US20140213706A1 - Unvulcanized rubber composition for calendaring and method for manufacturing topping rubber using the same - Google Patents

Unvulcanized rubber composition for calendaring and method for manufacturing topping rubber using the same Download PDF

Info

Publication number
US20140213706A1
US20140213706A1 US14/147,933 US201414147933A US2014213706A1 US 20140213706 A1 US20140213706 A1 US 20140213706A1 US 201414147933 A US201414147933 A US 201414147933A US 2014213706 A1 US2014213706 A1 US 2014213706A1
Authority
US
United States
Prior art keywords
rubber composition
rubber
unvulcanized rubber
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/147,933
Inventor
Shinichiro HONDA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Assigned to SUMITOMO RUBBER INDUSTRIES, LTD. reassignment SUMITOMO RUBBER INDUSTRIES, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HONDA, SHINICHIRO
Publication of US20140213706A1 publication Critical patent/US20140213706A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0681Parts of pneumatic tyres; accessories, auxiliary operations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Definitions

  • the present invention relates to an unvulcanized rubber composition having superior processability during calendaring and a method for manufacturing a topping rubber using the same.
  • a pneumatic tire is reinforced by tire cords, e.g. carcass cords, belt cords and the like, and such cords are coated with a topping rubber.
  • tire cords e.g. carcass cords, belt cords and the like, and such cords are coated with a topping rubber.
  • the vulcanized topping rubber largely affects the above-mentioned various performances.
  • a typical method for coating such tire cords with unvulcanized topping rubber is a calendering using calender rolls.
  • Mooney viscosity of an unvulcanized rubber composition is widely used as a measure of processability of the unvulcanized rubber composition. (cf. JIS K6300 “Physical Testing Methods For unvulcanized Rubber” for example).
  • an unvulcanized rubber composition whose Mooney viscosity is high is considered as being poor in processability.
  • elongational viscosity is appropriate as a measure of the processability of an unvulcanized rubber composition for calendaring which is subjected to elongation deformation by calender rolls. Further, the values of elongational viscosity suitable for calendering were found out and, based on that, the present invention was accomplished.
  • an object of the present invention to provide an unvulcanized rubber composition for calendaring and a method for manufacturing a topping rubber using the same, in which an elongational viscosity of the unvulcanized rubber composition measured under specific measuring conditions is limited in a specific range, and the processability during calendaring is improved.
  • an unvulcanized rubber composition for calendaring during which the unvulcanized rubber composition is subjected to elongation deformation by calender rolls which is characterized by having
  • the elongational viscosity is not less than 2 kPa.
  • the unvulcanized rubber composition is suitably used as topping rubber for a cord ply embedded in a pneumatic tire.
  • the cord ply can be a tread reinforcing belt ply embedded in a tread portion of the pneumatic tire.
  • the unvulcanized rubber composition may comprise: base rubber including 55 to 100 parts by weight of natural rubber and 45 to 0 parts by weight of isoprene rubber; and 40 to 60 parts by weight of carbon black with respect to 100 parts by weight of the base rubber.
  • a method for manufacturing a topping rubber for a cord ply embedded in a pneumatic tire comprises a step of extending and shaping the unvulcanized rubber composition as set forth in any one of claims 1 - 5 with the use of calender rolls whose surface temperature is 60 to 100 deg. C. so that the unvulcanized rubber composition is shaped into the topping rubber within a temperature range of from 60 to 140 deg. C.
  • the unvulcanized rubber composition has improved processability and can be thinly and fully stretched through calendering. Thus, the production efficiency can be increased.
  • FIG. 1 is a cross sectional view of a capillary rheometer for measuring the elongational viscosity.
  • an unvulcanized rubber composition for calendaring is based on that it is subjected to elongation deformation by calender rolls, and characterized by having an elongational viscosity of not more than 102 kPa when measured at a temperature of 95 deg. C. and a shear velocity of 500 to 2000 (1/second).
  • Mooney viscosity which is heretofore used as a measure of the processability of an unvulcanized rubber composition, is defined as the shearing torque resisting rotation of a cylindrical metal disk (or rotor) embedded in rubber within a cylindrical cavity as specified by JIS-K6300.
  • the deformation which the unvulcanized rubber composition mainly receives when passing through the gap between calender rolls is elongation deformation rather than shearing deformation.
  • the shearing deformation is accompanied by elongation as well as torsion.
  • the rubber composition shows non-Newtonian behavior and the viscosity decreases with the deformation rate or velocity is increased.
  • elongational viscosity is an important factor in order to accurately evaluate the processability of an unvulcanized rubber composition during calendering, and that, by limiting the elongational viscosity within a specific range, processing defects such as rubber crack and the like possibly occurring in the calendering, especially, topping process, can be reduced.
