JP2017187404A - ゴムの歪み予測方法 - Google Patents

ゴムの歪み予測方法 Download PDF

Info

Publication number
JP2017187404A
JP2017187404A JP2016076877A JP2016076877A JP2017187404A JP 2017187404 A JP2017187404 A JP 2017187404A JP 2016076877 A JP2016076877 A JP 2016076877A JP 2016076877 A JP2016076877 A JP 2016076877A JP 2017187404 A JP2017187404 A JP 2017187404A
Authority
JP
Japan
Prior art keywords
rubber
sag
value
test piece
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016076877A
Other languages
English (en)
Inventor
中野 真也
Shinya Nakano
真也 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2016076877A priority Critical patent/JP2017187404A/ja
Publication of JP2017187404A publication Critical patent/JP2017187404A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

【課題】ゴムの耐へたり性を高精度に予測する歪み予測方法の提供。【解決手段】このゴムの歪み予測方法は、硬度及びモノスルフィド結合の架橋密度と、へたりとの関係式を準備する準備工程(STEP1)と、ゴムの硬度及びモノスルフィド結合の架橋密度を取得する取得工程(STEP2)と、ゴムの硬度及びモノスルフィド結合の架橋密度とから関係式によってへたりが予測されるへたり予測工程(STEP3)とを備えている。この関係式は、配合が異なる複数のゴム試験片の硬度測定値及びモノスルフィド結合の架橋密度測定値とを独立変数とし、複数のゴム試験片のへたり測定値を従属変数として、回帰分析して得られている。ゴム試験片に周期的に変化する動的荷重が負荷されて、ゴム試験片の変形量が測定されて、この変形量からへたり測定値が得られている。【選択図】図2

