JP2017199795A - 変圧器、プラズマ処理装置、及び、プラズマ処理方法 - Google Patents

変圧器、プラズマ処理装置、及び、プラズマ処理方法 Download PDF

Info

Publication number
JP2017199795A
JP2017199795A JP2016089389A JP2016089389A JP2017199795A JP 2017199795 A JP2017199795 A JP 2017199795A JP 2016089389 A JP2016089389 A JP 2016089389A JP 2016089389 A JP2016089389 A JP 2016089389A JP 2017199795 A JP2017199795 A JP 2017199795A
Authority
JP
Japan
Prior art keywords
coil
electrode
plasma processing
processing apparatus
electrically connected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016089389A
Other languages
English (en)
Other versions
JP6675260B2 (ja
Inventor
山澤 陽平
Yohei Yamazawa
陽平 山澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2016089389A priority Critical patent/JP6675260B2/ja
Priority to US15/494,131 priority patent/US10381197B2/en
Priority to KR1020170052235A priority patent/KR101963954B1/ko
Priority to CN201710287364.6A priority patent/CN107318212B/zh
Publication of JP2017199795A publication Critical patent/JP2017199795A/ja
Application granted granted Critical
Publication of JP6675260B2 publication Critical patent/JP6675260B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/02Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F21/00Variable inductances or transformers of the signal type
    • H01F21/12Variable inductances or transformers of the signal type discontinuously variable, e.g. tapped
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/324Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/18Rotary transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32577Electrical connecting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/004Capacitive coupling circuits not otherwise provided for

Abstract

【課題】変圧器を提供する。【解決手段】一実施形態の変圧器は、回転軸、第1のコイル、第2のコイル、及び、第3のコイルを備える。回転軸は、その中心軸線を回転軸線として回転可能に構成されている。第1のコイルは一次側のコイルであり、回転軸の中心軸線に直交する第1の軸線周りに延在している。第2のコイルは、二次側のコイルであり、第2の軸線周りに延在し、回転軸によって支持されている。第2の軸線は、第1のコイルによって囲まれた領域内で回転軸の中心軸線に直交する。第3のコイルは、二次側のコイルであり、第3の軸線周りに延在し、回転軸によって支持されている。第3の軸線は、第1のコイルによって囲まれた領域内で回転軸の中心軸線に直交し、且つ、第2の軸線と所定の角度をなしている。【選択図】図1

