JP2017187335A - Optical inner face measurement device - Google Patents

Optical inner face measurement device Download PDF

Info

Publication number
JP2017187335A
JP2017187335A JP2016075140A JP2016075140A JP2017187335A JP 2017187335 A JP2017187335 A JP 2017187335A JP 2016075140 A JP2016075140 A JP 2016075140A JP 2016075140 A JP2016075140 A JP 2016075140A JP 2017187335 A JP2017187335 A JP 2017187335A
Authority
JP
Japan
Prior art keywords
optical
motor
reference pipe
optical fiber
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016075140A
Other languages
Japanese (ja)
Other versions
JP6739780B2 (en
Inventor
大志 山崎
Hiroshi Yamazaki
大志 山崎
拓也 舘山
Takuya Tateyama
拓也 舘山
正人 森本
Masato Morimoto
正人 森本
隆文 淺田
Takafumi Asada
隆文 淺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP2016075140A priority Critical patent/JP6739780B2/en
Publication of JP2017187335A publication Critical patent/JP2017187335A/en
Application granted granted Critical
Publication of JP6739780B2 publication Critical patent/JP6739780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate errors due to errors of axial direction feeding accuracy, oscillation of a measuring probe, influence of bearing oscillation of a motor rotationally radiating a light beam, and temperature change or fluctuation in optical system in an optical inner face measurement device to thereby resolve variations of image data or noise, and to implement an accurate and precise accuracy measurement of an inner diameter and inner perimeter face.SOLUTION: An optical inner face measurement device has: an optical fiber that is built in a tube; at least two optical path conversion means in a tip end part of the optical fiber; a motor that causes the two optical path conversion means to be rotationally driven; and a sensor that detects mechanical oscillation in a radial direction of a hard light transmissive reference pipe, which is attached to the tip end part of the tube, and the light transmissive reference pipe is inserted into an inner diameter of a measured object. The two optical path conversion means three-dimensionally radiate the light beam guided from the optical fiber in a circumferential direction and axis direction, and detect reflection light to eliminate every mechanical change and error to allow a highly accurate measurement of an inner perimeter face to be implemented.SELECTED DRAWING: Figure 9

Description

本発明は、被測定物の内周面または深穴内径に、光学式測定プローブを進入させ、内面または深穴底面に光線を放射し、反射光を立体的に取り込んで内部形状の観察、及び寸法及び幾何学精度を測定するための光学式内面測定装置に関するものである。   The present invention allows an optical measurement probe to enter the inner peripheral surface or deep hole inner diameter of an object to be measured, emits a light beam to the inner surface or deep hole bottom surface, captures reflected light three-dimensionally, and observes the internal shape. The present invention relates to an optical inner surface measuring apparatus for measuring dimensions and geometric accuracy.

例えば自動車用エンジンのシリンダーの加工仕上がり寸法や幾何学精度の良否は自動車の動力性能と燃料消費効率に大きく影響するが、これらの検査は一般には真円度測定機、表面粗さ計、リニヤスケールを用いた測長機等の接触式測定機を用いて検査されていた。しかし近年、被測定物に傷を付けない目的から光学式の非接触式測定機が登場している。   For example, the quality of machining finish and geometric accuracy of cylinders for automobile engines greatly affect the power performance and fuel consumption efficiency of automobiles, but these inspections are generally performed by roundness measuring machines, surface roughness meters, and linear scales. It was inspected using a contact-type measuring machine such as a length measuring machine. However, in recent years, optical non-contact measuring machines have been introduced for the purpose of not scratching the object to be measured.

非接触で被測定物内面の傷の有無を観察および検査する手段として、画像診断技術(光イメージング技術)は、機械装置、医療などの現場において広く利用されている技術である。例えば、精密機器などの製造現場において、深穴の奥部の検査や画像診断の手法として、一般的な内視鏡によるカメラ観察に加えて、光線を内面に照射し反射光の強弱を光センサで捉え、コンピュータで判断して表面傷の有無を自動検査する方法が採用されている。   As a means for observing and inspecting the presence or absence of scratches on the inner surface of an object to be measured in a non-contact manner, an image diagnostic technique (optical imaging technique) is a technique that is widely used in fields such as mechanical devices and medical treatment. For example, in the manufacturing site of precision equipment, as a method of inspection of deep part of deep hole and image diagnosis, in addition to camera observation with a general endoscope, light sensor is used to irradiate the inner surface and detect the intensity of reflected light The method of automatically inspecting the presence or absence of surface flaws as judged by a computer is adopted.

医療の分野では人体内部の患部の観察に断層画像が観察可能なX線CT、核磁気共鳴、光の干渉性を利用した内視鏡によるOCT画像(光干渉断層撮影)などの方式が研究されると共に活用されている。   In the medical field, methods such as X-ray CT capable of observing tomographic images, nuclear magnetic resonance, and OCT images with an endoscope using optical coherence (optical coherence tomography) have been studied for observing affected areas inside the human body. And being used.

機械装置の分野では、穴や精密内径を有する機械部品の内周面に光線を照射して内周面の傷の観察または寸法測定を行う技術を適用した観察装置の代表的な構造は、例えば、特許文献1から3に示す通りである。   In the field of mechanical devices, a typical structure of an observation device to which a technique for observing scratches or measuring dimensions of an inner peripheral surface by irradiating light to the inner peripheral surface of a machine part having a hole or a precision inner diameter is, for example, These are as shown in Patent Documents 1 to 3.

特許文献1に示す穴形状測定方法および測定装置では、該文献中の被測定物(2)の小径穴(1)の中にスリットを通した光線を斜めから照射し、小径穴(1)の内周面から反射した光線をカメラで捉え、小径穴の形状精度を読み取っていた。
しかしながらこの構成では、被測定物の表面が例えばリングゲージのように平滑な面であれば測定が可能であるが、一般的な複雑形状の機械部品の測定を行う場合には、小径穴(1)の内面の表面粗さや凹凸のキズにより反射光が発散し、正しい形状をカメラが捉えることができず、高精度な測定は不可能であった。また、被測定物(2)が想定以上に長い場合にも反射光を捉えることが出来ず測定が行えなかった。
In the hole shape measuring method and measuring apparatus shown in Patent Document 1, a light beam that has passed through a slit is irradiated obliquely into the small diameter hole (1) of the object to be measured (2) in the document, and the small diameter hole (1) The light reflected from the inner peripheral surface was captured by a camera, and the shape accuracy of the small-diameter hole was read.
However, in this configuration, measurement is possible if the surface of the object to be measured is a smooth surface such as a ring gauge. However, when measuring a general complex-shaped machine part, a small-diameter hole (1 ), The reflected light diverges due to the surface roughness of the inner surface and the scratches on the irregularities, and the camera cannot capture the correct shape, making it impossible to measure with high accuracy. Also, when the object to be measured (2) was longer than expected, the reflected light could not be captured and measurement could not be performed.

また、特許文献2に記載される走査型管内形状検査装置では、該文献中図1及び図3に示されるように管内に光ビームを螺旋状に走査し、非接触で管の内径寸法と、該文献中図10に示されるように三次元の形状データを取り込んで表示している。
しかしながら該文献には光ビームを回転放射する機構が記載されておらず、放射ビームの回転モータが高速回転すると回転軸に振れまたは非再現振れが生じて採集された被測定物の内周面の断面形状データにノイズがのっていた。また、管内検査装置(10)を螺旋状に走査させるために、長手方向にスライド動作させるためのモータや機構系の振動が一般には0.01μm程度以上も発生し、このノイズが測定データにのってしまい除去できないため、測定値の繰返し再現性が悪くなり、ナノメータオーダーの高精度な測定は行えていなかった。
Moreover, in the scanning type in-pipe shape inspection apparatus described in Patent Document 2, as shown in FIGS. 1 and 3 in the document, a light beam is scanned in a spiral shape in a non-contact manner, In this document, as shown in FIG. 10, three-dimensional shape data is captured and displayed.
However, this document does not describe a mechanism for rotating and radiating a light beam, and when the rotating motor of the radiation beam rotates at a high speed, the rotating shaft is shaken or non-reproduced and the inner peripheral surface of the object to be measured is collected. There was noise in the cross-sectional shape data. In addition, in order to scan the in-pipe inspection device (10) in a spiral manner, vibrations of a motor and a mechanism system for sliding in the longitudinal direction are generally generated by about 0.01 μm or more, and this noise is included in measurement data. Therefore, the reproducibility of the measured values deteriorated, and nanometer-order high-precision measurement could not be performed.

