JP2017207440A - ジャイロセンサ装置 - Google Patents

ジャイロセンサ装置 Download PDF

Info

Publication number
JP2017207440A
JP2017207440A JP2016101565A JP2016101565A JP2017207440A JP 2017207440 A JP2017207440 A JP 2017207440A JP 2016101565 A JP2016101565 A JP 2016101565A JP 2016101565 A JP2016101565 A JP 2016101565A JP 2017207440 A JP2017207440 A JP 2017207440A
Authority
JP
Japan
Prior art keywords
signal
vibration
detection
pulse
vibration signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016101565A
Other languages
English (en)
Other versions
JP6705283B2 (ja
Inventor
渡辺 高元
Takamoto Watanabe
高元 渡辺
重徳 山内
Shigenori Yamauchi
重徳 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016101565A priority Critical patent/JP6705283B2/ja
Priority to US15/600,504 priority patent/US10520311B2/en
Priority to DE102017208561.4A priority patent/DE102017208561A1/de
Publication of JP2017207440A publication Critical patent/JP2017207440A/ja
Application granted granted Critical
Publication of JP6705283B2 publication Critical patent/JP6705283B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5607Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks
    • G01C19/5614Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/02Rotary gyroscopes
    • G01C19/04Details
    • G01C19/06Rotors
    • G01C19/065Means for measuring or controlling of rotors' angular velocity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5776Signal processing not specific to any of the devices covered by groups G01C19/5607 - G01C19/5719
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00013Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00013Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
    • H03K2005/00019Variable delay
    • H03K2005/00058Variable delay controlled by a digital setting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Gyroscopes (AREA)

Abstract

【課題】小型化、高精度化、高感度化が可能なジャイロセンサ装置を提供する。【解決手段】ジャイロセンサ装置1は、振動式ジャイロセンサのセンシングエレメント(以下、エレメント)3に、該エレメント3を駆動軸方向に振動させるための駆動信号を供給する駆動信号発生回路5と、第1振動信号Vmと第2振動信号Vcとが入力される処理部11と、を備える。第1振動信号Vmは、エレメント3の駆動軸方向における振動の振幅である駆動振動振幅に比例した振幅を有する。第2振動信号Vcは、エレメント3の角速度に起因して該エレメント3に発生するコリオリ力に比例した振幅を有する。そして、処理部11は、第1振動信号Vmと第2振動信号Vcとに基づいて、駆動振動振幅に対するコリオリ力の比率を算出し、その算出結果を、角速度検出結果Dsoとして出力する。【選択図】図1