Description

本発明の実施形態は、変圧器、プラズマ処理装置、及び、プラズマ処理方法に関するものである。
半導体デバイスといった電子デバイスの製造においては、エッチング、成膜といった処理のために、プラズマ処理装置が用いられている。プラズマ処理装置の一種としては、容量結合型のプラズマ処理装置が知られている。容量結合型のプラズマ処理装置は、一般的に、チャンバ本体、上部電極、及び、下部電極を備えている。上部電極及び下部電極は、チャンバ本体によって提供されるチャンバ内の空間がそれらの間に介在するように配置される。このプラズマ処理装置では、チャンバにガスが供給され、上部電極と下部電極との間に高周波電界が形成される。この高周波電界によってガスが励起されて、プラズマが生成される。このプラズマからのイオン及び/又はラジカルによって、被加工物の処理が行われる。
容量結合型のプラズマ処理装置としては、二つの高周波電源を用いるタイプのプラズマ処理装置と、単一の高周波電源を用いるタイプのプラズマ処理装置が知られている。前者、即ち、二つの高周波電源を用いるタイプのプラズマ処理装置では、第1の高周波電源が上部電極又は下部電極に接続され、第2の高周波電源が下部電極に接続される。第2の高周波電源は、第1の高周波電源によって発生される高周波の周波数よりも低い周波数を有する高周波を発生する。
一方、後者、即ち、単一の高周波電源を用いるタイプのプラズマ処理装置では、変圧器が利用される。この変圧器の一次側のコイルは高周波電源に接続される。二次側のコイルの一端は上部電極に接続され、二次側のコイルの他端は下部電極に接続される。二次側のコイルは、複数のタップを有している。このプラズマ処理装置では、接地するタップを複数のタップから選択することにより、二次側のコイルの一端から出力される第1の高周波の電力と二次側のコイルの他端から出力される第2の高周波の電力との比を選択するこができる。このようなプラズマ処理装置については、特許文献1に記載されている。
特開平4−48727号公報
特許文献1に記載された変圧器では、タップの選択によって二次側のコイルの分割比が選択される。したがって、第1の高周波の電力と第2の高周波の電力との選択可能な比、即ち、二つの出力高周波の選択可能な電力比が大きく離散的である。故に、二つの出力高周波の電力比を微細に制御することができない。また、一次側のコイルに高周波を供給している状態では、二つの出力高周波の電力比を変更することができない。さらに、第1の高周波と第2の高周波との間の位相を、同位相と逆位相との間で変更することができない。
第1の態様においては、変圧器が提供される。変圧器は、回転軸、第1のコイル、第2のコイル、及び、第3のコイルを備える。回転軸は、その中心軸線を回転軸線として回転可能に構成されている。第1のコイルは一次側のコイルであり、回転軸の中心軸線に直交する第1の軸線周りに延在している。第2のコイルは、二次側のコイルであり、第2の軸線周りに延在し、回転軸によって支持されている。第2の軸線は、第1のコイルによって囲まれた領域内で回転軸の中心軸線に直交する。第3のコイルは、二次側のコイルであり、第3の軸線周りに延在し、回転軸によって支持されている。第3の軸線は、第1のコイルによって囲まれた領域内で回転軸の中心軸線に直交し、且つ、第2の軸線と所定の角度をなしている。
第1の態様に係る変圧器では、一次側の第1のコイルに高周波を供給すると、第1の軸線に略平行な方向に磁束が発生する。この磁束が第2のコイルを貫くことにより、第2のコイルに誘導起電力が発生し、当該磁束が第3のコイルを貫くことにより、第3のコイルに誘導起電力が発生する。これにより、第2のコイルから第1の高周波が出力され、第3のコイルから第2の高周波が出力される。第2のコイルを貫く磁束の量、ひいては第1の高周波の電力は、第1のコイルと第2のコイルがなす角度に依存する。また、第3のコイルを貫く磁束の量、ひいては第2の高周波の電力は、第1のコイルと第3のコイルがなす角度に依存する。この変圧器では、回転軸を回転させることにより、第2のコイル及び第3のコイルから構成される二次側コイル対を回転させることができ、第1のコイルと第2のコイルがなす角度と、第1のコイルと第3のコイルがなす角度との比を微細に変更することができる。したがって、第1の高周波の電力と第2の高周波の電力の比、即ち、二つの出力高周波の電力の比を、微細に制御することが可能である。
また、第1の態様に係る変圧器では、接地するタップの変更、即ち、接点の変更により二つの出力高周波の電力比を変更するのではなく、回転軸の回転により、二つの出力高周波の電力比を変更することができる。したがって、一次側の第1のコイルに高周波を供給している状態であっても、二つの出力高周波の電力比を変更することが可能である。
また、第1の態様に係る変圧器では、二次側コイル対の回転方向の角度位置がある角度範囲内にあるときには、磁束が第2のコイルを当該第2のコイルの一方側から他方側に貫き、当該磁束が第3のコイルを当該第3のコイルの一方側から他方側に貫く。このときには、第2のコイルと第3のコイルには同方向(同位相)の誘導起電力が生じる。また、二次側コイル対の回転方向の角度位置が別の角度範囲内にあるときには、磁束が第2のコイルと第3のコイルのうち一方のコイルを当該一方のコイルの一方側から他方側に貫き、当該磁束が他方のコイルを当該他方のコイルの他方側から一方側に貫く。このときには、第2のコイルと第3のコイルには逆方向(逆位相)の誘導起電力が生じる。したがって、この変圧器によれば、第1の高周波と第2の高周波との間の位相を、同位相と逆位相との間で変更することができる。
一実施形態において、第1のコイルは、第2のコイルの自己インダクタンス及び第3のコイルの自己インダクタンスよりも大きい自己インダクタンスを有する。この実施形態によれば、第1のコイルの電流値に対する第2のコイルの電流値の比、及び、第1のコイルの電流値に対する第3のコイルの電流値の比を大きくすることが可能となる。したがって、二次側の二つのコイルにそれぞれ接続される負荷に十分な電流を供給することが可能となる。
一実施形態において、第2のコイル及び第3のコイルは、第1のコイルの内側に設けられている。即ち、回転する二次側コイル対が第1のコイルに干渉しないよう、二次側コイル対は第1のコイルの内側に設けられていてもよい。この実施形態によれば、第1のコイルのサイズを大きくすることができるので、第1のコイルの自己インダクタンスを大きくすることができる。したがって、第1のコイルの電流値に対する第2のコイルの電流値の比、及び、第1のコイルの電流値に対する第3のコイルの電流値の比を大きくすることが可能となる。
一実施形態において、第3のコイルは、第2のコイルの内側に設けられており、第2のコイルの自己インダクタンスよりも小さい自己インダクタンスを有する。第3のコイルが第2のコイルの内側に設けられていると、第3のコイルの断面積は第2のコイルの断面積よりも小さくなる。したがって、第1のコイルと第2のコイルの間の結合係数の最大値と、第1のコイルと第3のコイルとの間の結合係数の最大値との間には、大きな差が生じる。この実施形態によれば、第3のコイルは第2のコイルの自己インダクタンスよりも小さい自己インダクタンスを有するので、第1のコイルと第2のコイルの間の結合係数の最大値と、第1のコイルと第3のコイルの間の結合係数の最大値との間の差を減少させることが可能となる。
一実施形態においては、第2のコイルに関する上記第2の軸線と第3のコイルに関する上記第3の軸線とがなす所定の角度は、90度である。この実施形態によれば、第2のコイルと第3のコイルの間の相互インダクタンスを極めて小さくすることができ、第2のコイルと第3のコイルの間での相互干渉を抑制することができる。結果的に、第2のコイル及び第3のコイルにおいて効率的に高周波を発生させることができる。また、第2のコイル及び第3のコイルのうち一方に生じる誘導起電力が最大になるときに、第2のコイル及び第3のコイルのうち他方に生じる誘導起電力が最小になる。したがって、二つの出力高周波の電力比の制御性が高くなる。また、第2のコイルのターン数及び第3のコイルのターン数を多くすることができる。
一実施形態において、第2のコイルと第3のコイルは、それらの間に絶縁距離が確保されるように配置されている。また、一実施形態において、第1のコイルの他端、第2のコイルの他端、及び、第3のコイルの他端が互いに電気的に接続されていてもよい。
第2の態様においては、容量結合型のプラズマ処理装置が提供される。このプラズマ処理装置は、チャンバを提供するチャンバ本体と、上部電極である第1の電極と、下部電極である第2の電極と、高周波電源と、上述した第1の態様及び種々の実施形態のうち何れかの変圧器と、を備える。高周波電源は第1のコイルに電気的に接続されている。第1の電極は第2のコイルの一端に電気的に接続されている。第2の電極は第3のコイルの一端に電気的に接続されている。
第2の態様に係るプラズマ処理装置では、高周波電源からの高周波に基づき生成される二つの高周波、即ち第1の高周波、第2の高周波を上部電極、下部電極にそれぞれ供給することができる。また、二次側コイル対の回転方向の角度位置を調整することにより、第1の高周波のパワー、第2の高周波のパワー、及び、第1の高周波と第2の高周波との間の位相を調整することができる。したがって、下部電極上の被加工物に入射するイオンのエネルギーを調整することが可能となる。
第3の態様においては、容量結合型のプラズマ処理装置が提供される。このプラズマ処理装置は、チャンバを提供するチャンバ本体と、上部電極と、下部電極と、高周波電源と、上述した第1の態様及び種々の実施形態のうち何れかの変圧器と、を備える。上部電極は、鉛直方向において延びるチャンバの中心線に交差する第1の電極、及び、中心線に対して放射方向において第1の電極の外側に設けられた第2の電極を含む。高周波電源は第1のコイルに電気的に接続されている。第1の電極は、第2のコイルの一端に電気的に接続されている。第2の電極は、第3のコイルの一端に電気的に接続されている。
第3の態様に係るプラズマ処理装置では、高周波電源からの高周波に基づき生成される二つの高周波、即ち第1の高周波、第2の高周波を第1電極(第3態様における「内側電極」)、第2電極(第3態様における「外側電極」)にそれぞれ供給することができる。また、二つの二次側のコイル(第2のコイル及び第3のコイル)とチャンバ側の二つの電極(内側電極及び外側電極)との間で同方向に電流が供給されるよう、二次側コイル対の回転方向の角度位置を設定することにより、プラズマ密度の径方向の分布を調整することが可能となる。一方、二つの二次側のコイルとチャンバ側の二つの電極の間で互いに逆方向に電流が供給されるよう、二次側コイル対の回転方向の角度位置を調整することにより、下部電極上の被加工物に入射するイオンのエネルギーを減少させることが可能となる。
第4の態様においては、容量結合型のプラズマ処理装置が提供される。このプラズマ処理装置は、チャンバを提供するチャンバ本体と、上部電極である第1の電極と、下部電極と、上部電極よりもチャンバ本体の側壁の近くに設けられた第2の電極と、高周波電源と、上述した第1の態様及び種々の実施形態のうち何れかの変圧器と、を備える。高周波電源は第1のコイルに電気的に接続されており、第1の電極は第2のコイルの一端に電気的に接続されており、第2の電極は第3のコイルの一端に電気的に接続されている。
第4の態様に係るプラズマ処理装置では、二つの二次側のコイル(第2のコイル及び第3のコイル)とチャンバ側の二つの電極(第1の電極、即ち上部電極、及び、第2の電極)との間で同方向に電流が供給されるよう、二次側コイル対の回転方向の角度位置が設定されると、下部電極とプラズマとの間の電位差が大きくなり、下部電極上の被加工物に比較的高いエネルギーのイオンが照射される。一方、二つの二次側のコイルとチャンバ側の二つの電極との間で互いに逆方向に電流が供給されるよう、二次側コイル対の回転方向の角度位置が調整されると、下部電極とプラズマとの間の電位差が小さくなり、下部電極上の被加工物に照射されるイオンのエネルギーが小さくなる。このように、第4の態様に係るプラズマ処理装置によれば、下部電極に直接的に給電することなく、下部電極上の被加工物に照射されるイオンのエネルギーを調整することが可能となる。
第5の態様においては、容量結合型のプラズマ処理装置が提供される。このプラズマ処理装置は、第1の処理空間を提供する第1の処理区画と、第2の処理空間を提供する第2の処理区画と、それらの間に第1の処理空間内の空間が介在するように設けられた第1の上部電極及び第1の下部電極と、それらの間に第2の処理空間内の空間が介在するように設けられた第2の上部電極及び第2の下部電極と、高周波電源と、上述した第1の態様及び種々の実施形態のうち何れかの変圧器と、を備える。高周波電源は第1のコイルに電気的に接続されている。第1の上部電極又は第1の下部電極の一方である第1の電極は、第2のコイルの一端に電気的に接続されている。第2の上部電極又は第2の下部電極の一方である第2の電極は、第3のコイルの一端に電気的に接続されている。
第5の態様に係るプラズマ処理装置では、高周波電源からの高周波に基づいて生成される二つの高周波を、二つの処理空間用の二つの電極に分配することができる。
一実施形態において、プラズマ処理装置は、第1の電極と第2のコイルの一端との間、第2の電極と第3のコイルの一端との間にそれぞれ接続された二つのコンデンサを更に備える。
一実施形態において、プラズマ処理装置は、第2のコイルの一端及び第3のコイルの一端のうち一方に接続されたセンサを備え、当該センサは電流センサ又は電圧センサである。また、一実施形態において、プラズマ処理装置は、第2のコイルの一端及び第3のコイルの一端のうち他方に接続された別のセンサを備え、当該別のセンサは電流センサ又は電圧センサである。
第6の態様においては、容量結合型のプラズマ処理装置が提供される。このプラズマ処理装置は、第1の処理空間を提供する第1の処理区画と、第2の処理空間を提供する第2の処理区画と、それらの間に第1の処理空間内の空間が介在するように設けられた第1の上部電極及び第1の下部電極と、それらの間に第2のチャンバ内の空間が介在するように設けられた第2の上部電極及び第2の下部電極と、高周波電源と、上述した第1の態様及び種々の実施形態のうち何れかの変圧器と、を備える。高周波電源は第1のコイルに電気的に接続されている。第1の上部電極である第1の電極は、第2のコイルの一端に電気的に接続されている。第2の上部電極である第2の電極は第2のコイルの他端に電気的に接続されている。第1の下部電極である第3の電極は第3のコイルの一端に電気的に接続されている。第2の下部電極である第4の電極は第3のコイルの他端に電気的に接続されている。
第2のコイルの両端には同じ電流が流れ、第3のコイルの両端には同じ電流が流れる。したがって、第6の態様のプラズマ処理装置では、第1の処理空間用の第1の上部電極と第2の処理空間用の第2の上部電極に同じ電流値の電流が供給される。また、第1の処理空間用の第1の下部電極と第2の処理空間用の第2の下部電極に同じ電流値の電流が供給される。故に、二つの処理空間それぞれのための上部電極と下部電極に略同条件の高周波を供給することが可能である。即ち、機差が抑制される。また、第1の上部電極と第1の下部電極にそれぞれ供給される二つの高周波の各々の電力と当該二つの高周波の間の位相を制御することができ、第2の上部電極と第2の下部電極にそれぞれ供給される二つの高周波の各々の電力と当該二つの高周波の間の位相を制御できる。したがって、第1の下部電極上の被加工物に照射されるイオンのエネルギーを調整することができ、第2の下部電極上の被加工物に照射されるイオンのエネルギーを調整することができる。