また、特許文献3に示す孔形状測定方法では、該文献中の被測定物孔の内周面に光学式プローブ(3)を挿入し、光学式プローブの第1の位置で3点以上の測定光を同時または遂次照射し、光学式プローブから内周面の第1の位置までの距離を計測し、続いて光学式プローブ(3)を軸線方向にスライドさせ第2の位置に移動させて後に、同様に内周面の第2の位置までの距離を計測し、被測定物の内周面と光学式プローブの平行度を求めて、この平行度のズレを補正して穴の内径寸法と真円度の幾何精度の数値を計算して求めていた。
しかしながら、この構成では、光学式プローブが第1の位置から第2の位置に向け、軸方向または長手方向に移動する間に、この移動手段になるリニアスライダーの直線性の悪さ(例えば0.01μm程度存在する)が平行度の計算に狂いを生じさせていた。また、光学式プローブを回転させる時に発生するサブミクロンの振動変位(例えば0.1μm程度以上)が光学式プローブから内周面の各位置までの距離を狂わせるため、正しい補正計算と高精度な測定ができていなかった。
Further, in the hole shape measuring method shown in Patent Document 3, an optical probe (3) is inserted into the inner peripheral surface of the hole to be measured in the document, and three or more points are measured at the first position of the optical probe. Simultaneously or successively irradiate light, measure the distance from the optical probe to the first position on the inner peripheral surface, and then slide the optical probe (3) in the axial direction to move it to the second position. Later, similarly, the distance to the second position of the inner peripheral surface is measured, the parallelism between the inner peripheral surface of the object to be measured and the optical probe is obtained, and the deviation of the parallelism is corrected to correct the inner diameter of the hole. And calculated the geometric accuracy of roundness.
However, in this configuration, while the optical probe moves in the axial direction or the longitudinal direction from the first position to the second position, the linearity of the linear slider that becomes the moving means (eg, 0.01 μm) is poor. To the extent that the parallelism calculation was out of order. In addition, submicron vibration displacement (for example, about 0.1 μm or more) that occurs when the optical probe is rotated deviates the distance from the optical probe to each position on the inner peripheral surface, so correct correction calculation and high-accuracy measurement Was not done.

特開平08−233545号公報Japanese Patent Laid-Open No. 08-233545 特開平05−180627号公報JP 05-180627 A 特開2010−236870号公報JP 2010-236870 A

本発明は上記従来事情に鑑みてなされたものであり、その課題とするところは、被測定物の内周面または深穴内径、または長くて屈曲するパイプの穴内に、測定用プローブを進入させ内周面または深穴底面に光線を回転放射し、反射光を立体的に収集してコンピュータ処理し三次元画像データを観察、及び寸法測定及び幾何学精度を測定すること。そして、測定用プローブを軸方向にスライドさせる時に生じる送り機構の精度誤差から生じる測定精度の悪化を防止するために、軸方向のスライドを行わずに光学的に三次元走査が行える構成にすること。さらに、測定内周面に回転放射する測定プローブ自身の機械振動、および回転放射用モータ回転軸に生じる軸振れの影響を完全に排除することである。これら課題解決により、従来、機械振動が引き起こしていたデータのばらつきや、振動ノイズを解消して、正しく精密な内径及び内周面の三次元精度測定を可能にする光学式内面測定装置を提供することである。   The present invention has been made in view of the above-described conventional circumstances, and the problem is that the measurement probe is inserted into the inner peripheral surface or deep hole inner diameter of the object to be measured, or the hole of a long and bent pipe. Rotating and radiating light rays to the inner peripheral surface or deep hole bottom, collecting reflected light three-dimensionally, computer processing, observing 3D image data, measuring dimensions and measuring geometric accuracy. In order to prevent deterioration in measurement accuracy caused by accuracy errors of the feed mechanism that occur when the measurement probe is slid in the axial direction, a configuration that can optically perform three-dimensional scanning without sliding in the axial direction is adopted. . Furthermore, it is to completely eliminate the influence of mechanical vibration of the measurement probe itself that radiates and rotates on the inner circumferential surface of the measurement, and the shaft vibration that occurs on the rotary shaft of the motor for rotation radiation. By solving these problems, an optical inner surface measuring apparatus that eliminates data variability and vibration noise caused by mechanical vibration and enables accurate and accurate three-dimensional measurement of inner diameter and inner peripheral surface is provided. That is.

上記課題を解決するための一手段は、干渉光学法(光干渉法、分光干渉法等)を用いて被検査対象物内周面の観察および寸法精度を測定する光学式内面測定装置において、チューブに内蔵された光ファイバーと、前記光ファイバーの先端部に少なくとも2つの光路変換手段を有し、前記2つの光路変換手段を回転駆動させるモータをそれぞれ有し、前記チューブの先端部は硬質の透光性基準パイプが取り付けられ、前記透光性基準パイプの半径方向の機械的振動を検出する検出手段を有し、被検対象物の内径に光プローブの前記透光性基準パイプ部分を挿入し、前記2つの光路変換手段が前記光ファイバーから導いた光線を円周方向および軸方向に三次元的に光線を放射し、その反射光を検出するよう構成した。   One means for solving the above problem is that in an optical inner surface measuring apparatus for measuring the inner peripheral surface of an object to be inspected and measuring the dimensional accuracy using an interference optical method (optical interference method, spectral interference method, etc.), a tube An optical fiber built into the optical fiber, and at least two optical path conversion means at the tip of the optical fiber, each of which has a motor for rotationally driving the two optical path conversion means, and the tip of the tube has a hard translucent property. A reference pipe is attached and has a detecting means for detecting a mechanical vibration in a radial direction of the translucent reference pipe, and the translucent reference pipe portion of the optical probe is inserted into the inner diameter of the test object, Two optical path changing means radiate the light beam guided from the optical fiber three-dimensionally in the circumferential direction and the axial direction, and detect the reflected light.

本発明によれば、従来、測定装置の軸方向送り精度の誤差、測定用プローブの振動、及び光線を被測定面に回転放射するモータの軸受振れの影響が排除でき、また、光学的ゆらぎの影響についても排除でき、これにより測定データのばらつきや、ノイズを排除して、正しく精密な内径及び内周面の精度測定が可能である。   According to the present invention, conventionally, it is possible to eliminate the influence of the error in the axial feeding accuracy of the measuring apparatus, the vibration of the measuring probe, and the vibration of the bearing of the motor that rotates and radiates the light beam to the surface to be measured. It is possible to eliminate the influence, thereby eliminating variations in measurement data and noise, and accurately measuring the inner diameter and inner peripheral surface accurately and accurately.

本発明の実施の形態に係る光学式内面測定装置の構成図1 is a configuration diagram of an optical inner surface measuring apparatus according to an embodiment of the present invention. 同光学式内面測定装置の光プローブ先端部断面図Cross-sectional view of the optical probe tip of the optical inner surface measuring device 同光プローブの回転動作説明図Rotation operation explanatory diagram of the same optical probe 同光プローブの走査角度説明図Illustration of scanning angle of the same optical probe 同光プローブの走査角度説明図Illustration of scanning angle of the same optical probe 同光プローブの3次元走査範囲説明図3D scanning range explanatory diagram of the same optical probe 同光学式内面測定装置の基準パイプと補正原理説明図Reference pipe and correction principle explanatory drawing of the optical inner surface measuring device 同光学式内面測定装置の検出波形と軸振れと光学的ゆらぎ排除原理図Detection waveform, shaft runout and optical fluctuation elimination principle diagram of the optical inner surface measuring device 同光学式内面測定機の基準パイプ位置検出第1方法説明図Reference pipe position detection first method explanatory diagram of the optical inner surface measuring machine 同光学式内面測定機の基準パイプ振動量検出図Reference pipe vibration detection diagram of the optical inner surface measuring machine 同光学式内面測定機の検出波形と基準パイプ振動量排除原理図Detected waveform of the optical inner surface measuring machine and reference pipe vibration amount elimination principle diagram 同光学式内面測定機の基準パイプ振動量排除効果説明図Illustration of the effect of eliminating the vibration amount of the reference pipe of the optical inner surface measuring machine 同光学式内面測定機の基準パイプ位置検出第2方法説明図Second method for detecting the reference pipe position of the optical inner surface measuring machine 同光学式内面測定機の基準パイプ押圧子説明図Reference pipe presser explanatory drawing of the optical inner surface measuring machine

本実施の干渉光学法を用いて被検対象物の観察および測定を行う光学式内面測定装置の第1の特徴は、チューブに内蔵された光ファイバーと、前記光ファイバーの先端部に少なくとも2つの光路変換手段を有し、前記2つの光路変換手段を回転駆動させるモータを有し、前記チューブの先端部は硬質の透光性基準パイプが取り付けられ、前記透光性基準パイプの半径方向の機械的振動を検出するセンサを有し、被検対象物の内径に前記透光性基準パイプを挿入し、前記2つの光路変換手段が前記光ファイバーから導いた光線を円周方向および軸方向に三次元的に光線を放射し、その反射光を検出するよう構成した。
この構成により、被検対象物内周面からの反射光を、光ファイバーを経て導き入れ、コンピュータで計算することにより得られた被検対象物の内周面の形状データを、光ファイバーの軸方向の移動を行わず、透光性基準パイプを固定した状態で三次元データの収集が可能になり、また、測定装置の軸方向送り精度の誤差、および透光性基準パイプの振動が排除でき、これにより画像データのばらつきや、ノイズを解消して、正しく精密な内径及び内周面の精度測定が可能である。
The first feature of the optical inner surface measuring apparatus for observing and measuring a test object using the interference optical method of the present embodiment is that an optical fiber built in a tube and at least two optical path conversions at the tip of the optical fiber. And a motor for rotationally driving the two optical path changing means, and a rigid translucent reference pipe is attached to the tip of the tube, and the radial mechanical vibration of the translucent reference pipe is provided. The light-transmitting reference pipe is inserted into the inner diameter of the object to be examined, and the light beams guided from the optical fiber by the two optical path changing means are three-dimensionally in the circumferential direction and the axial direction. It was configured to emit light and detect the reflected light.
With this configuration, the reflected light from the inner peripheral surface of the test object is introduced through the optical fiber, and the shape data of the inner peripheral surface of the test object obtained by calculating with a computer is obtained in the axial direction of the optical fiber. Three-dimensional data can be collected with the translucent reference pipe fixed without moving, and errors in the axial feed accuracy of the measuring device and vibration of the translucent reference pipe can be eliminated. This eliminates variations in image data and noise, and enables accurate and accurate measurement of the inner diameter and inner peripheral surface.

