JP2017190928A - 処理機および再生機 - Google Patents

処理機および再生機 Download PDF

Info

Publication number
JP2017190928A
JP2017190928A JP2016081871A JP2016081871A JP2017190928A JP 2017190928 A JP2017190928 A JP 2017190928A JP 2016081871 A JP2016081871 A JP 2016081871A JP 2016081871 A JP2016081871 A JP 2016081871A JP 2017190928 A JP2017190928 A JP 2017190928A
Authority
JP
Japan
Prior art keywords
hygroscopic liquid
liquid
heat exchanger
heat transfer
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016081871A
Other languages
English (en)
Other versions
JP6046294B1 (ja
Inventor
政利 原田
Masatoshi Harada
政利 原田
彦夫 宮内
Hikoo Miyauchi
彦夫 宮内
井上 修行
Naoyuki Inoue
修行 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DYNA AIR KK
Original Assignee
DYNA AIR KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DYNA AIR KK filed Critical DYNA AIR KK
Priority to JP2016081871A priority Critical patent/JP6046294B1/ja
Application granted granted Critical
Publication of JP6046294B1 publication Critical patent/JP6046294B1/ja
Publication of JP2017190928A publication Critical patent/JP2017190928A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Central Air Conditioning (AREA)
  • Drying Of Gases (AREA)

Abstract

【課題】吸湿性液体を用いた処理機において、エネルギー利用効率を向上させる。【解決手段】吸湿性液体と処理対象空気とを接触させることで処理対象空気の調湿を行う処理機10は、吸湿性液体と処理対象空気と熱源流体とが熱交換を行う三流体熱交換器20と、吸湿性液体を三流体熱交換器20の上部に供給する分配器15と、処理対象空気を取り込んで三流体熱交換器20の内部を通過させて調湿対象空間に排出する吸気口13及びファン14とを備える。三流体熱交換器20は、親水性を有する充填材17と熱源流体によって冷却又は加熱される伝熱管16とが上下方向に交互に配置された構成を有する。吸湿性液体は、三流体熱交換器20を下方に向かって自然流下する過程で、充填材17と伝熱管16とを交互に流れ、充填材17にて処理対象空気と気液接触し、伝熱管16にて熱源流体によって冷却又は加熱される。【選択図】図2