第7の態様においては、容量結合型のプラズマ処理装置が提供される。このプラズマ処理装置は、第1の処理空間を提供する第1の処理区画と、第2の処理空間を提供する第2の処理区画と、それらの間に第1の処理空間内の空間が介在するように設けられた第1の上部電極及び第1の下部電極と、それらの間に第2のチャンバ内の空間が介在するように設けられた第2の上部電極及び第2の下部電極と、高周波電源と、上述した第1の態様及び種々の実施形態のうち何れかの変圧器と、を備える。高周波電源は第1のコイルに電気的に接続されている。第1の上部電極である第1の電極は、第2のコイルの一端に電気的に接続されている。第1の下部電極である第2の電極は、第2のコイルの他端に電気的に接続されている。第2の上部電極である第3の電極は、第3のコイルの一端に電気的に接続されている。第2の下部電極である第4の電極は、第3のコイルの他端に電気的に接続されている。
第2のコイルの両端には同じ電流が流れ、第3のコイルの両端には同じ電流が流れる。したがって、第7の態様のプラズマ処理装置では、第1の処理区画に流れる電流、及び、第2の処理区画に流れる電流が抑制される。故に、第1の処理区画へのプラズマの拡散を抑制して、第1の上部電極と第1の下部電極の間にプラズマを閉じ込めることができ、安定したプラズマの生成が可能となる。また、第2の処理区画へのプラズマの拡散を抑制して、第2の上部電極と第2の下部電極の間にプラズマを閉じ込めることができ、安定したプラズマの生成が可能となる。
一実施形態において、プラズマ処理装置は、第1の電極と第2のコイルの一端との間、第2の電極と第2のコイルの他端との間、第3の電極と第3のコイルの一端との間、第4の電極と第3のコイルの他端との間にそれぞれ接続された四つのコンデンサを更に備える。
一実施形態において、プラズマ処理装置は、電流センサ又は電圧センサである複数のセンサを更に備える。複数のセンサは、第2のコイルの一端及び他端のうち一方、並びに、第3のコイルの一端及び他端のうち一方にそれぞれ接続された二つのセンサを含む。更なる実施形態において、複数のセンサは、第2のコイルの一端及び他端のうち他方、並びに、第3のコイルの一端及び他端のうち他方にそれぞれ接続された別の二つのセンサを更に含む。
第8の態様においては、誘導結合型のプラズマ処理装置が提供される。このプラズマ処理装置は、チャンバを提供するチャンバ本体と、チャンバ内に設けられた下部電極と、下部電極の上方に設けられた窓部材と、窓部材の上方に設けられており、鉛直方向に延びるチャンバの中心線の周りで延在する第1のアンテナコイルと、窓部材の上方に設けられており、中心線の周りで延在し、第1のアンテナコイルの外側に設けられた第2のアンテナコイルと、高周波電源と、上述した第1の態様及び種々の実施形態のうち何れかの変圧器と、を備える。高周波電源は第1のコイルに電気的に接続されている。第2のコイルの一端及び他端は、第1のアンテナコイルの一端及び他端にそれぞれ電気的に接続されている。第3のコイルの一端及び他端は、第2のアンテナコイルの一端及び他端にそれぞれ電気的に接続されている。
第8の態様のプラズマ処理装置では、第1のアンテナコイルに第2のコイルから供給される高周波の電力と第2のアンテナコイルに第3のコイルから供給される高周波の電力との比を調整することができる。第1のアンテナコイルによって生成される変動磁場は、主として、上記中心線を含む領域のプラズマ密度の調整に寄与する。また、第2のアンテナコイルによって生成される変動磁場は、主として、上記中心線から離れた領域のプラズマ密度の調整に寄与する。したがって、第8の態様のプラズマ処理装置によれば、プラズマ密度の径方向の分布を調整することが可能となる。
一実施形態において、プラズマ処理装置は複数のコンデンサを更に備える。複数のコンデンサは、第2のコイルの一端と第1のアンテナコイルの一端との間、第2のコイルの他端と第1のアンテナコイルの他端との間、第3のコイルの一端と第2のアンテナコイルの一端との間、第3のコイルの他端と第2のアンテナコイルの他端との間にそれぞれ接続されている。
第9の態様においては、誘導結合型のプラズマ処理装置が提供される。このプラズマ処理装置は、チャンバを提供するチャンバ本体と、チャンバ内に設けられた下部電極と、下部電極の上方に設けられた窓部材と、窓部材の上方に設けられたアンテナコイルと、高周波電源と、上述した第1の態様及び種々の実施形態のうち何れかの変圧器と、を備える。高周波電源は第1のコイルに電気的に接続されている。第2のコイルの一端及び他端は、アンテナコイルの一端及び他端にそれぞれ電気的に接続されている。第3のコイルの一端は、下部電極に電気的に接続されている。
第9の態様のプラズマ処理装置では、高周波電源からの高周波に基づいて生成される二つの高周波のうち一方がアンテナコイルに供給され、他方が下部電極に供給される。即ち、二つの高周波のうち一方がプラズマ生成のために用いられ、他方がイオンエネルギーの制御のために用いられる。
一実施形態において、第1のコイルの自己共振周波数は、高周波電源が発生する高周波の周波数の2倍以上である。この実施形態によれば、二次側の負荷の変動に起因する第1のコイルの自己共振周波数の大きな変動を抑制することができる。
一実施形態において、第2のコイルは当該第2のコイルに接続される負荷の負荷インピーダンスよりも大きい自己インダクタンスを有し、第3のコイルは当該第3のコイルに接続される負荷の負荷インピーダンスよりも大きい自己インダクタンスを有する。
第10の態様においては、第2〜第4の態様、並びに、第5の態様及びその実施形態のうち何れかのプラズマ処理装置を用いるプラズマ処理方法が提供される。このプラズマ処理方法に用いられるプラズマ処理装置では、第2のコイルの他端及び第3のコイルの他端は互いに接続されて、且つ、接地されている。このプラズマ処理方法は、第2のコイル及び第3のコイルを含む二次側コイル対の回転方向の角度位置を第1の角度位置に設定する第1工程と、二次側コイル対の回転方向の角度位置を第2の角度位置に設定する第2工程と、を含む。第1工程と第2工程が、第1のコイルに高周波電源からの高周波を供給している状態で、交互に繰り返される。
原子層レベルの成膜又は原子層レベルのエッチングでは、被加工物に入射するイオンのエネルギーを交互に変更することが求められる。第10の態様に係るプラズマ処理方法では、第2のコイル及び第3のコイルを含む二次側コイル対の回転方向の角度位置を交互に変更することにより、高周波電源からの高周波を第1のコイルに供給した状態のまま、被加工物に入射するイオンのエネルギーを交互に変更することができる。したがって、原子層レベルの成膜、原子層レベルのエッチングといったプラズマ処理のスループットを改善することができる。
以上説明したように、変圧器の二次側から出力される第1の高周波の電力と第2の高周波の電力の比を、微細に制御することが可能となる。また、一次側のコイルに高周波を供給している状態であっても、二つの出力高周波の電力比を変更することが可能となる。さらに、第1の高周波と第2の高周波との間の位相を、同位相と逆位相との間で変更することが可能となる。
一実施形態に係る変圧器を一部破断して示す斜視図である。 一実施形態に係る変圧器の三つのコイルを概略的に示す図である。 図1に示す変圧器を概略的に示す平面図である。 図1に示す変圧器を概略的に示す平面図である。 図1に示す変圧器を概略的に示す平面図である。 図1に示す変圧器を概略的に示す平面図である。 電力伝達効率を示すグラフである。 入力電圧と出力電圧の比(Vout/Vin)を示すグラフである。 インピーダンス特性を示すグラフである。 第1の実施形態に係るプラズマ処理装置を示す図である。 第1の実施形態に係るプラズマ処理装置を示す図である。 上部電極、下部電極、及び、チャンバ本体のそれぞれにおける電流値を示すグラフである。 上部電極及び下部電極それぞれの直流電位を示すグラフである。 一実施形態に係るプラズマ処理方法に関連するタイミングチャートを示す図である。 第2の実施形態に係るプラズマ処理装置を示す図である。 第3の実施形態に係るプラズマ処理装置を示す図である。 第4の実施形態に係るプラズマ処理装置を示す図である。 第5の実施形態に係るプラズマ処理装置を示す図である。 第6の実施形態に係るプラズマ処理装置を示す図である。 第7の実施形態に係るプラズマ処理装置を示す図である。 第8の実施形態に係るプラズマ処理装置を示す図である。 別の実施形態に係るプラズマ処理装置を示す図である。 更に別の実施形態に係るプラズマ処理装置を示す図である。 第1の実施形態の変形態様に係るプラズマ処理装置を示す図である。
以下、図面を参照して種々の実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。
図1は、一実施形態に係る変圧器を一部破断して示す斜視図である。図2は、一実施形態に係る変圧器の三つのコイルを概略的に示す図である。図1及び図2に示す変圧器100は、回転軸102、一次側の第1のコイル104、及び、二次側コイル対106を備えている。二次側コイル対106は、第2のコイル108及び第3のコイル110を含んでいる。一実施形態において、変圧器100は、支持部材112,114、支柱116、支持部材118,120、支持部材122,124、端子124a,124b、端子128a,128b、及び、端子130a,130bを更に備えている。
回転軸102は、略円柱状をなしている。回転軸102は、その中心軸線RX周りに、即ち、中心軸線RXを回転軸線として、回転可能に設けられている。一実施形態では、回転軸102は、支持部材112と支持部材114によって回転可能に支持されている。支持部材112及び支持部材114は、板状の部材であり、略矩形の平面形状を有する。支持部材112及び支持部材114は、絶縁体から形成されている。支持部材112及び支持部材114は、中心軸線RXに交差又は略直交するように設けられており、それらの板厚方向が中心軸線RXが延びる方向RDに略一致するよう、方向RDに沿って配列されている。支持部材112の隅部には支柱116の一端が固定されており、支持部材114の隅部には支柱116の他端が固定されている。回転軸102の一端部は、支持部材112を貫通して、支持部材112から突出している。この回転軸102の一端部は、後述する駆動機構140(例えば、モータ)に接続されている。
支持部材118及び支持部材120は、略円盤状の部材であり、絶縁体から形成されている。支持部材118及び支持部材120は、支持部材112と支持部材114との間において中心軸線RXに交差又は略直交するように設けられており、それらの板厚方向が方向RDに略一致するように方向RDに沿って配列されている。また、支持部材122及び支持部材124は、略円盤状の部材であり、絶縁体から形成されている。支持部材122及び支持部材124は、支持部材118と支持部材120との間において中心軸線RXに交差又は略直交するように設けられており、それらの板厚方向が方向RDに略一致するように方向RDに沿って配列されている。回転軸102は、支持部材118,120,122,124それぞれの中心を貫通している。支持部材118,120,122,124は、回転軸102に固定されている。
第1のコイル104は、中心軸線RXに直交する第1の軸線AX1周りに延在している。一実施形態では、第1の軸線AX1は、支持部材112と支持部材114との中間において中心軸線RXに直交している。第1のコイル104は、支持部材112の外側と支持部材114の外側を交互に通るように、第1の軸線AX1中心に巻かれている。
第1のコイル104の一端104aは、端子124aに接続されている。一実施形態では、端子124aは、支持部材112の一面112a(変圧器100の外側に向いた面)に設けられている。また、第1のコイル104の他端104bは、端子124bに接続されている。一実施形態では、端子124bは、支持部材114の一面114a(変圧器100の外側に向いた面)に設けられている。
第2のコイル108は、第2の軸線AX2周りに延在している。第2の軸線AX2は、第1のコイル104によって囲まれた領域内で中心軸線RXに直交している。一実施形態では、第2の軸線AX2は、支持部材118と支持部材120との中間において中心軸線RXに直交している。第2のコイル108は、支持部材118の外側と支持部材120の外側を交互に通るように、第2の軸線AX2中心に巻かれている。第2のコイル108は、支持部材118及び支持部材120を介して回転軸102によって支持されている。
第2のコイル108の一端108aは、端子128aに接続されている。また、第2のコイル108の他端108bは、端子128bに接続されている。一実施形態では、端子128a及び端子128bは、支持部材112の一面112aに設けられている。回転軸102は、同軸状に設けられた第1の導体と第2の導体を含んでおり、第2のコイル108の一端108aは第1の導体に接続されており、第2のコイル108の他端108bは第2の導体に接続されている。第1の導体は、ロータリーコネクタ130内のスリップリングを介して端子128aに接続されている。また、第2の導体は、ロータリーコネクタ130内の別のスリップリングを介して端子128bに接続されている。
第3のコイル110は、第3の軸線AX3周りに延在している。第3の軸線AX3は、第1のコイル104によって囲まれた領域内で中心軸線RXに直交している。また、第3の軸線AX3は、第2の軸線AX2に交差している。第3の軸線AX3と第2の軸線AX2は、互いの間に所定の角度θpをなしている。角度θpは、限定されるものではないが、例えば、90度である。一実施形態では、第3の軸線AX3は、支持部材122と支持部材124との中間において中心軸線RXに直交している。第3のコイル110は、支持部材122の外側と支持部材124の外側を交互に通るように、第3の軸線AX3中心に巻かれている。第3のコイル110は、支持部材122及び支持部材124を介して回転軸102によって支持されている。この第3のコイル110と第2のコイル108との間には、絶縁距離が確保されている。
第3のコイル110の一端110aは、端子130aに接続されている。また、第3のコイル110の他端110bは、端子130bに接続されている。一実施形態では、端子130a及び端子130bは、支持部材114の一面114aに設けられている。回転軸102は、同軸状に設けられた第3の導体と第4の導体を含んでおり、第3のコイル110の一端110aは第3の導体に接続されており、第3のコイル110の他端110bは第4の導体に接続されている。第3の導体は、支持部材114の近傍に設けられた別のロータリーコネクタのスリップリングを介して端子130aに接続されている。また、第4の導体は、当該別のロータリーコネクタ内の別のスリップリングを介して端子130bに接続されている。
以下、図3〜図6を参照して、変圧器100による二つの出力高周波の発生原理について説明する。図3〜図6は、図1に示す変圧器を概略的に示す平面図である。図3〜図6には、中心軸線RXに沿った方向に視た第1のコイル104、第2のコイル108、及び、第3のコイル110が概略的に示されている。図3〜図6においては、第1のコイル104は、矩形の図形で示されている。以下の説明では、二次側コイル対106の回転方向の角度位置θrを、第1の軸線AX1と第2の軸線AX2とがなす角度として定義する。図4に示すように、第1の軸線AX1と第2の軸線AX2が一致しているときには、角度位置θrは0度である。また、図3に示すように第1の軸線AX1に対して第2の軸線AX2が時計回りに0度から180度の範囲内にあるときに、角度位置θrは負値をとるものとする。また、図5に示すように第1の軸線AX1に対して第2の軸線AX2が反時計回りに0度から180度の範囲内にあるときに、角度位置θrは正値をとるものとする。
第1のコイル104に高周波電源から高周波が供給されると、第1の軸線AX1に略平行な方向に磁束MFが発生する。図3に示すように、発生した磁束が第2のコイル108を貫くことにより、第2のコイル108に誘導起電力が発生する。また、発生した磁束が第3のコイル110を貫くことにより、第3のコイル110に誘導起電力が発生する。これにより、第2のコイル108から第1の高周波が出力され、第3のコイル110から第2の高周波が出力される。第2のコイル108を貫く磁束の量、ひいては第1の高周波の電力は、第1のコイル104と第2のコイル108がなす角度に依存する。また、第3のコイル110を貫く磁束の量、ひいては第2の高周波の電力は、第1のコイル104と第3のコイル110がなす角度に依存する。変圧器100では、回転軸102を回転させることにより、二次側コイル対106を回転させることができ、第1のコイル104と第2のコイル108がなす角度と、第1のコイル104と第3のコイル110がなす角度との比を微細に変更することができる。したがって、第1の高周波の電力と第2の高周波の電力の比、即ち、二つの出力高周波の電力比を、微細に制御することが可能である。