Description

本開示は、ジャイロセンサ装置に関する。
振動式ジャイロセンサを用いて角速度を検出するジャイロセンサ装置として、例えば特許文献1に記載の装置がある。特許文献1に記載の装置は、センシングエレメントとしての圧電素子に、駆動信号を供給する回路として、温度補償回路付き移相回路を備えている。その温度補償回路付き移相回路は、圧電素子からの出力電圧が温度変化に依らず常時一定となるように、圧電素子への駆動信号を制御している。
特開平9−33259号公報
振動式ジャイロセンサでは、角速度を検出するためのセンシングエレメントに駆動信号が供給されることで、該センシングエレメントが駆動軸方向に振動する。センシングエレメントの駆動軸方向の振動を、駆動振動といい、その駆動振動の振幅を、駆動振動振幅という。そして、駆動軸方向に振動するセンシングエレメントが、駆動軸方向と直交する方向の回転軸を中心に回転すると、すなわちセンシングエレメントに角速度が生じると、駆動軸方向と回転軸との両方に直交する検出軸方向に、コリオリ力が生じる。このコリオリ力により、センシングエレメントには、検出軸方向の振動が生じる。センシングエレメントの検出軸方向の振動を、検出振動といい、その検出振動の振幅を、検出振動振幅という。
検出振動振幅は、コリオリ力に比例し、コリオリ力は、駆動振動の速度(以下、駆動振動速度)と角速度とに比例する。また、駆動振動振幅は、駆動振動速度に比例する。
よって、特許文献1等に記載の従来のジャイロセンサ装置では、駆動振動振幅が一定となるように駆動信号を調節するフィードバック制御を行うことで、駆動振動速度が常に一定であると仮定することにより、検出振動振幅が常に真の角速度を表す、と見なしている。そして、その検出振動振幅を電気的に検出することで、角速度を検出している。
このような従来のジャイロセンサ装置では、下記(1)〜(3)の問題がある。
(1)駆動振動振幅を一定にするフィーバック制御を実施するためには、例えば、実際の駆動振動振幅と目標値とをリアルタイムで比較する比較回路と、比較回路による比較結果に応じてセンシングエレメントへの駆動信号を調節するAGC回路とが、少なくとも必要になる。このような比較回路とAGC回路の回路規模は大きくなるため、ジャイロセンサ装置を小型化することができず、その結果、消費電力の増大やコストアップも招く。なお、AGCは「オートマチックゲインコントロール」の略である。特に、近年のIoT応用システムでは、多数の高精度センサが必要となるが、従来のジャイロセンサ装置では、小型化の要求を達成できないため、IoT応用システムへの適用が困難になる。なお、IoTは「Internet−of−Things」の略である。
(2)駆動振動振幅を一定にするフィーバック制御では、センシングエレメントの共振周波数が温度や時間経過等の要因で変化して駆動振動速度が変化することによる検出感度の変化は、補正することができない。このため、従来のジャイロセンサ装置では、例えば自動車の自動運転システムなど、高精度が要求されるシステムへの適用が困難となる。
(3)駆動振動振幅を一定とするため、センシングエレメントの有する最大振動振幅を用いることができない。つまり、センシングエレメントのセンシング能力に常にブレーキをかけた状態となるため、センシングエレメントの有する最大感度による角度検出はできない。この結果、目標となる高感度を達成するためには、センシングエレメント自体を必要以上に高感度設計する必要性が生じ、小型化や低コスト化の妨げとなる。
そこで、本開示は、小型化、高精度化、高感度化が可能なジャイロセンサ装置を提供する。
本開示の一態様はジャイロセンサ装置である。このジャイロセンサ装置は、駆動部(5)と、処理部(11,53,73)と、を備える。
駆動部は、振動式ジャイロセンサのセンシングエレメント(3)に、該センシングエレメントを駆動軸方向に振動させるための駆動信号を供給する。
処理部には、第1振動信号と、第2振動信号とが入力される。第1振動信号は、センシングエレメントの駆動軸方向における振動の振幅である駆動振動振幅に比例した振幅を有する。第2振動信号は、センシングエレメントの角速度に起因して該センシングエレメントに発生するコリオリ力に比例した振幅を有する。そして、処理部は、第1振動信号と第2振動信号とに基づいて、駆動振動振幅に対するコリオリ力の比率を算出し、その算出結果を、センシングエレメントの角速度の検出結果として出力する。
このジャイロセンサ装置によれば、駆動振動振幅を一定にするフィードバック制御を行うことなく、温度変化によって駆動振動振幅が変化しても、換言すると駆動振動速度が変化しても、精度の良い角速度の検出結果を得ることができる。つまり、温度変化によって駆動振動振幅が変化すると、発生するコリオリ力も変化するが、角速度が同じであれば、駆動振動振幅に対するコリオリ力の比率であって、処理部が算出する角速度の検出結果は変わらない。
よって、上記フィードバック制御のための回路が不要になることによる小型化と、温度変化に対して角速度を精度良く検出することができるという高精度化とを、実現することができる。
また、センシングエレメントの共振周波数が温度変化等で変化して駆動振動速度が変化し、その結果、駆動振動振幅が変化しても、角速度が同じであれば、駆動振動振幅に対するコリオリ力の比率であって、処理部が算出する角速度の検出結果は変わらない。よって、センシングエレメントの共振周波数の変化に伴う検出感度の変化も補正することができる。
更に、駆動振動振幅を、センシングエレメントの有する最大の駆動振動振幅にすることが可能となる。よって、角速度の検出について、高感度化を実現することができる。
なお、この欄及び特許請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、本発明の技術的範囲を限定するものではない。
第1実施態様のジャイロセンサ装置の構成を示すブロック図である。 第1パルス遅延回路及び第1パルス位置検出回路の構成を表す構成図である。 遅延ユニットの構成を表す構成図である。 第1制御部の動作を説明する説明図である。 第2実施形態のジャイロセンサ装置の構成を示すブロック図である。 第3実施形態のジャイロセンサ装置の構成を示すブロック図である。
以下、図面を参照しながら、本開示を実施するための形態を説明する。
[1.第1実施形態]
[1−1.構成]
図1に示す第1実施形態のジャイロセンサ装置1は、例えば乗用車等の車両に搭載される。ジャイロセンサ装置1は、振動式ジャイロセンサのセンシングエレメント(以下、エレメント)3と、駆動信号発生回路5と、を備える。
エレメント3は、例えば音叉型のエレメントである。エレメント3は、駆動信号発生回路5が出力する所定周波数の駆動信号Vdが供給されることにより、駆動軸方向に振動する。この駆動軸方向の振動が駆動振動である。本実施形態では、図1における左右方向をx軸方向としており、このx軸方向が、駆動軸方向である。