Description

本発明は、吸湿性液体を用いた処理機および再生機に関するものである。
従来から、吸湿性液体(例えば塩化リチウム水溶液等)を空気に接触させて、空気の除湿や加湿を行う調湿装置が知られている。吸湿性液体と空気が接触した状態で、吸湿性液体の水蒸気圧が空気の水蒸気分圧よりも低ければ、空気中の水蒸気は吸湿性液体に吸収され、空気が除湿されるとともに吸湿性液体が希釈される。逆に、吸湿性液体の水蒸気圧が空気の水蒸気分圧よりも高ければ、吸湿性液体中の水分が空気中に放出され、空気が加湿されるとともに吸湿性液体が濃縮される。調湿装置では、このように吸湿性液体に空気中の水分を吸収させて空気の除湿を行い、吸湿性液体から空気中に水分を放出して空気の加湿を行う。
調湿装置は、上記のようにして除湿又は加湿を行う処理機と、処理機にて用いられた吸湿性液体を再生する再生機とを備えている。処理機にて除湿を行うと吸湿性液体は希釈されるので、再生機では吸湿性液体を濃縮することで再生する。処理機にて加湿を行うと吸湿性液体は濃縮されるので、再生機では吸湿性液体を希釈することで再生する。再生機では、処理機と同様に吸湿性液体を空気と接触させることで再生を行う。なお、処理機にて加湿を行う場合には、再生機で吸湿性液体と空気を接触させ、空気中の水分を吸収するほか、処理機または再生機中の吸湿性液体に加水することで吸湿性液体を希釈化してもよい。
図19は、塩化リチウム水溶液の温度と水蒸気圧との関係の例を濃度ごとに示したグラフである。図19の例に見られるように、吸湿性液体の水蒸気圧は、温度及び濃度に影響される。具体的には、吸湿性液体は、温度が低いほど、また、濃度が高いほど水蒸気圧が低くなり、水分を吸収する能力が高くなる。一方、吸湿性液体は、温度が高いほど、また、濃度が低いほど水蒸気圧が高くなり、水分を放出する能力が高くなる。
よって、除湿を行う場合には、処理機において空気と接触させる吸湿性液体は濃度が同じ条件下では低温であるほうが除湿能力が高いため有利であり、逆に、加湿を行う場合には、処理機において濃度が同じ条件下では空気と接触させる吸湿性液体は高温であるほうが加湿能力が高いため有利である。また、処理機において除湿を行う場合には、再生機では空気と接触させる吸湿性液体は濃度が同じ条件下では高温であるほうが再生能力(加湿能力)が高いため有利であり、逆に、処理機において加湿を行う場合で、再生機にて空気中から水分を吸収する場合には、再生機では空気と接触させる吸湿性液体は濃度が同じ条件下では低温であるほうが水分吸収能力(除湿能力)が高いため有利である。
このために、除湿を行う場合には、吸湿性液体を処理機の気液接触手段に導入する前に冷却するとともに、再生機の気液接触手段に導入する前に加熱し、加湿を行う場合には、吸湿性液体を処理機の気液接触手段に導入する前に加熱するとともに、再生機の気液接触手段に導入する前に冷却する。
上記のように、調湿装置は、処理機及び再生機で吸湿性液体と空気とを気液接触させるが、このような調湿装置には、冷却又は加熱した吸湿性液体を断熱的に空気と接触させるタイプ(断熱タイプ)と、吸湿性液体を冷却又は加熱しながら空気と接触させるタイプ(伝熱タイプ)とがある。
断熱タイプでは、処理機及び再生機の内部に気液接触手段として充填材を備えている(例えば、特許文献1を参照)。充填材は、例えば親水性のあるセルロース系素材からなり、表面に凹凸があり、内部が多孔質である。充填材の上方から充填材に供給された吸湿性液体は、充填材に吸収されて、そこで空気と接触しつつ重力によって下方に移動して、充填材の下方から排出される。
充填材の内部では、吸湿性液体は、充填材を構成する板の表面形状に沿って重力によって流下するほか、毛細管現象(表面張力)によって充填材の表面全体に均等に拡がっていくので、単位体積当たりの気液接触面積(比表面積)を大きくしても表面濡れが確保できている。充填材としては、特許文献3の空気冷却方法に示されている斜交ハニカムのように、多くの材料が存在する。
伝熱タイプでは、処理機および再生機の気液接触部分に冷媒又は熱媒を導入する(例えば、特許文献2を参照)。具体的には、例えば、処理機および再生機に、冷媒又は熱媒を流通させる伝熱管とその伝熱管に接続された複数のプレートフィンとからなる熱交換コイルが設けられる。吸湿性液体はこの熱交換コイルの上方から熱交換コイルに散布ないし滴下され、プレートフィンや伝熱管に接触することで、冷却又は加熱されつつ、空気と接触することで水分を吸収し、又は放出する。
特開2005−214595号公報 特開2009−293831号公報 特開2003−202191号公報 特開2014−129931号公報 特開2014−129930号公報 特開平8−159647号公報 特開平7−8744号公報 特開2000−230730号公報
調湿装置には、除湿機能及び加湿機能を有するもののほか、除湿機能のみを有するもの(すなわち除湿装置)、及び加湿機能のみを有するもの(すなわち加湿装置)が含まれる。以下では、除湿装置を例に説明する。
断熱タイプの除湿装置は、処理機および再生機に導入する吸湿性液体の流量を多くしなければならないという課題がある。すなわち、断熱タイプの除湿装置では、吸湿性液体は、冷却された状態で充填材に供給されるが、処理機にて吸湿性液体よりも高い温度の空気と接触することで加熱されるとともに、水蒸気を吸収することで吸収熱(水蒸気の凝縮熱と溶液の希釈熱)によって温度が上昇し、充填材を下方に進むに従って水分吸収能力(除湿能力)が低下していく。よって、温度の上昇幅を抑えるために充填材に供給する吸湿性液体の流量を多くすることで、水分吸収能力を維持する必要がある。
また、再生機においても、加熱した吸湿性液体を断熱的に空気と接触させると、吸湿性液体は吸湿性液体よりも低い温度の空気と接触することで冷却されるとともに、空気中に水蒸気を放出することで負の吸収熱によって温度が低下し、充填材を下方に進むに従って水分放出能力(再生能力)が低下していく。よって、温度の降下幅を抑えるために充填材に供給する吸湿性液体の流量を多くすることで、水分放出能力を維持する必要がある。
このように、断熱タイプの除湿装置では、処理機及び再生機における吸湿性液体の温度変化による水分吸収能力又は水分放出能力(両能力を総称したものを「水分授受能力」という。)の低下があるため、処理機および再生機(の充填材)に供給する吸湿性液体の流量を多くする必要がある。処理機および再生機に供給する吸湿性液体の流量が多くなると、その搬送に必要なポンプの動力が大きくなり、エネルギー利用効率が低下するという問題がある。また、充填材に散布ないし滴下される吸湿性液体の流量が多くなると、空気中に吸湿性液体が飛散して、吸湿性液体の飛沫が空気に運ばれて室内に侵入するというキャリーオーバーのリスクが高くなることから好ましくない(例えば、吸湿性液体が塩化リチウム水溶液の場合、塩化リチウム水溶液は金属を腐食させることから金属製ダクトへの悪影響が懸念される)。
さらに、処理機では、吸湿性液体が充填材を下方に進むにつれて、吸湿性液体の温度の上昇により水分吸収能力が徐々に低下して、水分を十分に吸収しないまま(吸湿性液体が十分に希釈されないまま、すなわち濃度的には水分吸収能力を十分に有する状態で)流れ落ちてしまい、また、再生機でも吸湿性液体が充填材を下方に進むにつれて、吸湿性液体の温度の低下により水分放出能力が徐々に低下してしまい、吸湿性液体の濃縮が十分にできない状態で(濃度的には水分放出能力を十分に有している状態で)流れ落ちてしまう。よって、処理機において、充填材の上方から供給されて充填材の下方から排出される吸湿性液体の一部を再生機に送る前に再び処理機の充填材の上方に戻して充填材に供給して再循環させる構成が採用されている。また、再生機においても、充填材の上方から供給されて充填材の下方から排出される吸湿性液体の一部を処理機に送る前に再び再生機に戻して充填材に供給するという構成が採用されている。このため、処理機及び再生機の各々に、吸湿性液体を再循環させるためのポンプが必要となり、この点でもエネルギー利用効率が低下し、かつ、装置が大型化してしまう。
一方、伝熱タイプの除湿装置では、吸湿性液体が冷却又は加熱されながら空気と接触するので、吸湿性液体の温度の低下又は上昇による水分授受能力の低下は問題とならない。しかしながら、伝熱管及びプレートフィンは、一般的には熱抵抗の少ない金属製であり、特に、冷媒又は熱媒(両者を総称したものを「熱源流体」という。)をヒートポンプで生成する場合には、熱源流体が高圧となることから強度の点からも伝熱管を金属製にする必要がある。
金属製の伝熱管やプレートフィンは、表面に親水処理(水熱処理、紫外線照射、プラズマ照射、親水剤コーティング等)をしたとしても、充填材と比較してなお親水性に乏しく濡れ性が悪いため、表面積を拡大しても吸湿性液体が全表面には行き渡らず、有効な気液接触面積(濡れ面積)が大きくならない。
従って、有効な気液接触面積(濡れ面積)を大きくするために、やはり処理機や再生機の熱交換コイルに供給する吸湿性液体の流量を多くすることで強引に表面を濡らすことが必要であり、また、吸湿性液体の十分な希釈又は濃縮ができないために、熱交換コイルの下方から排出された吸湿性液体の一部を再度熱交換コイルの上方に戻す必要もある。一方、単位体積当たりの気液接触面積(比表面積)を大きくすべく単位体積当たりのプレートフィンの数、すなわち密度を増やすと、プレートフィンどうしの間隔が小さくなり、隣り合うプレートフィンの間で吸湿性液体がつながって、いわゆるブリッジが形成され、吸湿性液体の流動性が低下する。また、ブリッジが形成され、そこを空気が通過すると、ブリッジが破壊され、そのときに吸湿性液体が飛散してキャリーオーバーの可能性が生じる。
特許文献4には、液体吸収剤が内部を流れる透湿管が、熱媒体が内部を流れる伝熱管に螺旋状に巻きつけられた調湿モジュールが記載され、特許文献5には、液体吸収剤が内部を流れる透湿管と熱媒体が内部を流れる伝熱管とが複数箇所で互いに交差する調湿モジュールが記載されているが、これらの調湿モジュールでは、液体吸収剤を案内する手段として透湿管を用いているので、その内部を流れる液体吸収剤は透湿管の内面と接する部分でしか空気との間で水分の授受をすることができず、透湿管を流れる液体吸収剤の量に対する有効な気液接触面積が小さく、水分授受の効率が良好でない。また、熱媒体との熱交換も、透湿管が伝熱管と接触している箇所でしか行われず、熱交換効率も良好でない。
また、特許文献6には、充填部と加熱部とを複数層組み合わせた加湿装置が記載されているが、この加湿装置では、充填部に非吸水性の細線材を用いているので、上記の金属製のプレートフィンの場合と同様に、気液接触面積を大きくできず、やはり水分授受の効率は良好でない。
本発明は、断熱タイプ及び伝熱タイプの両タイプの利点を備え、両タイプの欠点を軽減した処理機又は再生機を提供することを目的とする。
本発明の他の目的は、エネルギー利用効率が比較的高い処理機又は再生機を提供することである。
上記の目的を達成するために、本発明の一態様の処理機は、吸湿性液体と処理対象空気とを接触させることで前記処理対象空気の調湿を行う処理機であって、前記吸湿性液体と前記処理対象空気と熱源流体とが熱交換を行う三流体熱交換器と、前記吸湿性液体を前記三流体熱交換器の上部に供給する供給手段と、前記処理対象空気を取り込んで前記三流体熱交換器の内部を通過させて調湿対象空間に排出する空気流動手段とを備え、前記三流体熱交換器は、親水性を有する気液接触手段と前記熱源流体によって冷却又は加熱される溶液加熱冷却手段とが上下方向に交互に配置された構成を有し、前記吸湿性液体は、前記三流体熱交換器を下方に向かって自然流下する過程で、前記気液接触手段と前記溶液加熱冷却手段とを交互に流れ、前記気液接触手段にて前記処理対象空気と気液接触し、前記溶液加熱冷却手段にて前記熱源流体によって冷却又は加熱される構成を有している。
この構成により、吸湿性液体は自然流下によって三流体熱交換器を上部から下方に流れる過程で、気液接触手段における気液接触と溶液加熱冷却手段における冷却又は加熱とを繰り返すので、水分授受能力を維持でき、十分に希釈又は濃縮される。また、吸湿性液体は気液接触手段において処理対象空気と気液接触し、すなわち、処理対象空気と直接接触するので、透湿管を介して処理対象空気との間で水分の授受を行う場合と比較して、三流体熱交換器を通過する間に処理対象空気との間で良好に水分の授受を行うことができる。さらに、気液接触手段が親水性を有するので、金属製のプレートフィン等で気液接触させる場合と比較して、有効な気液接触面積(濡れ面積)を広く取れ、やはり三流体熱交換器を通過する間に処理対象空気との間で良好に水分の授受を行うことができる。従って、三流体熱交換器に供給する吸湿性液体が少量であっても良好な除湿又は加湿が可能となり、よってエネルギー利用効率を向上できる。なお、処理機は、処理機で用いられた吸湿性液体の再生を行って処理機に供給する再生機とともに調湿装置を構成することができる。
上記の処理機において、前記溶液加熱冷却手段は、内部に前記熱源流体が流れる伝熱管で構成されてよい。さらに、前記溶液加熱冷却手段は、水平方向に間隔をあけて配置されるとともに、前記気液接触手段を挟んで上下方向に間隔をあけて配置される複数の部分を有していてよく、前記気液接触手段を流下した前記吸湿性液体は、その下段の伝熱管に供給されてよい。
上記の処理機において、前記気液接触手段の各々とその下段の前記伝熱管との間に、前記気液接触手段材を流下した前記吸湿性液体を前記伝熱管に導く案内手段を更に備えていてよい。
この構成により、気液接触手段材を流下した吸湿性液体をより確実にその下段の伝熱管に集めることができ、断熱的な気液接触と冷却又は加熱とを繰り返すことができる。
上記の処理機において、前記案内手段は、前記伝熱管に対応する位置に孔を有していてよい。
この構成により、案内手段は孔を通じて吸湿性液体を伝熱管に案内できる。
上記の処理機において、前記気液接触手段を流下した前記吸湿性液体を前記伝熱管の周りに保持する保持手段を更に備えていてよい。
この構成により、保持手段が吸湿性液体を伝熱管の周りに保持するので、伝熱管の濡れ性が比較的低い場合にも、確実に吸湿性液体と伝熱管とを接触させることができる。
上記の処理機において、前記保持手段は、前記気液接触手段を流下した前記吸湿性液体を前記伝熱管の周りに保持するために半径方向に間隔をあけて前記伝熱管を覆うカバー部材であってよい。