第2の特徴としては透光性基準パイプの形状寸法(半径:S)を予め測定しこのデータをコンピュータに記憶しておき、前記被測定内周面(L1)と前記透光性基準パイプ間の距離データ(L1−L2)を、前記検出した反射光からコンピュータで計測し、前記透光性基準パイプの寸法形状データ(S)に被測定内周面と前記透光性基準パイプ間の距離データを加えて被測定内周面の半径寸法=(S+(L1−L2))を求めるよう構成した。
この構成により、干渉光学系のゆらぎ変動の影響、及び光線を被測定面に回転放射するモータの軸受振れの影響が排除でき、正しく精密な内径および内周面の幾何学精度測定が可能である。
As a second feature, the shape dimension (radius: S) of the translucent reference pipe is measured in advance, and this data is stored in a computer, and between the measured inner peripheral surface (L1) and the translucent reference pipe. Distance data (L1-L2) is measured by the computer from the detected reflected light, and the distance between the inner peripheral surface to be measured and the translucent reference pipe is added to the dimensional shape data (S) of the translucent reference pipe. The data was added to obtain the radius dimension of the inner peripheral surface to be measured = (S + (L1−L2)).
This configuration eliminates the effects of fluctuations in the interference optical system and the effects of motor runout of the motor that radiates light to the surface to be measured, enabling accurate and accurate measurement of the inner diameter and inner surface of the geometric accuracy. .

第3の特徴としては前記被検対象物の内周面輪郭と、前記透光性基準パイプ間の相対位置変化量(±R3)をカメラで検出し、前記透光性基準パイプの寸法形状データ(半径:S)に被測定内周面と前記透光性基準パイプ間の距離データを加えた被測定内周面の半径寸法=S+(L1−L2)に、前記透光性基準パイプ間の関係位置寸法(±R3)を加えて測定結果を補正するようにした。
この構成と方法により、前記透光性基準パイプが、内蔵モータの回転部分の遠心力による振れや振動を発生しても、この振動変位量を測定し相殺することが可能であり、正確な内径および内周面の精度測定が可能である。
As a third feature, the inner peripheral surface contour of the test object and the relative position change amount (± R3) between the translucent reference pipes are detected by a camera, and the dimensional shape data of the translucent reference pipes The radius dimension of the inner peripheral surface to be measured = S + (L1−L2) obtained by adding the distance data between the inner peripheral surface to be measured and the translucent reference pipe to (radius: S). The measurement result was corrected by adding the related position dimension (± R3).
With this configuration and method, even if the translucent reference pipe generates vibration or vibration due to the centrifugal force of the rotating part of the built-in motor, it is possible to measure and cancel out this vibration displacement amount. In addition, the accuracy of the inner peripheral surface can be measured.

第4の特徴としては前記被検対象物の内周面輪郭と、前記透光性基準パイプ間の相対関置変化量(±R3)を被検対象物が固定されたベースに取り付けた距離センサで検出するようにした。
この構成により、前記透光性基準パイプが、内蔵モータの回転部分の遠心力による振動を発生しても、この振動変位量を相殺し、正確な内径および内周面の精度測定が可能である。
As a fourth feature, a distance sensor in which an inner peripheral surface contour of the test object and a relative displacement (± R3) between the translucent reference pipes are attached to a base on which the test object is fixed. It was made to detect with.
With this configuration, even if the translucent reference pipe generates vibration due to the centrifugal force of the rotating portion of the built-in motor, the vibration displacement amount can be offset, and accurate measurement of the inner diameter and the inner peripheral surface is possible. .

第5の特長としては、被検対象物100aの穴の片方から前記透光性基準パイプ22の先端を挿入し、穴の他方から基準パイプ押圧子53を挿入し前記透光性基準パイプ22の先端に当接させた状態で、光線を円周方向および軸方向に三次元的に放射し、反射光を検出するよう構成した。
この構成によれば、前記透光性基準パイプ22の先端の微振動量を基準パイプ押圧子53が減少させるため、より正しく精密な内径および内周面の精度測定が可能である。
As a fifth feature, the tip of the translucent reference pipe 22 is inserted from one side of the hole of the test object 100a, and the reference pipe presser 53 is inserted from the other side of the hole. The light beam is emitted three-dimensionally in the circumferential direction and the axial direction while being in contact with the tip, and the reflected light is detected.
According to this configuration, since the reference pipe presser 53 reduces the amount of fine vibration at the tip of the translucent reference pipe 22, more accurate and accurate measurement of the inner diameter and the inner peripheral surface is possible.

第6の特徴としては、前記モータは、第1モータと、前記第1モータの後方側に配置された第2モータとがあり、前記光路変換手段は、前記第1モータにより動作する第1光路変換手段と、前記第2モータにより動作する第2光路変換手段とがある。そして、前記光ファイバーは、前記第2モータの後方側で、固定具を介して前記チューブに回転不能に配置された固定側光ファイバーと、前記第1モータまたは前記第2モータの回転軸部と一体的に回転する回転側光ファイバーとで構成されている。そして、前記第1モータおよび前記第2モータの前記回転軸部は、各々が中空形状をしており、前記回転側光ファイバーは、先端側の少なくとも一部が前記第1モータの回転軸部の中空穴に挿通されるとともに、後方側の少なくとも一部が前記第2モータの回転軸部の中空穴に固定されている。そして、前記第1光路変換手段は、前記第2光路変換手段の先端側で、前記第1モータの回転軸部と一体的の回転可能に配置されており、前記第2光路変換手段は、前記回転側光ファイバーの先端に備わる構成とした。
この構成によれば、透光性基準パイプ22およびチューブ6をZ軸方向(長手方向)に移動せずに一定範囲内の三次元測定が行えるため、測定装置の軸方向送り精度の誤差を完全に排除することができ、高精度な測定が可能である。
As a sixth feature, the motor includes a first motor and a second motor disposed on the rear side of the first motor, and the optical path conversion means is a first optical path operated by the first motor. There are conversion means and second optical path conversion means operated by the second motor. The optical fiber is integrated with a fixed-side optical fiber disposed in a non-rotatable manner on the tube via a fixture on the rear side of the second motor, and a rotating shaft portion of the first motor or the second motor. And a rotation-side optical fiber that rotates in a straight line. The rotating shaft portions of the first motor and the second motor each have a hollow shape, and at least a part of the rotating side optical fiber is hollow in the rotating shaft portion of the first motor. While being inserted through the hole, at least a part of the rear side is fixed to the hollow hole of the rotating shaft portion of the second motor. The first optical path conversion means is disposed so as to be rotatable integrally with a rotation shaft portion of the first motor on the tip side of the second optical path conversion means, and the second optical path conversion means is The configuration is provided at the tip of the rotation-side optical fiber.
According to this configuration, since the three-dimensional measurement within a certain range can be performed without moving the translucent reference pipe 22 and the tube 6 in the Z-axis direction (longitudinal direction), errors in the axial feed accuracy of the measuring device are completely eliminated. Therefore, highly accurate measurement is possible.

次に本発明の好適な実施形態について図面を参照しながら説明する。   Next, preferred embodiments of the present invention will be described with reference to the drawings.

本発明に関わる光学式内面測定装置の実施形態について説明する。
図1〜図12は本発明に係る光学式内面測定装置の実施形態を示している。
An embodiment of an optical inner surface measuring apparatus according to the present invention will be described.
1 to 12 show an embodiment of an optical inner surface measuring apparatus according to the present invention.