Description

本発明は、ゴムの歪みの予測方法に関する。
例えば、タイヤに使用されるゴムは、外力を受けて歪みを生じる。このゴムは、歪みを生じた状態で長期に使用される。この長期の使用によって、ゴムには変形が生じる。本発明では、この変形がへたりと称される。また、このときの変形量をへたり量と称する。このへたり量が大きいことは、耐へたり性に劣ると称される。このへたりが生じることで、ゴムの性能が低下する。この耐へたり性は、ゴムの重要な性能の一つである。
特開2003−321575号公報では、JIS規格に準拠して、ゴムの耐へたり性が評価されている。この評価では、ゴムを一定の歪み状態に置いて、ゴムの圧縮永久歪みが求められている。この圧縮永久歪みによって、ゴムの耐へたり性が評価されている。
特開2001−240701号公報では、ドラム試験機を用いて、ゴムの耐へたり性が評価されている。この評価では、ゴムからなるタイヤが実際に走行させられる。この走行後のタイヤの変形量が測定される。この変形量から、ゴムの耐へたり性が評価されている。この評価方法は、実際の使用と同様にタイヤを走行させている。この評価方法では,前述の圧縮永久歪みによる評価に比べて、実際の使用に近い評価が得られ易い。
特許第5373729号公報には、ゴムの全架橋密度とモノスルフィド結合の架橋密度(以下、モノ架橋密度ともいう)との測定方法が記載されている。スタッドレスタイヤのトレッドにおいて、全架橋密度を所定の数値範囲にすることで、氷上及び雪上での操縦安定に必要な剛性が得られることと、低温において高いグリップ力が得られることが記載されている。更に、このトレッドのモノ架橋密度を所定の数値以下にすることで、耐屈曲亀裂成長性に優れることが記載されている。
特開2003−321575号公報 特開2001−240701号公報 特許第5373729号公報
前述のドラム試験機を用いる評価方法では、複数のゴムの耐へたり性を評価するために、複数のタイヤを走行させる必要がある。この評価方法では、それぞれのタイヤを走行させる時間が必要とされる。この評価方法は、タイヤの耐へたり性を評価するために、長時間を必要とする。この評価方法では、耐へたり性に優れたゴムの開発を効率的に進めることは難しい。ゴムの耐へたり性を実際に測定することなく、高精度に予測出来れば、効率的に耐へたり性に優れたゴムを開発できる。
本発明の目的は、ゴムの耐へたり性を高精度に予測する歪み予測方法の提供にある。
本発明に係るゴムの歪みの予測方法は、
硬度及びモノスルフィド結合の架橋密度と、へたりとの関係式を準備する準備工程と、
ゴムの硬度及びモノスルフィド結合の架橋密度を取得する取得工程と、
上記ゴムの硬度及びモノスルフィド結合の架橋密度とから上記関係式によってへたりが予測されるへたり予測工程とを備えている。
上記関係式は、配合が異なる複数のゴム試験片の硬度測定値及びモノスルフィド結合の架橋密度測定値とを独立変数とし、この複数のゴム試験片のへたり測定値を従属変数として、回帰分析して得られている。
上記ゴム試験片に周期的に変化する動的荷重が負荷されて、上記ゴム試験片の変形量が測定されている。上記変形量から上記へたり測定値は得られている。
好ましくは、この予測方法は、上記ゴムの配合設計工程を備えている。上記取得工程において、上記ゴムの配合設計から上記ゴムのモノスルフィド結合の架橋密度が予測値として得られている。
好ましくは、この予測方法は、上記ゴムの配合設計工程を備えている。上記取得工程において、上記ゴムの配合設計から上記ゴムの硬度が予測値として得られている。
好ましくは、上記へたり測定値としてへたり率Sが求められている。上記動的荷重が最小値のときのゴム試験片の初期の厚さをtbとし、上記動的荷重が負荷された後に上記動的荷重が最小値になったときの厚さと上記厚さtbとの差を変形量Δtとする。このときに、上記へたり率Sは、上記厚さtbに対する上記変形量Δtの比である。
好ましくは、上記動的荷重の周期的な変化の周波数は、1.7(Hz)以上17(Hz)以下にされて、上記へたり測定値は得られている。
好ましくは、上記動的荷重と合わせて一定の大きさの静的荷重が負荷されて、上記へたり測定値が得られている。
好ましくは、上記ゴム試験片に周期的に変化する動的荷重が負荷されて上記ゴム試験片の変形量が測定されて、上記変形量から上記へたり測定値が得られている。この周期的に変化する上記動的荷重が最大のときに、上記ゴム試験片に生じる応力は、0.18(MPa)以上0.9(MPa)以下にされている。
本発明に係るゴムの歪みの他の予測方法は、
硬度及び圧縮弾性率の少なくとも一方の第1変数と、モノスルフィド結合の架橋密度、及び加硫剤と加硫促進剤との質量比の、少なくとも一方の第2変数と、へたりとの関係式を準備する準備工程と、
ゴムの上記第1変数の値及び上記第2変数の値を取得する取得工程と、
上記ゴムの上記第1変数の値と第2変数の値とから上記関係式によってへたりが予測されるへたり予測工程とを備えている。
上記関係式は、配合の異なる複数のゴム試験片の上記第1変数の測定値及び上記第2変数の測定値とを独立変数とし、この複数のゴム試験片のへたり測定値を従属変数として、回帰分析して得られている。
上記ゴム試験片に周期的に変化する動的荷重が負荷されて上記ゴム試験片の変形量が測定されて、上記変形量から上記へたり測定値が得られている。