また、変圧器100では、接地するタップの変更、即ち、接点の変更により二つの出力高周波の電力比を変更するのではなく、回転軸102の回転により、二つの出力高周波の電力比を変更することができる。したがって、一次側の第1のコイル104に高周波を供給している状態であっても、二つの出力高周波の電力比を変更することが可能である。
また、変圧器100では、第1の高周波と第2の高周波との間の位相を、同位相と逆位相との間で変更することができる。以下、具体的に説明する。図3に示す状態では、角度位置θrが、例えば−20度である。この状態では、磁束が第2のコイル108を当該第2のコイル108の一方側から他方側へと貫いており、当該磁束が第3のコイル110を当該第3のコイル110の一方側から他方側へと貫いている。したがって、第2のコイル108の一端と他端との間、第3のコイル110の一端と他端との間で、同方向(同位相)の誘導起電力が生じる。
図4に示す状態では、角度位置θrは0度である。この状態では、磁束は第2のコイル108のみを貫く。したがって、第2のコイル108だけに誘導起電力が発生し、第3のコイル110には誘導起電力が発生しない。
図5に示す状態では、角度位置θrは例えば20度である。この状態では、磁束が第2のコイル108を当該第2のコイル108の一方側から他方側へと貫いており、当該磁束が第3のコイル110を当該第3のコイル110の他方側から一方側へと貫いている。したがって、第2のコイル108の一端と他端との間に生じる誘導起電力と第3のコイル110の一端と他端との間で生じる誘導起電力の方向は逆方向(逆位相)になる。
図6に示す状態では、角度位置θrは90度である。この状態では、磁束は第3のコイル110のみを貫く。したがって、第3のコイル110だけに誘導起電力が発生し、第2のコイル108には誘導起電力が発生しない。
このように、変圧器100によれば、第1の高周波と第2の高周波との間の位相を、同位相と逆位相との間で変更することができる。また、第2のコイル108及び第3のコイル110のうち一方のみから出力高周波を出力することも可能である。
以下、変圧器100の性能向上において望まれる設計指針について説明する。しかしながら、変圧器100は以下に説明する設計指針によって限定されるものではない。
変圧器では、一次側のコイルの電流値と二次側のコイルの電流値が略同レベルであることが望まれる。ここで、一次側のコイルに高周波電源が接続され、二次側のコイルに複素インピーダンスZの負荷が接続されている場合には、一次側のコイルの電流値Iと二次側のコイルの電流値Iの比(電流比)は以下の式(1)で表される。式(1)において、Lは一次側のコイルの自己インダクタンス、Lは二次側のコイルの自己インダクタンス、kは1次側のコイルと二次側のコイルの間の結合係数、ωは高周波の角周波数である。
Figure 2017199795
式(1)において、負荷の複素インピーダンスZに依存せずに電流比を大きくするためには、Z<<Lωを満たすよう、二次側のコイルの大きさや巻数を設定する必要がある。したがって、一実施形態では、第2のコイル108には、それに接続される負荷の負荷インピーダンスよりも大きいインダクタンスを有するコイルが用いられる。また、第3のコイル110には、それに接続される負荷の負荷インピーダンスよりも大きいインダクタンスを有するコイルが用いられる。
二次側のコイルがZ<<Lωを満たす場合に、電流比は、(1)式に示すように、近似的に結合係数kと、自己インダクタンスLと自己インダクタンスLの比の平方根との積となる。(1)式から理解できるように、1次側のコイルの自己インダクタンスLを二次側のコイルの自己インダクタンスLよりも大きくすることにより、電流比を大きくすることができる。一実施形態の変圧器100では、第1のコイル104の自己インダクタンスが、第2のコイル108の自己インダクタンス、及び、第3のコイル110の自己インダクタンスよりも大きい自己インダクタンスに設定される。これにより、電流比を大きくすることができる。したがって、二次側の二つのコイル、即ち第2のコイル108及び第3のコイル110にそれぞれ接続される負荷に十分な電流を供給することが可能となる。
一実施形態において、第2のコイル108及び第3のコイル110は、第1のコイル104の内側に設けられている。即ち、回転する二次側コイル対106が第1のコイル104に干渉しないよう、二次側コイル対106は第1のコイル104の内側に設けられている。したがって、第1のコイル104のサイズ(断面積)は、第2のコイル108のサイズ(断面積)及び第3のコイル110のサイズ(断面積)よりも大きくなる。故に、第1のコイル104の自己インダクタンスを、第2のコイル108の自己インダクタンス及び第3のコイル110の自己インダクタンスに対して、大きくすることができる。
次に、変圧器100の第1のコイル104に入力される高周波の周波数について説明する。コイルは、浮遊容量成分を有するので、並列共振する周波数、即ち、自己共振周波数を有する。並列共振状態では、インピーダンスは極めて高くなる。また、1次側のコイルは2次側の負荷インピーダンスの影響を受ける。したがって、高周波の周波数が1次側のコイルの自己共振周波数に近い周波数である場合には、負荷の僅かな変動でもインピーダンスが大きく変動することになる。その結果、インピーダンスが一次側のコイルと高周波電源との間に設けられる整合器の整合範囲を逸脱する事態が生じる。この事態は、1次側のコイルの自己共振周波数の1/2以下の周波数を有する高周波を発生する高周波電源を利用することにより回避可能である。したがって、後述する種々のプラズマ処理装置の実施形態では、第1のコイル104に接続される高周波電源として、それが発生する高周波の周波数に対して第1のコイル104の自己共振周波数が2倍以上となる高周波電源が選択される。
次に、二次側コイル対106の第2のコイル108と第3のコイル110がなす角度θpについて説明する。一実施形態では、第2のコイル108と第3のコイル110がなす角度θpは90度に設定される。これにより、第2のコイル108と第3のコイル110の間の相互インダクタンスを極めて小さくすることができ、第2のコイル108と第3のコイル110の間での相互干渉を抑制することができる。結果的に、第2のコイル108及び第3のコイル110において効率的に高周波を発生させることができる。また、第2のコイル108及び第3のコイル110のうち一方に生じる誘導起電力が最大になるときに、第2のコイル108及び第3のコイル110のうち他方に生じる誘導起電力が最小になる。したがって、二つの出力高周波の電力比の制御性が高くなる。また、第2のコイル108のターン数及び第3のコイル110のターン数を多くすることができる。
次に、第2のコイル108の自己インダクタンスと第3のコイル110の自己インダクタンスについて説明する。第1のコイル104の電流値と第2のコイル108の電流値の比(電流比の最大値)と、第1のコイル104の電流値と第3のコイル110の電流値の比(電流比の最大値)とは、整合器の可変範囲及び整合器の動作の観点から、略同一であることが望まれる。しかしながら、一実施形態では、第3のコイル110が第2のコイル108の内側に設けられている。したがって、第3のコイル110のサイズ(断面積)は第2のコイル108のサイズ(断面積)よりも小さい。このため、第1のコイル104と第2のコイル108の結合係数の最大値と、第1のコイル104と第3のコイル110の結合係数の最大値との間に差が生じる。この差を減少させるために、一実施形態では、第3のコイル110が第2のコイル108の自己インダクタンスよりも小さい自己インダクタンスを有するように変圧器100が構成される。
以下、変圧器の実施例に対して行った評価について説明する。なお、本発明は、実施例によって限定されるものではない。実施例では、第1のコイルの断面は11mm×19mmのサイズを有し、第2のコイルの断面は9mm×14mmのサイズを有し、第3のコイルの断面は9mm×9mmのサイズを有していた。また、第2のコイルと第3のコイルがなす角度θpは90度であった。また、第1のコイルの自己インダクタンス、第2のコイルの自己インダクタンス、第3のコイルの自己インダクタンスはそれぞれ、76.1μH、30.1μH、33.4μHであった。
そして、第1のコイルの一端をネットワークアナライザのポート1に接続し、第2のコイルの一端をネットワークアナライザのポート2に接続し、第3のコイルの一端に50Ωの負荷を接続し、第1のコイルの他端、第2のコイルの他端、及び、第3のコイルの他端を接地した。そして、二次側コイル対の回転方向の角度位置θrを−90度から90度の間の幾つかの角度に設定しつつ、第1のコイルから第2のコイルへの電力伝達効率、及び、第1のコイルの入力電圧と第2のコイルの出力電圧との比(Vout/Vin)を測定した。また、第1のコイルの一端をネットワークアナライザのポート1に接続し、第3のコイルの一端をネットワークアナライザのポート2に接続し、第2のコイルの一端に50Ωの負荷を接続し、第1のコイルの他端、第2のコイルの他端、及び、第3のコイルの他端を接地した。そして、二次側コイル対の回転方向の角度位置θrを−90度から90度の間の幾つかの角度に設定しつつ、第1のコイルから第3のコイルへの電力伝達効率、及び、第1のコイルの入力電圧と第3のコイルの出力電圧との比(Vout/Vin)を測定した。
結果を図7A及び図7Bに示す。図7Aのグラフにおいて、横軸は角度位置θrを示しており、縦軸は電力伝達効率(%)を示している。図7Aのグラフにおいて、「コイル108」の凡例で示されるプロットは、第1のコイルから第2のコイルへの電力伝達効率を示しており、「コイル110」の凡例で示されるプロットは、第1のコイルから第3のコイルへの電力伝達効率を示している。図7Bのグラフにおいて、横軸は角度位置θrを示しており、縦軸はVout/Vinを示している。図7Bのグラフにおいて、「コイル108」の凡例で示されるプロットは、第1のコイルの入力電圧と第2のコイルの出力電圧との比を示しており、「コイル110」の凡例で示されるプロットは、第1のコイルの入力電圧と第3のコイルの出力電圧との比を示している。
図7Aのグラフから理解されるように、実施例の変圧器によれば、二次側コイル対の角度位置θrを調整することにより、二つの出力高周波の電力比を微細に調整することが可能であることが確認された。また、図7Bのグラフから理解されるように、二次側コイル対の角度位置θrが0度から−90度の間の角度位置に設定されている場合には、第2のコイルと第3のコイルに同方向(同位相)の誘導起電力が発生し、二次側コイル対の角度位置θrが0度から90度の間の角度位置に設定されている場合には、第2のコイルと第3のコイル逆方向(逆位相)の誘導起電力が発生することが確認された。したがって、実施例の変圧器によれば、二つの出力高周波の位相関係を同位相と逆位相との間で変更することが可能であることが確認された。
さらに、第1のコイルの一端をネットワークアナライザのポート1に接続し、第2のコイルの一端及び第3のコイルの一端のそれぞれに50Ωの負荷を接続し、第1のコイルの他端、第2のコイルの他端、及び、第3のコイルの他端を接地した。そして、入力側のインピーダンス特性を測定した。結果を図8に示す。図8のグラフにおいて、横軸は周波数を示しており、縦軸は入力側のインピーダンスを示している。図8のグラフから理解されるように、実施例の変圧器では、約1.3MHzまでの周波数の増加に対する入力側のインピーダンスの変化は、対数グラフ上で線形である。これは、通常のコイルの振る舞いである。また、実施例の変圧器では、周波数が約1.3MHzを超えると、入力側のインピーダンスが急激に高くなり、2.7MHzの周波数で並列共振を生じている。したがって、第1のコイルに接続される高周波電源として、それが発生する高周波の周波数に対して第1のコイルの自己共振周波数が2倍以上となる高周波電源が選択されることが望ましいことが確認された。なお、図7A及び図7Bに関連する上述の評価では、450kHzの高周波を用いた。
以下、変圧器100を備えるプラズマ処理装置の幾つかの実施形態について説明する。
図9及び図10は、第1の実施形態に係るプラズマ処理装置を示す図である。図9においては、第1の実施形態に係るプラズマ処理装置を、そのチャンバ本体を破断して示している。図10は、図9に示すプラズマ処理装置を概略的に示しており、変圧器の第1〜第3のコイルを示している。図9及び図10に示すプラズマ処理装置10は、容量結合型のプラズマ処理装置であり、チャンバ本体12、上部電極14、下部電極16、高周波電源18、及び、変圧器100を備えている。
チャンバ本体12の内部空間はチャンバ12cとして提供されている。チャンバ本体12は、アルミニウムといった金属から形成されている。チャンバ本体12の内壁面には耐プラズマ性の被覆が形成されている。耐プラズマ性の被覆は、アルマイト膜、酸化イットリウム膜といったセラミックス製の膜であり得る。チャンバ本体12は、略筒状の側壁部、側壁部の下端に連続する底部、及び、側壁部の上端に連続する上端部を有している。このチャンバ本体12は、接地されている。
チャンバ本体12内には、ステージ20が設けられている。ステージ20は、下部電極16を含んでいる。また、一実施形態では、ステージ20は静電チャック22を更に含んでいる。このステージ20は、チャンバ本体12の底部から延びる絶縁性の支持体24によって支持されている。ステージ20の下部電極16は、第1の実施形態における第2の電極である。下部電極16は、略円盤形状を有しており、アルミニウムといった導体から形成されている。静電チャック22は下部電極16上に設けられている。静電チャック22は、誘電体膜、及び、当該誘電体膜内に内蔵された電極を含んでいる。静電チャック22の電極にはスイッチを介して電源が接続されている。この電源から静電チャック22の電極に電圧が印加されることにより、静電チャック22は静電力を発生する。静電チャック22は、当該静電力によって、その上に載置された被加工物Wを吸着し、当該被加工物Wを保持する。
チャンバ本体12の上端部は、開口している。上部電極14は、絶縁性の部材26を介してチャンバ本体12の上端部に支持されている。上部電極14は、部材26と共に、チャンバ本体12の上端部の開口を閉じている。上部電極14は、第1の実施形態における第1の電極である。上部電極14と下部電極16との間には、チャンバ12c内の空間が介在している。上部電極14は、天板28及び支持体30を含んでいる。天板28はチャンバ12cに面している。この天板28は、シリコン、アルミニウム、又は、石英といった材料から構成され得る。なお、天板28がアルミニウムから形成されている場合には、その表面には耐プラズマ性の被覆が施される。天板28には、複数のガス吐出孔28aが形成されている。
支持体30は、天板28を着脱自在に支持している。支持体30は、例えばアルミニウムといった導体から形成されている。支持体30の内部には、ガス拡散室30aが形成されている。支持体30には、ガス拡散室30aと複数のガス吐出孔28aを接続する複数の孔30bが形成されている。また、ガス拡散室30aには、プラズマ処理のためのガスを供給するガス供給部32が接続されている。ガス供給部32は、複数のガスソース、マスフローコントローラといった複数の流量制御器、及び、複数のバルブを有する。複数のガスソースの各々は、複数の流量制御器のうち対応の流量制御器、及び、複数のバルブのうち対応のバルブを介して、ガス拡散室30aに接続されている。このガス供給部32は、複数のガスソースのうち選択されたガスソースからのガスの流量を調整し、当該ガスをガス拡散室30aに供給する。ガス拡散室30aに供給されたガスは、複数のガス吐出孔28aからチャンバ12cに供給される。