そして、駆動軸方向に振動するエレメント3が、駆動軸方向と直交する方向の回転軸を中心に回転すると、すなわちエレメント3に角速度が生じると、駆動軸方向と回転軸との両方に直交する検出軸方向に、コリオリ力fcが生じる。本実施形態では、図1における前後方向をy軸方向としており、このy軸方向が、検出軸方向である。
コリオリ力fcは、エレメント3の駆動振動速度と角速度とに比例する。駆動振動振幅は、駆動振動速度に比例するため、コリオリ力fcは、エレメント3の駆動振動振幅と角速度とに比例する。このコリオリ力fcにより、エレメント3には、検出軸方向の振動(すなわち、検出振動)が生じる。そして、検出振動振幅はコリオリ力fcに比例する。
また、ジャイロセンサ装置1は、第1振動信号出力回路7と、第2振動信号出力回路9と、を備える。
エレメント3のモニタ用電極には、駆動振動に応じた電荷の変化が現れる。そして、第1振動信号出力回路7は、モニタ用電極の電荷の変化を電圧信号に変換することにより、第1振動信号Vmを出力する。第1振動信号Vmは、0Vよりも大きい所定の振動中心電圧Vzmを中心にして振動すると共に、駆動振動振幅に比例した振幅を有する信号である。第1振動信号Vmの周波数は、駆動信号Vdの周波数と同じである。
また、エレメント3の検出用電極には、検出振動に応じた電荷の変化が現れる。そして、第2振動信号出力回路9は、検出用電極の電荷の変化を電圧信号に変換することにより、第2振動信号Vcを出力する。第2振動信号Vcは、0Vよりも大きい所定の振動中心電圧Vzcを中心にして振動すると共に、検出振動振幅に比例した振幅を有する信号である。検出振動振幅は、コリオリ力fcに比例するため、第2振動信号Vcの振幅はコリオリ力fcに比例する。よって、第2振動信号Vcの振幅は、駆動振動振幅と角速度とに比例する。また、第2振動信号Vcの周波数は、第1振動信号Vmの周波数と同じである。また、第1振動信号Vmと第2振動信号Vcとの位相は、90度ずれている。なお、第1振動信号Vmの振動中心電圧Vzmと、第2振動信号Vcの振動中心電圧Vzcは、同じであっても、異なっていても、どちらでも良い。
また、ジャイロセンサ装置1は、処理部11を備える。処理部11には、第1振動信号Vmと、第2振動信号Vcとが、入力される。
処理部11は、第1振動信号Vmと第2振動信号Vcとに基づいて、駆動振動振幅に対するコリオリ力fcの比率を算出し、その算出結果をエレメント3の角速度の検出結果(以下、角速度検出結果)Dsoとして出力する。
処理部11は、上記比率を算出するための構成要素として、第1検出部21と、第2検出部22と、比率算出部23と、を備える。
第1検出部21は、第1振動信号Vmから、駆動振動振幅を表す第1検出信号Dmを出力する。第2検出部22は、第2振動信号Vcから、コリオリ力fcを表す第2検出信号Dcを出力する。本実施形態において、第1検出信号Dmと第2検出信号Dcは、デジタル信号である。比率算出部23には、第1検出信号Dmと第2検出信号Dcとが入力される。比率算出部23の動作については後で説明する。
第1検出部21は、第1検出信号Dmを出力するための構成要素として、第1パルス遅延回路31を備える。更に、第1検出部21は、第1パルス位置検出回路32と、第1制御部33と、第1演算部34と、を備える。
図2に示すように、第1パルス遅延回路31は、入力されるパルス信号(以下、パルス)を出力側に伝播させる速度(以下、パルス伝播速度)が第1振動信号Vmの電圧値に比例して大きくなるように構成された複数の遅延ユニット35を備える。そして、その複数の遅延ユニット35は直列に接続されている。
具体的には、図2及び図3に示すように、第1パルス遅延回路31を構成するn個の遅延ユニット35のそれぞれは、インバータゲート回路36を2段直列に接続したものである。なお、nは2以上の整数である。そして、遅延ユニット35の電源Vin、すなわちインバータゲート回路36の電源Vinとして、第1振動信号Vmが供給される。このため、各遅延ユニット35でのパルス伝播速度は、第1振動信号Vmによって制御される。具体的には、各遅延ユニット35でのパルス伝播速度は、第1振動信号Vmの電圧値に比例して大きくなる。
そして、第1パルス遅延回路31には、外部からハイのパルスPaが入力される。そして、そのパルスPaは、第1パルス遅延回路31を構成するn個の遅延ユニット35のうち、初段の遅延ユニット35に入力される。よって、直列に接続された各遅延ユニット35からは、その遅延ユニット35をパルスPaが通過したタイミングで、そのパルスPaが出力される。以下では、各遅延ユニット35の出力信号P1〜Pnのことを、遅延パルス群という。
また、図2に示すように、第1パルス位置検出回路32は、ラッチ回路36と、エンコーダ37と、を備える。
第1パルス位置検出回路32には、外部からクロックCKaが入力される。そして、そのクロックCKaは、ラッチ回路36に入力される。
ラッチ回路36は、クロックCKaの例えば立ち上がりタイミングで、第1パルス遅延回路31からの遅延パルス群P1〜Pnの状態を記憶する。遅延パルス群P1〜Pnの状態とは、ハイまたはローの状態である。
エンコーダ37は、ラッチ回路36が記憶した遅延パルス群P1〜Pnの状態から、パルスPaが通過した遅延ユニット35の数を表すデジタル信号を出力する。このエンコーダ37が出力するデジタル信号が、第1パルス位置検出回路32の出力信号Do1となる。
よって、第1パルス遅延回路31にハイのパルスPaが入力されてからクロックCKaに立ち上がりエッジが生じるまでの期間にパルスPaが通過した遅延ユニット35の数を表すデジタル信号が、第1パルス位置検出回路32の出力信号Do1となる。また、出力信号Do1は、上記期間における第1振動信号Vmの積分値をデジタル値に変換した信号でもある。
第1制御部33は、第1パルス遅延回路31へのパルスPaの出力と、第1パルス位置検出回路32へのクロックCKaの出力とを、少なくとも行う。クロックCKaは第1演算部34にも入力される。そして、第1演算部34は、第1パルス位置検出回路32の出力信号Do1から、第1検出信号Dmを生成して出力する。第1制御部33と第1演算部34の動作については、後で説明する。
第2検出部22は、第2検出信号Dcを出力するための構成要素として、第2パルス遅延回路41を備える。更に、第2検出部22は、第2パルス位置検出回路42と、第2制御部43と、第2演算部44と、を備える。
第2パルス遅延回路41は、パルス伝播速度が第2振動信号Vcの電圧値に比例して大きくなるように構成された複数の遅延ユニットを備える。そして、第2パルス遅延回路41においても、その複数の遅延ユニットは直列に接続されている。具体的には、第2パルス遅延回路41は、第1パルス遅延回路31と同じ構成を有しているが、遅延ユニット35の電源Vinとして、第2振動信号Vcが供給される点が異なる。なお、図1に示すように、第2パルス遅延回路41に入力されるパルスの符号としては、「Pb」を用いる。