図1は本発明の実施の形態に係る光学式内面測定装置の構成図である。ベース80aにスタンド81が固定され、スライダ用モータ83によりスライダ82が光プローブ24と共に上下に移動する。被検査物100aはベース80a上にセットされており、光プローブ24は被検査物100aの深穴に出入りするよう構成されている。固定側光ファイバー1に入光した光線はチューブ6内を通過し、さらに測定機本体85の接続部84を通過して、光干渉解析部88に入り、コンピュータ89で解析してモニタ90に画像もしくは測定数値を表示する。   FIG. 1 is a configuration diagram of an optical inner surface measuring apparatus according to an embodiment of the present invention. A stand 81 is fixed to the base 80a, and a slider 82 is moved up and down together with the optical probe 24 by a slider motor 83. The inspection object 100a is set on the base 80a, and the optical probe 24 is configured to enter and exit the deep hole of the inspection object 100a. The light beam that has entered the fixed-side optical fiber 1 passes through the tube 6, further passes through the connection part 84 of the measuring machine main body 85, enters the optical interference analysis part 88, is analyzed by the computer 89, and is displayed on the monitor 90. Display measured values.

この光学式内面測定装置は、直径測定機能、真円度測定機能、またこの真円度データを長手方向に複数個所収集しこれらを結合し、三次元的に表示して得る円筒度測定機能を有している。   This optical inner surface measuring device has a diameter measuring function, a roundness measuring function, and a cylindricity measuring function that collects the roundness data in a longitudinal direction, combines them, and displays them three-dimensionally. Have.

図2は本発明の実施形態に係る光学式内面測定装置の光プローブ24の先端部断面図である。光プローブ24の後端側から先端側に光線を導く固定側光ファイバー1は十分に長いチューブ6の内部に挿通され、光ファイバー固定具4により固定されている。   FIG. 2 is a sectional view of the tip of the optical probe 24 of the optical inner surface measuring apparatus according to the embodiment of the present invention. The fixed-side optical fiber 1 that guides the light beam from the rear end side to the front end side of the optical probe 24 is inserted into a sufficiently long tube 6 and fixed by the optical fiber fixture 4.

固定側光ファイバー1の先端側には回転側光ファイバー2が回転自在に配置されている。回転側光ファイバー2のさらに先端側には略平面状のミラー等からなる第1光路変換手段3a、3bが第1モータ12により回転側光ファイバー2とは独立して略同軸上に設けられ、回転自在に取り付けられ、回転する事で光線を360度の全周方向に放射するよう構成されている。   A rotation-side optical fiber 2 is rotatably disposed on the distal end side of the fixed-side optical fiber 1. The first optical path conversion means 3a, 3b comprising a substantially flat mirror or the like is provided on the further end side of the rotation side optical fiber 2 substantially coaxially by the first motor 12 independently of the rotation side optical fiber 2, and is rotatable. And is configured to emit a light beam in a 360-degree circumferential direction by rotating.

回転側光ファイバー2と固定側光ファイバー1のそれぞれの端面は5μm程度の微小距離を隔てて対向し、回転する遮光板5、光ファイバー固定具4を含めて回転光コネクター20を構成し、回転側光ファイバー2と固定側光ファイバー1の間は高い透過率が維持でき、ほとんど損失なく光学的に接続されている。   The end surfaces of the rotation side optical fiber 2 and the fixed side optical fiber 1 face each other with a minute distance of about 5 μm, and the rotation side optical fiber 2 includes the rotating light shielding plate 5 and the optical fiber fixture 4. The fixed optical fiber 1 can maintain a high transmittance and is optically connected with almost no loss.

また、回転側光ファイバー2の先端には固定側光ファイバー1と回転光コネクター20を透過してきた光線を集光して回転しながら先端方向に少々の角度を付けて第1光路変換手段3a,3bに向けて放射する第2光路変換手段21が取り付けられている。   Further, the light beam transmitted through the stationary optical fiber 1 and the rotating optical connector 20 is collected and rotated at the tip of the rotating optical fiber 2, and a little angle is given to the tip of the first optical path changing means 3a, 3b while rotating. The second optical path changing means 21 that emits the light is attached.

第1モータ12は、モータケース8に第1モータコイル7、第1軸受9b,9aが固定され、第1ロータ磁石11が取り付けられた第1中空回転軸10が回転する。第1モータコイル7には第1電線18から電圧が印加され、回転する第1中空回転軸10にはミラー等からなる第1光路変換手段3が取り付けられている。   In the first motor 12, the first motor coil 7 and the first bearings 9 b and 9 a are fixed to the motor case 8, and the first hollow rotating shaft 10 to which the first rotor magnet 11 is attached rotates. A voltage is applied to the first motor coil 7 from the first electric wire 18, and the first optical path changing means 3 made of a mirror or the like is attached to the rotating first hollow rotating shaft 10.

第2モータ17は、第1モータ12と同様に、モータケース8に第2軸受16a、16bと、第2モータコイル15が取り付けられ、第2軸受16a、16bは第2ロータ磁石14を有する第2中空回転軸13を回転自在に支持し、第2電線19から電圧が印加され、回転する第2中空回転軸13の穴13aには回転側光ファイバー2が挿通固定され、その先端にはプリズム等からなる第2光路変換手段21が取り付けられている。   Similarly to the first motor 12, the second motor 17 has second bearings 16 a and 16 b and a second motor coil 15 attached to the motor case 8, and the second bearings 16 a and 16 b include the second rotor magnet 14. 2 The hollow rotating shaft 13 is rotatably supported, a voltage is applied from the second electric wire 19, and the rotation-side optical fiber 2 is inserted and fixed in the hole 13 a of the rotating second hollow rotating shaft 13. The 2nd optical path changing means 21 which consists of is attached.

図2の第1モータ12には図1に示す第1モータドライバ回路86から電力が供給されて回転駆動され、第2モータ17は第2モータドライバ回路87から電圧が印加されて回転駆動される。   The first motor 12 shown in FIG. 2 is supplied with electric power from the first motor driver circuit 86 shown in FIG. 1 and driven to rotate. The second motor 17 is supplied with voltage from the second motor driver circuit 87 and driven to rotate. .

光線が放射される第1光路変換手段3の外周近傍には光線が透過可能な透光性基準パイプ22がチューブ6及びモータケース8と一体的に取り付けられている。透光性基準パイプ22の内周面または外周の表面には必要に応じて表面反射を減らし、光線の透過率を高めるためのコーティング等がなされている。また、第1光路変換手段3は回転可能なミラー又はプリズムで構成されており、反射効率が高く光学的損失を減らして高精度な精度測定が可能である。   In the vicinity of the outer periphery of the first optical path changing means 3 that emits the light beam, a translucent reference pipe 22 that can transmit the light beam is integrally attached to the tube 6 and the motor case 8. The inner peripheral surface or outer peripheral surface of the translucent reference pipe 22 is coated with a coating or the like for reducing surface reflection and increasing light transmittance as necessary. Further, the first optical path changing means 3 is constituted by a rotatable mirror or prism, and has high reflection efficiency and can reduce the optical loss and perform highly accurate measurement.

第2光路変換手段21は先端に傾斜する略平面を有するプリズム等で構成しており、光線の集光性が高く、光学的損失を減らして高精度な精度測定が可能である。   The second optical path changing means 21 is constituted by a prism having a substantially flat surface inclined at the tip, and has high light-collecting properties, and can perform high-precision measurement with reduced optical loss.

次に上述した図2の三次元走査型の光プローブを用いた図1の光学式内面測定装置について、その特徴的な作用効果を詳細に説明する。   Next, the characteristic operation and effects of the optical inner surface measuring apparatus of FIG. 1 using the above-described three-dimensional scanning optical probe of FIG. 2 will be described in detail.

図1および図2において測定機本体85内から発光された近赤外またはレーザ等の光線はチューブ6に内蔵された固定側光ファイバー1の中を通過して進む。   In FIG. 1 and FIG. 2, a light beam such as a near infrared ray or a laser beam emitted from the inside of the measuring instrument main body 85 passes through the fixed side optical fiber 1 built in the tube 6.

第1電線18から電力が供給され、第1モータ12と第2モータ17の2個のモータが約900〜2万rpmの範囲の同一回転数で同期回転すると、導かれた光線は回転光コネクター20と回転側光ファイバー2を通過し、第2光路変換手段21から放出され、第1光路変換手段3aの略平面部で反射し一定の角度方向(図2においてはθ1の角度)に方向を変えて360度方向に回転放射され、この時の放射範囲は図4の様に角度θ1の傘状の範囲になる。   When electric power is supplied from the first electric wire 18 and the two motors of the first motor 12 and the second motor 17 are synchronously rotated at the same rotational speed in the range of about 900 to 20,000 rpm, the guided light beam is a rotating optical connector. 20 and the rotation-side optical fiber 2, emitted from the second optical path conversion means 21, reflected by the substantially flat surface portion of the first optical path conversion means 3 a, and changed in direction to a certain angular direction (the angle θ 1 in FIG. 2). In this case, the radiation range is an umbrella-shaped range having an angle θ1 as shown in FIG.

光線はさらに透光性基準パイプ22を通過し、被検査物100aの内周面から反射した光線を上記と同じ光路を逆方向に透光性基準パイプ22⇒第1光路変換手段3⇒第2光路変換手段21⇒回転側光ファイバー2⇒回転光コネクター20⇒固定側光ファイバー1を通過して光干渉解析部88に導かれる。   The light beam further passes through the translucent reference pipe 22, and the light beam reflected from the inner peripheral surface of the inspection object 100a is transmitted through the same optical path in the opposite direction to the translucent reference pipe 22⇒first optical path conversion means 3⇒second. The light path changing means 21 ⇒ the rotation side optical fiber 2 ⇒ the rotation optical connector 20 ⇒ passes through the fixed side optical fiber 1 and is guided to the optical interference analysis unit 88.