本発明に係るゴムの歪み予測方法では、関係式を用いることで、短時間にゴムの耐へたり性を評価しうる。この予測方法ではゴム試験片に周期的に変化する動的荷重が負荷されて、へたり測定値が得られている。このへたり測定値から関係式が得られている。従って、この予測方法は、実際の使用での、ゴムの耐へたり性を高精度に評価しうる。この予測方法を用いることで、耐へたり性に優れたゴムを効率的に開発しうる。
図1は、本発明の一実施形態に係る歪み予測方法でゴムの歪みが予測されるタイヤの断面図である。 図2は、本発明の一実施形態に係る歪み予測方法が示されたフローチャートである。 図3は、図2の予測方法に用いる関係式取得方法が示されたフローチャートである。 図4は、図2の予測方法及び図3の関係式取得方法において、ゴムの架橋密度の測定に用いられるTMA装置の概略図である。 図5は、図3の関係式取得方法において、動的荷重によってへたりを測定されるゴム試験片が示された斜視図である。 図6は、図5のゴム試験片の動的荷重によってへたりを測定する様子が示された説明図である。 図7は、図6の動的荷重によってゴム試験片に生じる応力が示されたグラフである。 図8は、図2の歪み予測方法で得られたへたりの予測値と、測定されたへたりの実測値との相関関係が示されたグラフである。 図9は、図2の歪み予測方法で得られたへたりの予測値と、測定されたへたりの実測値との相関関係が示された他のグラフである。 図10は、図2の歪み予測方法で得られたへたりの予測値と、測定されたへたりの実測値との相関関係が示された更に他のグラフである。
以下、適宜図面が参照されつつ、好ましい実施形態に基づいて本発明が詳細に説明される。
図1には、空気入りタイヤ2の一例が示されている。ここでは、このタイヤ2を例に、本発明に係る歪み予測方法が説明される。図1において、上下方向がタイヤ2の半径方向であり、左右方向がタイヤ2の軸方向であり、紙面に対して垂直方向がタイヤ2の周方向である。図1の一点鎖線CLは、タイヤ2の赤道面を表している。このタイヤ2の形状は、トレッドパターンを除き、赤道面に対して対称である。
このタイヤ2は、トレッド4、一対のサイドウォール6、一対のクリンチ8、一対のビード10、カーカス12、ベルト14、インナーライナー16及び一対のチェーファー18を備えている。トレッド4は、路面と接地するトレッド面20を形成する。トレッド4には、溝22が刻まれている。この溝22により、トレッドパターンが形成されている。
図2は、本発明に係るゴムの歪み予測方法のフローチャートが示されている。この予測方法は、準備工程(STEP1)、硬度及び架橋密度取得工程(STEP2)及びへたり予測工程(STEP3)を備えている。ここでは、トレッド4に用いられるゴムAを例に説明がされる。
準備工程では、耐へたり性を含むゴムAの目標性能が設定されている。この目標性能を基に、どの様なポリマー、硫黄などの加硫剤、加硫促進剤等を用い、それぞれをどの様な質量比で混合して、ゴムAの未加硫ゴム組成物を構成するかが、設計される。この様にして、ゴムAの配合設計がされる。この準備工程では、硬度及びモノ架橋密度とへたりの関係式が準備されている。この関係式は、硬度及びモノ架橋密度からへたりを算出できる数式である。この関係式の取得方法は後述される。
硬度及び架橋密度取得工程では、ゴムAの硬度及びモノ架橋密度が取得される。例えば、ゴムAからなる試験片が準備される。この試験片の硬度及びモノ架橋密度が測定される。この測定によって、ゴムAの硬度測定値とモノ架橋密度測定値とが得られる。
へたり予測工程では、この硬度測定値とモノ架橋密度測定値とから、準備された関係式によって、へたり予測値が求められる。このへたり予測方法では、硬度とモノ架橋密度とが与えられれば、へたり予測値が直に求められる。
前述の硬度及び架橋密度取得工程では、硬度とモノ架橋密度との測定値が得られたが、硬度とモノ架橋密度との両方又はいずれか一方に予測値が用いられてもよい。この歪み予測方法の準備工程ではゴムAの配合設計がされている。過去の蓄積データに基づいて、ゴムAの配合からゴムAの硬度が予測されうる。同様に、ゴムAの配合からゴムAのモノ架橋密度が予測されうる。この様にして、ゴムAの配合設計に基づいて、ゴムAの硬度とモノ架橋密度とが、比較的高精度に予測されうる。この硬度及びモノ架橋密度の予測値を用いることで、更に、短時間でゴムAのへたり予測値が得られる。これにより、短時間でゴムAの耐へたり性が評価されうる。
図3には、前述の関係式の取得方法のフローチャートが示されている。この取得方法は、試験片準備工程(STEP B1)、硬度測定工程(STEP B2)、架橋密度測定工程(STEP B3)、へたり測定工程(STEP B4)及び関係式決定工程(STEPB5)を備えている。
試験片準備工程では、配合の異なる複数のゴム試験片が準備される。それぞれのゴム試験片は、架橋ゴムからなっている。ゴム試験片の数は、特に限定されない。しかし、この数が多いほど、関係式によるへたりの予測精度が向上する。この観点から、これらのゴム試験片の数は好ましくは6以上である。
硬度測定工程では、それぞれのゴム試験片の硬度が測定される。それぞれのゴム試験片の硬度測定値が得られる。この硬度の測定方法は後述されるが、これに限定されない。この硬度の測定方法では、ゴム試験片が同一条件で測定されていればよい。この硬度の測定方法は、それぞれのゴム試験片の相対的な硬度の関係が精度よく測定されればよく、特に限定されない。