また、第2パルス位置検出回路42は、第1パルス位置検出回路32と同じ構成を有している。つまり、第2パルス位置検出回路42は、第1パルス位置検出回路32と同様に、ラッチ回路36と、エンコーダ37と、を備える。なお、図1に示すように、第2パルス位置検出回路42に入力されるクロックの符号としては、「CKb」を用いる。
よって、第2検出部22では、第2パルス遅延回路41にハイのパルスPbが入力されてからクロックCKbに立ち上がりエッジが生じるまでの期間にパルスPbが通過した遅延ユニット35の数を表すデジタル信号が、第2パルス位置検出回路42の出力信号Do2となる。
第2制御部43は、第2パルス遅延回路41へのパルスPbの出力と、第2パルス位置検出回路42へのクロックCKbの出力とを、少なくとも行う。クロックCKbは第2演算部44にも入力される。そして、第2演算部44は、第2パルス位置検出回路42の出力信号Do2から、第2検出信号Dcを生成して出力する。第2制御部43と第2演算部44の動作については、後で説明する。
[1−2.第1制御部の動作]
第1振動信号Vmが振動中心電圧Vzmを横切るタイミングを、ゼロクロスタイミングという。そして、ゼロクロスタイミングのうち、第1振動信号Vmが振動中心電圧Vzmを下から上へ横切るタイミングを、ハイ側ゼロクロスタイミングといい、第1振動信号Vmが振動中心電圧Vzmを上から下へ横切るタイミングを、ロー側ゼロクロスタイミングという。また、第1振動信号Vmが振動中心電圧Vzmよりも大きくなる半周期の期間を、ハイ側半周期期間といい、第1振動信号Vmが振動中心電圧Vzmよりも小さくなる半周期の期間を、ロー側半周期期間という。また、このような呼称は、第2振動信号Vcについても同様である。
第1制御部33は、下記〈m1〉,〈m2〉の動作を行う。
〈m1〉第1制御部33は、図4の時刻t1に示すように、第1振動信号Vmの何れかのハイ側ゼロクロスタイミングにて、第1パルス遅延回路31へのパルスPaをハイにする。なお、第1パルス遅延回路31へのパルスPaがハイになった時点を、パルスPaのスタート時という。
〈m2〉そして、第1制御部33は、図4に示すように、第1パルス位置検出回路32へのクロックCKaを、第1振動信号Vmのゼロクロスタイミングで毎回立ち上がるように出力する。第1制御部33は、第1振動信号Vmのゼロクロスタイミングを、例えば駆動信号Vdに基づいて特定する。
このため、第1パルス位置検出回路32からは、第1振動信号Vmのゼロクロスタイミング毎に、パルスPaのスタート時から該パルスPaが通過した遅延ユニット35の数を表すデジタル信号が、出力信号Do1として出力される。
[1−3.第1演算部の動作]
第1演算部34は、クロックCKaに同期して動作し、更新された出力信号Do1を取り込む。
そして、第1演算部34は、第1振動信号Vmのロー側ゼロクロスタイミングで更新された出力信号Do1の値から、直前のハイ側ゼロクロスタイミングで更新された出力信号Do1の値を引いた値(以下、Nm1)を算出する。このNm1は、第1振動信号Vmのハイ側半周期期間に第1パルス遅延回路31においてパルスPaが通過した遅延ユニット35の数であると共に、図4に示すように、第1振動信号Vmのハイ側半周期期間における積分値S1を表す。
また、第1演算部34は、第1振動信号Vmのハイ側ゼロクロスタイミングで更新された出力信号Do1の値から、直前のロー側ゼロクロスタイミングで更新された出力信号Do1の値を引いた値(以下、Nm2)を算出する。このNm2は、第1振動信号Vmのロー側半周期期間に第1パルス遅延回路31においてパルスPaが通過した遅延ユニット35の数であると共に、図4に示すように、第1振動信号Vmのロー側半周期期間における積分値S2を表す。
そして、第1演算部34は、連続して算出したNm1とNm2との差である「Nm1−Nm2」を算出し、その「Nm1−Nm2」を表すデジタル信号を、第1検出信号Dmとして出力する。
このように生成される第1検出信号Dmは、第1振動信号Vmのハイ側半周期期間における積分値S1から、第1振動信号Vmのロー側半周期期間における積分値S2を引いた値、すなわち「S1−S2」に相当し、第1振動信号Vmの振幅を表す。よって、第1検出信号Dmは、駆動振動振幅を表す。
[1−4.第2制御部の動作]
第2制御部43も、第1制御部33と同様の動作を行う。つまり、第2制御部43は、下記〈c1〉,〈c2〉の動作を行う。
〈c1〉第2制御部43は、第2振動信号Vcの何れかのハイ側ゼロクロスタイミングにて、第2パルス遅延回路41へのパルスPbをハイにする。なお、第2パルス遅延回路41へのパルスPbがハイになった時点を、パルスPbのスタート時という。
〈c2〉そして、第2制御部43は、第2パルス位置検出回路42へのクロックCKbを、第2振動信号Vcのゼロクロスタイミングで毎回立ち上がるように出力する。第2制御部43は、第2振動信号Vcのゼロクロスタイミングを、例えば駆動信号Vdあるいは第1振動信号Vmのゼロクロスタイミングに基づいて特定する。
このため、第2パルス位置検出回路42からは、第2振動信号Vcのゼロクロスタイミング毎に、パルスPbのスタート時から該パルスPbが通過した遅延ユニット35の数を表すデジタル信号が、出力信号Do2として出力される。
[1−5.第2演算部の動作]
第2演算部44も、第1演算部34と同様に動作する。
即ち、第2演算部44は、クロックCKbに同期して動作し、更新された出力信号Do2を取り込む。
そして、第2演算部44は、第2振動信号Vcのロー側ゼロクロスタイミングで更新された出力信号Do2の値から、直前のハイ側ゼロクロスタイミングで更新された出力信号Do2の値を引いた値(以下、Nc1)を算出する。このNc1は、第2振動信号Vcのハイ側半周期期間に第2パルス遅延回路41においてパルスPbが通過した遅延ユニット35の数であると共に、第2振動信号Vcのハイ側半周期期間における積分値を表す。
また、第2演算部44は、第2振動信号Vcのハイ側ゼロクロスタイミングで更新された出力信号Do2の値から、直前のロー側ゼロクロスタイミングで更新された出力信号Do2の値を引いた値(以下、Nc2)を算出する。このNc2は、第2振動信号Vcのロー側半周期期間に第2パルス遅延回路41においてパルスPbが通過した遅延ユニット35の数であると共に、第2振動信号Vcのロー側半周期期間における積分値を表す。
そして、第2演算部44は、連続して算出したNc1とNc2との差である「Nc1−Nc2」を算出し、その「Nc1−Nc2」を表すデジタル信号を、第2検出信号Dcとして出力する。
このように生成される第2検出信号Dcは、第2振動信号Vcのハイ側半周期期間における積分値から、第2振動信号Vcのロー側半周期期間における積分値を引いた値に相当し、第2振動信号Vcの振幅を表す。よって、第2検出信号Dcは、コリオリ力fcを表す。
[1−6.比率算出部の動作]
比率算出部23は、第1検出部21からの第1検出信号Dmと、第2検出部22からの第2検出信号Dcとを、入力する。そして、比率算出部23は、第1検出信号Dmの値に対する第2検出信号Dcの値の比率、すなわち「Dc/Dm」を、駆動振動振幅に対するコリオリ力の比率として算出し、その算出した比率を角速度検出結果Dsoとして出力する。この比率算出部23が出力する角速度検出結果Dsoも、デジタル信号である。