次に、第1モータ12と第2モータ17の回転数が例えば、第1モータ12の回転数が3600rpm一定で、一方第2モータ17の回転数は3570rpm一定で回転させ、これら2個のモータ回転数に若干の差を与える回転状態に切り換える。この状態では、図3に示すように第1光路変換手段3が回転すると同時に、第2光路変換手段21との相対回転角度位相が徐々に変化していき、やがて光線は回転する第1光路変換手段3で反射し光線は360度に全周方向に放射されつつ、長手方向の放射角度が徐々に変化し図5の図中θ2に示すように変わる。すなわち、この瞬間の光線の放射範囲は図5に示すような傾斜した傘状の範囲に変わっている。   Next, the rotation speed of the first motor 12 and the second motor 17 is, for example, the rotation speed of the first motor 12 is kept constant at 3600 rpm, while the rotation speed of the second motor 17 is kept constant at 3570 rpm. Switch to a rotation state that gives a slight difference in rotation speed. In this state, as shown in FIG. 3, the first optical path conversion unit 3 rotates, and at the same time, the relative rotation angle phase with the second optical path conversion unit 21 gradually changes, and the light beam eventually rotates. The light beam reflected by the means 3 is radiated in the entire circumferential direction at 360 degrees, and the radiation angle in the longitudinal direction gradually changes and changes as indicated by θ2 in FIG. That is, the radiation range of light at this moment has changed to an inclined umbrella-shaped range as shown in FIG.

この回転角度位相差は、第1モータ12が1分間に3600回転する間に第2モータ17の回転数との差分である30回転(即ち、3600−3570=30回転/分)ずれるので、即ち1分間あたり30回(即ち30往復)、回転角度位相差が生じ、引き続き第1光路変換手段3と第2光路変換手段21の回転位相差がゆっくりと1分間に30回ずつ生じ続ける。この動作により、光線の放射方向が図6に示すように、θ1〜θ2の範囲で連続的に変化し、光線の放射範囲はθ1+θ2の範囲で三次元的に繰り返し照射される。この構成では、光線の放射範囲内に信号線や電線18,19が存在しないため、陰や欠落のない三次元画像データを得ることができる。   This rotation angle phase difference is shifted by 30 rotations (that is, 3600-3570 = 30 rotations / minute) which is a difference from the rotation speed of the second motor 17 while the first motor 12 rotates 3600 times per minute. The rotation angle phase difference is generated 30 times per minute (that is, 30 reciprocations), and the rotation phase difference between the first optical path conversion unit 3 and the second optical path conversion unit 21 is continuously generated 30 times per minute. By this operation, as shown in FIG. 6, the radiation direction of the light beam continuously changes in the range of θ1 to θ2, and the radiation range of the light beam is repeatedly irradiated three-dimensionally in the range of θ1 + θ2. In this configuration, since the signal lines and the electric wires 18 and 19 do not exist within the light emission range, three-dimensional image data having no shadows or omissions can be obtained.

図2において、回転速度センサ23aが第1光路変換手段3または、第1中空回転軸10の1回転当り1回のパルスを発生し、このパルス信号は図1の第1モータドライバ回路に送られ、第1モータ12の回転速度を調整し、また、コンピュータ89に送られ、三次元ディジタル画像を1フレーム毎に描写するためのトリガー信号に使用される。   In FIG. 2, the rotational speed sensor 23a generates one pulse per one rotation of the first optical path changing means 3 or the first hollow rotary shaft 10, and this pulse signal is sent to the first motor driver circuit of FIG. The rotation speed of the first motor 12 is adjusted and sent to the computer 89 to be used as a trigger signal for rendering a three-dimensional digital image for each frame.

本発明の光学式内面測定装置において、被検査物100の内径測定を行う手順は次のとおりである。   In the optical inner surface measuring apparatus of the present invention, the procedure for measuring the inner diameter of the inspection object 100 is as follows.

まず、測定を行う前の準備としてキャリブレーション(校正)を行う。図7に示すように内径寸法(D1)が既知のリングゲージ100の穴部に光プローブ24の透光性基準パイプ22を挿入し、透光性基準パイプ22の外径からリングゲージ100内面までの半径差(L1−L2)と(L1’−L2’)求めモニタ90に表示し、透光性基準パイプ22の直径数値(D2=2×S=(L1―(L1−L2))+(L1’―(L1’−L2’))を求め、このSの数値を基準径として、コンピュータ89に記憶させ準備を完了する。このキャリブレーション(校正)は1ケ月に1回程度定期的に行うものである。   First, calibration (calibration) is performed as preparation before measurement. As shown in FIG. 7, the transparent reference pipe 22 of the optical probe 24 is inserted into the hole of the ring gauge 100 whose inner diameter dimension (D1) is known, and from the outer diameter of the transparent reference pipe 22 to the inner surface of the ring gauge 100. Difference (L1−L2) and (L1′−L2 ′) are displayed on the monitor 90, and the numerical value of the diameter of the translucent reference pipe 22 (D2 = 2 × S = (L1− (L1−L2)) + ( L1 ′ − (L1′−L2 ′)) is obtained, and the numerical value of S is stored as a reference diameter in the computer 89 to complete the preparation.This calibration is periodically performed about once a month. Is.

キャリブレーション(校正)が終わると次に測定を開始する。別の被検査物100aに光プローブ24の透光性基準パイプ22部分を挿入し、第1モータ12及び第2モータ17を回転させ、光線を放射して図中、L1(プローブの基準から被検査物100a内面までの距離)、L2(プローブの基準から透光性基準パイプ22までの距離)を求める。図8はその測定値の時間変化のグラフを示しており、これらL1とL2の測定値は共に、測定機本体85が温度変動、装置のスイッチONから安定化までの不安定性および、ゆらぎ変動の影響を受けて大きく時間変化する状態を示している。しかしながら、透光性基準パイプ22から被検査物100aまでの距離はこれらの影響を全く受けず、図8の(L1−L2)のグラフのように一定の値を示している。従ってコンピュータ89は、真の半径測定値=(S+(L1−L2))を計算し表示するようにプログラムしている。   When calibration is completed, measurement is started next. The light-transmitting reference pipe 22 portion of the optical probe 24 is inserted into another inspection object 100a, the first motor 12 and the second motor 17 are rotated, and a light beam is emitted so that L1 (reference object from the probe reference) is shown. The distance to the inner surface of the inspection object 100a) and L2 (the distance from the probe reference to the translucent reference pipe 22) are obtained. FIG. 8 shows a graph of the time change of the measured values. Both the measured values of L1 and L2 are the temperature fluctuation of the measuring machine body 85, the instability from the switch ON to the stabilization of the apparatus, and the fluctuation fluctuation. It shows a state that changes greatly with time. However, the distance from the translucent reference pipe 22 to the inspection object 100a is not affected at all, and shows a constant value as shown in the graph of (L1-L2) in FIG. Accordingly, the computer 89 is programmed to calculate and display the true radius measurement = (S + (L1-L2)).

また、円筒度の測定方法は、図1に示すスライド用モータ83を停止させ振動が出ない状態で、図7に示すように、ΔZの範囲の三次元データを取り込み、得られたデータをコンピュータ89が自動的に傾斜角度を補正して、内接円筒と外接円筒の2つの立体画像間の半径差を求め、これを円筒度としてモニタ90に表示する。   In addition, as shown in FIG. 7, the cylindricity measurement method is such that the slide motor 83 shown in FIG. 1 is stopped and no vibration is generated. 89 automatically corrects the tilt angle to obtain a radius difference between the two stereoscopic images of the inscribed cylinder and the circumscribed cylinder, and displays this on the monitor 90 as the cylindricity.

図9〜図12は本発明に係る光学式内面測定装置の透光性基準パイプ22位置検出第1の方法を示している。   9 to 12 show a first method for detecting the position of the translucent reference pipe 22 of the optical inner surface measuring apparatus according to the present invention.

図9の構成は図7と同様であるが、カメラ51が被検査物100bとの相対位置が変わらないよう、ベース80に固定されている。図10はこのカメラによる検出画像であり、被検査物100bの内面の輪郭100xと、透光性基準パイプ22の中心を示しているが、この透光性基準パイプ22の中心位置は常に微振動を起こしており、図中±R3(具体的には0.01μm程度)に示すようにその振動量が捉えられている。この微振動は主に、図2に示す第1モータ12及び第2モータ17の回転により生じるアンバランス振動によるものであり、これら2個のモータの動的アンバランス量を減らすことで振動量は減少するが、より高精度な測定を行うためには透光性基準パイプ22の振れ振動を検出することが大変有効である。   The configuration of FIG. 9 is the same as that of FIG. 7, but the camera 51 is fixed to the base 80 so that the relative position of the camera 51 with respect to the inspection object 100b does not change. FIG. 10 is an image detected by this camera, and shows the contour 100x of the inner surface of the inspection object 100b and the center of the translucent reference pipe 22. The center position of the translucent reference pipe 22 is always slightly vibrated. The amount of vibration is captured as indicated by ± R3 (specifically about 0.01 μm) in the figure. This slight vibration is mainly due to unbalance vibration generated by the rotation of the first motor 12 and the second motor 17 shown in FIG. 2, and the amount of vibration is reduced by reducing the dynamic unbalance amount of these two motors. Although it decreases, it is very effective to detect the vibration of the translucent reference pipe 22 in order to perform measurement with higher accuracy.