チャンバ本体12の側壁部には、被加工物の搬送のための開口が形成されている。この開口は、ゲートバルブ34によって開閉可能になっている。また、チャンバ12cには排気装置36が接続されている。この排気装置36によって、チャンバ12cの圧力が減圧される。
変圧器100の回転軸102には駆動機構140(例えば、モータ)が接続されている。この駆動機構140は、回転軸102を回転させる動力を発生する。回転軸102の回転により、変圧器100の二次側コイル対106の角度位置θrが調整される。
変圧器100の端子124aは、整合器38を介して高周波電源18に接続されている。したがって、第1のコイル104の一端は高周波電源18に電気的に接続されている。高周波電源18は、変圧器100の一次側のコイル(第1のコイル104)に供給される高周波を発生する。この高周波の周波数は、一実施形態では、第1のコイル104の自己共振周波数の1/2以下の周波数であり得る。整合器38は、高周波電源18の出力インピーダンスと負荷側のインピーダンスとを整合させるための整合回路を有している。
変圧器100の端子128aは、コンデンサ40を介して、上部電極14に接続されている。したがって、第2のコイル108の一端は、上部電極14に接続されている。変圧器100の端子130aは、コンデンサ42を介して、下部電極16に接続されている。したがって、第3のコイル110の一端は、下部電極16に接続されている。変圧器100の端子124b、端子128b、及び、端子130bは、互いに接続されており、接地されている。したがって、第1のコイル104の他端、第2のコイル108の他端、及び、第3のコイル110の他端は、互いに接続されており、接地されている。
また、プラズマ処理装置10は、制御部60を更に備えている。制御部60は、プロセッサ、メモリといった記憶装置、ディスプレイといった表示装置、キーボードといった入力装置、データ入出力装置といった要素を有するコンピュータ装置であり得る。制御部60は、記憶装置に格納されている制御プログラム及びレシピにしたがって、プラズマ処理装置10の各部を制御するよう構成されている。
このプラズマ処理装置10においてプラズマ処理が行われる際には、被加工物Wが静電チャック22によって保持される。また、ガス供給部32からチャンバ12cにガスが供給される。また、排気装置36によってチャンバ12cの圧力が減圧される。そして、チャンバ12c内に供給されたガスが、変圧器100のからの出力高周波によって励起される。これによりチャンバ12cにおいてプラズマが生成される。このプラズマ中からのラジカル及び/又はイオンによって被加工物Wが処理される。
チャンバ12cにおいて生成されるプラズマの直流電位は、チャンバ本体12の直流電位、上部電極14の直流電位、及び、下部電極16の直流電位よりも高い。下部電極16の直流電位が、チャンバ本体12の直流電位及び上部電極14の直流電位よりも高ければ、被加工物Wに入射するイオンのエネルギーが低くなる。一方、下部電極16の直流電位が、チャンバ本体12の直流電位及び上部電極14の直流電位よりも低ければ、被加工物Wに入射するイオンのエネルギーが高くなる。
このプラズマ処理装置10では、高周波電源18からの高周波に基づき生成される二つの高周波、即ち第1の高周波、第2の高周波を上部電極14、下部電極16にそれぞれ供給することができる。また、二次側コイル対106の回転方向の角度位置θrを調整することにより、第1の高周波のパワー、第2の高周波のパワー、及び、第1の高周波と第2の高周波との間の位相を調整することができる。したがって、下部電極16上の被加工物Wに入射するイオンのエネルギーを調整することが可能となる。例えば、上部電極14からプラズマを介して下部電極16に流入する電流(高周波電流)と逆位相の電流(高周波電流)が下部電極に供給されるように、角度位置θrが設定される。これにより、下部電極16上の被加工物Wに入射するイオンのエネルギーが抑制される。
以下、プラズマ処理装置10の上部電極14、下部電極16、及び、チャンバ本体12のそれぞれに流れる電流、並びに、上部電極14及び下部電極16それぞれの直流電位についての評価結果について説明する。評価に用いたプラズマ処理装置10の上部電極14と下部電極16との間の距離は19mmであり、プラズマ処理装置10は300mmの直径を有するウエハを処理可能な装置であった。また、この評価では、チャンバ12cの圧力を800mTorr(106.7Pa)、高周波電源から第1のコイルに入力される高周波のパワーを1000W、当該高周波の周波数を450kHzに設定した。また、チャンバ12cに、40sccmのArガス、40sccmのOガスを供給した。なお、上述した実施例の変圧器を用いた。この評価では、二次側コイル対の角度位置θrを−45度〜45度の間の幾つかの角度位置に設定しつつ、上部電極14、下部電極16、及び、チャンバ本体12のそれぞれにおける電流値、及び上部電極14及び下部電極16それぞれの直流電位Vdcを測定した。
図11Aに、角度位置θrと上部電極14、下部電極16、及び、チャンバ本体12のそれぞれにおける電流値との関係を示し、図11Bに、角度位置θrと上部電極14及び下部電極16それぞれの直流電位Vdcとの関係を示す。図11Aのグラフにおいて、「上部電極」の凡例で示されるプロットは上部電極14における電流値を示しており、「下部電極」の凡例で示されるプロットは下部電極16における電流値を示しており、「チャンバ本体」の凡例で示されるプロットはチャンバ本体12における電流値を示している。また、図11Bのグラフにおいて、「上部電極」の凡例で示されるプロットは上部電極14の直流電位を示しており、「下部電極」の凡例で示されるプロットは下部電極16の直流電位を示している。なお、以下の説明においては、上部電極14からプラズマを介して下部電極16及びチャンバ本体12に流れる電流の向きを基準として、図11A及び図11Bに示す評価結果の説明を行う。
角度位置θrが27度のときには、上部電極14に供給される第1の高周波のパワーが下部電極16に供給されるパワーよりも大きいが、上部電極14からの電流の一部が下部電極16に流入し、流入した電流と同方向の電流が流れるような位相で第2の高周波が下部電極16に供給されているので、これらの電流が足し合わせられる。したがって、角度位置θrが27度のときには、図11Aに示すように、上部電極14と下部電極16には略同等の電流値の電流が流れていた。また、角度位置θrが27度のときには、図11Bに示すように、下部電極16の直流電位は絶対値の大きな負値をとっていた。したがって、角度位置θrが27度のときには、下部電極16上の被加工物に比較的高いエネルギーのイオンを照射することが可能であることが確認された。
角度位置θrが0度のときには、下部電極16に高周波は供給されないが、上部電極14からの電流が部分的に下部電極16に流入する。したがって、図11Aに示すように、下部電極16の電流値はゼロではなかった。また、図11Bに示すように、下部電極16の直流電位は負の値をとっていた。したがって、角度位置θrが0度のときには、被加工物Wに入射するイオンのエネルギーが最小にはならないことが確認された。
角度位置θrが−25度のときには、図11Aに示すように、下部電極16には、上部電極14から下部電極16に流入する電流の電流値と同等の電流値の電流が第2のコイルから下部電極16に供給され、これらの電流が互いに打ち消しあっていた。また、図11Bに示すように、下部電極16の直流電位は大きな正値をとっていた。したがって、角度位置θrが−25度のときには、被加工物Wに入射するイオンのエネルギーが大きく減少されることが確認された。以上の説明から理解されるように、変圧器100を有するプラズマ処理装置10によれば、下部電極16上の被加工物Wに入射するイオンのエネルギーを微細に調整することが可能である。
以下、プラズマ処理装置10を用いたプラズマ処理方法の実施形態について説明する。図12は、一実施形態に係るプラズマ処理方法に関連するタイミングチャートを示す図である。なお、このプラズマ処理方法は、後述する幾つかの別の実施形態に係るプラズマ処理装置においても実施することが可能である。
図12に示すように、このプラズマ処理方法は、工程ST1(第1工程)と工程ST2(第2工程)を含む。工程ST1と工程ST2は交互に繰り返される。工程ST1では、二次側コイル対106の回転方向の角度位置θrが第1の角度位置に設定される。第1の角度位置は、被加工物に入射するイオンのエネルギーが比較的低くなる角度位置であり、例えば−25度である。また、工程ST1では、チャンバ12cにガスA及びガスBが供給される。工程ST1におけるガスAの流量は、第1の流量(例えば、50sccm)である。工程ST1におけるガスBの流量は、第2の流量(例えば、120sccm)である。ガスAは、限定されるものではないが、アルゴンガスといった希ガスであり得る。ガスBは、限定されるものではないが、例えば、成膜用の前駆体ガスであり得る。前駆体ガスは、例えば、シリコン含有ガスであり得る。また、工程ST1では、チャンバ12cの圧力が比較的高い第1の圧力(例えば、2Torr(266.6Pa))に設定される。また、高周波電源18の高周波のパワーは第1のパワー(例えば、1000W)に設定される。
工程ST1では、ガスA及びガスBのプラズマが生成され、プラズマ中のイオン及び/又はラジカルが被加工物に照射される。工程ST1では、角度位置θrが第1の角度位置に設定されるので、被加工物に照射されるイオンのエネルギーは比較的低い。したがって、ガスBが前駆体ガスである場合には、前駆体及び被加工物上に形成された膜のダメージが抑制される。
工程ST2では、二次側コイル対106の回転方向の角度位置θrが第2の角度位置に設定される。第2の角度位置は、被加工物に入射するイオンのエネルギーが比較的高くなる角度位置であり、例えば27度である。また、工程ST2では、チャンバ12cにガスAが供給される。工程ST2におけるガスAの流量は、例えば、上述の第1の流量である。工程ST2におけるガスBの流量は、第3の流量、例えば0sccmである。また、工程ST2では、チャンバ12cの圧力が比較的低い第2の圧力(例えば、0.8Torr(106.7Pa))に設定される。また、高周波電源18の高周波のパワーは第1のパワーよりも高い第2のパワー(例えば、1200W)に設定される。
工程ST2では、ガスAのプラズマが生成され、プラズマ中のイオン及び/又はラジカルが被加工物に照射される。工程ST2では、角度位置θrが第2の角度位置に設定されるので、被加工物に照射されるイオンのエネルギーは比較的高い。したがって、ガスBが前駆体ガスである場合には、工程ST1において被加工物上に形成された過剰な前駆体及び/又は前駆体中の不要な成分を除去することができる。このプラズマ処理方法によれば、ガスBが前駆体ガスである場合には、原子層レベルの成膜を行うことができる。なお、このプラズマ処理方法は、原子層レベルの成膜での使用のみならず、他のプラズマ処理、例えば、原子層レベルのエッチングにおいても使用可能である。
また、このプラズマ処理方法では、工程間の遷移時に高周波電源18からの第1のコイル104に対する高周波の供給を停止する必要がない。これは、変圧器100が利用されているからであり、タップの切替を利用することなく、即ち、接点を利用することなく、角度位置θrの調整により第2のコイル108における第1の高周波のパワー、第3のコイル110における第2の高周波のパワー、及び、それらの間の位相関係を変更することができるからである。したがって、このプラズマ処理方法によれば、工程ST1及び工程ST2を交互に繰り返すプラズマ処理のスループットが高くなる。なお、このプラズマ処理方法は、工程ST1及び工程ST2を含むサイクル中に別の工程を更に含んでいてもよい。
以下、第2の実施形態に係るプラズマ処理装置について説明する。図13は、第2の実施形態に係るプラズマ処理装置を示す図である。図13は、図10と同様に、第2の実施形態に係るプラズマ処理装置を概略的に示している。以下、第2の実施形態のプラズマ処理装置10Aとプラズマ処理装置10の相違点について説明し、プラズマ処理装置10に関する説明と重複する説明を省略する。
プラズマ処理装置10Aは、上部電極14Aを備えている。上部電極14Aは、第1の電極141(内側電極)及び第2の電極142(外側電極)を含んでいる。第1の電極141は、中心線CLに交差している。第1の電極141は、円形の平面形状を有する。第1の電極141の中心線は中心線CLと一致している。なお、中心線CLは、チャンバ12cの中心線であり、鉛直方向に延びている。第2の電極142は、中心線CLに対して放射方向において第1の電極141の外側に設けられている。第2の電極142は、中心線CLの周りで延在する環状の平面形状を有する。
変圧器100の端子128aは、コンデンサ40Aを介して、第1の電極141に接続されている。したがって、第2のコイル108の一端は、第1の電極141に接続されている。変圧器100の端子130aは、コンデンサ42Aを介して、第2の電極142に接続されている。したがって、第3のコイル110の一端は、第2の電極142に接続されている。
ここで、上部電極14Aから下部電極16に流れる電流の向きと同方向に流れる電流は同位相の電流であるものとする。プラズマ処理装置10Aでは、第1の電極141及び第2の電極142のそれぞれに同位相の電流が供給されるように角度位置θrが設定されると、中心線CLに対して径方向のプラズマ密度の分布を調整することが可能である。一方、二つの二次側のコイルとチャンバ側の二つの電極の間で互いに逆方向に電流が供給されるよう、即ち、第1の電極141及び第2の電極142のそれぞれに互いに逆位相の電流が供給されるように、角度位置θrが設定されると、第1の電極141と第2の電極142との間で電流が流れるようになる。その結果、下部電極16に流れる電流が減少する。したがって、下部電極16上の被加工物Wに入射するイオンのエネルギーが減少される。
このプラズマ処理装置10Aにおいても、上述した実施形態のプラズマ処理方法を実施することができる。プラズマ処理装置10Aにおいて当該プラズマ処理方法を実施する場合には、工程ST1において、第1の電極141及び第2の電極142のそれぞれに互いに逆位相の電流が供給されるように、角度位置θrが設定される。工程ST2では、第1の電極141及び第2の電極142のそれぞれに同位相の電流が供給されるように角度位置θrが設定される。
以下、第3の実施形態に係るプラズマ処理装置について説明する。図14は、第3の実施形態に係るプラズマ処理装置を示す図である。図14は、図10と同様に、第3の実施形態に係るプラズマ処理装置を概略的に示している。以下、第3の実施形態のプラズマ処理装置10Bとプラズマ処理装置10の相違点について説明し、プラズマ処理装置10に関する説明と重複する説明を省略する。
プラズマ処理装置10Bは、電極62を更に備えている。電極62は、第3実施形態における第2の電極である。電極62は、上部電極14よりもチャンバ本体12の側壁の近くに設けられている。一実施形態では、電極62は、上部電極14とチャンバ本体12の側壁の間に設けられており、例えば、環状の平面形状を有している。なお、電極62の鉛直方向における配置位置は、ステージ20よりも上方、且つ、上部電極14の配置位置と略同レベル又は上部電極14の配置位置よりも下方の位置であれば、任意の位置であり得る。
変圧器100の端子130aは、コンデンサ42Bを介して、電極62に接続されている。したがって、第3のコイル110の一端は、電極62に接続されている。プラズマ処理装置10Bでは、下部電極16はコンデンサ44Bの一端に接続されており、コンデンサ44Bの他端は接地されている。