なお、比率算出部23、第1制御部33、第1演算部34、第2制御部43及び第2演算部44の一部又は全部は、例えば1つ又は複数のマイクロコンピュータによって構成したり、論理回路やアナログ回路等を組み合わせたハードウェアで構成したりすることができる。
[1−7.第1実施形態の効果]
以上詳述した第1実施形態によれば、以下の効果が得られる。
(1a)駆動振動振幅を一定に制御することなく、エレメント3の温度変化が生じたときにおいても、常に精度の良い角速度検出結果Dsoを得ることができる。
例えば温度変化によって駆動振動振幅が大きくなったとすると、発生するコリオリ力fcも大きくなるが、角速度が同じであれば、駆動振動振幅に対するコリオリ力fcの比率は変わらない。よって、温度変化によって駆動振動振幅が変わっても、角速度が同じであれば、第1検出信号Dmの値に対する第2検出信号Dcの値の比率である「Dc/Dm」は変わらない。つまり、処理部11の比率算出部23によって出力される角速度検出結果Dsoは変わらない。
このような第1実施形態のジャイロセンサ装置1によれば、駆動振動振幅を一定にするフィードバック制御のための回路が不要になることによる小型化と、温度変化に対して角速度を精度良く検出することができるという高精度化とを、実現することができる。また、「Dc/Dm」の算出結果を角速度検出結果Dsoとすることは、電源電圧ドリフトや製造ばらつきに対しても同様に有効である。
(1b)また、エレメント3の共振周波数が温度変化等で変化して駆動振動速度が変化し、その結果、駆動振動振幅が変化しても、角速度が同じであれば、駆動振動振幅に対するコリオリ力fcの比率であって、処理部11が算出する角速度検出結果Dsoは変わらない。よって、エレメント3の共振周波数の変化に伴う検出感度の変化も補正することができる。
(1c)更に、駆動振動振幅を、エレメント3の有する最大の駆動振動振幅にすることが可能となる。つまり、エレメント3の有する最大感度による角速度検出が可能となる。よって、角速度の検出について、高感度化を実現することができる。
(1d)処理部11は、第1振動信号Vmから第1検出信号Dmを出力する第1検出部21と、第2振動信号Vcから第2検出信号Dcを出力する第2検出部22と、「Dc/Dm」を、駆動振動振幅に対するコリオリ力fcの比率として算出する比率算出部23と、を備える。このような処理部11は、近年の標準的な電子回路技術を用いることにより、小型で低コストで低電力な回路として実現することができる。
(1e)第1検出部21は、パルス伝播速度が第1振動信号Vmの電圧値に比例して大きくなる複数の遅延ユニット35によって構成された第1パルス遅延回路31を用いて、第1検出信号Dmを出力するように構成されている。第2検出部22も、パルス伝播速度が第2振動信号Vcの電圧値に比例して大きくなる複数の遅延ユニット35によって構成された第2パルス遅延回路41を用いて、第2検出信号Dcを出力するように構成されている。このため、第1検出部21及び第2検出部22を、小規模なデジタル回路によって構成することができる。
(1f)第1検出部21は、第1振動信号Vmのハイ側半周期期間にパルスが通過した遅延ユニット35の数Nm1と、第1振動信号Vmのロー側半周期期間にパルスが通過した遅延ユニット35の数Nm2との、差を表すデジタル信号を、第1検出信号Dmとして出力する。同様に、第2検出部22は、第2振動信号Vcのハイ側半周期期間にパルスが通過した遅延ユニット35の数Nc1と、第2振動信号Vcのロー側半周期期間にパルスが通過した遅延ユニット35の数Nm2との、差を表すデジタル信号を、第2検出信号Dcとして出力する。
このため、第1振動信号Vmのハイ側半周期期間における積分値から、第1振動信号Vmのロー側半周期期間における積分値を引いた値を、第1検出信号Dmとすることができる。同様に、第2振動信号Vcのハイ側半周期期間における積分値から、第2振動信号Vcのロー側半周期期間における積分値を引いた値を、第2検出信号Dcとすることができる。よって、第1振動信号Vmにノイズが乗っても、そのノイズによる第1検出信号Dmへの影響を抑制することができる。同様に、第2振動信号Vcにノイズが乗っても、そのノイズによる第2検出信号Dcへの影響を抑制することができる。従って、ノイズによる角速度の検出精度低下を抑制することができる。
なお、本実施形態では、駆動信号発生回路5が駆動部に相当する。
[2.第2実施形態]
第1実施形態と共通する構成については説明を省略し、相違点を中心に説明する。また、第1実施形態と同じ符号は、同一の構成や信号を示すものであって、先行する説明を参照する。そして、これらのことは、後述する他の実施形態についても同様である。
[2−1.構成]
図5に示すように、第2実施形態のジャイロセンサ装置51は、第1実施形態と比較すると、処理部11に代えて、処理部53を備える。処理部53は、処理部11と同じ役割を果たすものである。そして、処理部53は、スイッチ55と、検出部57と、比率算出部58と、を備える。
スイッチ55には、第1振動信号Vmと第2振動信号Vcとが入力される。そして、スイッチ55は、第1振動信号Vmと第2振動信号Vcとの一方を、選択信号として切り替えて出力する。スイッチ55は、後述の制御部63によって制御される。
検出部57は、パルス遅延回路61と、パルス位置検出回路62と、制御部63と、演算部64と、を備える。
パルス遅延回路61は、第1実施形態の第1パルス遅延回路31と同じ構成の回路である。但し、パルス遅延回路61における各遅延ユニット35の電源Vinとしては、スイッチ55からの選択信号が供給される。つまり、パルス遅延回路61によるA/D変換対象は、選択信号である。
パルス位置検出回路62は、第1実施形態の第1パルス位置検出回路32と同じ構成の回路である。
制御部63は、スイッチ55の切り替え制御と、パルス遅延回路61へのパルスPaの出力と、パルス位置検出回路62へのクロックCKaの出力とを、少なくとも行う。クロックCKaは演算部64にも入力される。そして、演算部64は、パルス位置検出回路62の出力信号Do1から、第1検出信号Dmと第2検出信号Dcとを生成して出力する。
[2−2.制御部の動作]
制御部63は、スイッチ55に第1振動信号Vmを選択信号として出力させた状態で、第1実施形態の第1制御部33と同じ動作、すなわち〈m1〉,〈m2〉の動作を行う。この動作のことを、第1動作という。
また、制御部63は、スイッチ55に第2振動信号Vcを選択信号として出力させた状態で、第1実施形態の第2制御部43と同じ動作、すなわち〈c1〉,〈c2〉の動作を行う。この動作のことを、第2動作という。なお、制御部63は、第2動作では、第1実施形態における〈c1〉,〈c2〉の説明において、「パルスPb」を「パルスPa」に読み替え、「クロックCKb」を「クロックCKa」に読み替えた動作を行うこととなる。