図11は検出波形と基準パイプ振動量排除原理説明図であり、図中±R3のグラフは検出した透光性基準パイプ22の振動量の時間変化を示し、L1、L2、(L1−L2)の3本のグラフは図8と同じである。コンピュータ89が被検査物100bの内径寸法を測定する場合は、先に説明した半径測定値=(S+(L1−L2))にさらに±R3を加えて算出する。
即ち、真の半径測定値=S+(L1−L2)±R3 であり、
これが求める高精度な真の測定値である。
FIG. 11 is a diagram for explaining the detection waveform and the reference pipe vibration amount exclusion principle. In the figure, the graph of ± R3 shows the change over time of the detected vibration amount of the translucent reference pipe 22, and L1, L2, (L1-L2) These three graphs are the same as in FIG. When the computer 89 measures the inner diameter of the inspection object 100b, it is calculated by adding ± R3 to the radius measurement value = (S + (L1-L2)) described above.
That is, true radius measurement = S + (L1-L2) ± R3,
This is a highly accurate true measurement value.

我々の実験によれば、図12に示すように、
(I)透光性基準パイプを使わない測定では光学系のゆらぎ変動と、回転モータの振れ振動の影響により測定ばらつきが多く、その標準偏差(σ)は18.5μmと大変悪かった。
(II)しかし、図7に示すように透光性基準パイプ22から被検査物100aの内周面までの距離を測る方法ではその標準偏差(σ)は0.05μmに大幅に改善され、
(III)また、図9に示すように、透光性基準パイプ22自身の振れ振動をカメラ51で捉えてこれを加味した場合には、その標準偏差(σ)は0.02μmまで改善が進み、測定ばらつきの無い、大変高精度な測定が行えた。
According to our experiment, as shown in FIG.
(I) In the measurement without using the light-transmitting reference pipe, the measurement variation was large due to the fluctuation of the optical system and the influence of the vibration of the rotary motor, and the standard deviation (σ) was very bad at 18.5 μm.
(II) However, as shown in FIG. 7, in the method of measuring the distance from the translucent reference pipe 22 to the inner peripheral surface of the inspection object 100a, the standard deviation (σ) is greatly improved to 0.05 μm,
(III) Further, as shown in FIG. 9, when the vibration of the translucent reference pipe 22 itself is captured by the camera 51 and this is taken into consideration, the standard deviation (σ) is improved to 0.02 μm. It was possible to measure with very high accuracy without measurement variation.

この構成により、被検査物100a内周面から、光ファイバー1を経て導き入れた反射光をコンピュータ89で計算することにより、透光性基準パイプを基準に測定が行え、スライダ82が静止した状態で三次元データの収集が可能になり、また、透光性基準パイプの振動を検出しこれを用いて補正を行うため、干渉光学系の温度等による変動またはゆらぎ変動、及び光線を被測定面に回転放射するータの軸受振れの影響が完全に排除でき、測定装置の軸方向送り精度の誤差が排除でき、ばらつきなく高精度に測定が可能になる。   With this configuration, the computer 89 calculates the reflected light introduced from the inner peripheral surface of the object 100a to be inspected through the optical fiber 1, so that the measurement can be performed based on the translucent reference pipe, and the slider 82 is stationary. Three-dimensional data can be collected, and the vibration of the translucent reference pipe is detected and corrected using this, so fluctuations or fluctuations due to the temperature of the interference optical system, etc. The effects of bearing runout of the rotating radiation can be completely eliminated, errors in the axial feed accuracy of the measuring device can be eliminated, and measurement can be performed with high accuracy without variation.

図13は本発明に係る光学式面測定装置の第2の実施形態を示している。
図13の構成は図9とほぼ同様であるが、距離センサ52a、52bが、被検査物100Cと透光性基準パイプ22の相対位置関係を2方向から測定し、被検査物100に対する透光性基準パイプ22の中心位置の変化(±R3)を検出している
FIG. 13 shows a second embodiment of the optical surface measuring apparatus according to the present invention.
The configuration in FIG. 13 is almost the same as that in FIG. 9, but the distance sensors 52 a and 52 b measure the relative positional relationship between the object 100 C to be inspected and the light-transmitting reference pipe 22 from two directions, and transmit light to the object 100 to be inspected. The change (± R3) of the center position of the sex reference pipe 22 is detected.

図9と同様にコンピュータ89は、被検査物100Cの内径寸法を測定する場合は、先に説明した半径測定値=(S+(L1−L2))にさらに±R3を加えて算出する。その結果、その測定値の標準偏差(σ)は図9と同様に図12のCに示すように、0.02μmまで改善が進み、測定ばらつきの無い大変高精度な測定が行えた。   Similarly to FIG. 9, when measuring the inner diameter dimension of the inspection object 100 </ b> C, the computer 89 calculates by adding ± R3 to the previously described radius measurement value = (S + (L1−L2)). As a result, the standard deviation (σ) of the measured value was improved to 0.02 μm as shown in FIG. 12C as in FIG. 9, and very high-precision measurement without measurement variation was performed.

図14は本発明に係る光学式面測定装置の第3の実施形態を示している。
図14の構成は図7とほぼ同じであるが、被検対象物100dの穴の一方側から透光性基準パイプ22の先端を挿入し、穴の他方から基準パイプ押圧子53を挿入し透光性基準パイプ22の先端に当接させることで透光性基準パイプの揺れを防止した状態で、光線を三次元的に放射し、その反射光を検出するよう構成している。
FIG. 14 shows a third embodiment of the optical surface measuring apparatus according to the present invention.
The configuration of FIG. 14 is almost the same as that of FIG. 7, but the tip of the light-transmitting reference pipe 22 is inserted from one side of the hole of the test object 100d, and the reference pipe presser 53 is inserted from the other side of the hole. It is configured to emit light rays three-dimensionally and detect the reflected light in a state in which the light-transmissive reference pipe is prevented from shaking by being brought into contact with the tip of the light-sensitive reference pipe 22.

この構成によれば、透光性基準パイプ22が内蔵される第1モータ12及び第2モータ17の回転部分が振動を減少させる効果が得られる。この方法ではカメラ51や距離センサ52が検出を苦手とする高周波領域の振動を大幅に削減できるので、より高精度な測定が可能である。   According to this configuration, there is an effect that the rotating portions of the first motor 12 and the second motor 17 in which the translucent reference pipe 22 is incorporated reduce vibration. In this method, vibrations in the high-frequency region, which the camera 51 and the distance sensor 52 are not good at detecting, can be greatly reduced, so that more accurate measurement is possible.

尚、チューブ6はその直径は約2mm以下程度であり、その内部に貫通する固定側光ファイバー1は、屈曲自在なグラスファイバーであり直径は0.85〜0.4mm程度のものを使っている。   The tube 6 has a diameter of about 2 mm or less, and the fixed-side optical fiber 1 that penetrates the tube 6 is a bendable glass fiber having a diameter of about 0.85 to 0.4 mm.

図2に示される第1光路変換手段3は平滑な反射面を有するミラーかプリズムからなり、反射率を高めるため、その表面粗さと平面度は一般の光学部品と同等以上の精度に磨きあげられている。   The first optical path changing means 3 shown in FIG. 2 is composed of a mirror or a prism having a smooth reflecting surface, and its surface roughness and flatness are polished to an accuracy equal to or higher than that of general optical components in order to increase the reflectance. Yes.

図2に示される第1中空回転軸10は、金属またはセラミックスからなり、溶融金属のダイによる引き抜き加工か、または焼成前のセラミックスのダイによる押し出し加工で中空に成形され、硬化処理後に研磨加工法等により仕上げ加工される。   The first hollow rotary shaft 10 shown in FIG. 2 is made of metal or ceramics, and is formed into a hollow shape by drawing with a die of molten metal or extrusion with a die of ceramics before firing. Finished by etc.

図2において、第1中空回転軸10の穴は直径が0.15〜0.5mmあり、光ファイバー1の直径より十分大きくしているため、光ファイバー固定具4で固定された固定側光ファイバー1が第1中空回転軸10に接触することはなく、仮に軽く接触しても摩耗粉が発生するほどではない。また、この部分で回転摩擦トルクが変動する問題もない。   In FIG. 2, the hole of the first hollow rotating shaft 10 has a diameter of 0.15 to 0.5 mm and is sufficiently larger than the diameter of the optical fiber 1, so that the fixed-side optical fiber 1 fixed by the optical fiber fixture 4 is the first one. 1 The hollow rotating shaft 10 is not contacted, and even if lightly touched, wear powder is not generated. Further, there is no problem that the rotational friction torque varies in this portion.