ここで、上部電極14から下部電極16に流れる電流の向きと同方向に流れる電流は同位相の電流であるものとする。プラズマ処理装置10Bでは、上部電極14と電極62のそれぞれに同位相の電流が供給されるように角度位置θrが設定されると、下部電極16及びチャンバ本体12に電流が流入するので、下部電極16の電位が低くなる。したがって、下部電極16上の被加工物に比較的高いエネルギーのイオンが照射される。一方、二つの二次側のコイルとチャンバ側の二つの電極の間で互いに逆方向に電流が供給されるよう、即ち、上部電極14と電極62のそれぞれに互いに逆位相の電流が供給されるように、角度位置θrが設定されると、上部電極14と電極62との間で電流が流れるようになる。その結果、下部電極16に流れる電流が減少する。したがって、下部電極16上の被加工物Wに入射するイオンのエネルギーが減少される。このように、プラズマ処理装置10Bによれば、下部電極16に直接的に給電することなく、下部電極16上の被加工物Wに照射されるイオンのエネルギーを調整することが可能となる。
このプラズマ処理装置10Bにおいても、上述した実施形態のプラズマ処理方法を実施することができる。プラズマ処理装置10Bにおいて当該プラズマ処理方法を実施する場合には、工程ST1において、上部電極14及び電極62のそれぞれに互いに逆位相の電流が供給されるように、角度位置θrが設定される。工程ST2では、上部電極14及び電極62のそれぞれに同位相の電流が供給されるように角度位置θrが設定される。
以下、第4の実施形態に係るプラズマ処理装置について説明する。図15は、第4の実施形態に係るプラズマ処理装置を示す図である。図15は、図10と同様に、第4の実施形態に係るプラズマ処理装置を概略的に示している。以下、第4の実施形態のプラズマ処理装置10Cとプラズマ処理装置10の相違点について説明し、プラズマ処理装置10に関する説明と重複する説明を省略する。
プラズマ処理装置10Cは、チャンバ12c2を提供するチャンバ本体12C、上部電極14C、並びに、下部電極16C及び静電チャック22Cを含むステージ20Cを更に備えている。即ち、プラズマ処理装置10Cは、第1のチャンバ(第1の処理空間)を提供する第1のチャンバ本体(第1の処理区画)、及び、第2のチャンバ(第2の処理空間)を提供する第2のチャンバ本体(第2の処理区画)を有している。また、プラズマ処理装置10Cは、それらの間に第1のチャンバ内の空間が介在するように設けられた第1の上部電極及び第1の下部電極を備えており、それらの間に第2のチャンバ内の空間が介在するように設けられた第2の上部電極及び第2の下部電極を備えている。
チャンバ本体12Cはチャンバ本体12と同様に構成されおり、接地されている。上部電極14Cは、上部電極14と同様に構成されており、チャンバ本体12Cの上端部の開口を閉じている。ステージ20Cはステージ20と同様に構成されており、チャンバ本体12Cによって提供されるチャンバ内に設けられている。下部電極16C、静電チャック22Cは、下部電極16、静電チャック22とそれぞれ同様に構成されている。なお、プラズマ処理装置10Cは、チャンバ本体12Cの開口を開閉するためのゲートバルブ、チャンバ本体12C内にガスを供給するガス供給部、及び、チャンバ本体12C内のチャンバを減圧する排気装置を更に備えている。なお、第1の処理空間及び第2の処理空間は、互いに分離されたチャンバ本体12及びチャンバ本体12Cによってそれぞれ提供されてもよいが、簡易的な隔壁等によって一つのチャンバ本体内に画成される二つの処理空間として提供されてもよい。この場合には、第1の処理空間及び第2の処理空間の減圧のために、共通の1系統の排気装置のみが利用されてもよい。
変圧器100の端子130aは、コンデンサ42Cを介して、上部電極14Cに接続されている。したがって、第3のコイル110の一端は、上部電極14Cに接続されている。プラズマ処理装置10Cでは、下部電極16及び下部電極16Cはコンデンサ44Cの一端に接続されており、コンデンサ44Cの他端は接地されている。
プラズマ処理装置10Cでは、高周波電源18からの高周波に基づいて生成される二つの高周波を、二つのチャンバ用の二つの電極(14,14C)に分配することができる。
以下、第5の実施形態に係るプラズマ処理装置について説明する。図16は、第5の実施形態に係るプラズマ処理装置を示す図である。図16は、図15と同様に、第5の実施形態に係るプラズマ処理装置を概略的に示している。以下、第5の実施形態のプラズマ処理装置10Dとプラズマ処理装置10Cの相違点について説明し、プラズマ処理装置10Cに関する説明と重複する説明を省略する。
プラズマ処理装置10Dでは、端子128aは、コンデンサ40Dを介して上部電極14Cに接続されている。端子128bは、コンデンサ42Dを介して上部電極14に接続されている。端子130aは、コンデンサ44Dを介して下部電極16Cに接続されている。端子130bは、コンデンサ46Dを介して下部電極16に接続されている。したがって、第2のコイル108の一端、第2のコイル108の他端、第3のコイル110の一端、第3のコイル110の他端は、上部電極14C、上部電極14、下部電極16C、下部電極16にそれぞれ接続されている。
第2のコイル108の両端には同じ電流が流れ、第3のコイル110の両端には同じ電流が流れる。したがって、プラズマ処理装置10では、上部電極14と上部電極14Cに同じ電流値の電流が供給される。また、下部電極16と下部電極16Cに同じ電流値の電流が供給される。故に、二つのチャンバそれぞれのための上部電極と下部電極に略同条件の高周波を供給することが可能である。即ち、機差が抑制される。また、上部電極14と下部電極16にそれぞれ供給される二つの高周波の各々の電力と当該二つの高周波の間の位相を制御することができ、上部電極14Cと下部電極16Cにそれぞれ供給される二つの高周波の各々の電力と二つの高周波の間の位相を制御できる。したがって、下部電極16上の被加工物Wに照射されるイオンのエネルギーを調整することができ、下部電極16C上の被加工物Wに照射されるイオンのエネルギーを調整することができる。
以下、第6の実施形態に係るプラズマ処理装置について説明する。図17は、第6の実施形態に係るプラズマ処理装置を示す図である。図17は、図15と同様に、第6の実施形態に係るプラズマ処理装置を概略的に示している。以下、第6の実施形態のプラズマ処理装置10Eとプラズマ処理装置10Cの相違点について説明し、プラズマ処理装置10Cに関する説明と重複する説明を省略する。
プラズマ処理装置10Eでは、端子128aは、コンデンサ40Eを介して上部電極14に接続されている。端子128bは、コンデンサ42Eを介して下部電極16に接続されている。端子130aは、コンデンサ44Eを介して上部電極14Cに接続されている。端子130bは、コンデンサ46Eを介して下部電極16Cに接続されている。したがって、第2のコイル108の一端、第2のコイル108の他端、第3のコイル110の一端、第3のコイル110の他端は、上部電極14、下部電極16、上部電極14C、下部電極16Cにそれぞれ接続されている。
第2のコイル108の両端には同じ電流が流れるので、上部電極14と下部電極16のそれぞれに同じ電流値の電流が流れる。上部電極14から下部電極16に向かう電流の向きと同方向に流れる電流が同位相の電流であるもの定義すると、上部電極14と下部電極16には同位相の電流が流れる。また、第3のコイル110の両端には同じ電流が流れるので、上部電極14Cと下部電極16Cのそれぞれに同じ電流値の電流が流れる。上部電極14Cから下部電極16Cに向かう電流の向きと同方向に流れる電流が同位相の電流であるもの定義すると、上部電極14Cと下部電極16Cには同位相の電流が流れる。したがって、チャンバ本体12に流れる電流、及び、チャンバ本体12Cに流れる電流が抑制される。故に、チャンバ本体12内では上部電極14と下部電極16との間でプラズマが閉じ込められ、チャンバ本体12C内では上部電極14Cと下部電極16Cとの間でプラズマが閉じ込められる。結果的に、二つのチャンバにおいて安定したプラズマの生成が可能となる。
また、プラズマ処理装置10Eでは、二次側コイル対106の角度位置θrを調整することにより、上部電極14及び下部電極16に供給される第1の高周波のパワーと上部電極14C及び下部電極16Cに供給される第2の高周波のパワーの比を調整することができる。例えば、第1の高周波のパワーと第2の高周波のパワーを等しくすることも可能である。或いは、第1の高周波及び第2の高周波のうち一方のパワーのみをゼロにすることも可能である。
以下、第7の実施形態に係るプラズマ処理装置について説明する。図18は、第7の実施形態に係るプラズマ処理装置を示す図である。図18は、図9と同様に、第7の実施形態に係るプラズマ処理装置を、そのチャンバ本体を破断して示している。以下、第7の実施形態のプラズマ処理装置10Fとプラズマ処理装置10の相違点について説明し、プラズマ処理装置10に関する説明と重複する説明を省略する。
プラズマ処理装置10Fは、誘導結合型のプラズマ処理装置である。プラズマ処理装置10Fは、チャンバ本体12Fを備えている。チャンバ本体12Fは、チャンバ本体12と同様に構成されている。チャンバ本体12Fの上端部の開口は、窓部材70によって閉じられている。窓部材70は、石英といった誘電体から形成されている。窓部材70上には、第1のアンテナコイル72及び第2のアンテナコイル74が設けられている。第1のアンテナコイル72は、チャンバ本体12Fによって提供されるチャンバ12cの中心線CLの周りで延在している。第2のアンテナコイル74は、中心線CLの周りで延在し、第1のアンテナコイル72の外側に設けられている。
変圧器100の端子128aは、コンデンサ40Fを介して第1のアンテナコイル72の一端に接続されており、端子128bは、コンデンサ42Fを介して第1のアンテナコイル72の他端に接続されている。端子130aは、コンデンサ44Fを介して第2のアンテナコイル74の一端に接続されており、端子130bは、コンデンサ46Fを介して第2のアンテナコイル74の他端に接続されている。下部電極16はコンデンサ48Fの一端に接続されており、コンデンサ48Fの他端は接地されている。
プラズマ処理装置10Fでは、第1のアンテナコイル72に第2のコイル108から供給される第1の高周波の電力と第2のアンテナコイル74に第3のコイル110から供給される第2の高周波の電力との比を調整することができる。第1のアンテナコイル72によって生成される変動磁場は、主として、中心線CLを含む領域のプラズマ密度の調整に寄与する。また、第2のアンテナコイル74によって生成される変動磁場は、主として、中心線CLから離れた領域のプラズマ密度の調整に寄与する。したがって、プラズマ処理装置10Fによれば、チャンバ12cにおけるプラズマ密度の径方向の分布を調整することが可能となる。
以下、第8の実施形態に係るプラズマ処理装置について説明する。図19は、第8の実施形態に係るプラズマ処理装置を示す図である。図19は、図18と同様に、第8の実施形態に係るプラズマ処理装置を、そのチャンバ本体を破断して示している。以下、第8の実施形態のプラズマ処理装置10Gとプラズマ処理装置10Fの相違点について説明し、プラズマ処理装置10Fに関する説明と重複する説明を省略する。
プラズマ処理装置10Gでは、窓部材70上にアンテナコイル72Gが設けられている。アンテナコイル72Gは、中心線CLの周りで延在している。変圧器100の端子128aは、コンデンサ40Gを介してアンテナコイル72Gの一端に接続されており、端子128bは、コンデンサ42Gを介してアンテナコイル72Gの他端に接続されている。端子130aは、コンデンサ44Gを介して下部電極16に接続されている。端子128b及び端子130bは接地されている。
プラズマ処理装置10Gでは、高周波電源18からの高周波に基づいて生成される二つの高周波のうち一方がアンテナコイル72Gに供給され、他方が下部電極16に供給される。即ち、二つの高周波のうち一方がプラズマ生成のために用いられ、他方がイオンエネルギーの制御のために用いられる。
なお、図20に示すように、端子130aは下部電極16ではなく、ファラデーシールド80に、コンデンサ44Hを介して接続されていてもよい。図20に示すプラズマ処理装置10Hでは、ファラデーシールド80は、アンテナコイル72Gと窓部材70との間に設けられている。また、図21に示すように、端子130aは下部電極16ではなく、別の電極82にコンデンサ44Jを介して接続されていてもよい。図21に示すプラズマ処理装置10Jでは、電極82は、チャンバ12c内に設けられている。プラズマ処理装置10H及びプラズマ処理装置10Jにおいても、被加工物Wに照射されるイオンのエネルギーの制御が可能となる。
以下、図22を参照する。図22は、第1の実施形態の変形態様に係るプラズマ処理装置を示す図である。図22に示すプラズマ処理装置10では、端子128a、即ち第2のコイル108の一端にセンサ90が接続されており、端子130a、即ち、第3のコイル110の一端にセンサ92が接続されている。センサ90及びセンサ92は、電流センサであり得る。
上述したように、被加工物Wに照射されるイオンのエネルギーは、上部電極14の電流と下部電極16の電流に依存している。図22に示すプラズマ処理装置10を用いることにより、変圧器100の二次側コイル対の角度位置θrを変更しつつ、上部電極14の電流値と下部電極16の電流値を測定することができる。そして、下部電極16に流れる電流の値が極小となったときの角度位置においてイオンエネルギーが最小になり、下部電極16に流れる電流の値が極大となったときの角度位置においてイオンエネルギーが最大になるという関係を導くことができる。さらに、イオンエネルギーが最小になる角度位置とイオンエネルギーが最大になる角度位置との間の複数の角度位置θrのそれぞれで実際のプロセスと同様のプロセスを行うことにより、プロセスに適した角度位置θrを導くことができる。このようにして導かれたプロセスに適した角度位置θrを当該プロセスのためのレシピの一部として制御部60の記憶装置に記憶することができる。
プラズマ処理装置10A及びプラズマ処理装置10Bにおいても、第2のコイル108の一端にセンサ90が接続され、第3のコイル110の一端にセンサ92が接続されてもよい。そして、上述したように、プロセスに適した角度位置θrが導かれて、当該プロセスのためのレシピの一部として制御部60の記憶装置に記憶されてもよい。
また、プラズマ処理装置10Cにおいても、第2のコイル108の一端にセンサ90が接続され、第3のコイル110の一端にセンサ92が接続されてもよい。また、プラズマ処理装置10、プラズマ処理装置10A、プラズマ処理装置10B、及び、プラズマ処理装置10Cの各々では、センサ90によって測定された電流値及びセンサ92によって測定された電流値に基づき、角度位置θrが制御されてもよい。具体的には、第1の目標電流値及び第2の目標電流値が制御部60の記憶装置に予め記憶される。そして、センサ90によって測定された電流値と第1の目標電流値の差、及び、センサ92によって測定された電流値と第2の目標電流値との差を減少させるように、制御部60が駆動機構140を制御して角度位置θrを調整させる。
なお、センサ90及びセンサ92の少なくとも一方のみが利用されればよい。また、センサ90及びセンサ92は、電圧センサであってもよい。また、プラズマ処理装置10D及びプラズマ処理装置10Eの各々においても、第2のコイル108の一端又は他端の少なくとも一方にセンサ(電流センサ又は電圧センサ)が接続されていてもよく、さらに、第3のコイル110の一端又は他端の少なくとも一方にセンサ(電流センサ又は電圧センサ)が接続されていてもよい。そして、上述したように、プロセスに適した角度位置θrが導かれて、当該プロセスのためのレシピの一部として制御部60の記憶装置に記憶されてもよい。また、上述したように、センサによって測定された電流値と目標電流値との差を減少させるよう、制御部60が駆動機構140を制御して角度位置θrを調整してもよい。
10…プラズマ処理装置、12…チャンバ本体、12c…チャンバ、CL…中心線、14…上部電極、16…下部電極、18…高周波電源、20…ステージ、22…静電チャック、32…ガス供給部、36…排気装置、38…整合器、60…制御部、100…変圧器、102…回転軸、RX…中心軸線、104…第1のコイル、AX1…第1の軸線、106…二次側コイル対、108…第2のコイル、AX2…第2の軸線、110…第3のコイル、AX3…第3の軸線、140…駆動機構。