そして、制御部63は、第1動作と第2動作とを、例えば一定時間後毎あるいは第1振動信号Vmの所定周期毎に交互に実施する。
[2−3.演算部の動作]
演算部64は、制御部63が第1動作を行う場合、すなわちスイッチ55から第1振動信号Vmが出力される場合に、第1実施形態の第1演算部34と同じ動作を行うことにより、第1検出信号Dmを生成して出力する。
また、演算部64は、制御部63が第2動作を行う場合、すなわちスイッチ55から第2振動信号Vcが出力される場合に、第1実施形態の第2演算部44と同じ動作を行うことにより、第2検出信号Dcを生成して出力する。
このため、検出部57は、スイッチ55からの選択信号が第1振動信号Vmである場合には、第1振動信号Vmの振幅を表す第1検出信号Dmを出力する。また、検出部57は、スイッチ55からの選択信号が第2振動信号Vcである場合には、第2振動信号Vcの振幅(すなわちコリオリ力fc)を表す第2検出信号Dcを出力する。
[2−4.比率算出部の動作]
比率算出部58は、検出部57からの第1検出信号Dmと第2検出信号Dcとを入力し、第1検出信号Dmの値に対する第2検出信号Dcの値の比率、すなわち「Dc/Dm」を、駆動振動振幅に対するコリオリ力の比率として算出する。そして、その算出した比率を角速度検出結果Dsoとして出力する。
[2−5.第2実施形態の効果]
以上のような第2実施形態によっても、第1実施形態について述べた効果と同様の効果が得られる。更に、第1実施形態と比較して、2つの検出部を1つに減らすことができるため、一層の小型化を実現することができる。なお、第2実施形態では、スイッチ55が切り替え部に相当する。
[3.第3実施形態]
[3−1.構成]
図6に示すように、第3実施形態のジャイロセンサ装置71は、第1実施形態と比較すると、第2検出部22に代えて、サーボ制御回路75を備える。
サーボ制御回路75は、エレメント3に対して、コリオリ力fcの方向における該エレメント3の変位量を零にするサーボ制御を行うと共に、そのサーボ制御の制御量を表すデジタル信号を、第2検出信号Dcとして出力する回路である。サーボ制御の制御量は、コリオリ力fcに比例するため、サーボ制御回路75から出力される第2検出信号Dcは、コリオリ力fcを表す信号となる。このようなサーボ制御回路75は、例えば、特開2011−137777号公報や特開2015−52484号公報等に記載されている。
サーボ制御回路75は、例えば、サーボ制御の制御量に所定の定数を乗じたデジタル信号を、第2検出信号Dcとして出力するように構成されても良い。
[3−2.第3実施形態の効果]
以上のような第3実施形態によっても、第1実施形態について述べた(1a)〜(1c)の効果が得られる。また、第3実施形態では、サーボ制御回路75が第2検出部に相当しており、(1d)で述べた効果も得られる。また、第1検出部21に関しては、第1実施形態と同じであるため、(1e),(1f)で述べた効果が得られる。
[他の実施形態]
以上、本開示を実施するための形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
〈他の実施形態1〉
例えば、第1実施形態において、第1検出部21の第1パルス遅延回路31は、パルスPaを周回させるリング状パルス遅延回路であっても良い。この場合、例えば、初段の遅延ユニット35をアンドゲート回路にすると共に、そのアンドゲート回路の一方の入力端子をパルスPaの入力端子とし、該アンドゲートの他方の入力端子と最終段の遅延ユニット35の出力端子とを接続すれば良い。
そして、第1パルス遅延回路31をリング状パルス遅延回路にした場合、リング状パルス遅延回路におけるパルスの周回回数をカウントするカウンタを設けると共に、第1パルス位置検出回路32の代わりに、下記のデータ出力回路を設ければ良い。
データ出力回路は、クロックCKaが立ち上がる毎に、リング状パルス遅延回路からの遅延パルス群とカウンタによるカウント値とを、入力情報として取り込む。そして、データ出力回路は、取り込んだ入力情報に基づいて、パルスPaのスタート時から該パルスPaが通過した遅延ユニット35の数を表すデジタル信号を出力する。
なお、上記のようなリング状パルス遅延回路、カウンタ及びデータ出力回路を備えた回路は、時間A/D変換回路と呼ばれ、例えば特開2005−102129号公報や特開平5−259907号公報等に記載されている。また、特開2005−102129号公報には、上記データ出力回路の構成として、ラッチ&エンコーダ及びラッチ回路を備えた構成が記載されている。
つまり、第1検出部21は、リング状パルス遅延回路を備えた時間A/D変換回路を用いて構成しても良い。同様に、第1実施形態の第2検出部22と、第2実施形態の検出部57と、第3実施形態の第1検出部21とのそれぞれも、リング状パルス遅延回路を備えた時間A/D変換回路を用いて構成しても良い。
〈他の実施形態2〉
パルス遅延回路を構成する遅延ユニット35は、インバータゲート回路36以外でも良く、例えば、ナンドゲート回路、ノアゲート回路、アンドゲート回路、オアゲート回路など、デジタル回路で用いられる様々なゲート回路を用いることができる。また、遅延ユニット35は、アナログ回路で用いられる遅延素子を用いて構成しても良い。
〈他の実施形態3〉
比率算出部23,58は、前述の比率をデジタル信号処理によって算出するように構成されていたが、その比率をアナログ信号処理によって算出するように構成されても良い。
〈他の実施形態4〉
第1検出部21は、例えば、パルス遅延回路を用いないA/D変換回路を備え、そのA/D変換回路を用いて第1検出信号Dmを出力するように構成されても良い。このことは、第2検出部22及び検出部57についても同様である。
〈その他〉
上記実施形態における1つの構成要素が有する複数の機能を、複数の構成要素によって実現したり、1つの構成要素が有する1つの機能を、複数の構成要素によって実現したりしても良い。また、複数の構成要素が有する複数の機能を、1つの構成要素によって実現したり、複数の構成要素によって実現される1つの機能を、1つの構成要素によって実現したりしても良い。また、上記実施形態の構成の一部を省略しても良い。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加又は置換しても良い。なお、特許請求の範囲に記載した文言のみによって特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。また、上述したジャイロセンサ装置の他、当該ジャイロセンサ装置を構成要素とするシステム、当該ジャイロセンサ装置としてコンピュータを機能させるためのプログラム、このプログラムを記録した半導体メモリ等の非遷移的実態的記録媒体、ジャイロセンサ信号の処理方法など、種々の形態で本開示を実現することもできる。
3…エレメント、5…駆動信号発生回路、11,53,73…処理部