この構成により、気液接触手段を流下した吸湿性液体を伝熱管とカバー部材との間に流すことで、確実に吸湿性液体と伝熱管とを接触させることができる。
上記の処理機において、前記保持手段は、前記気液接触手段を流下した前記吸湿性液体を、前記吸湿性液体に前記伝熱管が浸るように保持するトレイ部材であってよい。
この構成により、トレイ部材の内部に伝熱管が収容されるという簡単な構成で確実に吸湿性液体と伝熱管との接触を確保できる。
本発明の一態様の再生機は、処理機で用いられた吸湿性液体を再生用空気と接触させることで前記吸湿性液体の再生を行って前記処理機に供給する再生機であって、前記吸湿性液体と前記再生用空気と熱源流体とが熱交換を行う三流体熱交換器と、前記吸湿性液体を前記三流体熱交換器の上部に供給する供給手段と、前記再生用空気を取り込んで前記三流体熱交換器の内部を通過させて調湿対象空間外に排出する空気流動手段とを備え、前記三流体熱交換器は、親水性を有する気液接触手段材と前記熱源流体によって冷却又は加熱される溶液加熱冷却手段とが上下方向に交互に配置された構成を有し、前記吸湿性液体は、前記三流体熱交換器を下方に向かって自然流下する過程で、前記気液接触手段材と前記溶液加熱冷却手段とを交互に流れ、前記気液接触手段材にて前記再生用空気と気液接触し、前記溶液加熱冷却手段にて前記熱源流体によって冷却又は加熱される構成を有している。
この構成によっても、吸湿性液体は自然流下によって三流体熱交換器を上部から下方に流れる過程で、気液接触手段材における気液接触と溶液加熱冷却手段における冷却又は加熱とを繰り返すので、水分授受能力を維持でき、十分に希釈又は濃縮され、三流体熱交換器に供給する吸湿性液体が少量であっても良好な再生が可能となり、よってエネルギー利用効率を向上できる。なお、再生機は、吸湿性液体と処理対象空気とを接触させることで処理対象空気の調湿を行う処理機とともに調湿装置を構成することができる。
本発明によれば、吸湿性液体は自然流下によって三流体熱交換器を上部から下方に流れる過程で、気液接触手段における気液接触と溶液加熱冷却手段における冷却又は加熱とを繰り返すので、吸湿性液体の温度変化による水分授受能力の低下を回避しつつ十分に希釈又は濃縮され、三流体熱交換器に供給する吸湿性液体が少量であっても良好な除湿、加湿、又は再生が可能となり、よってエネルギー利用効率を向上できる。
本発明の実施の形態の調湿装置の構成を示す図である。 本発明の実施の形態の処理機の断面図である。 本発明の実施の形態の充填材の斜視図である。 (a)本発明の実施の形態の表面加工された伝熱管を示す図である。(b)図4(a)の伝熱管の部分拡大図である。 (a)本発明の実施の形態の表面加工された伝熱管を示す図である。(b)図5(a)の伝熱管の部分拡大図である。 本発明の実施の形態の表面加工された伝熱管を示す図である。 本発明の実施の形態の表面加工された伝熱管を示す図である。 (a)本発明の実施の形態の三流体交換機の側板と伝熱管との関係を示す斜視図である。(b)本発明の実施の形態の三流体交換機の側板と伝熱管との関係を示す側面図である。 本発明の実施の形態の三流体熱交換器の他の例を示す図である。 本発明の実施の形態の三流体熱交換器のさらに他の例を示す図である。 本発明の実施の形態の三流体熱交換器のさらに他の例を示す図である。 本発明の実施の形態の三流体熱交換器のさらに他の例を示す図である。 (a)本発明の実施の形態の三流体熱交換器のさらに他の例を示す図である。 (b)図13(a)の部分拡大図である。 本発明の実施の形態の三流体熱交換器のさらに他の例を示す図である。 (a)本発明の実施の形態の三流体熱交換器のさらに他の例を示す斜視分解図である。(b)上部材と下部材との間に伝熱管を収容した状態を示す側面図である。 本発明の実施の形態の三流体熱交換器のさらに他の例を示す図である。 本発明の実施の形態の調湿装置における調湿性液体の流量を説明する図である。 本発明の変形例の除湿装置を示す図である。 塩化リチウム水溶液の温度と水蒸気圧との関係の例を濃度ごとに示したグラフである。
以下、図面を参照して本発明の実施の形態を説明する。なお、以下に説明する実施の形態は、本発明を実施する場合の一例を示すものであって、本発明を以下に説明する具体的構成に限定するものではない。本発明の実施にあたっては、実施の形態に応じた具体的構成が適宜採用されてよい。上述の通り、調湿装置は、除湿機能及び加湿機能を備えるもののほか、除湿機能のみを有する除湿装置及び加湿機能のみを有する加湿装置も含む概念であるが、以下では、調湿装置が除湿装置である場合を例に説明する。
(除湿装置100の基本構成)
図1は、本発明の実施の形態の調湿装置の構成を示す図である。除湿装置100は、処理対象空気を取り込んで吸湿性液体と接触させて処理対象空気の除湿を行う処理機10と、処理機10で除湿処理に用いた吸湿性液体の再生を行う再生機30とを有する。ここで、吸湿性液体の再生とは、除湿によって処理対象空気中の水分を吸収して希釈された吸湿性液体の濃度を高め、吸湿性液体の除湿能力を回復させることを言う。
処理機10は除湿した空気を除湿対象空間に排出し、再生機30は再生に用いた空気を除湿対象空間外に排出する。処理機10が取り込む空気(処理対象空気)は、除湿対象空間内の空気(戻り空気)であってもよいし、除湿対象空間外の空気(外気等)であってもよい。また、再生機30が取り込む空気(再生用空気)も除湿対象空間内の空気(戻り空気)であってもよいし、除湿対象空間外の空気(外気等)であってもよい。
本実施の形態では、吸湿性液体として、塩化リチウム(LiCl)水溶液を用いる。なお、吸湿性液体は、飽和水蒸気圧が同じ温度の水よりも低いものであれば良く、塩化リチウム水溶液に限らず、臭化リチウム、塩化カルシウム、塩化マグネシウム、塩類水溶液、イオン液体、吸湿性の高い多価アルコール、その他の吸湿性を有する液体であってもよい。
処理機10と再生機30は、第1の吸湿性液体管路51及び第2の吸湿性液体管路52によって接続されている。第1の吸湿性液体管路51は、処理機10から再生機30へ吸湿性液体を送るための管路であり、第2の吸湿性液体管路52は、再生機30から処理機10へ吸湿性液体を送るための管路である。第1の吸湿性液体管路51及び第2の吸湿性液体管路52を用いて、処理機10と再生機30との間で吸湿性液体を循環させることにより、処理機10にて用いた吸湿性液体を再生機30にて再生し、再生機30で再生された吸湿性液体を処理機10に戻すことができる。
(処理機10)
図2は、処理機10を、伝熱管16の長手方向と直交する断面で見た図である。以下、図1と図2を合わせて、処理機10の構成を説明する。処理機10は、吸気口12と排気口13とを有する筐体11を備えている。排気口13は、排気用のファン14を有しており、筐体11内の空気を強制的に排気するとともに、吸気口12を通じて除湿対象空間からの戻り空気あるいは外気などの処理対象空気を筐体11内に取り込む。排気口13はダクト等を通じて除湿対象空間と接続されており、除湿された空気は排気口13から除湿対象空間に排出される。
筐体11内には、分配器15、溶液加熱冷却手段を構成する伝熱管16、気液接触手段を構成する複数の充填材17、最下段充填材18、溶液槽19、及び左右の側板26を有する。分配器15と伝熱管16と複数の充填材17と左右の側板26は、三流体熱交換器20としてユニット化されている。分配器15は、三流体熱交換器20の上方に配置された、概略トレイ状の部材であり、吸湿性液体を下方に滴下する複数の分配口が下面に形成されている。分配口は、左右の側版26の間で、分配器15の下段の伝熱管16に沿って形成されている。
分配器15は、これらの分配口から吸湿性液体を滴下して、三流体熱交換器20の上部に吸湿性液体を供給する。三流体熱交換器20に供給された吸湿性液体は、重力による自然流下によって三流体熱交換器20内を上段から下段に向かって順次流れ、最終段の最下段充填材18を通って、溶液槽19に落下する。ここで、自然流下とは、吸湿性液体に働く重力、表面張力等によって吸湿性液体を流すことをいい、吸湿性液体を流すためのポンプ等の動力源を必要としないことを意味する。溶液槽19は三流体熱交換器20及び最下段充填材18を通過して落下してきた吸湿性液体を受けて一時的に保持する。
伝熱管16は、一本の管として構成されており、内部には冷媒としての熱源流体が流通する。冷媒は、三流体熱交換器20の下方から伝熱管16に流入し、三流体熱交換器20の上方から伝熱管16を通して排出される。なお、冷媒を三流体熱交換器20の上方から伝熱管16に導入して、三流体熱交換器20の下方から伝熱管16を通して排出するようにしてもよい。また、伝熱管16を一本の管ではなく、複数系統にしてもよく、途中で分岐する構成にしてもよい。
図1の矢印は空気の流れを示している。吸気口12から筐体11内に取り込まれた処理対象空気は、筐体11内を下方から上方に向かって流れて、最下段充填材18及び三流体熱交換器20をこの順で通って排気口13から除湿対象空間に排出される。上述のように、吸湿性液体は三流体熱交換器20内を上方から下方に流れるのに対して、処理対象空気は三流体熱交換器20の下方から流入して上方から排出されるので、吸湿性液体と処理対象空気とは、上下方向に対向して流れることになる。
吸気口12及び排気口13を有する筐体11と排気用のファン14とで、処理対象空気を取り込んで三流体熱交換器20の内部を通過させて除湿対象空間に排出する空気流動手段が構成される。また、分配器15は、再生機30から供給された吸湿性液体を三流体熱交換器20の上部に供給する供給手段に相当する。
このように、三流体熱交換器20には、吸湿性液体、冷媒(熱源流体)、処理対象空気の三流体が流入し、これらの三流体の間で熱交換が行われる。すなわち、吸湿性液体は伝熱管16を介して冷媒によって冷却され、処理対象空気は吸湿性液体と直接的に接触(気液接触)することで冷却される。また、吸湿性液体は、吸湿性液体よりも高い温度の処理対象空気と接触することで、また処理対象空気中の水蒸気の吸収による吸収熱(水蒸気の凝縮熱と溶液の希釈熱)によって、温度が上昇する。このように、三流体熱交換器20は、吸湿性液体と、冷媒(熱源流体)と、処理対象空気とを直接的または間接的に接触させる構成を有しており、三流体熱交換器20では熱と物質(水)の移動、すなわち顕熱と潜熱の両方の熱交換が行われる。
(再生器30)
再生機30は処理機10と同様の構成をしており、吸気口32と排気口33とを有する筐体31を備えている。排気口33は、排気用のファン34を有しており、筐体31内の空気を強制的に排気するとともに、吸気口32を通じて除湿対象空間からの戻り空気あるいは外気等を再生用空気として筐体31内に取り込む。
筐体31内には、分配器35、溶液加熱冷却手段を構成する伝熱管36、気液接触手段を構成する複数の充填材37、最下段充填材38、溶液槽39、及び左右の側板46を有する。分配器35と伝熱管36と複数の充填材37と左右の側板46は、三流体熱交換器40としてユニット化されている。分配器35は、三流体熱交換器40の上方に配置された、概略トレイ状の部材であり、吸湿性液体を下方に滴下する複数の分配口が下面に形成されている。分配口は、左右の側板46の間で、分配器35の下段の伝熱管36に沿って形成されている。
分配器35は、これらの分配口から吸湿性液体を滴下して、三流体熱交換器40の上部に吸湿性液体を供給する。三流体熱交換器40に供給された吸湿性液体は、重力及び表面張力による自然流下によって三流体熱交換器40内を上段から下段に向かって順次流れ、最終段の最下段充填材38を通って、溶液槽39に落下する。
伝熱管36は、一本の管として構成されており、内部には熱媒としての熱源流体が流通する。熱媒は、三流体熱交換器40の下方から伝熱管36に流入して、三流体熱交換器40の上方から伝熱管36を通して排出される。
吸気口32から筐体31内に取り込まれた再生用空気は、筐体31内を下方から上方に向かって流れて、最下段充填材38及び三流体熱交換器40をこの順で通って排気口33から調湿対象空間外に排出される。すなわち、再生用空気は三流体熱交換器40の下方から流入して上方から排出されるので、吸湿性液体と再生用空気とは、上下方向に対向して流れることになる。
吸気口32及び排気口33を有する筐体31と排気用のファン34とで、再生用空気を取り込んで三流体熱交換器40の内部を通過させて除湿対象空間外に排出する空気流動手段が構成される。また、分配器35は、処理機10から供給された吸湿性液体を三流体熱交換器40の上部に供給する供給手段に相当する。
このように、三流体熱交換器40には、吸湿性液体、熱媒(熱源流体)、再生用空気の三流体が流入し、これらの三流体の間で熱交換が行われる。すなわち、吸湿性液体は伝熱管36を介して熱媒によって加熱され、再生用空気は吸湿性液体と直接的に接触(気液接触)することで加熱される。また、吸湿性液体は、吸湿性液体よりも低い温度の再生用空気と接触することで、また、再生用空気への水分の放出による負の吸収熱によって、温度が低下する。このように、三流体熱交換器40でも、吸湿性液体と、熱媒(熱源流体)と、再生用空気とが直接的または間接的に接触し、熱と物質(水)の移動、すなわち顕熱と潜熱の両方の熱交換が行われる。
(ヒートポンプ60)
除湿装置100は、伝熱管16に冷媒を供給し、伝熱管36に熱媒を供給するためのヒートポンプ60を備えている。伝熱管16及び伝熱管36は、それぞれヒートポンプ60の熱交換器を構成している。すなわち、ヒートポンプ60は、蒸発器として機能する伝熱管16と、圧縮機61と、凝縮器として機能する伝熱管36と、膨張弁62と、これらをこの順に接続する熱源流体管63とからなる。なお、ヒートポンプ60は、圧縮機61と膨張弁62との配置を交換することにより、伝熱管16を凝縮器として機能させ、伝熱管36を蒸発器として機能させることもできる。
(三流体熱交換器20,40)
三流体熱交換器20と三流体熱交換器40とは同一の構成を有するので、以下では三流体熱交換器20を例にその構成を説明する。三流体熱交換器20では、充填材17と伝熱管16とが上下方向に交互に配置されている。各段の充填材17は、平板形状をしており、平面方向から見ると、三流体熱交換器20の左右の側板26の間を覆う大きさを有している。