  • the elongational viscosity is measured under the following measuring conditions: the temperature of the unvulcanized rubber composition is 95 deg. C., and the shear velocity is 500 to 2000 (1/second).
  • a capillary rheometer is used.
  • a twin capillary rheometer 1 based on the twin bore measurement principle (for example, RH7-D & RH10-D CAPILLARY RHEOMETERS).
  • this type of capillary rheometer 1 comprises a long capillary tube 2 formed by a longer die 2 a, a short capillary tube 3 formed by a shorter die 3 a, two pressure transducers 4 , and two pistons 5 .
  • the Bagley correction needs to be performed based on two different capillary tube lengths, and then the elongational viscosity is calculated using the Cogswell method.
  • the measurements with respect to two different capillary tube lengths can be made simultaneously, and the efficiency as well as the accuracy of the measurement is improved.
  • Bagley correction is described in “1961 vol. 5 no. 1 P 355-368 Trans. soc. Rheol. Bagley E. B. The separation of elastic and viscous effects in polymer flow”.
  • n is the power index of the power law fluid
  • P is the pressure at the die inlet
  • is the shear viscosity
  • is the shear velocity
  • a typical temperature of the unvulcanized rubber composition is 60 to 100 deg. C.
  • the temperature is high, there is a possibility that vulcanization starts partially and the quality is decreased. If the temperature is low, the viscosity is increased and there is a possibility that necessary processability for the rubber can not be obtained.
  • a relatively higher temperature of 95 deg. C. was selected from the typical temperature range, and the elongational viscosity of the unvulcanized rubber composition is defined as measured at 95 deg. C.
  • the elongational viscosity under the above-mentioned measuring conditions is set in a range of not more than 102 kPa and preferably not less than 2 kPa.
  • the unvulcanized rubber composition is not limited to a specific composition.
  • the unvulcanized rubber composition comprises: base rubber including 55 to 100 parts by weight of natural rubber, and 45 to 0 parts by weight of isoprene rubber; and with respect to 100 parts by weight of the base rubber, 40 to 60 parts by weight carbon black, and preferably, 5 to 10 parts by weight of oil.
  • the unvulcanized rubber composition is extended and shaped by the use of calender rolls whose surface temperature is 60 to 100 deg. C.
  • the temperature of the extended and shaped unvulcanized rubber composition is increased above the surface temperature by the resultant shear heat generation.
  • the temperature of the unvulcanized rubber composition is controlled within a range of from 60 to 140 deg. C.
  • the elongational viscosity of the unvulcanized rubber composition can be controlled by
  • the elongational viscosity can be controlled within the above-mentioned range by changing the diameters of the calender rolls, the gap between the calender rolls, the friction ratio, the frictional coefficient, and/or the shape and material of the surface of the calender roll.
  • the rubber compositions heretofore used for the tire cords may be used as the basis of the unvulcanized rubber composition according to the present invention, premised on that the elongational viscosity is controlled within the above-mentioned range as explained above.
  • unvulcanized rubber compositions shown in Table 1 were prepared.
  • the materials excluding sulfur and vulcanizing accelerator were kneaded for 5 minutes at about 150 deg. C. with the use of a banbury mixer. Then, the sulfur and vulcanizing accelerator were added thereto and all of the materials were further kneaded for 5 minutes at a temperature of 80 deg. C. with the use of a twin roll open mill.
  • the unvulcanized rubber compositions (for topping rubber of a tire belt ply) prepared as above were measured and tested as follows.
  • the Mooney viscosity of the unvulcanized rubber composition was measured at a temperature of 130 deg. C.
  • the results are indicated in Table 1 by an index based on comparative example Ref. 1 being 100, wherein the larger the index number, the lower the Mooney viscosity.
  • the elongational viscosity of the unvulcanized rubber composition at a temperature of 95 deg. C, and a shear velocity of 1000(1/second) was measured with the use of a twin capillary rheometer “Rosand RH-7” manufactured by Malvern Instruments Ltd. (longer die length 16 mm, longer die diameter 1.0 mm, shorter die length 0.25 mm, shorter die diameter 1.0 mm, die inlet angle 180 degrees, Pressure transducer NP467XL, Dynicos).
  • the unvulcanized rubber composition was vulcanized at a temperature of 170 deg. C. for 12 minutes. Then, the vulcanized rubber was measured for the complex elastic modulus (E*) at a temperature of 70 deg. C., a frequency of 10 Hz, an initial strain of 10%, and a dynamic strain of 1%, by the use of a viscoelastic spectrometer VES manufactured by Iwamoto seisakusyo.
  • E* complex elastic modulus
  • the loss tangent of the vulcanized rubber was measured at a temperature of 60 deg. C.
  • the other measuring conditions were the same as above.
  • Aromatic oil JOMO process X140, Japan Energy Corporation Age resistor: NOCRACK 6C, OUCHI SHINKO Chemical Industrial Co., Ltd. (chemical name: N-(1,3-dimethyl butyl)-N′-phenyl-p-phenylenediamine) Zinc oxide: hydrozincite #1, Mitsui Mining & Smelting Co., Ltd. Cobalt metal salt: cobalt stearate (cobalt content 10%), DIC Corporation Sulfur: powdered sulfur, Tsurumi Chemical Industry Co., Ltd. Vulcanizing accelerator TBBS: NOCCELER NS, OUCHI SHINKO Chemical Industrial Co.,Ltd. (chemical name: N-tert-butyl-2-benzothiazolyl sulfenamide)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)
  • Tyre Moulding (AREA)