Claims (6)

  1. 振動式ジャイロセンサのセンシングエレメント(3)に、該センシングエレメントを駆動軸方向に振動させるための駆動信号を供給するように構成された駆動部(5)と、
    前記センシングエレメントの前記駆動軸方向における振動の振幅である駆動振動振幅に比例した振幅を有する第1振動信号と、前記センシングエレメントの角速度に起因して前記センシングエレメントに発生するコリオリ力に比例した振幅を有する第2振動信号と、が入力される処理部(11,53,73)と、を備え、
    前記処理部は、前記第1振動信号と前記第2振動信号とに基づいて、前記駆動振動振幅に対する前記コリオリ力の比率を算出し、その算出結果を前記センシングエレメントの角速度の検出結果として出力するように構成されている、
    ジャイロセンサ装置。
  2. 請求項1に記載のジャイロセンサ装置であって、
    前記処理部(11,73)は、
    前記第1振動信号から、前記駆動振動振幅を表す第1検出信号を出力するように構成された第1検出部(21)と、
    前記第2振動信号から、前記コリオリ力を表す第2検出信号を出力するように構成された第2検出部(22,75)と、
    前記第1検出信号と前記第2検出信号とを入力し、前記第1検出信号の値に対する前記第2検出信号の値の比率を、前記駆動振動振幅に対する前記コリオリ力の比率として算出するように構成された比率算出部(23)と、を備える、
    ジャイロセンサ装置。
  3. 請求項2に記載のジャイロセンサ装置であって、
    前記第1検出部(21)は、
    入力されるパルス信号を出力側に伝播させる速度が前記第1振動信号の電圧値に比例して大きくなるように構成された複数の遅延ユニット(35)が、直列に接続された第1パルス遅延回路(31)を備え、該第1パルス遅延回路を用いて前記第1検出信号を出力するように構成されており、
    前記第2検出部(22)は、
    入力されるパルス信号を出力側に伝播させる速度が前記第2振動信号の電圧値に比例して大きくなるように構成された複数の遅延ユニット(35)が、直列に接続された第2パルス遅延回路(41)を備え、該第2パルス遅延回路を用いて前記第2検出信号を出力するように構成されている、
    ジャイロセンサ装置。
  4. 請求項3に記載のジャイロセンサ装置であって、
    前記第1検出部は、
    前記第1振動信号が該第1振動信号の振動中心電圧よりも大きくなる半周期の期間に前記第1パルス遅延回路において前記パルス信号が通過した前記遅延ユニットの数と、前記第1振動信号が該第1振動信号の振動中心電圧よりも小さくなる半周期の期間に前記第1パルス遅延回路において前記パルス信号が通過した前記遅延ユニットの数との、差を表すデジタル信号を、前記第1検出信号として出力するように構成され、
    前記第2検出部は、
    前記第2振動信号が該第2振動信号の振動中心電圧よりも大きくなる半周期の期間に前記第2パルス遅延回路において前記パルス信号が通過した前記遅延ユニットの数と、前記第2振動信号が該第2振動信号の振動中心電圧よりも小さくなる半周期の期間に前記第2パルス遅延回路において前記パルス信号が通過した前記遅延ユニットの数との、差を表すデジタル信号を、前記第2検出信号として出力するように構成されている、
    ジャイロセンサ装置。
  5. 請求項1に記載のジャイロセンサ装置であって、
    前記処理部(53)は、
    前記第1振動信号と前記第2振動信号との一方を、選択信号として切り替えて出力するように構成された切り替え部(55)と、
    前記切り替え部からの前記選択信号が入力され、前記選択信号が前記第1振動信号である場合には該第1振動信号の振幅を表す第1検出信号を出力し、前記選択信号が前記第2振動信号である場合には該第2振動信号の振幅を表す第2検出信号を出力するように構成された検出部(57)と、
    前記第1検出信号の値に対する前記第2検出信号の値の比率を、前記駆動振動振幅に対する前記コリオリ力の比率として算出するように構成された比率算出部(58)と、を備える、
    ジャイロセンサ装置。
  6. 請求項2に記載のジャイロセンサ装置であって、
    前記第2検出部(75)は、前記コリオリ力の方向における前記センシングエレメントの変位量を零にするサーボ制御の制御量に基づいて、前記第2検出信号を出力するように構成されている、
    ジャイロセンサ装置。
JP2016101565A 2016-05-20 2016-05-20 ジャイロセンサ装置 Active JP6705283B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016101565A JP6705283B2 (ja) 2016-05-20 2016-05-20 ジャイロセンサ装置
US15/600,504 US10520311B2 (en) 2016-05-20 2017-05-19 Gyro sensor apparatus
DE102017208561.4A DE102017208561A1 (de) 2016-05-20 2017-05-19 Gyrosensor-vorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016101565A JP6705283B2 (ja) 2016-05-20 2016-05-20 ジャイロセンサ装置