架橋密度測定工程では、それぞれのゴム試験片のモノ架橋密度が測定される。それぞれのゴム試験片のモノ架橋密度測定値が得られる。このモノ架橋密度の測定方法は後述されるが、これに限定されない。このモノ架橋密度の測定方法では、ゴム試験片が同一条件で測定されていればよい。このモノ架橋密度の測定方法は、それぞれのゴム試験片の相対的なモノ架橋密度の関係が精度よく測定されればよく、特に限定されない。
へたり測定工程では、それぞれのゴム試験片のへたりが測定される。それぞれのゴム試験片のへたり測定値が得られる。このへたり測定値の測定方法では、ゴム試験片に周期的に変化する荷重が負荷されて、ゴム試験片の変形量が測定される。この測定された変形量からへたり測定値が得られる。このへたり測定値の測定方法は後述される。
関係式決定工程では、ゴム試験片の硬度測定値とモノ架橋密度測定値とが独立変数とされる。ゴム試験片のへたり測定値が従属変数とされる。複数のゴム試験片のこれらの測定値に基づいて、回帰分析がされて、硬度及びモノ架橋密度とへたりとの関係式が決定される。
例えば、最小二乗法によって、硬度及びモノ架橋密度とへたりとの関係式が求められる。例えば、この関係式は、へたりをYとし、硬度をX1とし、モノ架橋密度をX2とし、a、b及びcを定数として、以下の様に表される。この関係式は例示である。この関係式は、硬度X1とモノ架橋密度X2とによって、へたりSが定まればよく、以下の式に限定されない。
Y =a・X1+b・X2+c
本発明に係る歪み予測方法では、この関係式を用いて、ゴムAのへたりを予測している。ゴムAの硬度とモノ架橋密度が与えられれば、短時間に、ゴムAの耐へたり性を予測しうる。この予測方法では、耐へたり性に優れたゴムAを効率的に開発しうる。
ここで、本発明における、硬度、モノ架橋密度及びへたりの測定方法が例示される。
[硬度]
この硬度は、例えば、「JIS−K 6253」の規定に準拠して、23°Cの条件下でタイプAのデュロメータがゴム試験片に押しつけられて測定される。
[モノ架橋密度]
モノ架橋密度の算出手順は、例えば以下の様に行われる。まず、加硫ゴムシートから、直径3mmの円柱状の架橋密度試験片が打ち抜かれる。この架橋密度試験片を20℃でアセトンに24時間浸漬し、オイル及び老化防止剤が抽出される。抽出後の架橋密度試験片が、テトラヒドロフラン(THF)とベンゼンとが1:1の質量比で混合された混合液にLiAlH触媒を加えた、20℃の溶剤中に24時間浸漬され、膨潤させられる。次に、テトラヒドロフラン(THF)とベンゼンとが1:1の質量比で混合された20℃の溶剤が満たされたTMA装置(図4参照)に架橋密度試験片が投入される。そして、このTMA装置にて、圧縮応力と歪みとの関係から、(τ/(1/α−α))の値が求められる。こうして得られた数値及び架橋密度試験片の各種寸法を、下記数式(I)に示されるフローリーの理論式に代入し、ゴムのモノ架橋密度(ν)が算出される。このゴムのモノ架橋密度(ν)は、3個の架橋密度試験片について測定され、これらの測定値が平均される。
Figure 2017187404
[へたり]
図5から図7を参照しつつ、へたりの測定方法が例示される。このへたり測定方法ではまず、加硫ゴムシートからへたり試験片36が準備される。図5の両矢印Dは、へたり試験片36の直径を表している。この直径Dは、へたり試験片36に、荷重が負荷される前に測定される。両矢印tは、へたり試験片36の厚さを表している。
図6では、へたり試験片36が、試験機38の上盤40と下盤42との挟まれている。試験片36の上面36aが上盤40に当接し、下面36bが下盤42に当接して、試験片36の厚さは、間隔Cに圧縮されている。この試験片36には、荷重F(単位:N)が負荷されている。この荷重Fは、周期的に変化する。例えば、上盤40は、一定の静的荷重Fs(単位:N)を試験片36に負荷する。下盤42は、周期的に大きさが変化する動的荷重Fd(単位:N)を試験片36に負荷する。この荷重Fは、静的荷重Fsと動的荷重Fdとを合わせた荷重である。試験機38は、試験片36に周期的に変化する荷重Fが作用する様に、上盤40と下盤42との上下位置とを制御する。間隔Cが周期的に変化して、試験片36に発生する荷重Fが周期的に変化する。試験片36では、所定時間、周期的に圧縮変形が繰り返される。
図7には、試験片36に生じる圧縮応力σ(単位:MPa)と、荷重Fの負荷経過時間Tとの関係が示されている。試験片36には、静的荷重Fsによって、一定の静的応力σs(単位:MPa)が生じている。動的荷重Fdによって、一定の振れ幅で周期的に変化する動的応力σd(単位:MPa)が生じている。試験片36には、静的応力σsと動的応力σdとを合わせた応力σが生じている。図7に示す様に、この応力σは、周期的に変化している。この例では、この動的応力σdは、サインカーブで表される。
この荷重Fの負荷開始時の初期状態では、試験片36には、静的荷重Fsが負荷され、動的荷重Fdが負荷されていない。この初期状態の試験片36の厚さをtbとする。この厚さtbは、初期状態における間隔Cとして得られる。経過時間Tと共に、試験片36の厚さt(間隔C)が測定されている。例えば、動的応力σdが0になっている初期状態の厚さtb、初期状態から動的応力σdが大きくなり0に戻った時刻T1の厚さt1、更に時刻T1から動的応力σdが大きくなり0に戻った時刻T2の厚さt2が測定される。この様にして、初期状態から荷重Fの負荷終了時刻までの、厚さtの変化が測定される。この終了時刻までにおいて、動的応力σdが最後に0になった時刻Tmの厚さtmまで、試験片36の厚さtが測定される。この間、試験片36に荷重Fを負荷し続けることで、厚さtは漸減している。試験片36は、荷重Fのよって変形している。