Abstract

An unvulcanized rubber composition for calendaring has an elongational viscosity of not more than 102 kPa when measured at a temperature of 95 deg. C., and a shear velocity of 500 to 2000 (1/second). A method for manufacturing a topping rubber for a cord ply embedded in a pneumatic tire is characterized in that, the unvulcanized rubber composition is extended and shaped with the use of calender rolls whose surface temperature is 60 to 100 deg. C.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to an unvulcanized rubber composition having superior processability during calendaring and a method for manufacturing a topping rubber using the same.
  • In recent years, vehicle tires are required to have various performances helpful for environmental conservation, e.g. lower fuel consumption, longer tire life time and the like.
  • In the meantime, a pneumatic tire is reinforced by tire cords, e.g. carcass cords, belt cords and the like, and such cords are coated with a topping rubber.
  • The vulcanized topping rubber largely affects the above-mentioned various performances.
  • A typical method for coating such tire cords with unvulcanized topping rubber is a calendering using calender rolls.
  • In the rubber industry, Mooney viscosity of an unvulcanized rubber composition is widely used as a measure of processability of the unvulcanized rubber composition. (cf. JIS K6300 “Physical Testing Methods For unvulcanized Rubber” for example).
  • Heretofore, an unvulcanized rubber composition whose Mooney viscosity is high is considered as being poor in processability.
  • However, as a result of a number of experiments made by the present inventor, it was found that, in the case of calendering, Mooney viscosity is not always a proper measure of the processability.
  • Concretely speaking, in a topping process in which an unvulcanized topping rubber composition stretched by calender rolls is applied to an array of cords, a rubber composition (A) applied cracks and the cords are exposed, but another rubber composition (B) applied does not crack and the cords are completely covered although the Mooney viscosity of the rubber composition (B) is higher than that of the rubber composition (A).
    Thus, it is not proper to use the Mooney viscosity only as a measure of the processability of an unvulcanized rubber composition in the case of calendering using calender rolls.
  • The present inventor found out that, rather than Mooney viscosity, the use of elongational viscosity is appropriate as a measure of the processability of an unvulcanized rubber composition for calendaring which is subjected to elongation deformation by calender rolls. Further, the values of elongational viscosity suitable for calendering were found out and, based on that, the present invention was accomplished.
  • SUMMARY OF THE INVENTION
  • It is therefore, an object of the present invention to provide an unvulcanized rubber composition for calendaring and a method for manufacturing a topping rubber using the same, in which an elongational viscosity of the unvulcanized rubber composition measured under specific measuring conditions is limited in a specific range, and the processability during calendaring is improved.
  • According to the present invention, an unvulcanized rubber composition for calendaring during which the unvulcanized rubber composition is subjected to elongation deformation by calender rolls and which is characterized by having
  • an elongational viscosity of not more than 102 kPa when measured at a temperature of 95 deg. C., and a shear velocity of 500 to 2000(1/second).
  • Preferably, the elongational viscosity is not less than 2 kPa. The unvulcanized rubber composition is suitably used as topping rubber for a cord ply embedded in a pneumatic tire. The cord ply can be a tread reinforcing belt ply embedded in a tread portion of the pneumatic tire. The unvulcanized rubber composition may comprise: base rubber including 55 to 100 parts by weight of natural rubber and 45 to 0 parts by weight of isoprene rubber; and 40 to 60 parts by weight of carbon black with respect to 100 parts by weight of the base rubber.
  • According to the present invention, a method for manufacturing a topping rubber for a cord ply embedded in a pneumatic tire, comprises a step of extending and shaping the unvulcanized rubber composition as set forth in any one of claims 1-5 with the use of calender rolls whose surface temperature is 60 to 100 deg. C. so that the unvulcanized rubber composition is shaped into the topping rubber within a temperature range of from 60 to 140 deg. C.