Claims (26)

  1. その中心軸線を回転軸線として回転可能な回転軸と、
    前記中心軸線に直交する第1の軸線周りに延在する一次側のコイルである第1のコイルと、
    第2の軸線周りに延在し、前記回転軸によって支持された二次側の第2のコイルであり、該第2の軸線は前記第1のコイルによって囲まれた領域内で前記中心軸線に直交する、該第2のコイルと、
    第3の軸線周りに延在し、前記回転軸によって支持された二次側の第3のコイルであり、該第3の軸線は、前記領域内で前記中心軸線に直交し且つ前記第2の軸線と所定の角度をなす、該第3のコイルと、
    を備える変圧器。
  2. 前記第1のコイルは、前記第2のコイルの自己インダクタンス及び前記第3のコイルの自己インダクタンスよりも大きい自己インダクタンスを有する、請求項1に記載の変圧器。
  3. 前記第2のコイル及び前記第3のコイルは、前記第1のコイルの内側に設けられている、請求項2に記載の変圧器。
  4. 前記第3のコイルは、前記第2のコイルの内側に設けられており、前記第2のコイルの自己インダクタンスよりも小さい自己インダクタンスを有する、請求項1〜3の何れか一項に記載の変圧器。
  5. 前記所定の角度が90度である、請求項1〜4の何れか一項に記載の変圧器。
  6. 前記第2のコイルと前記第3のコイルは、それらの間に絶縁距離が確保されるように配置されている、請求項1〜5の何れか一項に記載の変圧器。
  7. 前記第1のコイルの他端、前記第2のコイルの他端、及び、前記第3のコイルの他端が互いに電気的に接続されている、請求項1〜6の何れか一項に記載の変圧器。
  8. 容量結合型のプラズマ処理装置であって、
    チャンバを提供するチャンバ本体と、
    上部電極である第1の電極と、
    下部電極である第2の電極と、
    高周波電源と、
    請求項1〜6の何れか一項に記載の変圧器と、
    を備え、
    前記高周波電源は前記第1のコイルに電気的に接続されており、
    前記第1の電極は前記第2のコイルの一端に電気的に接続されており、
    前記第2の電極は前記第3のコイルの一端に電気的に接続されている、
    プラズマ処理装置。
  9. 容量結合型のプラズマ処理装置であって、
    チャンバを提供するチャンバ本体と、
    上部電極と、
    下部電極と、
    高周波電源と、
    請求項1〜6の何れか一項に記載の変圧器と、
    を備え、
    前記上部電極は、鉛直方向において延びる前記チャンバの中心線に交差する第1の電極、及び、前記中心線に対して放射方向において該第1の電極の外側に設けられた第2の電極を含み、
    前記高周波電源は前記第1のコイルに電気的に接続されており、
    前記第1の電極は前記第2のコイルの一端に電気的に接続されており、
    前記第2の電極は前記第3のコイルの一端に電気的に接続されている、
    プラズマ処理装置。
  10. 容量結合型のプラズマ処理装置であって、
    チャンバを提供するチャンバ本体と、
    上部電極である第1の電極と、
    下部電極と、
    前記上部電極よりも前記チャンバ本体の側壁の近くに設けられた第2の電極と、
    高周波電源と、
    請求項1〜6の何れか一項に記載の変圧器と、
    を備え、
    前記高周波電源は前記第1のコイルに電気的に接続されており、
    前記第1の電極は前記第2のコイルの一端に電気的に接続されており、
    前記第2の電極は前記第3のコイルの一端に電気的に接続されている、
    プラズマ処理装置。
  11. 前記第1の電極からプラズマを介して前記第2の電極に流入する高周波電流と逆位相の高周波電流が該第2の電極に供給されるように、前記第2のコイル及び前記第3のコイルを含む二次側コイル対の回転方向の角度位置が設定される、請求項8〜10の何れか一項に記載のプラズマ処理装置。
  12. 容量結合型のプラズマ処理装置であって、
    第1の処理空間を提供する第1の処理区画と、
    第2の処理空間を提供する第2の処理区画と、
    それらの間に前記第1の処理空間内の空間が介在するように設けられた第1の上部電極及び第1の下部電極と、
    それらの間に前記第2の処理空間内の空間が介在するように設けられた第2の上部電極及び第2の下部電極と、
    高周波電源と、
    請求項1〜6の何れか一項に記載の変圧器と、
    を備え、
    前記高周波電源は前記第1のコイルに電気的に接続されており、
    前記第1の上部電極又は前記第1の下部電極の一方である第1の電極は前記第2のコイルの一端に電気的に接続されており、
    前記第2の上部電極又は前記第2の下部電極の一方である第2の電極は前記第3のコイルの一端に電気的に接続されている、
    プラズマ処理装置。
  13. 前記第1の電極と前記第2のコイルの前記一端との間、前記第2の電極と前記第3のコイルの前記一端との間にそれぞれ接続された二つのコンデンサを更に備える、請求項8〜12の何れか一項に記載のプラズマ処理装置。
  14. 前記第2のコイルの前記一端及び前記第3のコイルの前記一端のうち一方に接続されたセンサを備え、該センサは電流センサ又は電圧センサである、請求項8〜13の何れか一項に記載のプラズマ処理装置。
  15. 前記第2のコイルの前記一端及び前記第3のコイルの前記一端のうち他方に接続された別のセンサを備え、該別のセンサは電流センサ又は電圧センサである、請求項14に記載のプラズマ処理装置。
  16. 容量結合型のプラズマ処理装置であって、
    第1の処理空間を提供する第1の処理区画と、
    第2の処理空間を提供する第2の処理区画と、
    それらの間に前記第1の処理空間内の空間が介在するように設けられた第1の上部電極及び第1の下部電極と、
    それらの間に前記第2の処理空間内の空間が介在するように設けられた第2の上部電極及び第2の下部電極と、
    高周波電源と、
    請求項1〜6の何れか一項に記載の変圧器と、
    を備え、
    前記高周波電源は前記第1のコイルに電気的に接続されており、
    前記第1の上部電極である第1の電極は前記第2のコイルの一端に電気的に接続されており、
    前記第2の上部電極である第2の電極は前記第2のコイルの他端に電気的に接続されており、
    前記第1の下部電極である第3の電極は前記第3のコイルの一端に電気的に接続されており、
    前記第2の下部電極である第4の電極は前記第3のコイルの他端に電気的に接続されている、
    プラズマ処理装置。
  17. 容量結合型のプラズマ処理装置であって、
    第1の処理空間を提供する第1の処理区画と、
    第2の処理空間を提供する第2の処理区画と、
    それらの間に前記第1の処理空間内の空間が介在するように設けられた第1の上部電極及び第1の下部電極と、
    それらの間に前記第2の処理空間内の空間が介在するように設けられた第2の上部電極及び第2の下部電極と、
    高周波電源と、
    請求項1〜6の何れか一項に記載の変圧器と、
    を備え、
    前記高周波電源は前記第1のコイルに電気的に接続されており、
    前記第1の上部電極である第1の電極は前記第2のコイルの一端に電気的に接続されており、
    前記第1の下部電極である第2の電極は前記第2のコイルの他端に電気的に接続されており、
    前記第2の上部電極である第3の電極は前記第3のコイルの一端に電気的に接続されており、
    前記第2の下部電極である第4の電極は前記第3のコイルの他端に電気的に接続されている、
    プラズマ処理装置。
  18. 前記第1の電極と前記第2のコイルの前記一端との間、前記第2の電極と前記第2のコイルの前記他端との間、前記第3の電極と前記第3のコイルの前記一端との間、前記第4の電極と前記第3のコイルの前記他端との間にそれぞれ接続された四つのコンデンサを更に備える、請求項16又は17に記載のプラズマ処理装置。
  19. 電流センサ又は電圧センサである複数のセンサを更に備え、
    前記複数のセンサは、前記第2のコイルの前記一端及び前記他端のうち一方、並びに、前記第3のコイルの前記一端及び前記他端のうち一方にそれぞれ接続された二つのセンサを含む、
    請求項17〜18の何れか一項に記載のプラズマ処理装置。
  20. 前記複数のセンサは、前記第2のコイルの前記一端及び前記他端のうち他方、並びに、前記第3のコイルの前記一端及び前記他端のうち他方にそれぞれ接続された別の二つのセンサを更に含む、請求項19に記載のプラズマ処理装置。
  21. 誘導結合型のプラズマ処理装置であって、
    チャンバを提供するチャンバ本体と、
    前記チャンバ内に設けられた下部電極と、
    前記下部電極の上方に設けられた窓部材と、
    前記窓部材の上方に設けられており、鉛直方向に延びる前記チャンバの中心線の周りで延在する第1のアンテナコイルと、
    前記窓部材の上方に設けられており、前記中心線の周りで延在し、前記第1のアンテナコイルの外側に設けられた第2のアンテナコイルと、
    高周波電源と、
    請求項1〜6の何れか一項に記載の変圧器と、
    を備え、
    前記高周波電源は前記第1のコイルに電気的に接続されており、
    前記第2のコイルの一端及び他端は、前記第1のアンテナコイルの一端及び他端にそれぞれ電気的に接続されており、
    前記第3のコイルの一端及び他端は、前記第2のアンテナコイルの一端及び他端にそれぞれ電気的に接続されている、
    プラズマ処理装置。
  22. 前記第2のコイルの前記一端と前記第1のアンテナコイルの前記一端との間、前記第2のコイルの前記他端と前記第1のアンテナコイルの前記他端との間、前記第3のコイルの前記一端と前記第2のアンテナコイルの前記一端との間、前記第3のコイルの前記他端と前記第2のアンテナコイルの前記他端との間にそれぞれ接続された複数のコンデンサを更に備える、請求項21に記載のプラズマ処理装置。
  23. 誘導結合型のプラズマ処理装置であって、
    チャンバを提供するチャンバ本体と、
    前記チャンバ内に設けられた下部電極と、
    前記下部電極の上方に設けられた窓部材と、
    前記窓部材の上方に設けられたアンテナコイルと、
    高周波電源と、
    請求項1〜6の何れか一項に記載の変圧器と、
    を備え、
    前記高周波電源は前記第1のコイルに電気的に接続されており、
    前記第2のコイルの一端及び他端は、前記アンテナコイルの一端及び他端にそれぞれ電気的に接続されており、
    前記第3のコイルの一端は、前記下部電極に電気的に接続されている、
    プラズマ処理装置。
  24. 前記第1のコイルの自己共振周波数は、前記高周波電源が発生する高周波の周波数の2倍以上である、請求項8〜23の何れか一項に記載のプラズマ処理装置。
  25. 前記第2のコイルは該第2のコイルに接続される負荷の負荷インピーダンスよりも大きい自己インダクタンスを有し、前記第3のコイルは該第3のコイルに接続される負荷の負荷インピーダンスよりも大きい自己インダクタンスを有する、
    請求項8〜24の何れか一項に記載のプラズマ処理装置。
  26. 請求項8〜10の何れか一項に記載されたプラズマ処理装置を用いるプラズマ処理方法であって、前記第2のコイルの他端及び前記第3のコイルの他端は互いに接続されて、且つ、接地されており、
    該プラズマ処理方法は、
    前記第2のコイル及び前記第3のコイルを含む二次側コイル対の回転方向の角度位置を第1の角度位置に設定する第1工程と、
    前記二次側コイル対の回転方向の角度位置を第2の角度位置に設定する第2工程と、
    を含み、
    前記第1工程と前記第2工程が、前記第1のコイルに前記高周波電源からの高周波を供給している状態で、交互に繰り返される、
    プラズマ処理方法。
JP2016089389A 2016-04-27 2016-04-27 変圧器、プラズマ処理装置、及び、プラズマ処理方法 Active JP6675260B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016089389A JP6675260B2 (ja) 2016-04-27 2016-04-27 変圧器、プラズマ処理装置、及び、プラズマ処理方法
US15/494,131 US10381197B2 (en) 2016-04-27 2017-04-21 Transformer, plasma processing apparatus, and plasma processing method
KR1020170052235A KR101963954B1 (ko) 2016-04-27 2017-04-24 변압기, 플라즈마 처리 장치 및 플라즈마 처리 방법
CN201710287364.6A CN107318212B (zh) 2016-04-27 2017-04-27 变压器、等离子体处理装置和等离子体处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016089389A JP6675260B2 (ja) 2016-04-27 2016-04-27 変圧器、プラズマ処理装置、及び、プラズマ処理方法