図3は、充填材17の斜視図である。充填材17は、単位体積当たりの表面積を多くするため多数のフィンから構成される。各フィンは、波形の凹凸形状に加工されている。隣り合うフィン同士は、波の方向が互いに一定の角度で交差する向きに貼り合わされており、すなわち、隣り合うフィン同士は山と谷が互いに点接触するように配置されおり、この接触点で互いに接着されている。このような構成により、充填材17は、内部が多孔質とされて、単位体積当たりの表面積が広く確保されるとともに、空気の流動性も確保されている。
充填材17は、親水性のあるセルロース系素材の他、ガラス繊維、セラミック繊維などのシートを接着して作成でき、あるいは結合剤などでセルロース、ガラス繊維、セラミック繊維などを一体化して作成できる。
伝熱管16は、各段において、図1の左右方向(水平方向)に延びる直線部分の終端が、水平面内でU字またはコの字に折り曲げられることで、複数の直線部分が水平方向に間隔をあけて配置されており、また、各直線部分は充填材17を挟んで上下方向に間隔をあけて配置されており、図2の左右端では終端が垂直方向にU字またはコの字に折り曲げられて上の段につながることで、全体として分岐せずに蛇行して延びる1本の管として構成されている。
伝熱管16の内部には冷媒が流通するが、冷媒は、図2の最下段最右から伝熱管16に流し込まれ、最下段を左方向に流れ、左端で上の段に移って右方向に流れ、これを繰り返して、最終的に最上段から排出される。すなわち、冷媒は、伝熱管16を通ることで、三流体熱交換器20内を下段から上段に向かって流れる。
伝熱管16は、強度の点から金属製が好ましく、特に、吸湿性液体(塩化リチウム水溶液)に対する耐食性を有し、かつ、安価な材料が好ましい。例えば、銅は伝熱性に優れ、比較的安価であるので、伝熱管16の材料として好ましい。伝熱管16を銅で構成する場合には、耐食性を付与する表面処理や電気的な方法等により吸湿性液体に対する耐食性を確保することが望ましい。本実施の形態の伝熱管16は平滑管であるが、表面積を拡大し、また親水性を増すために、外表面に加工を施してもよい。
図4〜図7は、表面加工された伝熱管16の例を示す図である。図4(a)は、伝熱管16の表面に円周方向に細溝を設けた例を示しており、図4(b)は、その伝熱管16の部分拡大図である。図5(a)は、伝熱管16の表面に交差する細溝を設ける例を示しており、図5(b)は、その伝熱管16の部分拡大図である。また、図6は伝熱管16の表面にローフィン加工をした例を示しており、図7は伝熱管16の表面に微細溝を設けた例を示している。また、図示は省略するが、伝熱管16の表面に細かい凹凸(サンドブラスト、ショットブラストなど)を設けてもよい。さらに、伝熱管16の内面にも、熱源流体側の伝熱改良のため、内面溝や凹凸等を設けてもよい。
伝熱管16の直線部分の左右の端部にはそれぞれ側板26が設けられている。図8(a)は、側板26と伝熱管16との関係を示す斜視図であり、図8(b)はその側面図である。上述のように、伝熱管16は、全体で蛇行する一本の管として構成されており、側部で180度折れ曲がる湾曲部を有し、湾曲部の間は直線部分で接続されている。したがって、そのままでは各直線部分の互いの位置関係は不安定である。
そこで、各直線部分を安定して位置決めするために、左右の直線部分の端部には、伝熱管16を固定する手段として側板26が設けられる。側板26は、左右の外側から伝熱管16の直線部分の端まで嵌め込まれる。このために、側板26には、伝熱管16の湾曲部及び直線部分の端部を貫通させるための複数の横長孔261及び縦長孔262が形成され、さらに、伝熱管16の端部を貫通させるための単孔263が形成されている。なお、反対側には伝熱管16の端部はないため、反対側の側板26には単孔263は不要であり、その代わりに2つの縦長孔262が形成される。
各横長孔261、各縦長孔262、及び単孔263は伝熱管16の直線部分が密着するように形成される。よって、伝熱管16の各直線部分はこれらの孔261、262、263に拘束されて上下方向に移動することができなくなり、位置が固定されることになる。
上記のように、各横長孔261、各縦長孔262、及び単孔263は伝熱管16の直線部分が密着するように形成されるが、横長孔261及び縦長孔262についてはその両端部で直線部分と密着するので、両端部分を除く中間部分は、筐体11の内部に暴露する。この中間部分から三流体熱交換器20の内部を流下する吸湿性液体が漏れて、充填材17を通らずに直接最下段充填材18ないし溶液槽19まで落下したり、筐体11内で飛散して排気口13を通って調湿対象空間に流出したりする。この対策として、蛇行して延びる伝熱管16に対して側板26を嵌めた後に、これらの横長孔261及び縦長孔262の中間部分を板状の部材等で塞ぐようにしてもよい。さらに、伝熱管16と板状の部材等を貼り付けた横長孔261ないし縦長孔262の間に隙間がある場合、伝熱管16及び側板26の材質に適したコーキング剤等で隙間を埋め、側板26からの溶液の漏れ出しを確実に防ぐ構造としてもよい。
側板26は、透明の樹脂で構成される。これによって、三流体熱交換器20は側板26側からその内部を観察することができ、特に、後述するバイパス現象が発生しているか否かを観察することができる。なお、側板26は樹脂製に限らず、また透明でなくともよく、吸湿性液体に耐性のある金属(例えば、吸湿性液体が塩化リチウムであれば、チタニウム製)、あるいはガラスでもよい。
充填材17と伝熱管16とは互いに上下方向に接触している。すなわち、充填材17の下面と伝熱管16の上面とは接触しており、伝熱管16の下面と充填材17の上面とは接触している。この結果、各段の充填材17の下面(最下部)まで流れた吸湿性液体は、表面張力によって伝熱管16に流れ込み、伝熱管16の表面を経由して下段の充填材17に供給される。伝熱管16からその下の充填材17に供給された吸湿性液体は、充填材17内で表面張力によって充填材17のほぼ全表面に広がりつつ、重力によって充填材17内を下方に流れる。
三流体熱交換器20に供給される吸湿性液体の流量が多すぎると、充填材17の下面から漏れた吸湿性液体が伝熱管16を経由せずにバイパスしてその下段の充填材17に直接滴下されることもあり得るが(バイパス現象)、本実施の形態の除湿装置100では、後述するように、三流体熱交換器20に供給する吸湿性液体の流量を多くする必要はなく、比較的少量の吸湿性液体が供給されるので、充填材17を下方に流れた吸湿性液体は表面張力によってその大部分がその下段の伝熱管16に集められて、伝熱管16の表面を下方に流れてその下段の充填材17に供給される。上記のようなバイパス現象をより確実に防止するために、以下のような構成が採用されてもよい。
図9は、三流体熱交換器20の他の例を示す図である。この例では、充填材17は板状形状であるが、その下面が伝熱管16との接触面に向けてテーパしている。また、充填材17の下面における伝熱管16と接触する面は、伝熱管16の表面に沿って円弧上に形成されている。この構成により、充填材17の下面に至った吸湿性液体はテーパした下面を伝って伝熱管16との接触面まで流れて、表面張力によって確実に伝熱管16の表面に流れ込む。
図10は、三流体熱交換器20のさらに他の例を示す図である。上記の例では、いずれも充填材17が平面視で2つの側板26の間の全面を覆う板状に形成されていたが、この例では、充填材17は角棒状に形成され、各段において水平方向に充填材17と伝熱管16とが交互に配置され、また、上下方向に見ると、水平面内の各位置で充填材17と伝熱管16が上下方向に交互に配置されている。各充填材17は、その中を長手方向に平行に貫く支持棒171によって支持されている。
図10の例では、充填材17の下面と伝熱管16の上面とは接触しておらず、それらの間には隙間が確保されている。また、充填材17の下面は、伝熱管16に対応する位置に向けてテーパする形状を有しており、その先端は凹形状に加工されている。この先端の凹形状により、ここで水滴が形成されて、その直下の伝熱管16に水滴が滴下される。さらに、伝熱管16の下面と充填材17の上面との間にも隙間が確保されている。なお、充填材17の下面の先端は凹形状でなく凸形状とされてもよい。この場合にも、この凸形状の部分で水滴が形成されやすくなる。
図11〜13は、三流体熱交換器20のさらに他の例を示す図である。図11〜13の例では、処理機10´が上記の実施の形態の処理機10とは異なっており、すなわち、吸気口12及び排気口13が三流体熱交換器20の横に設けられ、吸気口12と排気口13は、三流体熱交換器20を挟んで互いに対向して設けられている。これにより、処理対象空気は三流体熱交換器20の側面から三流体熱交換器20の内部に流入し、三流体熱交換器20の反対側の側面から排出される。吸気口12及び排気口13には、吸湿性液体の液滴が筐体11外に飛散しないように、それぞれエリミネータを備えている。
上記の実施の形態の処理機10では処理対象空気が下から上に流れ、吸湿性液体が上から下に流れ、処理対象空気の流れと吸湿性液体の流れとが対向するカウンタ(対向)気液接触方式であったのに対して、図11〜13の例の処理機10´では、処理対象空気が水平方向に流れ、吸湿性液体が上から下に流れるクロス(直交)気液接触方式を採用している。
クロス気液接触方式では、冷媒を排気口13側から吸気口12側に向かうように流してよい。すなわち、例えば、図11〜13の例では冷媒を最下段最右から導入して、最右列を上方に流し、最上段で1つ左の列に移って、その列で下方に流し、これを繰り返すことで、最左列から排出するように伝熱管16を構成してよい。
図11の例では、三流体熱交換器20は図10の例と同様に構成され、充填材17は角棒状に形成され、各段において水平方向に充填材17と伝熱管16とが交互に配置され、また、上下方向に見ると、水平面内の各位置で充填材17と伝熱管16が上下方向に交互に配置されている。
図12の例では、充填材17とその下段の伝熱管16との間に、プレート21が追加されている。プレート21には、伝熱管16に対応する位置に複数の孔211が形成されている。この構成により、バイパス現象を確実に防いで、充填材17の下面に至った吸湿性液体を確実に伝熱管16の供給できる。この例では、プレート21の平面方向と処理対象空気の流れる方向とが一致しているため、処理対象空気はプレート21によって遮られることなく、充填材17内を水平方向に流れていく。この複数の孔211を有するプレート21は、充填材17を流下した吸湿性液体を伝熱管16に導く案内手段に相当する。なお、図12の例において、図10に示すように、充填材17の下面をテーパ形状とし、プレート21をそのように形成した充填材17の下面に沿うように形成してもよい。
また、本実施の形態のように、伝熱管16と充填材17とが上下方向に繰り返し配置される構造においては、伝熱管16の表面に吸湿性液体を十分に広げて、伝熱管16の内部を流れる冷媒との吸湿性液体への伝熱効率を上げることが有効である。そのために、伝熱管16に表面処理をして伝熱管16の表面における吸湿性液体の接触角を小さくしたり、上記のように伝熱管16の表面形状を加工したりすることが考えられるが、冷媒と吸湿性液体との間の伝熱効率をより向上させるために、以下のような構成を採用することも有効である。
図13(a)は、三流体熱交換器20のさらに他の例を示す図であり、図13(b)は伝熱管16周りの部分拡大図である。この例では、垂直方向に隣り合う充填材17同士の間にホルダ22が設けられている。ホルダ22は、全体として板状に形成され、内部に伝熱管16を収容し、上面及び下面で充填材17に接触している。ホルダ22は、伝熱管16の上面及び下面に対応する位置に複数の孔221,222を有し、それ以外の部分で伝熱管16の外周を囲む形状に形成されている。この複数の孔221を有するホルダ22は、充填材17を流下した吸湿性液体を伝熱管16に導く案内手段に相当するとともに、充填材17を流下した吸湿性液体を伝熱管16の周りに保持する保持手段にも相当する。
伝熱管16とホルダ22との間にはスペーサ23が設けられ、このスペーサ23によって、伝熱管16の全周とホルダ22との間にはスペースが確保されている。よって、ホルダ22の上面の孔221から伝熱管16に供給された吸湿性液体は、ホルダ22に遮られることなく伝熱管16の表面を下方に流れ、ホルダ22の下面の孔222から下段の充填材17に供給される。この例でも、ホルダ22の平面方向と処理対象空気の流れる方向とが一致しており、処理対象空気は充填材17の内部を水平方向に流れる。
図14は、三流体熱交換器20のさらに他の例を示す図である。この例では、伝熱管16は、複数の直線部分の各々が、外管161によって覆われて二重管160が構成される。外管161は、伝熱管16の直線部分の周囲を覆うカバー部材として機能する。外管161の内面と伝熱管16の外面との間隔は、例えば2mmとする。なお、伝熱管16は上述のように伝熱性が高く、強度もある金属で構成されるが、外管161は伝熱性や強度の要求は高くないので、例えば塩化ビニル等の安価な材料を用いて構成される。
充填材17の下には充填材17を流れた吸湿性液体を受けるプレート24が設けられる。プレート24には、その下の外管161の端部と連結する孔241が設けられている。二重管160の外管161にもプレート24の孔241に対応する位置(直線部分の端部)に、導入孔1611が設けられている。孔241と導入孔1611との間には、パッキン、スポンジ等のシール部材242が設けられており、孔241から導入孔1611に吸湿性液体が漏れることなく流れる構造となっている。充填材17内を下方に流れてプレート24で受け止められた吸湿性液体は、この導入孔1611から外管161内(伝熱管16の外側)に導入される。このプレート24は、充填材17を流下した吸湿性液体を伝熱管16に導く案内手段に相当する。
外管161内に導入された吸湿性液体は、外管161内を伝熱管16に沿って流れる。このとき、外管161と伝熱管16との間の隙間は吸湿性液体で満たされる。即ち、吸湿性液体は、外管161によって伝熱管16の周囲に保持される。よって、吸湿性液体は、十分に伝熱管16に接触することとなるので、伝熱効率を高くすることできる。また、吸湿性液体は、伝熱管16をその周方向に流れるのではなく、伝熱管16の軸方向に流れるので、伝熱管16との接触時間が長くなり、十分に冷却される。この外管161は、吸湿性液体を伝熱管16の周りに保持する保持手段に相当する。