この試験片36の厚さの変形量Δtが算出される。この変形量Δtは、初期状態の厚さtbと厚さtmとの差として算出される。この例では、試験片36のへたりとして、へたり率Sが算出される。へたり率Sは、厚さtbに対する変形量Δtの比として求められている。このへたり率Sは、例えば、以下の式で算出される。
S(%)=(Δt/tb)・100
タイヤ2は、車両に装着されて路面を転がる。このとき、トレッド4の各部は周期的に変化する荷重を受ける。このへたりの測定方法では、試験片36に周期的に変化する荷重Fが負荷されている。このへたりの測定方法は、一定の歪み状態で変形させる方法に比べて、タイヤ2の実際の走行に近いへたりが測定できる。このへたりの測定方法は、周期的に変化する荷重が負荷されて使用されるゴムに関して、実際の使用に近いへたりが測定されうる。このへたりの測定方法を用いて関係式を決定することで、高精度にへたりを予測しうる。
乗用車、トラック、バス等の車両は、20(km/時)から120(km/時)で主に走行する。この走行速度は、周期的な変化の周波数に換算すると、大凡1.7(Hz)から17(Hz)に相当する。タイヤ2のへたりをより高精度に予測する観点から、荷重Fの周期的変化の周波数は、好ましくは、1.7(Hz)以上である。又、この周波数は、好ましくは17(Hz)以下である。
この測定方法において、タイヤ2が装着される車両の使用状態に基づいて、タイヤ2の標準走行速度が決定されてもよい。この標準走行速度とタイヤ2の外径とから、周期的な変化の周波数が決定されてもよい。この様にして決定された周波数で、荷重Fが周期的に変化させられてもよい。
タイヤ2は、空気が充填されて、正規内圧で使用される。タイヤ2が転がるときに周期的に変化する外力が作用する。タイヤ2には、一定の大きさの応力と周期的に変化する応力とを合わせた応力σが作用する。この測定方法は、静的応力σsと動的応力σdとを組み合わせることで、タイヤ2の実際の使用に近いへたりを測定しうる。
乗用車、トラック、バス等の車両では、タイヤ2に正規内圧で空気が充填される。タイヤ2が車両に装着されて路面を転がる。このタイヤ2に、一定の大きさの応力と周期的に変化する応力とを合わせた応力が作用する。測定工程では、静的応力σsと動的応力σdとを合わせた応力σが、タイヤ2に作用する応力の大きさに設定されてよい。このようにして応力σの大きさを設定することで、実際の使用に近い評価が得られやすい。この観点から、この測定工程において、静的応力σsと動的応力σdとを合わせた応力σは、好ましくは0.18(MPa)以上である。又、この応力σは、好ましくは0.9(MPa)以下である。言い換えると、荷重Fが最大のときの応力σは、好ましくは0.18(MPa)以上である。又、この荷重Fが最大のときの応力σは、好ましくは0.9(MPa)以下である。
更には、正規内圧の空気が充填されたタイヤ2において、トレッド4に作用する圧縮応力が測定されてもよい。タイヤ2に正規荷重を負荷して、トレッド4に作用する圧縮応力が測定されてもよい。この様にして得られた圧縮応力の和が、この測定方法おいて圧縮応力として、試験片36に作用させられてもよい。更には、タイヤ2が回転するときに、トレッド4に作用する動的応力の周期的変化が測定されてもよい。この測定された周期的変化に基づいて動的応力σdが周期的に変化させられてもよい。
タイヤ2では、トレッド4が路面に接地して荷重を受ける。この荷重よって、トレッド4には歪みが生じる。硬度が小さいトレッド4では、この歪みが大きい。この歪みが大きいトレッド4は、へたりが生じ易い。従って、このトレッド4のへたりには、トレッド4の硬度が影響している。
タイヤ2が路面を転がることで、トレッド4には周期的に荷重が負荷される。このトレッド4には、経過時間と共に変化する動的応力が発生する。この動的応力への応答性は、トレッド4の架橋形態によって変化する。この応答性は、トレッド4のへたりに影響する。このトレッド4のへたりには、トレッド4の架橋形態が影響する。
発明者らは、このトレッド4のへたりに影響する、歪みの大きさと架橋形態とから、トレッド4のへたりの予測を試みた。そして、発明者らは、ゴムの硬度及びモノ架橋密度を独立変数とし、へたりを従属変数として重回帰分析することで、へたりを予測する、前述の予測方法を発明した。この予測方法によれば、高精度にゴムAのへたりを予測しうる。
また、圧縮弾性率としての弾性率E(MPa)が小さいトレッド4では、歪みが大きい。この歪みが大きいトレッド4は、へたりが生じ易い。従って、このトレッド4のへたりには、トレッド4の弾性率Eが影響している。一般に硬度が大きいトレッド4は、弾性率Eも大きい。関係式において、歪みの大きさの独立変数(第1変数)として、硬度に代えて弾性率Eが用いられてもよい。更には、この独立変数として、硬度と共に、弾性率Eが用いられてもよい。この弾性率Eは、例えば「JIS K 6254」の規定に準拠して、30°Cの条件下で測定される。
