位Viniは第2の基準電位としての5Vとする。この場合、書込期間の開始後における白表示時のゲートノードgの電位(Vel−|Vth|+ΔV2)は6.02Vになる。
図14ないし図16に、比較例の中間調表示時、黒表示時、および白表示時における各ノードの電位を示す。図14ないし図16に示すように、比較例においては、中間調表示時、黒表示時、および白表示時において、基準電位Viniはいずれも4Vである。この場合、書込期間の開始後における黒表示時のゲートノードgの電位(Vel−|Vth|+ΔV2)として6.98Vを得るためには、保持容量44の容量Crf1は1.5pF、保持容量41の容量Crf2は2.0pFにする必要がある。同様に、書込期間の開始後における白表示時のゲートノードgの電位(Vel−|Vth|+ΔV2)として6.02Vを得るためには、保持容量44の容量Crf1は1.5pF、保持容量41の容量Crf2は2.0pFにする必要がある。
本実施形態の例を示す図12および図13と、比較例の図15および図16を比較すると明らかなように、書込期間の開始後における黒表示時と白表示時のゲートノードgの電位(Vel−|Vth|+ΔV2)は、いずれも同じ値となっている。しかしながら、本実施形態においては、基準電位Viniとして、第1の階調である黒表示時は3V、第3の階調である中間調表示時は4V、および第2の階調である白表示時は5Vの3値を用いている。したがって、保持容量44の容量Crf1は1.5pFから0.9pFに縮小されている。同様に、保持容量41の容量Crf2は2.0pFから1.2pFに縮小されている。
以上のように、本発明によれば、初期化期間における保持容量44のノードh1の電位を決定する基準電位Viniとして、指定階調が第1の階調の際は第1の基準電位を用い、指定階調が第2の階調の際は第2の基準電位を用いる。また、基準電位として、指定階調が第1の階調と第2の階調の中間の階調の際は第3の基準電位を用いる。その結果、書込期間において電気的に導通する保持容量44と保持容量41のそれぞれの容量を縮小することができる。したがって、表示パネル2の回路規模を小さくすることができる。
<第2実施形態>
次に、本発明の第2実施形態について図17ないし図19を参照しつつ説明する。図17ないし図19は、それぞれ、中間調表示時、黒表示時、および白表示時における各ノードの電位と、基準電位Viniと、データ信号Vd(j)の電位とを示す図である。
本実施形態においては、黒表示時と白表示時におけるデータ信号Vd(j)の電位の振幅を、第1実施形態における当該振幅よりも小さくする。
本実施形態では、第1実施形態と同様に、高位側の電源電位Velは8V、駆動トランジスター121の閾値電圧Vthは1.5Vとする。各保持容量の容量は、図14ないし図16に示す比較例と同様とする。即ち、保持容量50の容量Cdtは2.7pF、保持容量44の容量Crf1は1.5pF、保持容量41の容量Crf2は2.0pFとする。
基準電位Viniは、第1実施形態と同様である。即ち、図17ないし図19に示すように、第1の階調である黒表示時の基準電位Viniは第1の基準電位として3V、第2の階調である白表示時の基準電位Viniは第2の基準電位として5Vを用いる。また、第3の階調である中間調表示時の基準電位Viniは第3の基準電位として4Vを用いる。
本実施形態では、保持容量44の容量Crf1と、保持容量41の容量Crf2とを、比較例と同じにする代わりに、図18に示すように、第1の階調である黒表示時のデータ信号Vd(j)を5Vとする。また、図19に示すように、第2の階調である白表示時のデータ信号Vd(j)を3Vとする。書込期間の開始後における黒表示時のゲートノードgの電位(Vel−|Vth|+ΔV2)は、第1実施形態と同様に6.98Vである。また、書込期間の開始後における白表示時のゲートノードgの電位(Vel−|Vth|+ΔV2)も第1実施形態と同様に6.02Vである。
図12および図13に示すように、第1実施形態では、黒表示時と白表示時のデータ信号Vd(j)の振幅は、6V−2Vで4Vとなっている。しかし、第2実施形態では、図18および図19に示すように、黒表示時と白表示時のデータ信号Vd(j)の振幅は、5V−3Vで2Vとなっている。
以上のように、本発明によれば、初期化期間における保持容量44のノードh1の電位を決定する基準電位Viniとして、指定階調が第1の階調の際は第1の基準電位を用い、指定階調が第2の階調の際は第2の基準電位を用いる。また、基準電位として、指定階調が第1の階調と第2の階調の中間の階調の際は第3の基準電位を用いる。その結果、第1の階調である黒表示時と第2の階調である白表示時のデータ信号Vd(j)の振幅を、縮小することができる。したがって、表示パネル2の回路規模を小さくすることができる。
<変形例>
本発明は、上述した実施形態に限定されるものではなく、例えば次に述べるような各種の変形が可能である。また、次に述べる変形の態様は、任意に選択された一または複数を、適宜に組み合わせることもできる。
<変形例1>
上述した実施形態では、画素回路110における駆動トランジスター121、書込みトランジスター122、補償トランジスター123、発光制御トランジスター124をPチャネル型で統一したが、Nチャネル型で統一しても良い。また、Pチャネル型及びNチャネル型を適宜組み合わせても良い。