外管161の直線部分の導入孔1611と反対側の端部には、導入孔1611から外管161内に導入されて外管161内を伝熱管16に沿って流れた吸湿性液体を下段の充填材17に供給するための排出孔1612が設けられている。外管161の下には、排出孔1612から排出された吸湿性液体を下段の充填材17に分配するための分配器25が設けられている。分配器25はトレイ状の部材(トレイ部材)であり、下面に複数の孔が全面にわたって形成されている。外管161から排出された吸湿性液体は分配器25で分配されて充填材17の上部に供給される。
このように、図14の例の三流体熱交換器20では、プレート24、二重管160、分配器25、充填材17がこの順で繰り返し配置される構造を有している。吸湿性液体は、充填材17を下方に流れ、その下段の二重管160の直線部分を一端から他端に向けて水平に流れ、分配器25で水平面方向に分配されてその下段の充填材17の上部に供給されるという経路を繰り返しながら、三流体熱交換器20内を下方に流れる。この例でも、吸湿性液体はそれに働く重力(自然落下)及び表面張力の作用のみで上記のように流れて、充填材17における気液接触と伝熱管16における冷却とを繰り返すことができる。
図15(a)及び(b)は、図14の例の変形例を示している。図15(a)は、この変形例の分解斜視図である。この変形例では、二重管160を採用する代わりに、上下に分割式の伝熱管カバー部材162を採用している。伝熱管カバー部材162は、概略板状の形状を呈する上部材1621と下部材1622とからなり、上部材1621の下面には伝熱管16を収容するための半円筒状の凹部が形成されており、下部材1622の上面には伝熱管16を収容するための半円筒状の凹部が形成されている。
図15(b)は、上部材1621と下部材1622との間に伝熱管16を収容した状態を示す側面図である。上部材1621の凹部と下部材1622の凹部とは対応する位置に形成されており、上部材1621と下部材1622とが合わさることで円筒状の空洞が形成され、伝熱管16の直線部分は、この空洞に収容される。上部材1621の凹部及び下部材1622の凹部にはそれぞれ伝熱管支持突起(スペーサ)1623が設けられており、伝熱管16はこの伝熱管支持突起1623に支持されることで、円筒状の空洞の中央に配置される。
このように伝熱管16の直線部分を収容した伝熱管カバー部材162は、充填材17の間に配置される。上部材1621の凹部の長手方向端部の上面には、その上の充填材17を流下した吸湿性液体を円筒状の空洞に導入するための導入孔16211が形成されており、下部材1622の凹部の長手方向の導入孔16211とは反対側の端部の下面には、その下の充填材17に吸湿性液体を排出する排出孔16221が形成されている。この上部材1621は、充填材17を流下した吸湿性液体を伝熱管16に導く案内手段に相当し、上部材1621と下部材1622とからなる伝熱管カバー部材162は、吸湿性液体を伝熱管16の周りに保持する保持手段に相当する。
この変形例においても、図14の例と同様に、円筒状の空洞内(伝熱管16の外側)に導入された吸湿性液体は、空洞内を伝熱管16に沿って流れる。このとき、空洞の周壁と伝熱管16との間の隙間は吸湿性液体で満たされる。即ち、吸湿性液体は、伝熱管カバー部材162によって伝熱管16の周囲に保持される。よって、吸湿性液体は、十分に伝熱管16と接触することとなるので、伝熱効率を高くすることできる。また、吸湿性液体は伝熱管16をその周方向に流れるのではなく、伝熱管16の軸方向に流れるので、伝熱管16との接触時間が長くなり、十分に冷却される。
図16は、三流体熱交換器20のさらに他の例を示す図である。この例では、充填材17の間に、伝熱管16を収容する収容部材163が設けられている。収容部材163は、トレイ部材1631と、トレイ部材1631に被せられて充填材17を下から支持するための蓋部材1632とが一体になって構成されている。なお、蓋部材1632がトレイ部材1631とは別体であってもよい。
トレイ部材1631は平面視で充填材17とほぼ同じ大きさに形成されており、その下面には、その下段の充填材17に吸湿性液体を分配するための孔が全面にわたって形成されている。蓋部材1632にも充填材17を流下した吸湿性液体をトレイ部材1631に滴下するための孔が全面にわたって形成されている。なお、蓋部材1632に形成された孔は、充填材17の下部に吸湿性液体が滞留しないように比較的大きく形成されてよいが、トレイ部材1631に形成された孔は、ある程度の抵抗を生じるように、小さく(ただし数は多く)形成される。蓋部材1632は、充填材17を流下した吸湿性液体を伝熱管16に導く案内手段に相当し、トレイ部材1631は、吸湿性液体を伝熱管16の周りに保持する保持手段に相当する。
このような構成により、トレイ部材1631には吸湿性液体が滞留し、その結果、伝熱管16がトレイ部材1631に保持された吸湿性液体に浸かる。伝熱管16の周面がすべて浸かる程度にトレイ部材1631に吸湿性液体が滞留することが望ましいが、トレイ部材1632から上段の充填材17にまで吸湿性液体が溢れる状態となるのは好ましくない。トレイ部材1631の孔の大きさ及び数は、好ましくは、トレイ部材1631に溜まる吸湿性液体の液面が伝熱管16の上面と蓋部材1632との間になるように設計される。
充填材17を下から支持する(充填材17が乗せられる)蓋部材1632には、充填材17の外側で、充填材17を支持する平面部から上に向けて屈曲する返し部が形成されている。この返し部によって、充填材17を流下してまだ蓋部材1632の孔からトレイ部材1631内に滴下されずに蓋部材1632の上に滞留する吸湿性液体が、充填材17の外側から三流体熱交換器20外に流れ落ちるのを防いでいる。この返し部は、充填材17の端部に対応する部分に形成されるのではなく、充填材17の端部から若干外側にまで平面部が延長して形成される。三流体熱交換器20には、図16の左右方向に処理対象空気が流通するが、このように返し部を充填材17の端部から離して形成することにより、充填材の側面(図16の左右の側面)から充填材17の内部に流入し、反対側の側面から流出する処理対象空気の風路を返し部が妨げることなく、三流体熱交換器20内において処理対象空気と調湿性液体との気液接触が十分に行われる。なお、図14の構成においても同様に、充填材17を下から支持するプレート24の紙面垂直方向の端部には、充填材17の外側で上に向けて屈曲する返し部が形成されており、充填材17を流下して孔241を流下する前の吸湿性液体がプレート24上に溜まり、図14の紙面垂直方向から漏れ出ないように構成されている。
図15及び図16の例によれば、吸湿性液体を伝熱管16の周囲に保持するための手段を伝熱管16の直線部分の一本一本に個別に設ける必要はなく、段ごとに設ければよいので、製造が容易であるという利点がある。
(最下段充填材18,38)
最下段充填材18と最下段充填材38とは同じ構成であるため、最下段充填材18を例に説明する。最下段充填材18は、吸湿性液体のもつ水分授受能力を出し切らせるために、三流体熱交換器20の下段に設けられている。三流体熱交換器20の下面から排出された吸湿性液体は、さらに最下段充填材18に供給されて、最下段充填材18において空気と接触する。最下段充填材18は、充填材17と同様の素材及び構造で構成してよいが、充填材17を通らずに充填材17と筐体11との間の隙間から落下する吸湿性液体を捕捉するために、充填材17よりも広範囲にわたって設けられるのが望ましく、筐体11との間に隙間なく設けられてもよい。
(吸湿性液体の循環のための構成)
上述のように、溶液槽19には第1の吸湿性液体管路51が接続されており、溶液槽39には第2の吸湿性液体管路52が接続されている。三流体熱交換器20を経て溶液槽19に流下した吸湿性液体は、再び三流体熱交換器20の上部に戻されることなく、すべて再生機30に送られる。また、三流体熱交換器40を経て溶液槽39に流下した吸湿性液体は、再び三流体熱交換器40の上部に戻されることなく、すべて処理機10に送られる。
第1の吸湿性液体管路51にはポンプ53が設けられており、処理機10の溶液槽19から排出された吸湿性液体は、第1の吸湿性液体管路51を通って、ポンプ53の揚力によって再生機30の分配器35まで汲み上げられる。また、第2の吸湿性液体52にはポンプ54が設けられており、再生機30の溶液槽39から排出された吸湿性液体は、第2の吸湿性液体管路52を通って、ポンプ54の揚力によって処理機10の分配器15まで汲み上げられる。
再生機30から処理機10に戻る吸湿性液体の流量は、バルブ55によって調整される。本実施の形態では、バルブ55は、溶液槽39内の吸湿性液体の液面の高さが一定になるように、処理機10に戻す吸湿性液体の流量を制御する。なお、バルブ55の代わりにポンプ54の回転数制御で再生機30から処理機10に戻す吸湿性液体の流量を調節してもよい。
第1の吸湿性液体管路51及び第2の吸湿性液体管路52の経路には熱交換器56が設けられ、この熱交換器56で第1の吸湿性液体管路51を流れる比較的低温の吸湿性液体と第2の吸湿性液体管路52を流れる比較的高温の吸湿性液体との間で熱交換が行われる。すなわち、処理機10の溶液槽19から排出される比較的低温の吸湿性液体は、熱交換器56において、再生機30の溶液槽39から排出される比較的高温の吸湿性液体と熱交換をすることで加熱され、再生機30の溶液槽39から排出される比較的高温の吸湿性液体は、熱交換器56において、処理機10の溶液槽19から排出される比較的低温の吸湿性液体と熱交換をすることで冷却される。この構成により、再生機30での加熱量及び処理機10での冷却熱量を低減することができ、除湿装置100のエネルギー利用効率を向上できる。
(除湿装置100の作用)
上記の実施の形態の除湿装置100では、処理機10において、充填材17と伝熱管16とが上下方向に交互に配置された三流体熱交換器20を採用したので、吸湿性液体は、この三流体熱交換器20を上から下に流れる際に、充填材17において十分に処理対象空気と気液接触し、充填材17において水分を吸収することによって生じる吸収熱等によって温度が上昇した吸湿性液体はその下段の伝熱管16で直ちに冷却されて、再びその下段の充填材17に供給される。
したがって、各段の充填材17には常に十分に冷却された吸湿性液体が供給され、各段の充填材17で処理対象空気と接触する吸湿性液体は、温度上昇によって水分吸収能力が低下することなく、最下段まで水分吸収能力を維持できる。すなわち、従来のように金属製の熱交換コイルを処理機に導入して吸湿性液体を熱交換コイルで冷却しながら処理対象空気と気液接触させる構成と比較して、本実施の形態の除湿装置100では、気液接触は専ら充填材17にて行う。充填材17は断熱性ではあるが、濡れ性が極めて良好であり、表面に吸湿性液体が拡がりやすく、単位体積当たりの表面積も大きく、疎水性の金属からなる熱交換コイルに比べて気液接触の効率が優れている。
このように、本実施の形態の除湿装置100では、三流体熱交換器20の上部に供給された吸湿性液体は、三流体熱交換器20の下部から排出されるまでの間に十分に処理対象空気から水分を吸収し希釈されているので、それをそのまま再生機30に送って再生に供することができ、再生前に処理機10において再び三流体熱交換器20の上部まで汲み上げて繰り返し処理対象空気と気液接触させる必要がない。よって、本実施の形態の除湿装置100は、従来の調湿装置と比較してエネルギー利用効率に優れている。
また、三流体熱交換器20に供給する吸湿性液体の流量が少なくてよいことから、液撥ね等による吸湿性液体の液滴の飛散を抑えることができ、キャリーオーバーのリスクも低減される。
例えば、従来の断熱タイプの除湿装置では、処理機の溶液槽から処理機の分配器に90L/minの流量(単位時間あたりの量)の吸湿性液体を戻してこの流量の吸湿性液体を気液接触手段に供給するとともに、10L/minの流量の吸湿性液体を再生機に送っていたのに対して、本実施の形態の除湿装置100の構成を採用することで、処理機10の三流体熱交換器20には20L/min程度の流量の吸湿性液体を供給すればよく、また、三流体熱交換器20の下面から排出される吸湿性液体を再度三流体熱交換器20の上部に戻す必要はなく、溶液槽19から再生機30へは、20L/min程度の流量の吸湿性液体を送ることができる。
このように、本実施の形態の除湿装置100によれば、処理機10及び再生機30において三流体熱交換器20,40に供給する吸湿性液体の量を従来と比較して劇的に減少させることができる。上記の例で言えば、従来、気液接触手段に供給していた吸湿性液体の流量が100L/min(戻り90L/min、及び、吸湿済又は再生済10L/min)であったものが、20L/minとなり、1/5まで減少できる。
ただし、本発明は上記のように処理機10内又は再生機30内で循環させる吸湿性液体をゼロにするものに限らない。上記の例において、三流体熱交換器20,40に流す20L/minの流量の吸湿性液体の一部(例えば、5L/min)を処理機10内又は再生機30内で循環させたとしても、三流体熱交換器20,40に流す吸湿性液体の量を従来と比較して少量にできており、キャリーオーバーの問題を低減するという点では有利であり、また、そのように循環させるためのポンプの動力も従来と比較して小さくてよい。
一般的には、本実施の形態の三流体熱交換器20,40を採用したことで、図17に示すように、処理機10及び再生機30の三流体熱交換器20,40に供給する吸湿性液体の流量をa(kg/min)とし、処理機10内及び再生機30内で循環させる吸湿性液体の流量をb(kg/min)とすると(なお、処理機10と再生機30との間でやり取りする吸湿性液体の流量はa−bとなる)、処理機10内及び再生機30内で循環させる割合b/aを0≦b/a≦0.5とすることができる。
また、三流体熱交換器20,40に供給する吸湿性液体の流量を少なくできる点については、以下のように説明することもできる。すなわち、本実施の形態の三流体熱交換器20を採用したことで、処理機10での除湿量(吸湿性液体が処理対象空気から吸収する水分の量)A(kg/min)に対する、処理機10の三流体熱交換器20に供給する吸湿性液体の流量B(kg/min)の比B/Aを小さくすることができ、具体的には5≦B/A≦67(好ましくは、13≦B/A≦26)とすることができる。また、本実施の形態の三流体熱交換器40を採用したことで、再生機30での水分放出量(吸湿性液体が再生用空気に放出する水分の量)C(kg/min)に対する、再生機30の三流体熱交換器40に供給する吸湿性液体の流量D(kg/min)の比D/Cを小さくすることができ、具体的には5≦D/C≦67(好ましくは、13≦D/C≦26)とすることができる。