Publications (2)

Publication Number Publication Date
JP2017207440A true JP2017207440A (ja) 2017-11-24
JP6705283B2 JP6705283B2 (ja) 2020-06-03

Family

ID=60255438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016101565A Active JP6705283B2 (ja) 2016-05-20 2016-05-20 ジャイロセンサ装置

Country Status (3)

Country Link
US (1) US10520311B2 (ja)
JP (1) JP6705283B2 (ja)
DE (1) DE102017208561A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61247914A (ja) * 1985-04-26 1986-11-05 Hitachi Ltd 角速度センサ
JPS61258110A (ja) * 1985-05-13 1986-11-15 Hitachi Ltd 角速度センサ
JPH05259907A (ja) * 1992-03-16 1993-10-08 Nippondenso Co Ltd A/d変換回路
US5465620A (en) * 1993-06-14 1995-11-14 Rensselaer Polytechnic Institute Micromechanical vibratory gyroscope sensor array
JP2000136934A (ja) * 1998-10-30 2000-05-16 Aisin Seiki Co Ltd 角速度センサの検出信号処理装置
JP2005102129A (ja) * 2003-08-29 2005-04-14 Denso Corp 同期検波方法及び装置
JP2009229447A (ja) * 2008-02-29 2009-10-08 Seiko Epson Corp 物理量測定装置および電子機器
US20100294039A1 (en) * 2009-05-21 2010-11-25 Analog Devices, Inc. Mode-Matching Apparatus and Method for Micromachined Inertial Sensors
JP2011137777A (ja) * 2010-01-04 2011-07-14 Hitachi Automotive Systems Ltd 角速度センサ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783671A (ja) 1993-07-22 1995-03-28 Yoshiro Tomikawa 振動型ジャイロスコープ
JPH08313265A (ja) 1995-05-17 1996-11-29 Fujitsu Ltd 音叉形振動ジャイロ及びこれを用いたセンサシステム並びに音叉形振動ジャイロの調整方法
JPH0933259A (ja) 1995-07-19 1997-02-07 Tokin Corp 圧電振動ジャイロ用駆動検出回路
JP2000292172A (ja) 1999-04-09 2000-10-20 Alps Electric Co Ltd 圧電振動子の駆動および検出装置
JP3664950B2 (ja) 2000-06-15 2005-06-29 株式会社村田製作所 角速度センサ
JP4032681B2 (ja) * 2001-08-27 2008-01-16 株式会社デンソー 同期検波方法及び装置並びにセンサ信号検出装置
JP3853190B2 (ja) 2001-10-23 2006-12-06 アルプス電気株式会社 振動子の駆動装置
JP4478495B2 (ja) 2004-03-31 2010-06-09 ソニー株式会社 振動型ジャイロセンサ素子及びその製造方法
JP6285128B2 (ja) 2013-09-05 2018-02-28 日立オートモティブシステムズ株式会社 角速度センサ
JP6241246B2 (ja) 2013-12-10 2017-12-06 セイコーエプソン株式会社 検出装置、センサー、電子機器及び移動体
JP6596199B2 (ja) 2014-11-28 2019-10-23 株式会社 アイロム 水素水の製造方法および水素水製造装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61247914A (ja) * 1985-04-26 1986-11-05 Hitachi Ltd 角速度センサ
JPS61258110A (ja) * 1985-05-13 1986-11-15 Hitachi Ltd 角速度センサ
JPH05259907A (ja) * 1992-03-16 1993-10-08 Nippondenso Co Ltd A/d変換回路
US5465620A (en) * 1993-06-14 1995-11-14 Rensselaer Polytechnic Institute Micromechanical vibratory gyroscope sensor array
JP2000136934A (ja) * 1998-10-30 2000-05-16 Aisin Seiki Co Ltd 角速度センサの検出信号処理装置
JP2005102129A (ja) * 2003-08-29 2005-04-14 Denso Corp 同期検波方法及び装置
JP2009229447A (ja) * 2008-02-29 2009-10-08 Seiko Epson Corp 物理量測定装置および電子機器
US20100294039A1 (en) * 2009-05-21 2010-11-25 Analog Devices, Inc. Mode-Matching Apparatus and Method for Micromachined Inertial Sensors
JP2011137777A (ja) * 2010-01-04 2011-07-14 Hitachi Automotive Systems Ltd 角速度センサ

Also Published As

Publication number Publication date
DE102017208561A1 (de) 2017-11-23
US20170336206A1 (en) 2017-11-23
JP6705283B2 (ja) 2020-06-03
US10520311B2 (en) 2019-12-31

Similar Documents

Publication Publication Date Title
JP6641712B2 (ja) 回路装置、電子機器及び移動体
JP2005351820A (ja) 振動型角速度センサ
US10848159B2 (en) Drive circuit, physical quantity sensor, and electronic device
EP2351982A1 (en) Angular velocity sensor
JP5601292B2 (ja) デジタル位相同期回路および物理量検出センサ
JP2009253522A (ja) 半導体集積回路
JP2011117731A (ja) 磁気検出装置
US11245556B2 (en) Resolver correction device and method of correcting the same
EP1615343A1 (en) Method of converting an analog signal into a digital signal
CN106525015B (zh) 物理量检测系统、电子设备以及移动体
JP6705283B2 (ja) ジャイロセンサ装置
JP4894840B2 (ja) 物理量検出装置
JP2009095154A (ja) モータ制御装置とその速度検出方法
JP2009168588A (ja) 検出回路、物理量測定装置、ジャイロセンサおよび電子機器
JP2016217746A (ja) 復調装置
US8497674B2 (en) Magnetic detection apparatus
JP5244562B2 (ja) 角速度検出装置
JP2005098735A (ja) 位置検出手段及びこれを用いた位置制御手段
JP2013127409A (ja) 波形測定器
JP2005527425A (ja) 車両の制御装置またはセンサ
US11897539B2 (en) Circuit device, physical quantity measurement device, electronic apparatus, and vehicle
JP2005233626A (ja) 車輪速検出装置
CN101346601B (zh) 角速度传感器
JP4258331B2 (ja) 振動型角速度センサ
Lee Practical implementation schemes of motor speed measurement by magnetic encoder on electric power steering applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200427

R151 Written notification of patent or utility model registration

Ref document number: 6705283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250