本発明によれば、従来、測定装置の軸方向送り精度の誤差、測定用透光性基準パイプの振動、及び光線を被測定面に回転放射するモータの軸受振れ、及ぶ光学系の熱変動やゆらぎの影響が完全に排除でき、これにより画像データのばらつきや、ノイズを解消して、正しく精密な内径及び内周面の精度測定が可能であり、被測定物内周面形状の高精度な測定をおこなうことが可能である。   According to the present invention, conventionally, errors in the axial feed accuracy of the measuring apparatus, vibrations of the translucent reference pipe for measurement, and vibration of the motor bearing that radiates light to the surface to be measured, and thermal fluctuations of the optical system, The effects of fluctuations can be completely eliminated, thereby eliminating variations in image data and noise, enabling accurate and accurate measurement of the inner diameter and inner peripheral surface, and the high accuracy of the inner peripheral surface shape of the object being measured. Measurements can be made.

本発明の干渉光学法を用いて被検対象物の観察と測定を行う光学式内径測定装置は、工業用診断装置にも適用して高精度な測定を行えるとともに、例えば深穴の三次元観察を行うことができる。また、医療現場での微細な病巣の寸法の数値的な診断や治療への活用が期待される。   The optical inner diameter measuring apparatus for observing and measuring a test object using the interference optical method of the present invention can be applied to an industrial diagnostic apparatus to perform highly accurate measurement, for example, three-dimensional observation of deep holes. It can be performed. In addition, it is expected to be used for numerical diagnosis and treatment of minute lesion dimensions in the medical field.

1 固定側光ファイバー
2 回転側光ファイバー
3a、3b 第1光路変換手段(ミラー)
4 光ファイバー固定具
5 遮蔽板
6 チューブ
7 第1モータコイル
8 モータケース
9a、9b 第1軸受
10 第1中空回転軸
11 第1ロータ磁石
12 第1モータ
13 第2中空回転軸
13a 穴
14 第2ロータ磁石
15 第2モータコイル
16a、16b 第2軸受
17 第2モータ
18 第1電線
19 第2電線
20 回転光コネクター
21 第2光路変換手段(プリズム等)
22 透光性基準パイプ
23a 回転速度センサ
24 光プローブ
51 カメラ(相対位置検出手段)
52a、52b 距離センサ
53 基準パイプ押圧子
55 走査範囲
80、80a、80b、80c ベース
81 スタンド
82 スライダ
83 スライダ用モータ
84 接続部
85 測定機本体
86 第1モータドライバ回路
87 第2モータドライバ回路
88 光干渉解析部
89 コンピュータ
90 モニタ
100 内径リングゲージ
100a、100b、100c、100d 被検査物
100x 内周面輪郭
DESCRIPTION OF SYMBOLS 1 Fixed side optical fiber 2 Rotation side optical fiber 3a, 3b 1st optical path conversion means (mirror)
4 Optical fiber fixture 5 Shield plate 6 Tube 7 First motor coil 8 Motor case 9a, 9b First bearing 10 First hollow rotating shaft 11 First rotor magnet 12 First motor 13 Second hollow rotating shaft 13a Hole 14 Second rotor Magnet 15 Second motor coils 16a and 16b Second bearing 17 Second motor 18 First electric wire 19 Second electric wire 20 Rotating optical connector 21 Second optical path conversion means (prism etc.)
22 translucent reference pipe 23a rotational speed sensor 24 optical probe 51 camera (relative position detecting means)
52a, 52b Distance sensor 53 Reference pipe presser 55 Scanning range 80, 80a, 80b, 80c Base 81 Stand 82 Slider 83 Slider motor 84 Connection portion 85 Measuring machine main body 86 First motor driver circuit 87 Second motor driver circuit 88 Light Interference analysis unit 89 Computer 90 Monitor 100 Inner diameter ring gauges 100a, 100b, 100c, 100d Inspected object 100x Inner peripheral surface contour

Claims (6)

干渉光学法を用いて被検対象物の観察および測定を行う光学式内面測定装置において、
チューブに内蔵された光ファイバーと、
前記光ファイバーの先端部に少なくとも2つの光路変換手段を有し、
前記2つの光路変換手段を回転駆動させるモータを有し、
前記チューブの先端部は硬質の透光性基準パイプが取り付けられ、
前記透光性基準パイプの半径方向の機械的振動を検出するセンサを有し、
被検対象物の内径に前記透光性基準パイプを挿入し、
前記2つの光路変換手段が前記光ファイバーから導いた光線を円周方向および軸方向に三次元的に光線を放射し、その反射光を検出することを特徴とする光学式内面測定装置。
In an optical inner surface measurement apparatus that observes and measures a test object using an interference optical method,
An optical fiber built into the tube,
Having at least two optical path changing means at the tip of the optical fiber;
A motor that rotationally drives the two optical path changing means;
A hard translucent reference pipe is attached to the tip of the tube,
Having a sensor for detecting radial mechanical vibration of the translucent reference pipe;
Insert the translucent reference pipe into the inner diameter of the test object,
An optical inner surface measuring apparatus characterized in that the two light path changing means emit light rays guided from the optical fiber three-dimensionally in the circumferential direction and the axial direction and detect the reflected light.
前記透光性基準パイプの形状寸法(S)を予め測定しこのデータをコンピュータに記憶しておき、
被測定内周面(L1)と前記透光性基準パイプ間の距離データ(L1−L2)を、前記検出した反射光からコンピュータで計測し、
前記透光性基準パイプの寸法形状データ(S)に前記被測定内周面と前記透光性基準パイプ間の距離データを加えて前記被測定内周面の半径寸法=S+(L1−L2)を求めることを特徴とした請求項1記載の光学式内面測定装置。
The shape dimension (S) of the translucent reference pipe is measured in advance and this data is stored in a computer.
The distance data (L1-L2) between the measured inner peripheral surface (L1) and the translucent reference pipe is measured from the detected reflected light by a computer,
Radial dimension of the inner peripheral surface to be measured = S + (L1-L2) by adding distance data between the inner peripheral surface to be measured and the translucent reference pipe to the dimension / shape data (S) of the translucent reference pipe The optical inner surface measuring apparatus according to claim 1, wherein:
前記被検対象物の内周面輪郭と、前記透光性基準パイプ間の相対位置変化量(±R3)をカメラで検出し、
前記透光性基準パイプの寸法形状データ(S)に前記被測定内周面と前記透光性基準パイプ間の距離データを加えた前記被測定内周面の半径寸法=S+(L1−L2)に、前記透光性基準パイプ間の関係位置寸法(±R3)を加えて補正し、前記被測定内周面の半径寸法=S+(L1−L2)±R3 を求めて表示することを特徴とする請求項1または2に記載の光学式内面測定装置。
The inner peripheral surface contour of the test object and the relative position change amount (± R3) between the translucent reference pipe are detected by a camera,
Radial dimension of the inner peripheral surface to be measured, which is obtained by adding distance data between the inner peripheral surface to be measured and the translucent reference pipe to the dimension / shape data (S) of the translucent reference pipe = S + (L1-L2) In addition, correction is made by adding a relational position dimension (± R3) between the translucent reference pipes, and a radius dimension of the inner peripheral surface to be measured = S + (L1−L2) ± R3 is obtained and displayed. The optical inner surface measuring apparatus according to claim 1 or 2.
前記被検対象物の前記内周面輪郭と、前記透光性基準パイプ間の相対関置変化量(±R3)を被検対象物を固定しているベースに取り付けた距離センサで検出することを特徴とする請求項1〜3何れか1項記載の光学式内面測定装置。
Detecting a relative displacement (± R3) between the inner peripheral surface contour of the test object and the translucent reference pipe with a distance sensor attached to a base to which the test object is fixed. The optical inner surface measuring apparatus according to any one of claims 1 to 3.
前記被検対象物の穴の片方から前記透光性基準パイプの先端を挿入し、
他方から基準パイプ押圧子を挿入し前記透光性基準パイプの先端に当接させた状態で、光線を円周方向および軸方向に三次元的に光線を放射し、反射光を検出するよう構成したことを特徴とする請求項1〜4何れか1項記載の光学式内面測定装置。
Insert the tip of the translucent reference pipe from one of the holes of the test object,
A configuration in which a reference pipe presser is inserted from the other side and in contact with the tip of the translucent reference pipe, the light beam is emitted three-dimensionally in the circumferential direction and the axial direction, and the reflected light is detected. The optical inner surface measuring device according to any one of claims 1 to 4, wherein
前記モータは、第1モータと、前記第1モータの後方側に配置された第2モータとがあり、前記光路変換手段は、前記第1モータにより動作する第1光路変換手段と、前記第2モータにより動作する第2光路変換手段とがあり、前記光ファイバーは、前記第2モータの後方側で、固定具を介して前記チューブに回転不能に配置された固定側光ファイバーと、前記第1モータまたは前記第2モータの回転軸部と一体的に回転する回転側光ファイバーとで構成されており、前記第1モータおよび前記第2モータの前記回転軸部は、各々が中空形状をしており、前記回転側光ファイバーは、先端側の少なくとも一部が前記第1モータの回転軸部の中空穴に挿通されるとともに、後方側の少なくとも一部が前記第2モータの回転軸部の中空穴に固定されており、前記第1光路変換手段は、前記第2光路変換手段の先端側で、前記第1モータの回転軸部と一体的の回転可能に配置されており、前記第2光路変換手段は、前記回転側光ファイバーの先端に備わる構成としたことを特徴とする請求項1〜5何れか1項記載の光学式内面測定装置。   The motor includes a first motor and a second motor disposed on the rear side of the first motor, and the optical path conversion unit includes a first optical path conversion unit operated by the first motor, and the second motor. There is a second optical path changing means that is operated by a motor, and the optical fiber is arranged on the rear side of the second motor via a fixture so as not to rotate on the tube, and the first motor or The rotation shaft portion of the second motor and a rotation-side optical fiber that rotates integrally, each of the rotation shaft portions of the first motor and the second motor has a hollow shape, The rotation-side optical fiber has at least a part on the tip side inserted into the hollow hole of the rotation shaft part of the first motor, and at least a part on the rear side fixed to the hollow hole of the rotation shaft part of the second motor. The first optical path conversion means is disposed so as to be rotatable integrally with a rotation shaft portion of the first motor on the tip side of the second optical path conversion means, and the second optical path conversion means is The optical inner surface measuring apparatus according to claim 1, wherein the optical inner surface measuring apparatus is provided at a distal end of the rotation-side optical fiber.
JP2016075140A 2016-04-04 2016-04-04 Optical inner surface measuring device Active JP6739780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016075140A JP6739780B2 (en) 2016-04-04 2016-04-04 Optical inner surface measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016075140A JP6739780B2 (en) 2016-04-04 2016-04-04 Optical inner surface measuring device