上記の処理機10における作用は再生機30でも同様である。すなわち、再生機30においても、三流体熱交換器40を上から下に流れる吸湿性液体は、各段の充填材37において再生用空気と十分に気液接触し、その下段の伝熱管36で加熱され、これを繰り返すので、三流体熱交換器40の下部から排出される吸湿性液体は十分に水分を放出して濃縮されている。よって、再生すべき吸湿性液体を三流体熱交換器40の下方から上方に汲み上げて何度も吸湿性液体を三流体熱交換器40に供給する必要はなく、三流体熱交換器40から排出される吸湿性気体をそのまま処理機10に供給することができる。また、三流体熱交換器40の上部に供給する吸湿性液体は処理機10から供給される吸湿性液体(上記の例では、20L/min)のみであり、従来と比較して少量であるので再生機30における液撥ね、及びキャリーオーバーの問題も低減できる。
また、上記の実施の形態の除湿装置100では、三流体熱交換器20において、親水性の部材である充填材17における吸湿性液体と処理対象空気との気液接触と、その下段の伝熱管16における吸湿性液体の冷却とを繰り返すが、この繰り返しが吸湿性液体に働く重力及び表面張力を利用した自然流下によって実現されるので、従来のように充填材を通過した吸湿性液体をポンプで汲み上げつつ冷却して再び同じ充填材に戻すことで親水性部材による気液接触と冷却とを繰り返す場合と比較して、気液接触と冷却とを繰り返すためのポンプ等による吸湿性液体の搬送エネルギーを必要としない。この点でも、装置の小型化及びエネルギー利用効率の向上が実現される。
(調湿装置の変形例)
図18は変形例の除湿装置を示す図である。本変形例の除湿装置100´では、処理機10が再生機30の上方に配置されている。再生機30の溶液槽39から処理機10の分配器15へは上記の実施の形態と同様にポンプ54を用いて吸湿性液体を汲み上げるが、処理機10の溶液槽19から再生機30の分配器35へは重力を利用した自然流下によって吸湿性液体を移動させる。図1の除湿装置100と比較すると、除湿装置100´では、第1の吸湿性液体管路51に設けたポンプ53が省略されている。
なお、処理機10と再生機30との配置を逆にして、再生機30から処理機10への吸湿性液体の搬送を重力による自然流下としてもよい。この場合には、ポンプ54を省略できる。
また、上記の実施の形態では、ヒートポンプ60を用いた除湿装置100の例について説明したが、除湿装置は必ずしもヒートポンプ60を用いる必要はなく、吸湿性液体を用いて除湿を行う除湿装置であれば本発明を適用することが可能である。例えば、処理機10の伝熱管16に冷水を供給し、再生機30の伝熱管36に温水を供給することによっても三流体熱交換器20,40を実現できる。
また、処理機内を循環する溶液回路と外部熱源による熱交換器を追加し、あるいは再生器内を循環する溶液回路と外部熱源による熱交換器を追加するなど、ヒートポンプ60以外の熱源も利用できるようにしてもよい。処理機の入口または出口部分に、ヒートポンプ60による蒸発器を追加し、処理対象空気の入口での予冷、出口での冷却など温度調節するようにしてもよい。
また、上記の実施の形態では、伝熱管16,36が連続する一本の管として構成されていたが、伝熱管16,36は、複数経路に分岐する構成を有していてもよい。
また、上記の実施の形態では、調湿装置が、処理機10にて専ら除湿を行う除湿装置である場合を例に説明したが、上記の実施の形態において、圧縮機61と膨張弁62とを入れ替えることで、処理機10において処理対象空気の加湿を行う加湿装置が構成される。さらに、処理機10の伝熱管16に低温の熱源流体(冷媒)を通し、再生機30の伝熱管36に高温の熱源流体(熱媒)を通す除湿運転と、処理機の伝熱管16に高温の熱源流体(熱媒)を通し、再生機30の伝熱管36に低温の熱源流体(冷媒)を通す加湿運転とを切り替え可能にする四方切換弁が、圧縮機61と膨張弁62との間に設けられてもよい。この場合には、除湿運転と加湿運転とを切り替え可能な調湿装置が提供される。
以上、本発明の実施の形態の調湿装置を詳細に説明したが、本発明は上記した実施の形態に限定されるものではない。
(付記)
付記1の調湿装置は、吸湿性液体と処理対象空気とを接触させることで前記処理対象空気の調湿を行う処理機と、前記処理機で用いられた前記吸湿性液体を再生用空気と接触させることで前記吸湿性液体の再生を行って前記処理機に供給する再生機とを備えた調湿装置であって、前記処理機は、親水性を有する気液接触手段と、熱源流体によって冷却又は加熱される溶液加熱冷却手段とが上下方向に交互に配置された構成を有する第1の三流体熱交換器と、前記再生機から供給された前記吸湿性液体を前記第1の三流体熱交換器の上部に供給する第1の供給手段とを備え、前記吸湿性液体は、前記第1の三流体熱交換器を下方に向かって自然流下する過程で、前記気液接触手段と前記溶液加熱冷却手段とを交互に流れ、前記第1の供給手段によって前記第1の三流体熱交換器の上部に供給されて前記第1の三流体熱交換器の下部から排出された前記吸湿性液体を、再び前記第1の三流体熱交換器の上部に戻すことなく、前記再生機に供給する構成を有している。
この構成により、吸湿性液体は自然流下によって第1の三流体熱交換器を上部から下方に流れる過程で、気液接触手段における気液接触と溶液加熱冷却手段における冷却又は加熱とを繰り返すので、水分授受能力を維持でき、十分に希釈又は濃縮される。そのため、処理機では、第1の三流体熱交換器に供給する吸湿性液体が少量であっても吸湿性液体は第1の三流体熱交換器を通過する間に処理対象空気との間で十分に水分の授受を行うことができ、第1の三流体熱交換器の下部から排出される吸湿性液体を再びその上部に戻す必要がなくなる。よって、処理機の第1の三流体熱交換器の下部から排出される吸湿性液体のすべてを再生機に供給しても、従来と比較して調湿の能力を落とすことはなく、エネルギー利用効率の低下を抑えることができる。
付記2の調湿装置は、付記1の調湿装置において、前記再生機は、親水性を有する気液接触手段と、熱源流体によって加熱又は冷却される溶液加熱冷却手段とが上下方向に交互に配置された構成を有する第2の三流体熱交換器と、前記処理機から供給された前記吸湿性液体を前記第2の三流体熱交換器の上部に供給する第2の供給手段とを備え、前記吸湿性液体は、前記第2の三流体熱交換器を下方に向かって自然流下する過程で、前記気液接触手段と前記溶液加熱冷却手段とを交互に通り、前記第2の供給手段によって前記第2の三流体熱交換器の上部に供給されて前記第2の三流体熱交換器の下部から排出された前記吸湿性液体を、再び前記第2の三流体熱交換器の上部に戻すことなく、前記処理機に供給することを特徴とする。
この構成によれば、再生機においても処理機と同様に、第2の三流体熱交換器の下部から排出される吸湿性液体のすべてを処理機に供給しても、従来と比較して調湿の能力を落とすことなく、エネルギー利用効率の低下を抑えることができる。
付記3の調湿装置は、付記1又は付記2の調湿装置において、前記処理機から前記再生機に供給される前記吸湿性液体と前記再生機から前記処理機に供給される前記吸湿性液体との間で熱交換を行う熱交換器をさらに備えたことを特徴とする。
この構成により、除湿をする場合には、処理機で冷却されながら希釈されて処理機から排出された比較的低温の吸湿性液体と、再生機で加熱されながら濃縮されて再生機から排出された比較的高温の吸湿性液体とが熱交換を行うことで、処理機から再生機に供給される吸湿性液体を加熱するとともに、再生機から処理機に供給される吸湿性液体を冷却できる。よって、処理機において吸湿性液体を冷却するために必要なエネルギーを抑えることができる。また、加湿を行う場合には、処理機で加熱されながら濃縮されて処理機から排出された比較的高温の吸湿性液体と、再生機で冷却されながら希釈されて再生機から排出された比較的低温の吸湿性液体とが熱交換を行うことで、再生機に供給される吸湿性液体を冷却するとともに処理機に供給される吸湿性液体を加熱できる。よって、処理機において吸湿性液体を加熱するために必要なエネルギーを抑えることができる。
付記4の調湿装置は、付記1ないし付記3のいずれかの調湿装置において、前記処理機と前記再生機の一方が他方より高所に設けられ、前記一方から前記他方には前記吸湿性液体が重力を利用して供給されることを特徴とする。
この構成により、処理機と再生機の一方から他方へは吸湿性液体を供給するための動力源(例えばポンプ)が不要であり、エネルギー利用効率を向上できる。また、そのような動力源を省略できるので、調湿装置を小型化できる。
付記5の調湿装置は、吸湿性液体と処理対象空気とを接触させることで前記処理対象空気の調湿を行う処理機と、前記処理機で用いられた前記吸湿性液体を再生用空気と接触させることで前記吸湿性液体の再生を行って前記処理機に供給する再生機とを備えた調湿装置であって、前記処理機は、親水性を有する気液接触手段と、熱源流体によって冷却又は加熱される溶液加熱冷却手段とが上下方向に交互に配置された構成を有する第1の三流体熱交換器を備え、前記吸湿性液体は、前記第1の三流体熱交換器を下方に向かって自然流下する過程で、前記気液接触手段と前記溶液加熱冷却手段とを交互に流れ、前記第1の三流体熱交換器を流れる前記吸湿性液体の単位時間当たりの量aと、前記第1の三流体熱交換器の下部から排出されて再び前記三流体熱交換器の上部に戻される前記吸湿性液体の単位時間当たりの量bとは、0≦b/a≦0.5を満たすことを特徴とする。
付記6の調湿装置は、付記5の調湿装置において、前記再生機は、親水性を有する気液接触手段と、熱源流体によって加熱又は冷却される溶液加熱冷却手段とが上下方向に交互に配置された構成を有する第2の三流体熱交換器を備え、前記吸湿性液体は、前記第2の三流体熱交換器を下方に向かって自然流下する過程で、前記気液接触手段と前記溶液加熱冷却手段とを交互に通り、前記第2の三流体熱交換器を流れる前記吸湿性液体の単位時間当たりの量cと、前記第2の三流体熱交換器の下部から排出されて再び前記第2の三流体熱交換器の上部に戻される前記吸湿性液体の単位時間当たりの量dとは、0≦d/c≦0.5を満たすことを特徴とする。
付記7の調湿装置は、付記5又は付記6の調湿装置において、前記処理機から前記再生機に供給される前記吸湿性液体と前記再生機から前記処理機に供給される前記吸湿性液体との間で熱交換を行う熱交換器をさらに備えたことを特徴とする。
付記8の調湿装置は、付記5ないし付記7のいずれかの調湿装置において、前記処理機と前記再生機の一方が他方より高所に設けられ、前記一方から前記他方には前記吸湿性液体が重力を利用して供給されることを特徴とする。
付記9の調湿方法は、処理機にて吸湿性液体と処理対象空気とを接触させて前記吸湿性液体と前記処理対象空気との間で水分の授受を行うことで前記処理対象空気の調湿を行う調湿方法であって、前記処理機は、親水性を有する気液接触手段と、熱源流体によって冷却又は加熱される溶液加熱冷却手段とが上下方向に交互に配置された構成を有する第1の三流体熱交換器を備え、前記吸湿性液体を前記第1の三流体熱交換器の上部に供給し、前記第1の三流体熱交換器を下方に向かって自然流下させることで前記気液接触手段と前記溶液加熱冷却手段とに交互に流し、前記第1の三流体熱交換器の上部に供給する前記吸湿性液体の単位時間当たりの量Bと、前記吸湿性液体と前記処理対象空気との間で授受される単位時間当たりの水分量Aとは、5≦B/A≦67を満たすことを特徴とする。
付記10の調湿方法は、再生機にて吸湿性液体と再生用空気とを接触させて前記吸湿性液体と前記再生用空気との間で水分の授受を行うことで前記処理対象空気の再生を行う調湿方法であって、前記再生機は、親水性を有する気液接触手段と、熱源流体によって加熱又は冷却される溶液加熱冷却手段とが上下方向に交互に配置された構成を有する第2の三流体熱交換器を備え、前記吸湿性液体を前記第2の三流体熱交換器の上部に供給し、前記第2の三流体熱交換器を下方に向かって自然流下させることで前記気液接触手段と前記溶液加熱冷却手段とに交互に流し、前記第2の三流体熱交換器の上部に供給する前記吸湿性液体の単位時間当たりの量Dと、前記吸湿性液体と前記再生用空気との間で授受される単位時間当たりの水分量Cとは、5≦D/C≦67を満たすことを特徴とする。
本発明は、吸湿性液体が自然流下によって三流体熱交換器を上部から下方に流れる過程で、気液接触手段材における気液接触と溶液加熱冷却手段における冷却又は加熱とを繰り返すので、吸湿性液体の温度変化による水分授受能力の低下を回避しつつ十分に希釈又は濃縮され、三流体熱交換器に供給する吸湿性液体が少量であっても良好な除湿、加湿、又は再生が可能となり、よってエネルギー利用効率を向上できるという効果を有し、吸湿性液体を用いて調湿を行う調湿装置を構成する処理機又は再生機等として有用である。
100 除湿装置
10 処理機
11 筐体
12 吸気口
13 排気口
14 ファン
15 分配器
16 伝熱管
160 二重管
161 外管
1611 導入孔
162 伝熱管カバー部材
1621 上部材
16211 導入孔
1622 下部材
16221 排出孔
1623 伝熱管支持突起(スペーサ)
163 収容部材
1631 トレイ部材
1632 蓋部材
17 充填材
18 最下段充填材
19 溶液槽
20 三流体熱交換器
21 プレート
22 ホルダ
23 スペーサ
24 プレート
241 孔
242 シール部材
25 分配器
251 支持部材
26 側板
261 横長孔
262 縦長孔
263 単孔
30 再生機
31 筐体
32 吸気口
33 排気口
34 ファン
35 分配器
36 伝熱管
37 充填材
38 最下段充填材
39 溶液槽
40 三流体熱交換器
46 側板
51 第1の吸湿性液体管路
52 第2の吸湿性液体管路
53 ポンプ
54 ポンプ
55 バルブ
56 熱交換器
60 ヒートポンプ
61 圧縮機
62 膨張弁
63 熱源流体管