図20は、駆動トランジスター121、書込みトランジスター122、補償トランジスター123、発光制御トランジスター124をNチャネル型で統一した例である。この場合には、駆動トランジスター121のゲートとソースとの間に接続された保持容量133と、駆動トランジスター121のソースと第1電源層63との間に接続された保持容量134とを設ける。第1電源層63は、低電位側の電源電位Vctが供給される。
各トランジスターをNチャネル型で統一する場合には、上述した実施形態におけるデータ信号Vd(j)とは正負が逆転した電位を、各画素回路110に供給すればよい。また、この場合、各トランジスターのソースおよびドレインは、上述した実施形態とは逆転した関係となる。
この場合でも、上述した実施形態のように、初期化期間における保持容量44のノードh1の電位を決定する基準電位Viniとして、指定階調が第1の階調の際は第1の基準電位を用い、指定階調が第2の階調の際は第2の基準電位を用いる。また、基準電位として、指定階調が第1の階調と第2の階調の中間の階調の際は第3の基準電位を用いる。その結果、書込期間において電気的に導通する保持容量44と保持容量41のそれぞれの容量を縮小することができる。あるいは、第1の階調である黒表示時と第2の階調である白表示時のデータ信号Vd(j)の振幅を、縮小することができる。したがって、表示パネル2の回路規模を小さくすることができる。
なお、上述した実施形態及び変形例では、各トランジスターはMOS型のトランジスターとしたが、薄膜トランジスターであってもよい。
<変形例2>
上述した実施形態及び変形例では、保持容量44のノードh1に基準電位Viniを供給する第1スイッチング素子として、トランスミッションゲート43を用いた。しかし、本発明はこの構成に限定される訳ではなく、トランスミッションゲート43の代わりにトランジスターを用いてもよい。
<変形例3>
上述した実施形態及び変形例では、発光制御トランジスター124を設けた構成について説明したが、図21に示すように、発光制御トランジスター124は省略することも可能である。また、上述した実施形態及び変形例では、補償トランジスター123の一端をデータ線14に接続した構成について説明したが、当該一端を駆動トランジスター121のゲートに接続するようにしてもよい。さらに、OLED130のアノード130aと、制御線との間に、リセット電位を供給するためのトランジスターを設けてもよい。
<変形例4>
上述した実施形態及び変形例では、電気光学素子として発光素子であるOLEDを例示したが、例えば無機発光ダイオードやLED(Light Emitting Diode)など、電流に応じた輝度で発光するものであれば良い。
<応用例>
本発明は、各種の電子機器に利用され得る。図22から図24は、本発明の適用対象となる電子機器の具体的な形態を例示するものである。
図22は本発明の電気光学装置を採用した電子機器としてのヘッドマウントディスプレイの外観を示す斜視図である。図22に示されるように、ヘッドマウントディスプレイ300は、外観的には、一般的な眼鏡と同様にテンプル310や、ブリッジ320、投射光学系301L、301Rを有する。図示を省略するが、ブリッジ320近傍であって投射光学系301L,301Rの奥側には、左眼用の電気光学装置1と、右眼用の電気光学装置1とが設けられる。
図23は、電気光学装置を採用した可搬型のパーソナルコンピューターの斜視図である。パーソナルコンピューター2000は、各種の画像を表示する電気光学装置1と、電源スイッチ2001やキーボード2002が設置された本体部2010とを具備する。
図24は、携帯電話機の斜視図である。携帯電話機3000は、複数の操作ボタン3001およびスクロールボタン3002と、各種の画像を表示する電気光学装置1とを備える。スクロールボタン3002を操作することによって、電気光学装置1に表示される画面がスクロールされる。本発明はこのような携帯電話機にも適用可能である。
なお、本発明が適用される電子機器としては、図22から図24に例示した機器のほか、携帯情報端末(PDA:Personal Digital Assistants)が挙げられる。その他にも、デジタルスチルカメラ,テレビ,ビデオカメラ,カーナビゲーション装置,車載用の表示器(インパネ),電子手帳,電子ペーパー,電卓,ワードプロセッサー,ワークステーション,テレビ電話,POS端末が挙げられる。さらに、プリンター,スキャナー,複写機,ビデオプレーヤー,タッチパネルを備えた機器等などが挙げられる。
1…電気光学装置、2…表示パネル、3…制御回路、10…データ線駆動回路、12…走査線、14…データ線、20…走査線駆動回路、41,44,50…保持容量、42,43…トランスミッションゲート、70…データ信号供給回路、100…表示部、110…画素回路、116…給電線、121…駆動トランジスター、122…書込みトランジスター、123…補償トランジスター、124…発光制御トランジスター、130…OLED、132…保持容量、LM…レベル調整回路、DM…デマルチプレクサー。