  • Therefore, the unvulcanized rubber composition has improved processability and can be thinly and fully stretched through calendering. Thus, the production efficiency can be increased.
  • BRIEF DESCRIPTION OF THE DRAWING
  • FIG. 1 is a cross sectional view of a capillary rheometer for measuring the elongational viscosity.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Embodiments of the present invention will now be described in detail in conjunction with the accompanying drawings.
  • According to the present invention, an unvulcanized rubber composition for calendaring is based on that it is subjected to elongation deformation by calender rolls, and characterized by having an elongational viscosity of not more than 102 kPa when measured at a temperature of 95 deg. C. and a shear velocity of 500 to 2000 (1/second).
  • Mooney viscosity, which is heretofore used as a measure of the processability of an unvulcanized rubber composition, is defined as the shearing torque resisting rotation of a cylindrical metal disk (or rotor) embedded in rubber within a cylindrical cavity as specified by JIS-K6300.
  • However, in the process of calendering, the deformation which the unvulcanized rubber composition mainly receives when passing through the gap between calender rolls is elongation deformation rather than shearing deformation.
  • Usually, the shearing deformation is accompanied by elongation as well as torsion. In such case, the rubber composition shows non-Newtonian behavior and the viscosity decreases with the deformation rate or velocity is increased.
  • In the case of the elongation deformation, on the other hand, depending on the kind of the macromolecular, there is a possibility that the viscosity shows a steep increase when the stretch of the molecular chains approaches the limits.
  • Accordingly, if only the mechanical behavior of an unvulcanized rubber composition when subjected to shearing deformation is observed in order to evaluate the processability of the unvulcanized rubber composition during calendering, the considered is only one side of the flow property of the unvulcanized rubber composition in the calendering process. Thus, this is not enough.
  • The inventor found that, rather than Mooney viscosity, elongational viscosity is an important factor in order to accurately evaluate the processability of an unvulcanized rubber composition during calendering, and that, by limiting the elongational viscosity within a specific range, processing defects such as rubber crack and the like possibly occurring in the calendering, especially, topping process, can be reduced.
  • The elongational viscosity is measured under the following measuring conditions: the temperature of the unvulcanized rubber composition is 95 deg. C., and the shear velocity is 500 to 2000 (1/second).
  • In order to measure, a capillary rheometer is used. Preferably used is a twin capillary rheometer 1 based on the twin bore measurement principle (for example, RH7-D & RH10-D CAPILLARY RHEOMETERS).
  • As shown in FIG. 1, this type of capillary rheometer 1 comprises a long capillary tube 2 formed by a longer die 2 a, a short capillary tube 3 formed by a shorter die 3 a, two pressure transducers 4, and two pistons 5.
  • In order to obtain the value of the elongational viscosity from the data obtained by the capillary rheometer, the Bagley correction needs to be performed based on two different capillary tube lengths, and then the elongational viscosity is calculated using the Cogswell method.
  • Therefore, by using a twin capillary rheometer, the measurements with respect to two different capillary tube lengths can be made simultaneously, and the efficiency as well as the accuracy of the measurement is improved.
  • Incidentally, the Bagley correction is described in “1961 vol. 5 no. 1 P 355-368 Trans. soc. Rheol. Bagley E. B. The separation of elastic and viscous effects in polymer flow”.
  • The Cogswell method is described in “1972 vol. 12 P 64-73 Polym. Eng. Sci. Cogswell F. N. converging flow of polymer melts in extrusion dies”.
  • As the stretch of the flowing rubber composition is caused at the inlet of the die where the flow channel becomes narrow, The elongational viscosity λ can be obtained from the following equation (1):