Claims (9)

  1. 吸湿性液体と処理対象空気とを接触させることで前記処理対象空気の調湿を行う処理機であって、
    前記吸湿性液体と前記処理対象空気と熱源流体とが熱交換を行う三流体熱交換器と、
    前記吸湿性液体を前記三流体熱交換器の上部に供給する供給手段と、
    前記処理対象空気を取り込んで前記三流体熱交換器の内部を通過させて調湿対象空間に排出する空気流動手段と、
    を備え、
    前記三流体熱交換器は、親水性を有する気液接触手段と前記熱源流体によって冷却又は加熱される溶液加熱冷却手段とが上下方向に交互に配置された構成を有し、
    前記吸湿性液体は、前記三流体熱交換器を下方に向かって自然流下する過程で、前記気液接触手段と前記溶液加熱冷却手段とを交互に流れ、前記気液接触手段にて前記処理対象空気と気液接触し、前記溶液加熱冷却手段にて前記熱源流体によって冷却又は加熱されることを特徴とする処理機。
  2. 前記溶液加熱冷却手段は、内部に前記熱源流体が流れる伝熱管で構成されることを特徴とする請求項1に記載の処理機。
  3. 前記伝熱管は、水平方向に間隔をあけて配置されるとともに、前記気液接触手段を挟んで上下方向に間隔をあけて配置される複数の部分を有し、
    前記気液接触手段を流下した前記吸湿性液体は、その下段の伝熱管に供給されることを特徴とする請求項2に記載の処理機。
  4. 前記気液接触手段の各々とその下段の前記伝熱管との間に、前記気液接触手段を流下した前記吸湿性液体を前記伝熱管に導く案内手段を更に備えたことを特徴とする請求項3に記載の処理機。
  5. 前記案内手段は、前記伝熱管に対応する位置に孔を有することを特徴とする請求項4に記載の処理機。
  6. 前記気液接触手段を流下した前記吸湿性液体を前記伝熱管の周りに保持する保持手段を更に備えたことを特徴とする請求項3ないし5のいずれか一項に記載の処理機。
  7. 前記保持手段は、前記気液接触手段を流下した前記吸湿性液体を前記伝熱管の周りに保持するために半径方向に間隔をあけて前記伝熱管を覆うカバー部材であることを特徴とする請求項6に記載の処理機。
  8. 前記保持手段は、前記気液接触手段を流下した前記吸湿性液体を、前記吸湿性液体に前記伝熱管が浸るように保持するトレイ部材であることを特徴とする請求項6に記載の処理機。
  9. 処理機で用いられた吸湿性液体を再生用空気と接触させることで前記吸湿性液体の再生を行って前記処理機に供給する再生機であって、
    前記吸湿性液体と前記再生用空気と熱源流体とが熱交換を行う三流体熱交換器と、
    前記吸湿性液体を前記三流体熱交換器の上部に供給する供給手段と、
    前記再生用空気を取り込んで前記三流体熱交換器の内部を通過させて調湿対象空間外に排出する空気流動手段と、
    を備え、
    前記三流体熱交換器は、親水性を有する気液接触手段と前記熱源流体によって冷却又は加熱される溶液加熱冷却手段とが上下方向に交互に配置された構成を有し、
    前記吸湿性液体は、前記三流体熱交換器を下方に向かって自然流下する過程で、前記気液接触手段と前記溶液加熱冷却手段とを交互に流れ、前記気液接触手段にて前記再生用空気と気液接触し、前記溶液加熱冷却手段にて前記熱源流体によって冷却又は加熱されることを特徴とする再生機。
JP2016081871A 2016-04-15 2016-04-15 処理機および再生機 Active JP6046294B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016081871A JP6046294B1 (ja) 2016-04-15 2016-04-15 処理機および再生機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016081871A JP6046294B1 (ja) 2016-04-15 2016-04-15 処理機および再生機