Claims (5)

  1. 第1の方向に延在する第1の導電層と、
    前記第1の方向と交差した第2の方向に延在する第2の導電層と、
    前記第2の導電層に供給される電位を保持する第1保持容量と、
    前記第1の導電層と前記第2の導電層との各々の交差に対応して配列された画素回路と、
    前記画素回路を駆動する駆動回路と、を備え、
    前記画素回路は、
    一端が第1電源層に接続された発光素子と、
    ソースまたはドレインが第2電源層と接続され、前記第2電源層に接続されたソースまたはドレイン以外のソースまたはドレインが前記発光素子の他端と直接または間接に接続され、前記発光素子に対する駆動電流を生成する駆動トランジスターと、
    一端が前記駆動トランジスターのゲートと接続され、他端が前記駆動トランジスターの前記ソースまたはドレインと接続され、指定階調のデータ信号の電位に対応する電位を保持する第2保持容量と、
    ゲートが前記第1の導電層と接続され、ソースまたはドレインが前記前記駆動トランジスターのゲートと前記第2保持容量との接続ノードに接続され、前記接続ノードに接続されるソースまたはドレイン以外のソースまたはドレインが前記第2の導電層に接続される書込みトランジスターと、を備え、
    前記駆動回路は、
    一端が前記第2の導電層に接続される第3保持容量と、
    前記第3保持容量の他端に接続され、当該他端に基準電位を供給する第1スイッチング素子と、
    前記指定階調のデータ信号の電位を保持する第4保持容量と、
    前記第3保持容量の前記他端と、前記第4保持容量の一端との導通状態をスイッチングする第2スイッチング素子と、を備え、
    前記基準電位として、前記指定階調が第1の階調の際は第1の基準電位を用い、前記指定階調が第2の階調の際は第2の基準電位を用いる、
    ことを特徴とする電気光学装置。
  2. 前記駆動回路は、前記基準電位として、前記指定階調が前記第1の階調と前記第2の階調の中間の階調の際は第3の基準電位を用いる、
    ことを特徴とする請求項1に記載の電気光学装置。
  3. 第1の方向に延在する第1の導電層と、前記第1の方向と交差した第2の方向に延在する第2の導電層と、前記第2の導電層に供給される電位を保持する第1保持容量と、前記第1の導電層と前記第2の導電層との各々の交差に対応して配列された画素回路と、前記画素回路を駆動する駆動回路と、を備え、前記画素回路は、一端が第1電源層に接続された発光素子と、ソースまたはドレインが第2電源層と接続され、前記第2電源層に接続されたソースまたはドレイン以外のソースまたはドレインが前記発光素子の他端と直接または間接に接続され、前記発光素子に対する駆動電流を生成する駆動トランジスターと、一端が前記駆動トランジスターのゲートと接続され、他端が前記駆動トランジスターの前記ソースまたはドレインと接続され、指定階調のデータ信号の電位に対応する電位を保持する第2保持容量と、ゲートが前記第1の導電層と接続され、ソースまたはドレインが前記前記駆動トランジスターのゲートと前記第2保持容量との接続ノードに接続され、前記接続ノードに接続されるソースまたはドレイン以外のソースまたはドレインが前記第2の導電層に接続される書込みトランジスターと、を備え、前記駆動回路は、一端が前記第2の導電層に接続される第3保持容量と、前記第3保持容量の他端に接続され、当該他端に基準電位を供給する第1スイッチング素子と、前記指定階調のデータ信号の電位を保持する第4保持容量と、前記第3保持容量の前記他端と、前記第4保持容量の一端との導通状態をスイッチングする第2スイッチング素子と、を備える電気光学装置の駆動方法であって、
    前記指定階調が第1の階調の際は、前記第1スイッチング素子により前記基準電位として第1の基準電位を前記第3保持容量の前記他端に供給し、
    前記指定階調が第2の階調の際は、前記第1スイッチング素子により前記基準電位として第2の基準電位を前記第3保持容量の前記他端に供給し、
    前記第2スイッチング素子により、前記第3保持容量の前記他端と、前記第4保持容量の一端とを導通させる、
    ことを特徴とする電気光学装置の駆動方法。
  4. 前記指定階調が前記第1の階調と前記第2の階調の中間の階調の際は、前記第1スイッチング素子により前記基準電位として第3の基準電位を前記第3保持容量の前記他端に供給する、
    ことを特徴とする請求項3に記載の電気光学装置の駆動方法。
  5. 請求項1または請求項2に記載の電気光学装置を備える電子機器。
JP2016123529A 2016-06-22 2016-06-22 電気光学装置、電気光学装置の駆動方法、および電子機器 Pending JP2017227755A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016123529A JP2017227755A (ja) 2016-06-22 2016-06-22 電気光学装置、電気光学装置の駆動方法、および電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016123529A JP2017227755A (ja) 2016-06-22 2016-06-22 電気光学装置、電気光学装置の駆動方法、および電子機器