  • λ={9(n+1)̂2×P̂2}/(32η×γ)   (1)
  • wherein
    n is the power index of the power law fluid,
    P is the pressure at the die inlet,
    η is the shear viscosity, and
    γ is the shear velocity,
  • when a topping process is performed by the use of a pair of calender rolls, a typical temperature of the unvulcanized rubber composition is 60 to 100 deg. C.
  • If the temperature is high, there is a possibility that vulcanization starts partially and the quality is decreased. If the temperature is low, the viscosity is increased and there is a possibility that necessary processability for the rubber can not be obtained.
  • According to the present invention, in view of the processability, a relatively higher temperature of 95 deg. C. was selected from the typical temperature range, and the elongational viscosity of the unvulcanized rubber composition is defined as measured at 95 deg. C.
  • In order that the unvulcanized rubber composition has the most suitable processability for calendaring, the elongational viscosity under the above-mentioned measuring conditions is set in a range of not more than 102 kPa and preferably not less than 2 kPa.
  • If more than 102 kPa, it becomes difficult to stretch the unvulcanized rubber composition as desired during calendering, and cracks become liable to occur. If less than 2 kPa, it becomes difficult to stretch the unvulcanized rubber composition into a continuous sheet or film, namely, the sheet is liable to break.
  • According to the present invention, as far as the elongational viscosity satisfies the above-mentioned limitation, the unvulcanized rubber composition is not limited to a specific composition. But, in the case of the topping rubber for the belt cords of a tread reinforcing belt which is disposed radially outside the carcass in the tread portion of a pneumatic tire, it is preferable that the unvulcanized rubber composition comprises: base rubber including 55 to 100 parts by weight of natural rubber, and 45 to 0 parts by weight of isoprene rubber; and with respect to 100 parts by weight of the base rubber, 40 to 60 parts by weight carbon black, and preferably, 5 to 10 parts by weight of oil.
  • The unvulcanized rubber composition is extended and shaped by the use of calender rolls whose surface temperature is 60 to 100 deg. C. In this case, there is a possibility that the temperature of the extended and shaped unvulcanized rubber composition is increased above the surface temperature by the resultant shear heat generation. Even in such case, the temperature of the unvulcanized rubber composition is controlled within a range of from 60 to 140 deg. C.
  • The elongational viscosity of the unvulcanized rubber composition can be controlled by
  • changing the linearity of the polymer (namely, the rate of branched chains in the macromolecular),
    changing the ratio between the content of carbon black and that of natural rubber,
    changing the ratio of the content of SBR and that of silica coupling agent, and/or adding a small amount of an ultrahigh molecular weight component into the rubber composition.
  • Further, in the process of manufacturing the rubber composition, the elongational viscosity can be controlled within the above-mentioned range by changing the diameters of the calender rolls, the gap between the calender rolls, the friction ratio, the frictional coefficient, and/or the shape and material of the surface of the calender roll.
  • The rubber compositions heretofore used for the tire cords may be used as the basis of the unvulcanized rubber composition according to the present invention, premised on that the elongational viscosity is controlled within the above-mentioned range as explained above.
  • Comparison Tests
  • In order to confirm the effects of the invention, unvulcanized rubber compositions shown in Table 1 were prepared. In order to prepare each composition, firstly, the materials excluding sulfur and vulcanizing accelerator were kneaded for 5 minutes at about 150 deg. C. with the use of a banbury mixer. Then, the sulfur and vulcanizing accelerator were added thereto and all of the materials were further kneaded for 5 minutes at a temperature of 80 deg. C. with the use of a twin roll open mill.