Publications (2)

Publication Number Publication Date
JP6046294B1 JP6046294B1 (ja) 2016-12-14
JP2017190928A true JP2017190928A (ja) 2017-10-19

Family

ID=57543978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016081871A Active JP6046294B1 (ja) 2016-04-15 2016-04-15 処理機および再生機

Country Status (1)

Country Link
JP (1) JP6046294B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022256650A1 (en) * 2021-06-04 2022-12-08 Blue Frontier Inc. Heat and mass exchanger fin inserts

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6545742B2 (ja) * 2017-04-04 2019-07-17 ダイナエアー株式会社 散布トレイ、三流体熱交換器、及び湿式調湿装置
WO2018235773A1 (ja) * 2017-06-20 2018-12-27 シャープ株式会社 調湿装置および調湿方法
JP2019063761A (ja) * 2017-10-04 2019-04-25 中部電力株式会社 気体湿度の調整方法及び調整機器
CN108036437A (zh) * 2017-12-01 2018-05-15 上海胜战科技发展有限公司 一种空气除湿与溶液再生装置
JP2021183296A (ja) * 2018-09-05 2021-12-02 シャープ株式会社 調湿システム
JP6794481B2 (ja) * 2019-02-07 2020-12-02 ダイナエアー株式会社 散布トレイ、三流体熱交換器、及び湿式調湿装置
WO2022080240A1 (ja) * 2020-10-15 2022-04-21 シャープ株式会社 洗浄機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351497A (en) * 1992-12-17 1994-10-04 Gas Research Institute Low-flow internally-cooled liquid-desiccant absorber
JP3489695B2 (ja) * 1994-12-08 2004-01-26 株式会社前川製作所 加湿空気の製造方法及びその装置並びに前記加湿空気を使用した冷凍食品の解凍方法
JP4033677B2 (ja) * 2002-01-09 2008-01-16 忠弘 大見 空気冷却方法
JP2004129931A (ja) * 2002-10-11 2004-04-30 Seiko Epson Corp 遊技機
JP4368212B2 (ja) * 2004-02-02 2009-11-18 ダイナエアー株式会社 空調機
EP1751479B1 (en) * 2004-04-09 2014-05-14 Ail Research Inc. Heat and mass exchanger
US8268060B2 (en) * 2007-10-15 2012-09-18 Green Comfort Systems, Inc. Dehumidifier system
JP2009293831A (ja) * 2008-06-03 2009-12-17 Dyna-Air Co Ltd 調湿装置
JP6070187B2 (ja) * 2012-12-28 2017-02-01 ダイキン工業株式会社 調湿モジュール及びそれを備えた調湿装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022256650A1 (en) * 2021-06-04 2022-12-08 Blue Frontier Inc. Heat and mass exchanger fin inserts
US20220390189A1 (en) * 2021-06-04 2022-12-08 Blue Frontier Inc. Heat and mass exchanger fin inserts
US12018898B2 (en) 2021-06-04 2024-06-25 Blue Frontier Inc. Heat and mass exchanger fin inserts

Also Published As

Publication number Publication date
JP6046294B1 (ja) 2016-12-14

Similar Documents

Publication Publication Date Title
JP6046294B1 (ja) 処理機および再生機
KR100763657B1 (ko) 열교환 조립체
JP4986372B2 (ja) 空気調整装置
JP4536147B1 (ja) 調湿装置
JP2019511697A (ja) 多相プレート式熱交換器による空調
JP6475746B2 (ja) 第1の空気ストリームを冷却しかつ除湿する装置および方法
JP2007532855A (ja) 熱物質交換機
IL144119A (en) Air conditioning system
JP2009293831A (ja) 調湿装置
JP4958935B2 (ja) 除湿空調装置
CN105890147B (zh) 一种基于金属纤维填料的内置冷热源的气液全热交换装置
JP2013064549A (ja) 空調システム
KR101960158B1 (ko) 제습 장치 및 제습 시스템
US12104853B2 (en) Heat exchanger apparatus
US20170205154A1 (en) A method of conditioning air and an air-conditioner module
KR101250765B1 (ko) 유체 분배기를 구비한 열교환기 및 이를 이용한 공기조화 시스템
JP4958934B2 (ja) 除湿空調装置
WO2016053100A2 (en) A method of conditioning air and an air-conditioner module
JP6070187B2 (ja) 調湿モジュール及びそれを備えた調湿装置
JP2002061902A (ja) 湿膜コイル及びコイルの湿膜形成装置
KR102415424B1 (ko) 액체 제습제의 선택적 여과를 위한 멤브레인 제습 모듈 및 이의 제어방법
WO2024211820A2 (en) Ultra low flow desiccant air conditioning systems devices and methods
KR101258455B1 (ko) 다열 튜브형 열교환패널을 구비한 열교환기 및 이를 이용한 공기조화 시스템
JP7328490B2 (ja) 気液接触モジュール
JP5811730B2 (ja) 調湿システム

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161116

R150 Certificate of patent or registration of utility model

Ref document number: 6046294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250