Publications (2)

Publication Number Publication Date
JP2017199795A true JP2017199795A (ja) 2017-11-02
JP6675260B2 JP6675260B2 (ja) 2020-04-01

Family

ID=60157024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016089389A Active JP6675260B2 (ja) 2016-04-27 2016-04-27 変圧器、プラズマ処理装置、及び、プラズマ処理方法

Country Status (4)

Country Link
US (1) US10381197B2 (ja)
JP (1) JP6675260B2 (ja)
KR (1) KR101963954B1 (ja)
CN (1) CN107318212B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113488367A (zh) * 2020-12-14 2021-10-08 北京屹唐半导体科技股份有限公司 具有等离子体处理系统和热处理系统的工件处理装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02501608A (ja) * 1987-09-15 1990-05-31 プラズマ・サイエンス・インコーポレーテツド 多電極プラズマ反応器電力分配装置
JPH0448727A (ja) * 1990-06-15 1992-02-18 Tokyo Electron Ltd プラズマ処理方法
JPH07201495A (ja) * 1993-08-19 1995-08-04 Tokyo Electron Ltd プラズマ処理装置及びそのクリーニング方法
JPH0831806A (ja) * 1994-07-20 1996-02-02 Hitachi Ltd プラズマ処理装置
JPH08327311A (ja) * 1995-05-31 1996-12-13 M Syst Giken:Kk 回転角変換器
JP2001015259A (ja) * 1999-06-30 2001-01-19 Toshiba Corp 電子レンジ
JP2002519861A (ja) * 1998-06-30 2002-07-02 ラム リサーチ コーポレーション 誘導結合型プラズマ発生システム用の複数コイル・アンテナ
JP2008153384A (ja) * 2006-12-15 2008-07-03 Sony Corp トランスおよびバックライト装置並びに表示装置
JP2008301645A (ja) * 2007-06-01 2008-12-11 Sanyo Electric Co Ltd 非接触式受電装置及びこれを具えた電子機器
WO2009020129A1 (ja) * 2007-08-08 2009-02-12 Ulvac, Inc. プラズマ処理方法及びプラズマ処理装置
JP2014135305A (ja) * 2013-01-08 2014-07-24 Hitachi High-Technologies Corp プラズマ処理装置
JP2015115216A (ja) * 2013-12-12 2015-06-22 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2087636A (en) * 1932-11-25 1937-07-20 William C Baumann Electrical apparatus
JPS5546862A (en) 1978-09-25 1980-04-02 Okuma Mach Works Ltd Multipolar resolver
US4612527A (en) * 1984-08-10 1986-09-16 United Kingdom Atomic Energy Authority Electric power transfer system
GB8714216D0 (en) 1987-06-17 1987-07-22 Hiden Analytical Ltd Power supply circuits
US5519275A (en) * 1994-03-18 1996-05-21 Coleman Powermate, Inc. Electric machine with a transformer having a rotating component
US5783984A (en) * 1995-06-16 1998-07-21 Hughes Electronics Method and means for combining a transformer and inductor on a single core structure
US6118201A (en) 1997-03-07 2000-09-12 American Precision Industries Inc. Resolver with leakage flux absorber
JP4819244B2 (ja) 2001-05-15 2011-11-24 東京エレクトロン株式会社 プラズマ処理装置
US6706138B2 (en) 2001-08-16 2004-03-16 Applied Materials Inc. Adjustable dual frequency voltage dividing plasma reactor
JP4470191B2 (ja) * 2005-05-20 2010-06-02 株式会社村田製作所 積層型バルントランス
CN101136279B (zh) * 2006-08-28 2010-05-12 北京北方微电子基地设备工艺研究中心有限责任公司 电感耦合线圈及电感耦合等离子体装置
EP2109867A4 (en) * 2007-01-11 2014-12-24 Keyeye Comm BROADBAND planar transformers
JP5371238B2 (ja) 2007-12-20 2013-12-18 東京エレクトロン株式会社 プラズマ処理装置およびプラズマ処理方法
US7812701B2 (en) * 2008-01-08 2010-10-12 Samsung Electro-Mechanics Compact multiple transformers
US7825537B2 (en) * 2008-11-14 2010-11-02 Harris Corporation Inductive power transfer system and method
CN201869430U (zh) * 2010-11-25 2011-06-15 中微半导体设备(上海)有限公司 一种用于等离子体发生器中的射频天线
JP5649199B2 (ja) * 2011-04-15 2015-01-07 新日鐵住金株式会社 回転型超音波探傷装置用回転トランス及びこれを用いた回転型超音波探傷装置
CN202109635U (zh) * 2011-06-15 2012-01-11 绍兴县鉴湖中学 一种节能热水器
JP5803428B2 (ja) * 2011-08-25 2015-11-04 株式会社ジェイテクト 回転センサ、及び回転角検出装置
US9018022B2 (en) * 2012-09-24 2015-04-28 Lam Research Corporation Showerhead electrode assembly in a capacitively coupled plasma processing apparatus
CN103256930B (zh) 2013-05-15 2015-06-17 重庆华渝电气仪表总厂 一种惯性方位保持系统
CN104349567A (zh) 2013-07-29 2015-02-11 北京北方微电子基地设备工艺研究中心有限责任公司 射频电源系统和利用射频电源系统进行阻抗匹配的方法
US9793046B2 (en) * 2013-10-24 2017-10-17 Rosemount Aerospace Inc. Rotating transformers for electrical machines
KR20150048551A (ko) * 2013-10-28 2015-05-07 삼성전기주식회사 트랜스포머, 전원 공급 장치, 이를 포함하는 디스플레이 장치
WO2015151156A1 (ja) * 2014-03-31 2015-10-08 富士通株式会社 ワイヤレス給電システムおよびワイヤレス給電方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02501608A (ja) * 1987-09-15 1990-05-31 プラズマ・サイエンス・インコーポレーテツド 多電極プラズマ反応器電力分配装置
JPH0448727A (ja) * 1990-06-15 1992-02-18 Tokyo Electron Ltd プラズマ処理方法
JPH07201495A (ja) * 1993-08-19 1995-08-04 Tokyo Electron Ltd プラズマ処理装置及びそのクリーニング方法
JPH0831806A (ja) * 1994-07-20 1996-02-02 Hitachi Ltd プラズマ処理装置
JPH08327311A (ja) * 1995-05-31 1996-12-13 M Syst Giken:Kk 回転角変換器
JP2002519861A (ja) * 1998-06-30 2002-07-02 ラム リサーチ コーポレーション 誘導結合型プラズマ発生システム用の複数コイル・アンテナ
JP2001015259A (ja) * 1999-06-30 2001-01-19 Toshiba Corp 電子レンジ
JP2008153384A (ja) * 2006-12-15 2008-07-03 Sony Corp トランスおよびバックライト装置並びに表示装置
JP2008301645A (ja) * 2007-06-01 2008-12-11 Sanyo Electric Co Ltd 非接触式受電装置及びこれを具えた電子機器
WO2009020129A1 (ja) * 2007-08-08 2009-02-12 Ulvac, Inc. プラズマ処理方法及びプラズマ処理装置
JP2014135305A (ja) * 2013-01-08 2014-07-24 Hitachi High-Technologies Corp プラズマ処理装置
JP2015115216A (ja) * 2013-12-12 2015-06-22 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法

Also Published As

Publication number Publication date
KR20170122667A (ko) 2017-11-06
CN107318212B (zh) 2020-01-03
US10381197B2 (en) 2019-08-13
JP6675260B2 (ja) 2020-04-01
US20170316948A1 (en) 2017-11-02
CN107318212A (zh) 2017-11-03
KR101963954B1 (ko) 2019-07-31

Similar Documents

Publication Publication Date Title
JP6630630B2 (ja) プラズマ処理装置
US11508554B2 (en) High voltage filter assembly
JP7217850B2 (ja) 誘導コイル構造体及び誘導結合プラズマ発生装置
JP5643062B2 (ja) プラズマ処理装置
TWI472267B (zh) Plasma processing device
JP2010003699A (ja) プラズマ発生装置
KR102610976B1 (ko) 고전력 rf 나선 코일 필터
US10679867B2 (en) Plasma processing apparatus
JP6675260B2 (ja) 変圧器、プラズマ処理装置、及び、プラズマ処理方法
US11450512B2 (en) Plasma processing method
CN111164235B (zh) 成膜方法
CN113272935B (zh) 用于等离子体处理室的斐波那契线圈

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200310

R150 Certificate of patent or registration of utility model

Ref document number: 6675260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250