  • The unvulcanized rubber compositions (for topping rubber of a tire belt ply) prepared as above were measured and tested as follows.
  • <Mooney Viscosity>
  • According to the Japanese Industrial Standard K6300, the Mooney viscosity of the unvulcanized rubber composition was measured at a temperature of 130 deg. C.
    The results are indicated in Table 1 by an index based on comparative example Ref. 1 being 100, wherein the larger the index number, the lower the Mooney viscosity.
  • <Elongational Viscosity>
  • The elongational viscosity of the unvulcanized rubber composition at a temperature of 95 deg. C, and a shear velocity of 1000(1/second) was measured with the use of a twin capillary rheometer “Rosand RH-7” manufactured by Malvern Instruments Ltd. (longer die length 16 mm, longer die diameter 1.0 mm, shorter die length 0.25 mm, shorter die diameter 1.0 mm, die inlet angle 180 degrees, Pressure transducer NP467XL, Dynicos).
  • <Complex Elastic Modulus and Loss Tangent>
  • The unvulcanized rubber composition was vulcanized at a temperature of 170 deg. C. for 12 minutes. Then, the vulcanized rubber was measured for the complex elastic modulus (E*) at a temperature of 70 deg. C., a frequency of 10 Hz, an initial strain of 10%, and a dynamic strain of 1%, by the use of a viscoelastic spectrometer VES manufactured by Iwamoto seisakusyo.
  • Further, the loss tangent of the vulcanized rubber was measured at a temperature of 60 deg. C. The other measuring conditions were the same as above.
  • The results are indicated in Table 1 by an index based on comparative example Ref. 1 being 100.
  • The larger the index number, the better the rigidity.
    The larger the index number, the smaller the loss tangent.
    <Workability during Calendering>
    When the unvulcanized rubber composition was shaped into a sheet by passing through between calender rolls having a surface temperature of 65 deg. C., it was visually checked whether crack was caused or not.
    The results are shown in Table 1, wherein
    “G” means that no crack was caused, and
    “B” means that crack or breakage was caused.
  • <Wear Resistance>
  • With respect to each of the unvulcanized rubber compositions, pneumatic tires (size 195/65R15) whose tread rubber and belt cord topping rubber were formed from the same unvulcanized rubber composition, were experimentally manufactured.
    After running for 8000 km by the use of a test car, the depth of tread grooves was measured to know the tread wear.
    The running distance required for the tread wear of 1 mm was calculated as the wear resistance.
    The results are indicated in Table 1 by an index based on comparative example Ref. 1 being 100, wherein the larger the index number, the higher the wear resistance.
  • From the test results, it was confirmed that the unvulcanized rubber compositions according to the present invention were improved in the processability during calendering.
  • TABLE 1
    Ref.1 Ref.2 Ex.1 Ex.2 Ex.3 Ex.4 Ex.5 Ex.6
    natural rubber 100 100 80 70 100 60 100 100
    isoprene rubber 20 30 40
    carbon black 60 60 60 60 50 60 40 50
    aromatic oil 5 10 5 5 5 5 5 10
    age resistor 2 2 2 2 2 2 2 2
    zinc oxide 10 10 10 10 10 10 10 10
    sulfur 8 8 8 8 8 8 8 8
    vulcanizing accelerator TBBS 1 1 1 1 1 1 1 1
    cobalt metal salt 1 1 1 1 1 1 1 1
    Mooney viscosity 87 80 100 92 82 88 72 77
    elongational viscosity (kPa s) 118 109 102 96 101 97 93 88
    complex elastic modulus 100 92 89 85 93 74 75 70
    loss tangent 100 102 98 97 96 95 96 85
    processability in calendering B B G G G G G G
    wear resistance 100 103 97 96 94 94 89 88
    Natural rubber: RSS#3
    Isoprene rubber: Nipol IR2200, ZEON Corporation
    Carbon black: SHOBLACK N220 (N2SA:125 m 2/g), Cabot Japan, Inc.
    Aromatic oil: JOMO process X140, Japan Energy Corporation
    Age resistor: NOCRACK 6C, OUCHI SHINKO Chemical Industrial Co., Ltd. (chemical name: N-(1,3-dimethyl butyl)-N′-phenyl-p-phenylenediamine)
    Zinc oxide: hydrozincite #1, Mitsui Mining & Smelting Co., Ltd.
    Cobalt metal salt: cobalt stearate (cobalt content 10%), DIC Corporation
    Sulfur: powdered sulfur, Tsurumi Chemical Industry Co., Ltd.
    Vulcanizing accelerator TBBS: NOCCELER NS, OUCHI SHINKO Chemical Industrial Co.,Ltd. (chemical name: N-tert-butyl-2-benzothiazolyl sulfenamide)