Publications (2)

Publication Number Publication Date
JP2017187335A true JP2017187335A (en) 2017-10-12
JP6739780B2 JP6739780B2 (en) 2020-08-12

Family

ID=60046250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016075140A Active JP6739780B2 (en) 2016-04-04 2016-04-04 Optical inner surface measuring device

Country Status (1)

Country Link
JP (1) JP6739780B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108489388A (en) * 2018-04-03 2018-09-04 电子科技大学 A kind of small internal surface of hole three-dimensional imaging detecting system based on Spectral Confocal displacement measuring technology
CN108489387A (en) * 2018-04-03 2018-09-04 电子科技大学 A kind of small internal surface of hole three-dimensional imaging detecting system of optical fiber interference type
CN110132208A (en) * 2019-06-12 2019-08-16 山东瑞新轴承制造有限公司 A kind of bearing bore diameter measuring device
JP2019191050A (en) * 2018-04-26 2019-10-31 アダマンド並木精密宝石株式会社 Probe for optical imaging and optical measuring apparatus
JP2019209466A (en) * 2018-06-08 2019-12-12 Dmg森精機株式会社 Measurement system, method and program
CN110986807A (en) * 2019-11-07 2020-04-10 西安大目智能设备研究所有限公司 Non-contact measuring method for multi-stage inner diameter of stepped deep through hole metal part
JP2020085468A (en) * 2018-11-15 2020-06-04 アダマンド並木精密宝石株式会社 Optical measurement device of surface pores on inner peripheral surface, and measurement method for porosity
JP2020085717A (en) * 2018-11-28 2020-06-04 株式会社日立製作所 Shape measurement system, probe tip part, and method for measuring shape
CN114353690A (en) * 2021-12-13 2022-04-15 燕山大学 On-line detection device and detection method for roundness of large aluminum alloy annular forging
WO2022202533A1 (en) * 2021-03-25 2022-09-29 株式会社東京精密 Calibration method for optical rotation probe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178619A (en) * 1994-12-22 1996-07-12 Matsushita Electric Works Ltd Optical scanning displacement sensor
JP2005164243A (en) * 2003-11-28 2005-06-23 Ricoh Co Ltd Surface defect inspection device
JP2006242605A (en) * 2005-03-01 2006-09-14 Niigata Univ Method for measuring runout of rotating tool and its measuring apparatus
US20150354994A1 (en) * 2013-01-17 2015-12-10 Snecma Device for measuring the internal profile of a hollow shaft
JP2015232539A (en) * 2014-05-12 2015-12-24 並木精密宝石株式会社 Optical type inner surface measuring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178619A (en) * 1994-12-22 1996-07-12 Matsushita Electric Works Ltd Optical scanning displacement sensor
JP2005164243A (en) * 2003-11-28 2005-06-23 Ricoh Co Ltd Surface defect inspection device
JP2006242605A (en) * 2005-03-01 2006-09-14 Niigata Univ Method for measuring runout of rotating tool and its measuring apparatus
US20150354994A1 (en) * 2013-01-17 2015-12-10 Snecma Device for measuring the internal profile of a hollow shaft
JP2015232539A (en) * 2014-05-12 2015-12-24 並木精密宝石株式会社 Optical type inner surface measuring device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108489388A (en) * 2018-04-03 2018-09-04 电子科技大学 A kind of small internal surface of hole three-dimensional imaging detecting system based on Spectral Confocal displacement measuring technology
CN108489387A (en) * 2018-04-03 2018-09-04 电子科技大学 A kind of small internal surface of hole three-dimensional imaging detecting system of optical fiber interference type
JP2019191050A (en) * 2018-04-26 2019-10-31 アダマンド並木精密宝石株式会社 Probe for optical imaging and optical measuring apparatus
JP7058869B2 (en) 2018-04-26 2022-04-25 アダマンド並木精密宝石株式会社 Optical imaging probe and optical measuring device
JP2019209466A (en) * 2018-06-08 2019-12-12 Dmg森精機株式会社 Measurement system, method and program
JP2020085468A (en) * 2018-11-15 2020-06-04 アダマンド並木精密宝石株式会社 Optical measurement device of surface pores on inner peripheral surface, and measurement method for porosity
JP2020085717A (en) * 2018-11-28 2020-06-04 株式会社日立製作所 Shape measurement system, probe tip part, and method for measuring shape
JP7193992B2 (en) 2018-11-28 2022-12-21 株式会社日立製作所 Shape measuring system, probe tip, shape measuring method, and program
CN110132208A (en) * 2019-06-12 2019-08-16 山东瑞新轴承制造有限公司 A kind of bearing bore diameter measuring device
CN110986807A (en) * 2019-11-07 2020-04-10 西安大目智能设备研究所有限公司 Non-contact measuring method for multi-stage inner diameter of stepped deep through hole metal part
WO2022202533A1 (en) * 2021-03-25 2022-09-29 株式会社東京精密 Calibration method for optical rotation probe
CN114353690A (en) * 2021-12-13 2022-04-15 燕山大学 On-line detection device and detection method for roundness of large aluminum alloy annular forging

Also Published As

Publication number Publication date
JP6739780B2 (en) 2020-08-12

Similar Documents

Publication Publication Date Title
JP6739780B2 (en) Optical inner surface measuring device
JP6232552B2 (en) Optical inner surface measuring device
JP6232550B2 (en) Optical inner surface measuring device
US9709388B2 (en) Optical inner surface measuring device
JP6755553B2 (en) Optical measuring device
US10401157B2 (en) Optical inner surface measurement device
CN106289055B (en) Gauge in optical profile type
CN111141767A (en) X-ray CT apparatus for measurement and CT reconstruction method using the same
JP6865441B2 (en) Optical inner surface measuring device
WO2021100792A1 (en) Optical inner surface measurement device and optical inner surface measurement method
JP6980266B2 (en) Probe for optical imaging
JP7058869B2 (en) Optical imaging probe and optical measuring device
JP2021156852A (en) Device and method for optical inner surface measurement
JP2020187052A (en) Optical measuring device and optical measuring method
JP2017215211A (en) Inner face measuring machine-purpose calibration device
JP2019191417A (en) Optical imaging probe
US11740072B2 (en) Inner surface shape measurement device, and alignment method and magnification calibration method for inner surface shape measurement device
JP6980267B2 (en) Probe for optical imaging
ES2310433B1 (en) SCANNING PROCEDURE IN THREE DIMENSIONS FOR REVOLUTION PARTS AND DEVICES USED.
JP2022156224A (en) Optical type inner surface measuring device
JP2021148770A (en) Magnification calibration method for inner surface shape measuring machine, and inner surface shape measuring machine
JP2014130120A (en) Device and method for measuring inner surface profile
Zhang et al. A Surface Inspection Method for Rotary Workpieces Using Line Structured Light Based on 3d Point Cloud Reconstruction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200716

R150 Certificate of patent or registration of utility model

Ref document number: 6739780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250