また、架橋形態は、硫黄等の加硫剤と加硫促進剤との比(加硫剤/加硫促進剤)で表すことができる。関係式の架橋形態の独立変数(第2変数)として、モノ架橋密度に代えて、この比(加硫剤/加硫促進剤)が用いられてもよい。
本明細書において正規内圧とは、タイヤ2が依拠する規格において定められた内圧を意味する。JATMA規格における「最高空気圧」、TRA規格における「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に掲載された「最大値」、及びETRTO規格における「INFLATION PRESSURE」は、正規内圧である。また、正規荷重とは、タイヤ2が依拠する規格において定められた荷重を意味する。JATMA規格における「最高負荷能力」、TRA規格における「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に掲載された「最大値」、及びETRTO規格における「LOAD CAPACITY」は、正規荷重である。
ここでは、タイヤ2のトレッド4を例に説明がされたが、このへたりの予測方法は、トレッド4に限られない。タイヤ2の他の部分のゴムのへたりも同様に予測しうる。更に、タイヤ2以外の他のゴム製品においても、ゴムのへたりを予測しうる。例えば、重量物が載置された防振材において、一定の大きさの静的荷重と、周期的に変化する動的荷重とが作用することがある。タイヤ2に限らず、この様な防振材等においても、ゴムの使用状態に合わせた荷重を作用させることで、実際の使用に近い評価が得られやすい。
以下、実施例によって本発明の効果が明らかにされるが、この実施例の記載に基づいて本発明が限定的に解釈されるべきではない。
[テスト1]
動的荷重によるヘたり測定値と、実際の走行によるへたり測定値との比較テストが実施された。
[動的荷重へたり]
図1に示されたタイヤのトレッドから試験片が得られた。GABO社製の動的粘弾性測定装置「イプレクサー4000N」が準備された。この装置を用いて、この試験片のへたり率Sが、以下の測定条件で測定された。この測定条件は、後述する実走行へたりでの走行と同様に、応力が作用する様に、設定されていた。
応力:静的応力0.37(MPa)+動的応力0.37(MPa)
周波数:7(Hz)
動的応力波形:サインカーブ
応力(荷重)負荷時間:14時間
[実走行へたり]
図1の示されたタイヤの溝の深さが測定された。その後、このタイヤは、ドラム試験機のドラム上を、速度80(km/時)、距離1100(km)で走行させられた。走行後に再び溝の深さが測定された。最初の溝の深さと走行後の溝の深さとの差が、変化量として計算された。最初の溝の深さに対する、この変化量の比が計算された。この比がへたり率とされた。
Figure 2017187404
表1に示されるように、動的荷重によるへたりは、実走行によるへたりに近い結果が得られている。この結果が示す様に、動的荷重によるへたり測定値は、実際の走行によるへたり測定値に近い結果が得られる。
[テスト2]
本発明に係るへたり予測方法での予測値と、動的荷重によるへたり測定の実測値との比較テストが実施された。
[へたり予測]
ゴム硬度及びモノ架橋密度とへたりとの関係式が準備された。この関係式は、前述の関係式の取得方法によって、得られている。ここでは、配合の異なる19の試験片が準備された。これらの試験片について、ゴム硬度とモノ架橋密度とが測定されて、ゴム硬度測定値とモノ架橋密度測定値とが得られた。それぞれの試験片について、関係式から、へたりの予測値として、へたり率(%)が算出された。
[へたり測定]
この19の試験片について、前述の動的荷重によるへたり率S(%)が測定された。この19の試験片のへたりの実測値が得られた。
図8には、この様にして得られた、へたりの予測値と、へたりの実測値との関係が示されている。この予測値と実測値との傾きは、0.995であった。この相関係数は0.77であった。この結果から明らかな様に、本発明にかかるへたりの予測方法で得られる予測値は、動的荷重によるへたり測定値を高精度に予測しうる。
[テスト3]
テスト2のモノ架橋密度に代えて、比(硫黄/加硫促進剤)を用いた他は、テスト2と同様にして、へたりの予測値とへたりの実測値との比較テストが実施された。図9には、この様にして得られた、へたりの予測値と、へたりの実測値との関係が示されている。この予測値と実測値との傾きは、0.994であった。この相関係数は0.74であった。
[テスト4]
テスト2のゴム硬度に代えて弾性率Eを用いた他は、テスト2と同様にして、へたりの予測値とへたりの実測値との比較テストが実施された。図10には、この様にして得られた、へたりの予測値と、へたりの実測値との関係が示されている。この予測値と実測値との傾きは、1.00であった。この相関係数は0.32であった。
このテスト1からテスト4に示される様に、本発明にかかるへたりの予測方法で得られる予測値は、実際の走行によるへたりを高精度に予測しうることは明らかである。
この予測方法は、二輪自動車、乗用車、ライトトラック、バス・トラック等のタイヤのゴムに広く適用できる。また、空気入りタイヤに限らず、ソリッドタイヤ(中実タイヤ)のゴムにも同様に適用できる。更には、タイヤに限られず、防振材用ゴムなど、負荷される荷重が周期的に変化するゴム製品の耐へたり性の予測に広く適用されうる。
2・・・タイヤ
36・・・試験片

Claims (8)

  1. 硬度及びモノスルフィド結合の架橋密度と、へたりとの関係式を準備する準備工程と、
    ゴムの硬度及びモノスルフィド結合の架橋密度を取得する取得工程と、
    上記ゴムの硬度及びモノスルフィド結合の架橋密度とから上記関係式によってへたりが予測されるへたり予測工程とを備えており、
    上記関係式が、配合が異なる複数のゴム試験片の硬度測定値及びモノスルフィド結合の架橋密度測定値とを独立変数とし、この複数のゴム試験片のへたり測定値を従属変数として、回帰分析して得られており、
    上記ゴム試験片に周期的に変化する動的荷重が負荷されて上記ゴム試験片の変形量が測定されて、上記変形量から上記へたり測定値が得られている、ゴムの歪みの予測方法。
  2. 上記ゴムの配合設計工程を備えており、
    上記取得工程において、上記ゴムの配合設計から上記ゴムのモノスルフィド結合の架橋密度が予測値として得られている請求項1に記載の歪みの予測方法。
  3. 上記ゴムの配合設計工程を備えており、
    上記取得工程において、上記ゴムの配合設計から上記ゴムの硬度が予測値として得られている請求項1又は2に記載の歪みの予測方法。
  4. 上記へたり測定値としてへたり率Sが求められており、
    上記動的荷重が最小値のときのゴム試験片の初期の厚さをtbとし、上記動的荷重が負荷された後に上記動的荷重が最小値になったときの厚さと上記厚さtbとの差を変形量Δtとするときに、上記へたり率Sが上記厚さtbに対する上記変形量Δtの比である請求項1から3のいずれかに記載の予測方法。
  5. 上記動的荷重の周期的な変化の周波数が1.7(Hz)以上17(Hz)以下にされて、上記へたり測定値が得られている請求項1から4のいずれかに記載の予測方法。
  6. 上記動的荷重と合わせて一定の大きさの静的荷重が負荷されて、上記へたり測定値が得られている請求項1から5のいずれかに記載の予測方法。
  7. 上記ゴム試験片に周期的に変化する動的荷重が負荷されて上記ゴム試験片の変形量が測定されて、上記変形量から上記へたり測定値が得られており、
    この周期的に変化する上記動的荷重が最大のときに、上記ゴム試験片に生じる応力が0.18(MPa)以上0.9(MPa)以下にされている請求項1から請求項6のいずれかに記載の予測方法。
  8. 硬度及び圧縮弾性率の少なくとも一方の第1変数と、モノスルフィド結合の架橋密度、及び加硫剤と加硫促進剤との質量比の、少なくとも一方の第2変数と、へたりとの関係式を準備する準備工程と、
    ゴムの上記第1変数の値及び上記第2変数の値を取得する取得工程と、
    上記ゴムの上記第1変数の値と第2変数の値とから上記関係式によってへたりが予測されるへたり予測工程とを備えており、
    上記関係式が、配合の異なる複数のゴム試験片の上記第1変数の測定値及び上記第2変数の測定値とを独立変数とし、この複数のゴム試験片のへたり測定値を従属変数として、回帰分析して得られており、
    上記ゴム試験片に周期的に変化する動的荷重が負荷されて上記ゴム試験片の変形量が測定されて、上記変形量から上記へたり測定値が得られている、ゴムの歪みの予測方法。
JP2016076877A 2016-04-06 2016-04-06 ゴムの歪み予測方法 Pending JP2017187404A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016076877A JP2017187404A (ja) 2016-04-06 2016-04-06 ゴムの歪み予測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016076877A JP2017187404A (ja) 2016-04-06 2016-04-06 ゴムの歪み予測方法

Publications (1)

Publication Number Publication Date
JP2017187404A true JP2017187404A (ja) 2017-10-12

Family

ID=60046393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016076877A Pending JP2017187404A (ja) 2016-04-06 2016-04-06 ゴムの歪み予測方法

Country Status (1)

Country Link
JP (1) JP2017187404A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108303317A (zh) * 2018-01-23 2018-07-20 中国兵器工业第五九研究所 一种橡胶密封圈失效检测方法
CN109635389A (zh) * 2018-11-29 2019-04-16 中国航空工业集团公司沈阳飞机设计研究所 一种电动舵机刚度试验数据处理方法
CN111521487A (zh) * 2020-05-13 2020-08-11 中国海洋石油集团有限公司 一种油水环境下橡胶类密封件使用寿命预测装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108303317A (zh) * 2018-01-23 2018-07-20 中国兵器工业第五九研究所 一种橡胶密封圈失效检测方法
CN109635389A (zh) * 2018-11-29 2019-04-16 中国航空工业集团公司沈阳飞机设计研究所 一种电动舵机刚度试验数据处理方法
CN109635389B (zh) * 2018-11-29 2022-12-20 中国航空工业集团公司沈阳飞机设计研究所 一种电动舵机刚度试验数据处理方法
CN111521487A (zh) * 2020-05-13 2020-08-11 中国海洋石油集团有限公司 一种油水环境下橡胶类密封件使用寿命预测装置
CN111521487B (zh) * 2020-05-13 2023-06-13 中国海洋石油集团有限公司 一种油水环境下橡胶类密封件使用寿命预测装置

Similar Documents

Publication Publication Date Title
JP6412437B2 (ja) タイヤの転がり抵抗予測手法およびタイヤの転がり抵抗予測装置
JP2017187404A (ja) ゴムの歪み予測方法
US10718704B2 (en) Rubber adhesion test method and rubber adhesion test system
KR20120042650A (ko) 마찰 계수의 예측 방법
JP2022513571A (ja) ゴム組成物
Dick et al. Quality assurance of natural rubber using the rubber process analyzer
Willett Hysteretic losses in rolling tires
Wright et al. Effects of age and wear on the stiffness and friction properties of an SUV tyre
JP6647994B2 (ja) タイヤの転がり抵抗評価装置
US20140213706A1 (en) Unvulcanized rubber composition for calendaring and method for manufacturing topping rubber using the same
JP6393035B2 (ja) タイヤの摩擦力評価方法
Aldhufairi et al. Determination of a tyre’s rolling resistance using parallel rheological framework
JP6852452B2 (ja) タイヤ表面のクラック評価方法
JP7283189B2 (ja) 摩擦性能評価方法
Lou Relationship of tire rolling resistance to the viscoelastic properties of the tread rubber
JP7331566B2 (ja) タイヤ部材の物性予測方法
JP2017161231A (ja) ゴムの歪み評価方法
JP2017067453A (ja) ゴムの摩擦性能の評価方法
Kratina et al. How the rubber compounds of different tire's components heat up?
JP2018077064A (ja) タイヤの摩擦特性予測方法
JP6984378B2 (ja) タイヤ製造方法
JP2014119399A (ja) ゴム製品の耐摩性評価方法
JP2018004552A (ja) タイヤ用ゴム組成物及びその評価方法
CN111796084B (zh) 一种缺气保用轮胎支撑胶及其筛选方法和轮胎
CN112883320B (zh) 一种硫化橡胶组合物的湿地滞后摩擦系数的计算方法及在轮胎设计中应用