Claims (14)

1. An unvulcanized rubber composition for calendaring during which the unvulcanized rubber composition is subjected to elongation deformation by calender rolls and which is characterized by having an elongational viscosity of not more than 102 kPa when measured at a temperature of 95 deg. C., and a shear velocity of 500 to 2000(1/second).
2. The unvulcanized rubber composition according to claim 1, wherein the elongational viscosity is not less than 2 kPa.
3. The unvulcanized rubber composition according to claim 1 which is used as topping rubber for a cord ply embedded in a pneumatic tire.
4. The unvulcanized rubber composition according to claim 3, wherein the cord ply is a tread reinforcing belt ply embedded in a tread portion of the pneumatic tire.
5. The unvulcanized rubber composition according to claim 1 which comprises: base rubber including 55 to 100 parts by weight of natural rubber and 45 to 0 parts by weight of isoprene rubber; and 40 to 60 parts by weight of carbon black with respect to 100 parts by weight of the base rubber.
6. A method for manufacturing a topping rubber for a cord ply embedded in a pneumatic tire, comprising a step of extending and shaping the unvulcanized rubber composition as set forth in claim 1 with the use of calender rolls whose surface temperature is 60 to 100 deg. C. so that the unvulcanized rubber composition is shaped into the topping rubber within a temperature range of from 60 to 140 deg. C.
7. The unvulcanized rubber composition according to claim 2 which is used as topping rubber for a cord ply embedded in a pneumatic tire.
8. The unvulcanized rubber composition according to claim 2 which comprises: base rubber including 55 to 100 parts by weight of natural rubber and 45 to 0 parts by weight of isoprene rubber; and 40 to 60 parts by weight of carbon black with respect to 100 parts by weight of the base rubber.
9. The unvulcanized rubber composition according to claim 3 which comprises: base rubber including 55 to 100 parts by weight of natural rubber and 45 to 0 parts by weight of isoprene rubber; and 40 to 60 parts by weight of carbon black with respect to 100 parts by weight of the base rubber.
10. The unvulcanized rubber composition according to claim 4 which comprises: base rubber including 55 to 100 parts by weight of natural rubber and 45 to 0 parts by weight of isoprene rubber; and 40 to 60 parts by weight of carbon black with respect to 100 parts by weight of the base rubber.
11. A method for manufacturing a topping rubber for a cord ply embedded in a pneumatic tire, comprising a step of extending and shaping the unvulcanized rubber composition as set forth in claim 2 with the use of calender rolls whose surface temperature is 60 to 100 deg. C. so that the unvulcanized rubber composition is shaped into the topping rubber within a temperature range of from 60 to 140 deg. C.
12. A method for manufacturing a topping rubber for a cord ply embedded in a pneumatic tire, comprising a step of extending and shaping the unvulcanized rubber composition as set forth in claim 3 with the use of calender rolls whose surface temperature is 60 to 100 deg. C. so that the unvulcanized rubber composition is shaped into the topping rubber within a temperature range of from 60 to 140 deg. C.
13. A method for manufacturing a topping rubber for a cord ply embedded in a pneumatic tire, comprising a step of extending and shaping the unvulcanized rubber composition as set forth in claim 4 with the use of calender rolls whose surface temperature is 60 to 100 deg. C. so that the unvulcanized rubber composition is shaped into the topping rubber within a temperature range of from 60 to 140 deg. C.
14. A method for manufacturing a topping rubber for a cord ply embedded in a pneumatic tire, comprising a step of extending and shaping the unvulcanized rubber composition as set forth in claim 5 with the use of calender rolls whose surface temperature is 60 to 100 deg. C. so that the unvulcanized rubber composition is shaped into the topping rubber within a temperature range of from 60 to 140 deg. C.
US14/147,933 2013-01-25 2014-01-06 Unvulcanized rubber composition for calendaring and method for manufacturing topping rubber using the same Abandoned US20140213706A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013012507A JP5767656B2 (en) 2013-01-25 2013-01-25 Rubber composition for calender molding and method for producing topping rubber using the same
JP2013-012507 2013-01-25

Publications (1)

Publication Number Publication Date
US20140213706A1 true US20140213706A1 (en) 2014-07-31

Family

ID=51223612

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/147,933 Abandoned US20140213706A1 (en) 2013-01-25 2014-01-06 Unvulcanized rubber composition for calendaring and method for manufacturing topping rubber using the same

Country Status (3)

Country Link
US (1) US20140213706A1 (en)
JP (1) JP5767656B2 (en)
CN (1) CN103965521A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180142085A1 (en) * 2015-06-10 2018-05-24 Bridgestone Corporation Rubber composition, vibration reduction rubber composition, and vibration reduction rubber
US11491628B2 (en) * 2019-03-26 2022-11-08 Chao-Min Liu Impact tool

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105860161A (en) * 2016-06-13 2016-08-17 青岛双星轮胎工业有限公司 Environment-friendly rubber composition for all-steel truck tire carcass
CN106496666B (en) * 2016-11-22 2019-02-12 正新橡胶(中国)有限公司 A kind of rubber composition and tire for tire tread
DE102019110718A1 (en) * 2019-04-25 2020-10-29 Freudenberg Se Additive manufacturing process for the production of a molded body made of elastomer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513738A (en) * 1978-07-18 1980-01-30 Yokohama Rubber Co Ltd:The Rubber composition
US4675355A (en) * 1984-11-15 1987-06-23 Bridgestone Corporation Rubber composition
US4836262A (en) * 1986-08-08 1989-06-06 Bridgestone Corporation Metal cords and pneumatic tires using the same
JP2003002902A (en) * 2001-06-18 2003-01-08 Sumitomo Rubber Ind Ltd Natural rubber, method for producing the same and rubber composition
JP2005075888A (en) * 2003-08-29 2005-03-24 Bridgestone Corp Rubber composition for steel coating
US20060169390A1 (en) * 2002-12-19 2006-08-03 Maurizio Galimberti Compostions having improved ignition resistance
US20100200141A1 (en) * 2009-02-12 2010-08-12 Toyo Tire & Rubber Co., Ltd. Rubber composition for covering steel cord and pneumatic tire
US20110011511A1 (en) * 2008-03-26 2011-01-20 Tatsuya Miyazaki Polymer mixture, polymer composition and pneumatic tire