Publications (1)

Publication Number Publication Date
JP2017227755A true JP2017227755A (ja) 2017-12-28

Family

ID=60891554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016123529A Pending JP2017227755A (ja) 2016-06-22 2016-06-22 電気光学装置、電気光学装置の駆動方法、および電子機器

Country Status (1)

Country Link
JP (1) JP2017227755A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110176210A (zh) * 2018-07-27 2019-08-27 京东方科技集团股份有限公司 显示驱动、压缩解压缩方法及装置、显示装置、存储介质
WO2020042533A1 (zh) * 2018-08-31 2020-03-05 武汉华星光电技术有限公司 显示面板
WO2020228524A1 (zh) * 2019-05-15 2020-11-19 京东方科技集团股份有限公司 像素驱动电路和显示面板
WO2021212981A1 (zh) * 2020-04-23 2021-10-28 京东方科技集团股份有限公司 显示面板及其驱动方法、显示装置
US11322097B2 (en) 2018-07-03 2022-05-03 Samsung Display Co., Ltd. Organic light emitting display device and method of driving the same
JP7388409B2 (ja) 2020-01-17 2023-11-29 セイコーエプソン株式会社 表示装置および電子機器

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11322097B2 (en) 2018-07-03 2022-05-03 Samsung Display Co., Ltd. Organic light emitting display device and method of driving the same
CN110176210A (zh) * 2018-07-27 2019-08-27 京东方科技集团股份有限公司 显示驱动、压缩解压缩方法及装置、显示装置、存储介质
US11107415B2 (en) 2018-07-27 2021-08-31 Boe Technology Group Co., Ltd. Display driving method and device, compression and decompression methods and devices, display device and storage medium
WO2020042533A1 (zh) * 2018-08-31 2020-03-05 武汉华星光电技术有限公司 显示面板
US11605326B2 (en) 2018-08-31 2023-03-14 Wuhan China Star Optoelectronics Technology Co., Ltd. Display panel
WO2020228524A1 (zh) * 2019-05-15 2020-11-19 京东方科技集团股份有限公司 像素驱动电路和显示面板
US11694602B2 (en) 2019-05-15 2023-07-04 Boe Technology Group Co., Ltd. Pixel drive circuit and display panel
JP7388409B2 (ja) 2020-01-17 2023-11-29 セイコーエプソン株式会社 表示装置および電子機器
WO2021212981A1 (zh) * 2020-04-23 2021-10-28 京东方科技集团股份有限公司 显示面板及其驱动方法、显示装置
US11900873B2 (en) 2020-04-23 2024-02-13 Hefei Boe Joint Technology Co., Ltd. Display panels, methods of driving the same, and display devices

Similar Documents

Publication Publication Date Title
US10769996B2 (en) Electro-optical device, electronic apparatus, and method of driving electro-optical device
US20200234643A1 (en) Electro-optical device, driving method of electro-optical device and electronic apparatus
US10002563B2 (en) Electro-optical device having pixel circuit and driving circuit, driving method of electro-optical device and electronic apparatus
US10186204B2 (en) Electro-optical device and electronic apparatus
JP5887973B2 (ja) 電気光学装置、電気光学装置の駆動方法および電子機器
JP2017227755A (ja) 電気光学装置、電気光学装置の駆動方法、および電子機器
JP6911406B2 (ja) 画素回路、電気光学装置および電子機器
US10964260B2 (en) Electro-optical device, driving method for electro-optical device, and electronic apparatus
US11132950B2 (en) Electro-optical device and electronic apparatus
JP2018081178A (ja) 電気光学装置、電子機器、および電気光学装置の駆動方法
JP6581951B2 (ja) 電気光学装置の駆動方法
JP5845963B2 (ja) 電気光学装置、電気光学装置の駆動方法および電子機器
JP6052365B2 (ja) 電気光学装置および電子機器
JP2013088638A (ja) 電気光学装置および電子機器
JP6626802B2 (ja) 電気光学装置および電子機器
JP2019008325A (ja) 電気光学装置および電子機器
JP2015152775A (ja) 電気光学装置および電子機器
JP2015004907A (ja) 電気光学装置、電気光学装置の駆動方法および電子機器