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1549703B1 (en) * 2002-10-02 2013-03-06 Compagnie Generale Des Etablissements Michelin Carcass reinforcement for tyre designed to support heavy loads
JP2006199142A (en) * 2005-01-20 2006-08-03 Bridgestone Corp Tire steel cord coating compound

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513738A (en) * 1978-07-18 1980-01-30 Yokohama Rubber Co Ltd:The Rubber composition
US4675355A (en) * 1984-11-15 1987-06-23 Bridgestone Corporation Rubber composition
US4836262A (en) * 1986-08-08 1989-06-06 Bridgestone Corporation Metal cords and pneumatic tires using the same
JP2003002902A (en) * 2001-06-18 2003-01-08 Sumitomo Rubber Ind Ltd Natural rubber, method for producing the same and rubber composition
US20060169390A1 (en) * 2002-12-19 2006-08-03 Maurizio Galimberti Compostions having improved ignition resistance
JP2005075888A (en) * 2003-08-29 2005-03-24 Bridgestone Corp Rubber composition for steel coating
US20110011511A1 (en) * 2008-03-26 2011-01-20 Tatsuya Miyazaki Polymer mixture, polymer composition and pneumatic tire
US20100200141A1 (en) * 2009-02-12 2010-08-12 Toyo Tire & Rubber Co., Ltd. Rubber composition for covering steel cord and pneumatic tire

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JP 2005-75888 A (Ezawa, T.) March 24, 2005; machine translation. *
Minagawa, Y and Ichikawa, N. JP 2003-2902; June 18, 2001; machine translation. *
Udagawa, Y. and Hasebe, Y. JP 55-13738; July 18, 1978; machine translation. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180142085A1 (en) * 2015-06-10 2018-05-24 Bridgestone Corporation Rubber composition, vibration reduction rubber composition, and vibration reduction rubber
US11491628B2 (en) * 2019-03-26 2022-11-08 Chao-Min Liu Impact tool

Also Published As

Publication number Publication date
JP5767656B2 (en) 2015-08-19
JP2014144993A (en) 2014-08-14
CN103965521A (en) 2014-08-06

Similar Documents

Publication Publication Date Title
US20140213706A1 (en) Unvulcanized rubber composition for calendaring and method for manufacturing topping rubber using the same
CN112789315B (en) Rubber composition
JP4703384B2 (en) Run flat tire
US9290065B2 (en) Sidewall support for a runflat tire
EP2796494B1 (en) Tire inner-layer rubber composition and pneumatic tire
JP4458898B2 (en) Run flat tire
EP1319527B1 (en) Tread portion formed of two layers with different concentrations of antioxidants
CN102458886B (en) Heavy-duty pneumatic tire
EP4127052A1 (en) Rubber composition for tyre body compounds
JP2015003548A (en) Tire
JP7331566B2 (en) Method for predicting physical properties of tire components
JP6463623B2 (en) Method for predicting fracture strength of material and rubber composition
JP7283189B2 (en) Friction performance evaluation method
CN102286178A (en) EPDM (ethylene propylene diene monomer) composition for high-hardness glue injection
JP5508045B2 (en) Rubber composition for breaker topping and pneumatic tire
CN220198977U (en) Tire with ultralow rolling resistance
JP2013107464A (en) Pneumatic tire
JP6226550B2 (en) Method for evaluating low fuel consumption of breaker rubber, pneumatic tire, and vulcanized rubber
JP2019164047A (en) Rubber performance evaluation method
CN105754166B (en) A kind of rubber composition is with vulcanizing rubber and its preparation method and application
JP2005002139A (en) Rubber composition and pneumatic tire
JP6259267B2 (en) Rubber composition for tire and fracture test method
JP7363532B2 (en) Discharge temperature prediction method
JP4843157B2 (en) Formulation evaluation method of rubber composition of tread rubber
JP2022074632A (en) Method for evaluating rubber composition

Legal Events

Date Code Title Description
AS Assignment

Owner name: SUMITOMO RUBBER INDUSTRIES, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HONDA, SHINICHIRO;REEL/FRAME:031902/0452

Effective date: 20130821

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION