JP6865441B2 - Optical inner surface measuring device - Google Patents

Optical inner surface measuring device Download PDF

Info

Publication number
JP6865441B2
JP6865441B2 JP2018524689A JP2018524689A JP6865441B2 JP 6865441 B2 JP6865441 B2 JP 6865441B2 JP 2018524689 A JP2018524689 A JP 2018524689A JP 2018524689 A JP2018524689 A JP 2018524689A JP 6865441 B2 JP6865441 B2 JP 6865441B2
Authority
JP
Japan
Prior art keywords
motor
optical
tube
optical path
conversion means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018524689A
Other languages
Japanese (ja)
Other versions
JPWO2018003097A1 (en
Inventor
大志 山崎
大志 山崎
正人 森本
正人 森本
拓也 舘山
拓也 舘山
隆文 淺田
隆文 淺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adamant Namiki Precision Jewel Co Ltd
Original Assignee
Adamant Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adamant Namiki Precision Jewel Co Ltd filed Critical Adamant Namiki Precision Jewel Co Ltd
Publication of JPWO2018003097A1 publication Critical patent/JPWO2018003097A1/en
Application granted granted Critical
Publication of JP6865441B2 publication Critical patent/JP6865441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Description

本発明は、被測定物の内周面または深穴内径に、光学式測定プローブを進入させ、内面または深穴底面に光線を放射し、反射光を立体的に取り込んで内部形状の観察、及び寸法及び幾何学精度を測定するための光学式内面測定装置に関するものである。 In the present invention, an optical measuring probe is inserted into the inner peripheral surface or the inner diameter of the deep hole of the object to be measured, light is emitted to the inner surface or the bottom surface of the deep hole, and the reflected light is three-dimensionally captured to observe the internal shape and observe the internal shape. It relates to an optical inner surface measuring device for measuring dimensional and geometrical accuracy.

例えば自動車用エンジンの燃料噴射ノズル部品の加工仕上がり寸法や幾何学精度の良否は自動車の動力性能と燃料消費効率に大きく影響するが、これらの検査は一般には真円度測定機、表面粗さ計、リニヤスケールを用いた測長機等の接触式測定機を用いて検査されていた。しかし近年、被測定物に傷を付けない目的から光学式の非接触式測定機が登場している。 For example, the quality of processed finished dimensions and geometric accuracy of fuel injection nozzle parts of automobile engines have a great influence on the power performance and fuel consumption efficiency of automobiles, but these inspections are generally performed by roundness measuring machines and surface roughness meters. , It was inspected using a contact type measuring machine such as a length measuring machine using a liner scale. However, in recent years, an optical non-contact measuring machine has appeared for the purpose of not damaging the object to be measured.

非接触で被測定物内面を観察または検査する手段として、画像診断技術(光イメージング技術)は、装置機械、医療現場などにおいて広く利用されている技術である。例えば、精密機器などの製造現場において、深穴の奥部の検査や画像診断の手法として、一般的な内視鏡によるカメラ観察に加えて、光線を内面に照射し反射光の強弱を光センサで捉え、コンピュータで判断して表面傷の有無を自動検査する方法等が採用されている。 As a means for observing or inspecting the inner surface of an object to be measured in a non-contact manner, diagnostic imaging technology (optical imaging technology) is a technology widely used in equipment machines, medical sites, and the like. For example, at a manufacturing site such as a precision instrument, as a method of inspecting the inner part of a deep hole and diagnosing an image, in addition to observing a camera with a general endoscope, an optical sensor irradiates the inner surface with light rays to determine the intensity of reflected light. A method is adopted in which the presence or absence of surface scratches is automatically inspected by judging with a computer.

一方、医療の分野では人体内部の患部の観察に断層画像が観察可能なX線CT、核磁気共鳴、光の干渉性を利用した内視鏡によるOCT画像(近赤外光を用いた光干渉断層撮影)などの方式が研究されると共に活用されている。そして、これら光学技術を機械装置の分野で活用し、穴や精密内径を有する機械部品の内周面に光線を照射して内周面の傷の観察または寸法測定が検討されている。これら観察および測定装置の代表的な構造は、例えば、特許文献1から3に示す通りである。 On the other hand, in the medical field, X-ray CT, which allows tomographic images to be observed for observing the affected area inside the human body, nuclear magnetic resonance, and OCT images by an endoscope using the coherence of light (light interference using near-infrared light). Methods such as tomography) are being researched and utilized. Then, by utilizing these optical technologies in the field of mechanical devices, irradiating the inner peripheral surface of a mechanical part having a hole or a precise inner diameter with a light beam, observation of scratches on the inner peripheral surface or measurement of dimensions is being studied. Typical structures of these observation and measurement devices are as shown in Patent Documents 1 to 3, for example.

特許文献1に示す穴形状測定方法および測定装置では、該文献中の被測定物(2)の小径穴(1)の中にスリットを通した光線を斜めから照射し、小径穴(1)の内周面から反射した光線をカメラで捉え、小径穴の形状精度を読み取っていた。
しかしながらこの構成では、被測定物の表面が例えばリングゲージのように平滑な面であれば測定が可能であるが、光線を斜めから照射しているために、一般的な複雑形状の機械部品の測定を行う場合には、小径穴(1)の内面の凹凸形状の影響を受け、光線が発散し反射光が得られにくくなるため正しい形状をカメラが捉えることができず、高精度な測定は不可能であった。また、被測定物(2)が想定以上に長い場合にも反射光を捉えることが出来ず測定が行えなかった。
In the hole shape measuring method and measuring apparatus shown in Patent Document 1, a light beam passing through a slit is obliquely irradiated into the small diameter hole (1) of the object to be measured (2) in the document, and the small diameter hole (1) is irradiated. The light beam reflected from the inner peripheral surface was captured by a camera, and the shape accuracy of the small-diameter hole was read.
However, in this configuration, if the surface of the object to be measured is a smooth surface such as a ring gauge, measurement is possible, but since the light beam is emitted from an angle, it is a general mechanical part having a complicated shape. When making measurements, the camera cannot capture the correct shape because it is affected by the uneven shape of the inner surface of the small diameter hole (1), which diverges light rays and makes it difficult to obtain reflected light. It was impossible. In addition, even when the object to be measured (2) was longer than expected, the reflected light could not be captured and the measurement could not be performed.

また、特許文献2に示す光イメージング用プローブを用いて細孔内面を測定する方法では、被測定物孔の内周面にプローブを挿入し、集光レンズ(3)からの光線を光路変換手段であるミラー(18)が回転し360度回転すると共に、遠心力の変化によりミラーの角度が変化し光線の放射角が変わることにより光線を三次元方向に放射して立体形状を計測する。
しかしながら被測定物の内部にプローブを挿入するため、プローブ内で回転するモータの発熱が被測定物に伝搬するため、被測定物の測定面が数ナノメートル程度ではあるが変形し正しい形状寸法を測定することができなかった。
Further, in the method of measuring the inner surface of the pore using the probe for optical imaging shown in Patent Document 2, the probe is inserted into the inner peripheral surface of the hole to be measured, and the light beam from the condensing lens (3) is converted into an optical path. The mirror (18) rotates 360 degrees, and the angle of the mirror changes due to a change in centrifugal force, and the emission angle of the light ray changes, so that the light ray is emitted in a three-dimensional direction and the three-dimensional shape is measured.
However, since the probe is inserted inside the object to be measured, the heat generated by the motor rotating inside the probe propagates to the object to be measured. Could not be measured.

特許文献3に示す測定機においては、内径寸法の測定基準となるリングゲージと、被測定物(2)の温度差を温度計(6)で実測し、この温度差による熱膨張量を演算し、測定寸法を補正するというものである。
しかしながら被測定物の膨張は一定ではなく材質や形状に複雑に変化するため、正しい補正は行い難く、例えば0.01マイクロメートルレベルの正しい補正計算と高精度な測定ができていなかった。
In the measuring machine shown in Patent Document 3, the temperature difference between the ring gauge, which is the measurement standard for the inner diameter dimension, and the object to be measured (2) is measured with a thermometer (6), and the amount of thermal expansion due to this temperature difference is calculated. , The measurement dimension is corrected.
However, since the expansion of the object to be measured is not constant and changes in a complicated manner depending on the material and shape, it is difficult to make a correct correction. For example, a correct correction calculation at the 0.01 micrometer level and a highly accurate measurement have not been performed.

日本特開平08−233545号公報Japanese Patent Application Laid-Open No. 08-233545 日本特開2015−008995号公報Japanese Patent Application Laid-Open No. 2015-008995 日本特開平05−312557号公報Japanese Patent Application Laid-Open No. 05-31257

本発明は上記従来事情に鑑みてなされたものであり、その課題とするところは、被測定物の内周面または深穴内径、または長くて屈曲するパイプの穴内に、測定用プローブを進入させ内周面または深穴底面に光線を回転放射し、反射光を立体的に収集してコンピュータ処理し三次元画像データを観察、及び寸法測定及び幾何学精度を測定すること。そして、測定内周面に光線を回転放射する測定プローブ自身の機械振動、および回転放射用モータ回転軸に生じる軸振れの影響を完全に排除すること。そして、より重要な要求は、回転用モータからの発熱を被測定物及び自身の回転放射部への伝搬を防止することである。これら課題解決により、従来、回転モータの発熱が引き起こしていた温度変化によるデータのばらつきを解消して、正しく精密な内径及び内周面の三次元精度測定を可能にする光学式内面測定装置を提供することである。
The present invention has been made in view of the above-mentioned conventional circumstances, and an object of the present invention is to allow a measuring probe to enter an inner peripheral surface of an object to be measured, an inner diameter of a deep hole, or a hole of a long and bent pipe. Rotately radiate light rays to the inner peripheral surface or the bottom surface of a deep hole, collect the reflected light three-dimensionally, process it with a computer, observe three-dimensional image data, and measure dimensional measurement and geometric accuracy. Then, the influence of the mechanical vibration of the measuring probe itself that radiates light rays on the inner peripheral surface of the measurement and the shaft runout that occurs on the rotating shaft of the rotating radiating motor should be completely eliminated. Then, a more important requirement is to prevent the heat generated from the rotary motor from propagating to the object to be measured and its own rotating radiating portion. By solving these problems, we provide an optical inner surface measuring device that eliminates the variation in data due to temperature changes that was conventionally caused by the heat generated by the rotary motor, and enables accurate and precise three-dimensional accuracy measurement of the inner diameter and inner peripheral surface. It is to be.

上記課題を解決するための一手段は、光学測定法(光干渉法、分光干渉法等)を用いて被測定物内周面の観察および寸法精度を測定する光学式内面測定装置において、チューブに内蔵された光ファイバーと、前記光ファイバーの先端部に少なくとも1つ以上の光路変換手段を有し、前記光路変換手段を回転駆動させるモータをチューブ内に有し、前記モータより先端側から取り込んだ気体はチューブ内を通して前記モータより手前側から排気し、前記チューブの先端部は硬質の透光性パイプが取り付けられ、被測定物の内径に前記透光性パイプを挿入し、前記光ファイバーを通して導いた光線は前記光路変換手段から放出され、前記透光性パイプを通して被測定物の円周面に照射され、その反射光は前記透光性パイプを通して検出するよう構成した。
One means for solving the above problems is to use a tube in an optical inner surface measuring device for observing the inner peripheral surface of an object to be measured and measuring dimensional accuracy by using an optical measuring method (optical interference method, spectral interference method, etc.). A gas having a built-in optical fiber and at least one or more optical path conversion means at the tip of the optical fiber and having a motor for rotationally driving the optical path conversion means in a tube, and a gas taken in from the tip side of the motor Exhaust from the front side of the motor through the tube, a hard translucent pipe is attached to the tip of the tube, the translucent pipe is inserted into the inner diameter of the object to be measured, and the light beam guided through the optical fiber is It is configured to be emitted from the optical path conversion means, irradiated to the circumferential surface of the object to be measured through the translucent pipe, and the reflected light is detected through the translucent pipe.

本発明によれば、測定用光プローブを被測定物の穴内に侵入して光線の放射が行えるため、表面形状や粗さの影響なく安定に測定が行えると共に、光プローブに内蔵されたモータからの発熱の伝搬を防止する冷却機能を有し、また、測定用プローブ内モータの軸受振れや振動の影響が測定の基準となる透光性パイプを用いた測定により排除でき、正しく精密な内径及び内周面の精度測定が可能である。
According to the present invention, since the optical probe for measurement can penetrate into the hole of the object to be measured and emit light rays, stable measurement can be performed without being affected by the surface shape and roughness, and the motor built in the optical probe can be used. It has a cooling function to prevent the propagation of heat generation, and the influence of bearing runout and vibration of the motor in the measurement probe can be eliminated by measurement using a translucent pipe, which is the standard for measurement. It is possible to measure the accuracy of the inner peripheral surface.

本発明の実施の形態に係る光学式内面測定装置の構成図Configuration diagram of the optical inner surface measuring device according to the embodiment of the present invention. 同光学式内面測定装置の第1の光プローブ断面図Cross-sectional view of the first optical probe of the optical inner surface measuring device 同光プローブの回転動作説明図Explanatory drawing of rotational operation of the optical probe 同光プローブの走査角度説明図Explanatory drawing of scanning angle of the same optical probe 同光プローブの走査角度説明図Explanatory drawing of scanning angle of the same optical probe 同光プローブの3次元走査範囲説明図Explanatory drawing of 3D scanning range of the same optical probe 同光プローブの校正方法説明図Explanatory drawing of calibration method of the optical probe 同光プローブの温度変化説明図Explanatory drawing of temperature change of the same optical probe 同光学式内面測定装置の測定ばらつき説明図Explanatory drawing of measurement variation of the same optical inner surface measuring device 同光学式内面測定装置の第2の光プローブ断面図Cross-sectional view of the second optical probe of the optical inner surface measuring device 同光プローブ用スライダの荷重制限機構説明図Explanatory drawing of the load limiting mechanism of the slider for the same optical probe 同スライダの荷重オーバー時の動作説明図Explanatory drawing of operation when the load of the slider is over

本実施の光学式内面測定装置の第1の特徴は、被測定物の観察および測定を行う光学式内面測定装置において、チューブに内蔵された光ファイバーと、光ファイバーの先端部に少なくとも1つ以上の光路変換手段を有し、光路変換手段を回転駆動させるモータをチューブ内に有し、モータより先端側から取り込んだ気体はチューブ内を通してモータより手前側から排気し、チューブの先端部は硬質の透光性パイプが取り付けられ、被検対象物の内径に前記透光性パイプを挿入し、光路変換手段が前記光ファイバーから導いた光線は透光性パイプを通して円周方向に光線を放射し、その反射光を再び透光性パイプを通して検出するよう構成している。
この構成により、測定用プローブを被測定物の穴内に侵入させて、穴内近くから内周面に略直角に光線の放射が行えるので、表面形状や粗さの影響なく安定した測定が行える。また、光プローブに内蔵されたモータからの発熱の伝搬を、気体の流入による冷却作用により防止できる。また、測定精度のばらつき原因であった光プローブ内蔵モータの軸受振れや振動の影響は、透光性パイプの寸法を基準にして被測定物の内面を計測することにより排除することができる。これらのことによって、正しく精密な内径及び内周面の精度測定が可能である。
The first feature of the optical inner surface measuring device of the present embodiment is the optical fiber built in the tube and at least one or more optical paths at the tip of the optical fiber in the optical inner surface measuring device for observing and measuring the object to be measured. It has a conversion means and has a motor in the tube that rotationally drives the optical path conversion means. The gas taken in from the tip side of the motor is exhausted from the front side of the motor through the tube, and the tip of the tube is hard translucent. A sex pipe is attached, the translucent pipe is inserted into the inner diameter of the object to be inspected, and the light beam guided from the optical fiber by the optical path conversion means emits a light beam in the circumferential direction through the translucent pipe, and the reflected light thereof. Is configured to be detected again through the translucent pipe.
With this configuration, the measuring probe can be penetrated into the hole of the object to be measured, and light can be emitted from near the hole at a substantially right angle to the inner peripheral surface, so that stable measurement can be performed without being affected by the surface shape and roughness. Further, the propagation of heat generated from the motor built in the optical probe can be prevented by the cooling action due to the inflow of gas. Further, the influence of bearing runout and vibration of the motor with a built-in optical probe, which is a cause of variation in measurement accuracy, can be eliminated by measuring the inner surface of the object to be measured with reference to the dimensions of the translucent pipe. As a result, it is possible to accurately and accurately measure the inner diameter and the accuracy of the inner peripheral surface.

第2の特徴としては、第1モータと、第1モータの後方側に配置された第2モータとを有し、第1モータにより動作する第1光路変換手段と、第2モータにより動作する第2光路変換手段を有し、第2モータの後方側で、固定具を介してチューブに回転不能に配置された固定側光ファイバーと、第1モータまたは第2モータの回転軸部と一体的に回転する回転側光ファイバーとで構成され、第1モータおよび第2モータの前記回転軸部は、各々が中空形状をしており、前記回転側光ファイバーは、先端側の少なくとも一部が第1モータの回転軸部の中空穴に回転自在に挿通されるとともに、後方側の少なくとも一部が第2モータの回転軸部の中空穴に固定されており、第1光路変換手段は、第2光路変換手段の先端側で、第1モータの回転軸部と一体的の回転可能に配置されており、第2光路変換手段は、回転側光ファイバーの先端にあり第1光路変換手段と前記第1モータの間に位置するよう構成している。
この構成により、光線が3次元方向に放出され、被測定物内周面の3次元データの取得と内周面の三次元精密測定が行える。
The second feature is a first optical path conversion means that has a first motor and a second motor arranged on the rear side of the first motor and is operated by the first motor, and a second motor that is operated by the second motor. It has two optical path conversion means, and rotates integrally with the fixed-side optical fiber, which is non-rotatably arranged on the tube via a fixture on the rear side of the second motor, and the rotating shaft of the first motor or the second motor. Each of the rotating shafts of the first motor and the second motor has a hollow shape, and at least a part of the rotating shaft on the tip side rotates the first motor. It is rotatably inserted into the hollow hole of the shaft portion, and at least a part of the rear side is fixed to the hollow hole of the rotating shaft portion of the second motor. On the tip side, it is rotatably arranged integrally with the rotating shaft of the first motor, and the second optical path converting means is located at the tip of the rotating optical fiber and is between the first optical path converting means and the first motor. It is configured to be located.
With this configuration, light rays are emitted in the three-dimensional direction, and three-dimensional data of the inner peripheral surface of the object to be measured can be acquired and three-dimensional precise measurement of the inner peripheral surface can be performed.

第3の特徴としては、モータより先端側から取り込んだ気体はチューブ内のモータの回転部と固定部の隙間を経由してモータより手前側に導かれ、排気するよう構成している。
この構成により、モータの発熱源であるモータコイル部分を流入させた気体で直接に冷却できるため、測定プローブ内モータからの発熱の伝搬をより確実に防止し、一層精密な精度測定が可能である。
The third feature is that the gas taken in from the tip side of the motor is guided to the front side of the motor via the gap between the rotating portion and the fixed portion of the motor in the tube, and is exhausted.
With this configuration, the motor coil portion, which is the heat generation source of the motor, can be directly cooled by the inflowing gas, so that the propagation of heat generation from the motor in the measurement probe can be prevented more reliably, and more precise accuracy measurement is possible. ..

第4の特長としては、前記チューブ又は透光性パイプの少なくともいずれか一方は摺動部材に固定され、透光性パイプ又はチューブが被検対象物に当接した時、一定以上の当接荷重により摺動部材が透光性パイプと共に摺動し損傷を防止するよう構成した。
この構成によれば、吸気穴を開けているために強度が低く損傷し易いチューブまたは透光性パイプが、被検対象物に当接した場合の損傷を防止し、安心して内径及び内周面の精度測定が可能である。
The fourth feature is that at least one of the tube and the translucent pipe is fixed to the sliding member, and when the translucent pipe or the tube abuts on the object to be inspected, a contact load of a certain level or more is obtained. The sliding member slides together with the translucent pipe to prevent damage.
According to this configuration, the inner diameter and inner peripheral surface can be safely prevented from being damaged when the tube or translucent pipe, which has low strength and is easily damaged due to the intake hole, comes into contact with the object to be inspected. It is possible to measure the accuracy of.

次に本発明の好適な実施形態について図面を参照しながら説明する。 Next, a preferred embodiment of the present invention will be described with reference to the drawings.

本発明に関わる光学式内面測定装置の実施形態について説明する。
図1〜図8は本発明に係る光学式内面測定装置の実施形態を示している。
An embodiment of an optical inner surface measuring device according to the present invention will be described.
1 to 8 show an embodiment of the optical inner surface measuring device according to the present invention.

図1は本発明の実施の形態に係る光学式内面測定装置の構成図である。測定機ベース80にスタンド81が固定され、スライダ用モータ83によりスライダ82が光プローブ34と共に上下に移動する。被測定物100は測定ベース80上にセットされており、光プローブ34の先端部又は透光性パイプ21は被測定物100の深穴に出入りするよう構成されている。光線はチューブ6の先端に固定された透光性パイプ21を通して被測定物100の内周面に照射され、この反射光は、透光性パイプ21を通してチューブ6の内部を通過して固定側光ファイバー1を進み、さらに測定機本体85の接続部84を通過して、光干渉解析部88に入り、コンピュータ89で解析してモニタ90に画像もしくは測定数値を表示する。 FIG. 1 is a configuration diagram of an optical inner surface measuring device according to an embodiment of the present invention. The stand 81 is fixed to the measuring machine base 80, and the slider 82 moves up and down together with the optical probe 34 by the slider motor 83. The object to be measured 100 is set on the measurement base 80, and the tip of the optical probe 34 or the translucent pipe 21 is configured to enter and exit the deep hole of the object to be measured 100. The light beam is applied to the inner peripheral surface of the object to be measured 100 through the translucent pipe 21 fixed to the tip of the tube 6, and the reflected light passes through the inside of the tube 6 through the translucent pipe 21 and is the fixed side optical fiber. Proceeding through 1, further passing through the connecting portion 84 of the measuring machine main body 85, entering the optical interference analysis unit 88, analyzing with the computer 89, and displaying the image or the measured numerical value on the monitor 90.

この光学式内面測定装置は、直径測定機能、真円度測定機能、および三次元的に表示して得る円筒度測定機能を有している。 This optical inner surface measuring device has a diameter measuring function, a roundness measuring function, and a cylindricity measuring function obtained by displaying in three dimensions.

図2は本発明の実施形態に係る光学式内面測定装置の光プローブ34の先端部断面図である。光プローブ34の後端側から先端側に光線を導く固定側光ファイバー1は十分に長いチューブ6の内部に挿通され、光ファイバー固定具4により固定されている。 FIG. 2 is a cross-sectional view of the tip of the optical probe 34 of the optical inner surface measuring device according to the embodiment of the present invention. The fixed-side optical fiber 1 that guides a light beam from the rear end side to the front end side of the optical probe 34 is inserted into a sufficiently long tube 6 and fixed by the optical fiber fixture 4.

固定側光ファイバー1の先端側には回転側光ファイバー2が回転自在に配置されている。回転側光ファイバー2のさらに先端側には略平面状のミラー等からなる第1光路変換手段3a、3bが第1モータ12により回転側光ファイバー2とは独立して回転自在に取り付けられ、回転する事で光線を360度の全周方向に放射するよう構成されている。 A rotating optical fiber 2 is rotatably arranged on the tip side of the fixed optical fiber 1. The first optical path conversion means 3a and 3b made of a substantially flat mirror or the like are rotatably attached to the tip side of the rotating side optical fiber 2 by the first motor 12 independently of the rotating side optical fiber 2 and rotate. It is configured to emit light rays in the entire circumference direction of 360 degrees.

回転側光ファイバー2と固定側光ファイバー1のそれぞれの端面は5ミクロン程度の微小距離を隔てて対向し,回転する遮光板5,光ファイバー固定具4を含めて回転光コネクター22を構成し,回転側光ファイバー2と固定側光ファイバー1の間は高い透過率が維持でき、ほとんど損失なく光学的に接続されている。 The end faces of the rotating side optical fiber 2 and the fixed side optical fiber 1 face each other with a minute distance of about 5 microns, and the rotating optical connector 22 is composed of the rotating light-shielding plate 5 and the optical fiber fixture 4, and the rotating side optical fiber is formed. High transmittance can be maintained between 2 and the fixed-side optical fiber 1, and they are optically connected with almost no loss.

また、第1光路変換手段3a、3bと第1モータ12との間に位置において、固定側光ファイバー1と回転光コネクター22を透過してきた光線を集光して回転しながら先端方向に少々の角度を付けて第1光路変換手段3a、3bに向けて光線を放射する第2光路変換手段20が回転側光ファイバー2の先端に取り付けられている。 Further, at a position between the first optical path conversion means 3a and 3b and the first motor 12, the light rays transmitted through the fixed-side optical fiber 1 and the rotating light connector 22 are focused and rotated, and a slight angle is formed in the tip direction. A second optical path conversion means 20 that emits light rays toward the first optical path conversion means 3a and 3b is attached to the tip of the rotating optical fiber 2.

第1モータ12は、モータケース24に第1モータコイル7、第1軸受9b、9a、モータスラスト板8が固定され、第1ロータ磁石11が取り付けられた第1中空回転軸10が回転する。第1モータコイル7には電線17から電圧が印加され、回転する第1中空回転軸10にはミラー等を用いた第1光路変換手段3が取り付けられている。 In the first motor 12, the first motor coil 7, the first bearings 9b, 9a, and the motor thrust plate 8 are fixed to the motor case 24, and the first hollow rotating shaft 10 to which the first rotor magnet 11 is attached rotates. A voltage is applied to the first motor coil 7 from the electric wire 17, and a first optical path conversion means 3 using a mirror or the like is attached to the rotating first hollow rotating shaft 10.

第2モータ19は、第1モータ12より後方に位置すると共に、モータケース24に第2軸受16a、16bと、第2モータコイル15が取り付けられ、第2軸受16a、16bは第2ロータ磁石14を有する第2中空回転軸13を回転自在に支持し、第2電線18から電圧が印加され回転する。第2中空回転軸13の穴13aには回転側光ファイバー2が挿通固定され、その先端にはプリズム等からなる第2光路変換手段20が取り付けられこれらは一体的に回転する。また回転側光ファイバー2の一部は第1モータ12の第1中空回転軸の穴に回転自在に挿入され相対的に回転する。 The second motor 19 is located behind the first motor 12, and the second bearings 16a and 16b and the second motor coil 15 are attached to the motor case 24. The second bearings 16a and 16b are the second rotor magnets 14. The second hollow rotating shaft 13 is rotatably supported, and a voltage is applied from the second electric wire 18 to rotate the shaft 13. A rotating side optical fiber 2 is inserted and fixed in the hole 13a of the second hollow rotating shaft 13, and a second optical path converting means 20 made of a prism or the like is attached to the tip thereof, and these rotate integrally. A part of the rotating optical fiber 2 is rotatably inserted into the hole of the first hollow rotating shaft of the first motor 12 and rotates relatively.

第1モータ12及び第2モータ19は、固定ダボ33a、33bによりモータケース24に隙間を空けて固定される。第1モ−タ12より先端側において、チューブ6または透光性パイプ21には、少なくとも1個以上の吸気穴6aが空けられ、透光性パイプ21またはチューブ6には、パイプ用温度センサ31が設けられている。図1において、チューブ6には吸気チューブ29と吸気ファン30が取り付けられており、図2の吸気穴6aから気体を吸い込み、吸い込まれた気体は吸気ファン29から排気されるまでの間、第1モータ12、第2モータ19を冷却し、これらモータからの発熱が透光性パイプ21と被測定物100に伝搬することを防止し、熱膨張による被測定物の測定寸法が防止されている。 The first motor 12 and the second motor 19 are fixed to the motor case 24 with a gap by the fixing dowels 33a and 33b. At least one intake hole 6a is formed in the tube 6 or the translucent pipe 21 on the tip side of the first motor 12, and the pipe temperature sensor 31 is formed in the translucent pipe 21 or the tube 6. Is provided. In FIG. 1, an intake tube 29 and an intake fan 30 are attached to the tube 6, and gas is sucked from the intake hole 6a of FIG. 2, and the sucked gas is first exhausted from the intake fan 29. The motor 12 and the second motor 19 are cooled to prevent the heat generated from these motors from propagating to the translucent pipe 21 and the object to be measured 100, and the measurement dimensions of the object to be measured due to thermal expansion are prevented.

図2の第1モータ12には図1に示す第1モータドライバ回路86から電力が供給されて回転駆動され、第2モータ19は第2モータドライバ回路87から電圧が印加されて回転駆動される。 The first motor 12 of FIG. 2 is rotationally driven by being supplied with electric power from the first motor driver circuit 86 shown in FIG. 1, and the second motor 19 is rotationally driven by applying a voltage from the second motor driver circuit 87. ..

光線26,27が放射される第1光路変換手段3の外周近傍には光線が透過可能な透光性パイプ21がチューブ6と一体的に取り付けられている。透光性パイプ21の内周面または外周の表面には必要に応じて表面反射を減らし、光線の透過率を高めるためのコーティング等がなされている。また、第1光路変換手段3は回転可能なミラー又はプリズムで構成されており、反射効率が高く光学的損失を減らして高精度な精度測定が可能である。 A translucent pipe 21 through which the light rays are transmitted is integrally attached to the tube 6 in the vicinity of the outer periphery of the first optical path conversion means 3 from which the light rays 26 and 27 are emitted. The inner peripheral surface or the outer peripheral surface of the translucent pipe 21 is coated, if necessary, to reduce surface reflection and increase the transmittance of light rays. Further, the first optical path conversion means 3 is composed of a rotatable mirror or prism, and has high reflection efficiency, reduces optical loss, and enables highly accurate measurement.

第2光路変換手段20は先端に傾斜する略平面を有するプリズム等で構成されており、光線の集光性が高く、光学的損失を減らして高精度な精度測定が可能である。 The second optical path conversion means 20 is composed of a prism or the like having a substantially flat surface inclined at the tip, has high light collecting property, reduces optical loss, and enables highly accurate measurement.

次に図2に示した三次元走査型の光プローブを用いた図1の光学式内面測定装置について、その特徴的な作用効果を詳細に説明する。 Next, the characteristic action and effect of the optical inner surface measuring device of FIG. 1 using the three-dimensional scanning type optical probe shown in FIG. 2 will be described in detail.

図1および図2において測定機本体85内から発光された近赤外またはレーザ等の光線はチューブ6に内蔵された固定側光ファイバー1の中を通過して進む。 In FIGS. 1 and 2, a light ray such as a near infrared ray or a laser emitted from the inside of the measuring machine main body 85 passes through the fixed side optical fiber 1 built in the tube 6 and travels.

電線17、18から電力が供給され、第1モータ12と第2モータ19の2個のモータが約900〜2万rpmの範囲の同一回転数で同期回転すると、導かれた光線は回転光コネクター22と回転側光ファイバー2を通過し,図2に示すように、第2光路変換手段20から放出され、第1光路変換手段3aの略平面部で反射し一定の角度方向(図2においてはθ1の角度)に方向を変えて360度方向に回転放射され、この時の放射範囲は図4の様に角度θ1の傘状の範囲になる。 Power is supplied from the electric wires 17 and 18, and when the two motors of the first motor 12 and the second motor 19 rotate synchronously at the same rotation speed in the range of about 900 to 20,000 rpm, the guided light beam is a rotating optical connector. After passing through 22 and the rotating optical fiber 2, as shown in FIG. 2, it is emitted from the second optical path conversion means 20, reflected by a substantially flat portion of the first optical path conversion means 3a, and is reflected in a constant angular direction (θ1 in FIG. 2). The direction is changed to (angle), and the light is rotationally radiated in the direction of 360 degrees, and the radiation range at this time is an umbrella-shaped range at an angle θ1 as shown in FIG.

光線はさらに透光性パイプ21を通過し、被検査物100の内周面から反射した光線を上記と同じ光路を逆方向に透光性パイプ21⇒第1光路変換手段3⇒第2光路変換手段20⇒回転側光ファイバー2⇒回転光コネクター22⇒固定側光ファイバー1を通過して光干渉解析部88に導かれる。 The light rays further pass through the translucent pipe 21, and the light rays reflected from the inner peripheral surface of the object 100 to be inspected are reflected in the same optical path as above in the opposite direction. Means 20 ⇒ Rotating side optical fiber 2 ⇒ Rotating optical connector 22 ⇒ Passing through the fixed side optical fiber 1 and guided to the optical interference analysis unit 88.

次に、第1モータ12と第2モータ19の回転数が例えば、第1モータ12の回転数が3600rpm一定で、一方第2モータ19の回転数は3570rpm一定で回転させ、これら2個のモータ回転数に若干の差を与える回転状態に切り換える。この状態では、図3に示すように第1光路変換手段3が回転すると同時に、第2光路変換手段21との相対回転角度位相が徐々に変化していき、やがて光線は回転する第1光路変換手段3で反射し光線は360度に全周方向に放射されつつ、長手方向の放射角度が徐々に変化し図5の図中θ2に示すように変わる。すなわち、この瞬間の光線の放射範囲は図5に示すような傾斜した傘状の走査範囲に変わっている。 Next, the rotation speeds of the first motor 12 and the second motor 19 are, for example, the rotation speed of the first motor 12 is constant at 3600 rpm, while the rotation speed of the second motor 19 is constant at 3570 rpm, and these two motors are rotated. Switch to a rotation state that gives a slight difference in the number of rotations. In this state, as shown in FIG. 3, at the same time as the first optical path conversion means 3 rotates, the relative rotation angle phase with the second optical path conversion means 21 gradually changes, and eventually the light beam rotates in the first optical path conversion. The light beam reflected by the means 3 is emitted at 360 degrees in the entire circumferential direction, and the radiation angle in the longitudinal direction gradually changes as shown in θ2 in the figure of FIG. That is, the radiation range of the light beam at this moment is changed to the inclined umbrella-shaped scanning range as shown in FIG.

この回転角度位相差は、第1モータ12が1分間に3600回転する間に第2モータ19の回転数との差分である30回転(即ち、3600−3570=30回転/分)ずれるので、即ち1分間あたり30回(即ち30往復)、回転角度位相差が生じ、引き続き第1光路変換手段3と第2光路変換手段20の回転位相差がゆっくりと1分間に30回ずつ生じ続ける、この動作により、光線の放射方向が図6に示すように、θ1〜θ2の範囲で連続的に変化し、光線の放射範囲79はθ1+θ2の範囲で三次元的に繰り返し照射される。 This rotation angle phase difference deviates by 30 rotations (that is, 3600-3570 = 30 rotations / minute), which is the difference from the rotation speed of the second motor 19 while the first motor 12 rotates 3600 rotations per minute. The rotation angle phase difference occurs 30 times per minute (that is, 30 reciprocations), and the rotation phase difference between the first optical path conversion means 3 and the second optical path conversion means 20 continues to slowly occur 30 times per minute. As a result, as shown in FIG. 6, the radiation direction of the light beam continuously changes in the range of θ1 to θ2, and the radiation range 79 of the light beam is repeatedly irradiated three-dimensionally in the range of θ1 + θ2.

図2において、回転パルス発生器28が第1光路変換手段3または、第1中空回転軸10の1回転当り1回のパルスを発生し、このパルス信号は図1の第1モータドライバ回路に送られ、第1モータ12の回転速度を調整し、また、コンピュータ89に送られ、三次元ディジタル画像を1フレーム毎に描写するためのトリガー信号に使用される。 In FIG. 2, the rotation pulse generator 28 generates one pulse per rotation of the first optical path conversion means 3 or the first hollow rotation shaft 10, and this pulse signal is sent to the first motor driver circuit of FIG. The rotation speed of the first motor 12 is adjusted, and the rotation speed is sent to the computer 89, which is used as a trigger signal for drawing a three-dimensional digital image frame by frame.

本発明の光学式内面測定装置において、被測定物100の内径100aの測定を行う手順は次のとおりである。 In the optical inner surface measuring apparatus of the present invention, the procedure for measuring the inner diameter 100a of the object to be measured 100 is as follows.

まず、測定を行う前の準備としてキャリブレーション(校正)を行う。図7に示すように、内径寸法(D1)が既知のリングゲージ78の穴部に光プローブ34の透光性パイプ21を挿入し、透光性パイプ21の外径からリングゲージ78内周面までの半径差(L1−L2)と(L1’−L2’)と、リングゲージ内周面から光プローブ34の仮想中点までの距離L1とL1’を求める。ここで、透光性パイプ21の半径数値(R=D1/2―(L1−L2)、 R’=D1/2―(L1’−L2’)を求め、このR、R’の基準半径数値を透光性パイプ21の基準半径データとして、コンピュータ89に記憶させキャリブレーションを完了する。このキャリブレーションは1ケ月に1回程度定期的に行うものである。 First, calibration is performed as a preparation before measurement. As shown in FIG. 7, the translucent pipe 21 of the optical probe 34 is inserted into the hole of the ring gauge 78 whose inner diameter (D1) is known, and the inner peripheral surface of the ring gauge 78 is inserted from the outer diameter of the translucent pipe 21. The radius difference (L1-L2) and (L1'-L2') up to, and the distances L1 and L1'from the inner peripheral surface of the ring gauge to the virtual midpoint of the optical probe 34 are obtained. Here, the radius values (R = D1 / 2- (L1-L2), R'= D1 / 2- (L1'-L2') of the translucent pipe 21 are obtained, and the reference radius values of R and R'are obtained. Is stored in the computer 89 as the reference radius data of the translucent pipe 21 to complete the calibration. This calibration is performed periodically about once a month.

キャリブレーション(校正)が終わると次に測定を開始する。別の被検査物の内周面100aに光プローブ34の透光性パイプ21挿入し、第1モータ12及び第2モータ19を回転させ、光線を放射し、被測定物100の内径寸法(D)=R+(L1−L2)+R’+(L1’−L2’)を求めることができる。 After the calibration is completed, the measurement is started next. The translucent pipe 21 of the optical probe 34 is inserted into the inner peripheral surface 100a of another object to be inspected, the first motor 12 and the second motor 19 are rotated to emit light rays, and the inner diameter dimension of the object to be measured 100 (D). ) = R + (L1-L2) + R'+ (L1'-L2') can be obtained.

図8及び図9は、図1及び図2において、吸気穴6aから気体を吸い込み、第1モータ12、第2モータ19を吸気ファン30の運転により冷却している場合と、吸気ファン30を停止し冷却していない場合の差異を示している。図8の示すように冷却有りでは約20秒で透光性パイプ21が0.5℃上昇するがその後は上昇が止まり一定温度が保たれ、被測定物100への温度伝搬はほぼ無く温度変化による測定精度の狂いは防止できている。一方、冷却無しでは透光性パイプ21の温度は約1分で3℃上昇しその後も徐々に上昇を続け、被測定物100も温度上昇を始めるため、高精度な測定が行い難い。 8 and 9 show, in FIGS. 1 and 2, a case where gas is sucked from the intake hole 6a and the first motor 12 and the second motor 19 are cooled by the operation of the intake fan 30, and the intake fan 30 is stopped. It shows the difference when it is not cooled. As shown in FIG. 8, the translucent pipe 21 rises by 0.5 ° C. in about 20 seconds with cooling, but then stops rising and maintains a constant temperature, and there is almost no temperature propagation to the object to be measured 100 and the temperature changes. The deviation of the measurement accuracy due to the above can be prevented. On the other hand, without cooling, the temperature of the translucent pipe 21 rises by 3 ° C. in about 1 minute and then gradually rises, and the temperature of the object to be measured 100 also starts to rise, so that it is difficult to perform highly accurate measurement.

図9は本発明内面測定装置で被測定物100に内径寸法を繰り返し測定した場合の測定ばらつきの大きさを示している。冷却有りの条件で30分の時間内に計100回繰返し測定を行った結果のばらつきは(繰返し再現性:σ)が0.05マイクロメートルに収まり、高精度な測定が行えたが、一方冷却が無い場合は0.15マイクロメートルのばらつきが生じ、高精度な測定は困難であった。 FIG. 9 shows the magnitude of measurement variation when the inner diameter dimension of the object to be measured 100 is repeatedly measured by the inner surface measuring device of the present invention. The variation in the results of repeated measurements 100 times within 30 minutes under the condition of cooling (repetitive reproducibility: σ) was within 0.05 micrometers, and high-precision measurement was possible, but on the other hand, cooling Without the above, a variation of 0.15 μm occurred, and high-precision measurement was difficult.

このように図2に示す光プローブ34を用いることにより、図1の被測定物100の内周面100aから、光ファイバー1および2を経て導き入れた反射光をコンピュータ89で計算することにより、透光性パイプを基準に寸法測定が行え、スライダ82が静止した状態で三次元データの収集が可能になり、また、測定プローブ34内のモータ12,19からの発熱の伝搬が防止でき、従来問題であった、測定用プローブ内モータの軸受振れや振動の影響を排除し、正しく精密な内径及び内周面の精度測定が可能である。
By using the optical probe 34 shown in FIG. 2 in this way, the reflected light introduced from the inner peripheral surface 100a of the object to be measured 100 in FIG. 1 via the optical fibers 1 and 2 is calculated by the computer 89 to be transparent. Dimension measurement can be performed with reference to the optical pipe, three-dimensional data can be collected while the slider 82 is stationary, and heat generation from the motors 12 and 19 in the measurement probe 34 can be prevented from propagating, which is a conventional problem. It is possible to eliminate the influence of the bearing runout and vibration of the motor in the probe for measurement, and to measure the inner diameter and the inner peripheral surface accurately and accurately.

図10は本発明に係る光学式面測定装置の第2の光プローブの断面を示している。
図10においては、モータケース24はチューブ6の内部に直接固定されており、吸気穴6aから導入された気体はモータスラスト板8に適宜設けられた通気穴8aを通し、少なくとも第1モータ12の第1モータコイル7と第1ロータ磁石11の隙間を通過することで、第1モータが効率良く冷却されるよう構成されている。また第2モータ19に関しても必要に応じて気体を第2モータコイル15と第1ロータ磁石14の隙間を通過させより一層冷却が良く行えるように構成されている。
FIG. 10 shows a cross section of a second optical probe of the optical surface measuring device according to the present invention.
In FIG. 10, the motor case 24 is directly fixed to the inside of the tube 6, and the gas introduced from the intake hole 6a passes through the ventilation hole 8a appropriately provided in the motor thrust plate 8 and is at least the first motor 12. The first motor is configured to be efficiently cooled by passing through the gap between the first motor coil 7 and the first rotor magnet 11. Further, the second motor 19 is also configured so that gas can be passed through the gap between the second motor coil 15 and the first rotor magnet 14 as needed to further cool the second motor 19.

この構成により、吸気穴から取り込んだ気体はチューブ内のモータの回転部と固定部の隙間を経由してモータより手前側(プローブの先端側に対して測定機本体側)に導かれ、モータの発熱源であるモータコイル部分を流入させた気体で直接に冷却できるため、測定プローブ内モータからの発熱の伝搬を確実に防止し、一層精密な精度測定が可能である。 With this configuration, the gas taken in from the intake hole is guided to the front side of the motor (the measuring machine body side with respect to the tip side of the probe) via the gap between the rotating part and the fixed part of the motor in the tube, and the motor Since the motor coil portion, which is the heat generation source, can be directly cooled by the inflowing gas, the propagation of heat generation from the motor in the measurement probe can be reliably prevented, and more precise measurement can be performed.

図10において、その他の構成と機能は図2の第1の光プローブの図と同じである。
In FIG. 10, other configurations and functions are the same as those of the first optical probe in FIG.

図11及ぶ図12は本発明に係る光学式面測定装置の第3の実施形態を示している。
図11において通気穴6aが開けられたチューブ6又は薄肉の石英やガラスからなる透光性パイプ21は強度が弱くなっており、測定作業中にうっかり被測定物100に強く当接すると折れて損傷する危険性がある。そこで図11のようにチューブ6はプローブ固定具37に対し摺動自在にセットされ、例えばボール等による予圧手段39a、39b、39cにより押圧された摺動部材38に固定されることにより、被測定物100に強く当接した場合には、例えばボールと切り欠きの組合せで構成される荷重リミッター40が外れて光プローブ34は図中上方向にスライドし、衝突による損傷が防止されるよう構成されている。尚、拡大鏡(カメラ)35は被測定物100の穴100a付近の状態を常にモニタ90に表示し、測定機の使用者に光プローブ34が衝突させないよう注意を促す働きをしている。
11 and 12 show a third embodiment of the optical surface measuring device according to the present invention.
In FIG. 11, the tube 6 having the ventilation hole 6a or the translucent pipe 21 made of thin-walled quartz or glass has a weak strength, and if it accidentally comes into contact with the object to be measured 100 during the measurement work, it will break and be damaged. There is a risk of doing. Therefore, as shown in FIG. 11, the tube 6 is slidably set on the probe fixture 37, and is fixed to the sliding member 38 pressed by the preload means 39a, 39b, 39c by, for example, a ball or the like to be measured. When it comes into strong contact with the object 100, for example, the load limiter 40 composed of a combination of a ball and a notch is disengaged, and the optical probe 34 slides upward in the drawing to prevent damage due to collision. ing. The magnifying glass (camera) 35 constantly displays the state of the object 100 in the vicinity of the hole 100a on the monitor 90, and warns the user of the measuring instrument not to collide with the optical probe 34.

この構成によれば、光プローブ34は摺動部材38に固定され、透光性パイプ21又はチューブ6が被測定物100に強く当接した場合には、一定以上の当接荷重により前記摺動部材38が透光性パイプ21と共に上方へ摺動し損傷を防止することができ、正しく精密な内径及び内周面の精度測定を安全に行うことができる。 According to this configuration, the optical probe 34 is fixed to the sliding member 38, and when the translucent pipe 21 or the tube 6 strongly abuts on the object to be measured 100, the sliding is performed by a contact load of a certain level or more. The member 38 can slide upward together with the translucent pipe 21 to prevent damage, and accurate and accurate measurement of the inner diameter and the accuracy of the inner peripheral surface can be safely performed.

尚、図2及び図10において、チューブ6はその直径は約2ミリメートル以下程度でありその内部に貫通する固定側光ファイバー1は、屈曲自在なグラスファイバーであり直径は0.085〜0.125ミリメートル程度の物を採用している。 In FIGS. 2 and 10, the diameter of the tube 6 is about 2 mm or less, and the fixed-side optical fiber 1 penetrating inside the tube 6 is a flexible glass fiber and has a diameter of 0.085 to 0.125 mm. The thing of the degree is adopted.

第1光路変換手段3は平滑な反射面を有するミラーかプリズムで構成されており、反射率を高めるため、その表面粗さと平面度は一般の光学部品と同等以上の精度に磨きあげられている。 The first optical path converting means 3 is composed of a mirror or a prism having a smooth reflecting surface, and its surface roughness and flatness are polished to an accuracy equal to or higher than that of general optical components in order to increase the reflectance.

第1中空回転軸10は、金属またはセラミックスからなり、溶融金属のダイによる引き抜き加工か、または焼成前のセラミックスのダイによる押し出し加工で中空が成形され、硬化処理後に研磨加工法等により仕上げ加工される。 The first hollow rotary shaft 10 is made of metal or ceramics, and is hollow formed by drawing with a die of molten metal or extruding with a die of ceramics before firing, and is finished by a polishing method or the like after hardening. To.

第1中空回転軸10の穴は直径が0.1〜0.5ミリメートルであり、回転側光ファイバー2の直径より十分大きくしているため、光ファイバー固定具4で固定された固定側光ファイバー1が第1中空回転軸10に接触する危険性はなく、仮に軽く接触しても摩耗粉が発生するほどではない。また、この部分で回転摩擦トルクが変動する問題もない。 Since the hole of the first hollow rotating shaft 10 has a diameter of 0.1 to 0.5 mm, which is sufficiently larger than the diameter of the rotating side optical fiber 2, the fixed side optical fiber 1 fixed by the optical fiber fixture 4 is the first. 1 There is no danger of contact with the hollow rotary shaft 10, and even if it is lightly contacted, wear powder is not generated. Further, there is no problem that the rotational friction torque fluctuates in this portion.

本発明によれば、測定用プローブ34を被測定物100の穴内に侵入させて、穴内から光線を放射することで、内周面の表面形状や粗さの影響なく安定に測定が行えると共に、光プローブ34内のモータ12,19からの発熱の伝搬を防止する。また、従来問題であった、光プローブ内モータの軸受振れや振動の影響が排除でき、また、光プローブの損傷を防止する荷重リミッターを設けることで、正しく精密な内径及び内周面の精度測定が安全に行える。
According to the present invention, by invading the measurement probe 34 into the hole of the object to be measured 100 and radiating light rays from the hole, stable measurement can be performed without being affected by the surface shape and roughness of the inner peripheral surface. Prevents the propagation of heat generated from the motors 12 and 19 in the optical probe 34. In addition, the influence of bearing runout and vibration of the motor inside the optical probe, which has been a problem in the past, can be eliminated, and by providing a load limiter to prevent damage to the optical probe, accurate and precise measurement of the inner diameter and inner peripheral surface. Can be done safely.

本発明の光学測定法を用いて被測定物の観察と測定を行う光学式内径測定装置は、深穴内面の高精度な三次元観察と幾何学精度計測が可能になるため、軸受部品、エンジン燃料噴射部品、ウォータジェットノズル部品、等の工業用精密機構部品の高精度な測定を行うことができる。また、医療現場での微細な病巣の寸法の数値的な診断や治療への活用についても期待される。
The optical inner diameter measuring device that observes and measures the object to be measured by using the optical measuring method of the present invention enables highly accurate three-dimensional observation and geometrical accuracy measurement of the inner surface of a deep hole. It is possible to perform high-precision measurement of industrial precision mechanical parts such as fuel injection parts and water jet nozzle parts. It is also expected to be used for numerical diagnosis and treatment of minute lesion dimensions in the medical field.

1 固定側光ファイバー
2 回転側光ファイバー
3a、3b 第1光路変換手段(ミラー)
4 光ファイバー固定具
5 回転遮蔽板
6 チューブ
6a 吸気穴
7 第1モータコイル
8 モータスラスト板
9a、9b 第1軸受
10 第1中空回転軸
11 第1ロータ磁石
12 第1モータ
13 第2中空回転軸
13a 穴
14 第2ロータ磁石
15 第2モータコイル
16a、16b 第2軸受
17 電線
18 電線
19 第2モータ
20、20a、20b 第2光路変換手段(プリズム等)
21 透光性パイプ
22 回転光コネクター(光ロータリコネクター)
23a パルス発生器
24 モータケース
25、25a、25b 走査範囲
26、27 光線
28 回転パルス発生器
29 吸気チューブ
30 吸気ファン
31 パイプ用温度センサ
32 ワーク用温度センサ
33a、33b 固定ダボ
34 光プローブ
35 拡大鏡(カメラ)
37 プローブ固定具
38 摺動部材
38a 切り欠き
39a、39b、39c 予圧手段
40 荷重リミッター
78 リングゲージ
79 走査範囲
80 測定機ベース
81 スタンド
82 スライダ
83 スライダ用モータ
84 接続部
85 測定機本体
86 第1モータドライバ回路
87 第2モータドライバ回路
88 光干渉解析部
89 コンピュータ
90 モニタ
100 被測定物
100a 被測定内面
1 Fixed side optical fiber 2 Rotating side optical fiber 3a, 3b First optical path conversion means (mirror)
4 Optical fiber fixture 5 Rotating shield plate 6 Tube 6a Intake hole 7 1st motor coil 8 Motor thrust plate 9a, 9b 1st bearing 10 1st hollow rotating shaft 11 1st rotor magnet 12 1st motor 13 2nd hollow rotating shaft 13a Hole 14 2nd rotor magnet 15 2nd motor coil 16a, 16b 2nd bearing
17 Electric wire 18 Electric wire 19 Second motor 20, 20a, 20b Second optical path conversion means (prism, etc.)
21 Translucent pipe 22 Rotating optical connector (optical rotary connector)
23a Pulse generator 24 Motor case
25, 25a, 25b Scanning range 26, 27 Ray 28 Rotating pulse generator 29 Intake tube 30 Intake fan 31 Pipe temperature sensor 32 Work temperature sensor 33a, 33b Fixed dowel 34 Optical probe 35 Magnifier (camera)
37 Probe fixture 38 Sliding member 38a Notch 39a, 39b, 39c Preload means 40 Load limiter 78 Ring gauge 79 Scanning range 80 Measuring machine base 81 Stand 82 Slider 83 Slider motor 84 Connection part 85 Measuring machine body 86 First motor Driver circuit 87 Second motor Driver circuit 88 Optical interference analysis unit 89 Computer 90 Monitor 100 Object 100a Measured inner surface

Claims (4)

被測定物の観察および測定を行う光学式内面測定装置において、
チューブに内蔵された光ファイバーと、
前記光ファイバーの先端部に少なくとも1つ以上の光路変換手段を有し、
前記光路変換手段を回転駆動させるモータをチューブ内に有し、
前記モータより先端側から取り込んだ気体はチューブ内を通して前記モータよりも手前側から排気し、
前記モータは、第1モータと、前記第1モータの後方側に配置された第2モータとからなり、
前記光路変換手段は、前記第1モータにより動作する第1光路変換手段と、前記第2モータにより動作する第2光路変換手段とからなり、
前記光ファイバーは、前記第2モータの後方側で、固定具を介して前記チューブに回転不能に配置された固定側光ファイバーと、前記第2モータにより回転する回転側光ファイバーとで構成されており、
前記第1モータの回転軸部および前記第2モータの回転軸部は、各々が中空形状をしており、
前記回転側光ファイバーは、先端側の少なくとも一部が前記第1モータの回転軸部の中空穴に回転自在に挿通されるとともに、後方側の少なくとも一部が前記第2モータの回転軸部の中空穴に固定されており、
前記第1光路変換手段は、前記第2光路変換手段の先端側で、前記第1モータの回転軸部と一体的に回転可能に配置され、
前記第2光路変換手段は、前記回転側光ファイバーの先端にあり前記第1光路変換手段と前記第1モータの間に位置するように構成されており、
前記チューブの先端部は硬質の透光性パイプが取り付けられ、
被測定物の内径に前記透光性パイプを挿入し、
前記光路変換手段が前記光ファイバーから導いた光線は前記透光性パイプを通して円周方向に光線を放射し、その放射を受けた被測定物からの反射光を、再び前記透光性パイプを通して検出することを特徴とする光学式内面測定装置。
In an optical inner surface measuring device that observes and measures an object to be measured,
With the optical fiber built into the tube,
At least one optical path conversion means is provided at the tip of the optical fiber.
A motor for rotationally driving the optical path conversion means is provided in the tube.
The gas taken in from the tip side of the motor is exhausted from the front side of the motor through the tube.
The motor includes a first motor and a second motor arranged on the rear side of the first motor.
The optical path conversion means includes a first optical path conversion means operated by the first motor and a second optical path conversion means operated by the second motor.
The optical fiber is composed of a fixed-side optical fiber that is non-rotatably arranged in the tube via a fixture on the rear side of the second motor and a rotating-side optical fiber that is rotated by the second motor.
Rotary shaft portion of the rotary shaft portion and the second motor of the first motor is each a hollow shape,
At least a part of the rotary side optical fiber is rotatably inserted into the hollow hole of the rotary shaft portion of the first motor, and at least a part of the rear side is hollow of the rotary shaft portion of the second motor. It is fixed in the hole and
The first optical path conversion means is rotatably arranged on the tip side of the second optical path conversion means so as to be integrally rotatable with the rotation shaft portion of the first motor.
The second optical path conversion means is configured to be located at the tip of the rotating optical fiber and between the first optical path conversion means and the first motor.
A hard translucent pipe is attached to the tip of the tube.
Insert the translucent pipe into the inner diameter of the object to be measured,
The light beam guided from the optical fiber by the optical path converting means emits a light ray in the circumferential direction through the translucent pipe , and the reflected light from the object to be measured that receives the emitted light is detected again through the translucent pipe. An optical inner surface measuring device characterized by the above.
前記モータより先端側から取り込んだ気体はチューブ内のモータの回転部と固定部の隙間を経由して前記モータより手前側に導かれ、強制的に排気するよう構成したことを特徴とする請求項1記載の光学式内面測定装置。 The claim is characterized in that the gas taken in from the tip side of the motor is guided to the front side of the motor via a gap between a rotating portion and a fixed portion of the motor in the tube, and is forcibly exhausted. 1. The optical inner surface measuring device according to 1. 被測定物の観察および測定を行う光学式内面測定装置において、
チューブに内蔵された光ファイバーと、
前記光ファイバーの先端部に少なくとも1つ以上の光路変換手段を有し、
前記光路変換手段を回転駆動させるモータをチューブ内に有し、
前記モータより先端側から取り込んだ気体はチューブ内のモータの回転部と固定部の隙間を経由して前記モータより手前側に導かれ、強制的に排気するように構成され、
前記チューブの先端部は硬質の透光性パイプが取り付けられ、
被測定物の内径に前記透光性パイプを挿入し、
前記光路変換手段が前記光ファイバーから導いた光線は前記透光性パイプを通して円周方向に光線を放射し、その放射を受けた被測定物からの反射光を、再び前記透光性パイプを通して検出することを特徴とする光学式内面測定装置。
In an optical inner surface measuring device that observes and measures an object to be measured,
With the optical fiber built into the tube,
At least one optical path conversion means is provided at the tip of the optical fiber.
A motor for rotationally driving the optical path conversion means is provided in the tube.
The gas taken in from the tip side of the motor is guided to the front side of the motor via the gap between the rotating part and the fixed part of the motor in the tube, and is configured to be forcibly exhausted.
A hard translucent pipe is attached to the tip of the tube.
Insert the translucent pipe into the inner diameter of the object to be measured,
The light beam guided from the optical fiber by the optical path converting means emits a light ray in the circumferential direction through the translucent pipe , and the reflected light from the object to be measured that receives the emitted light is detected again through the translucent pipe. An optical inner surface measuring device characterized by the above.
被測定物の観察および測定を行う光学式内面測定装置において、
チューブに内蔵された光ファイバーと、
前記光ファイバーの先端部に少なくとも1つ以上の光路変換手段を有し、
前記光路変換手段を回転駆動させるモータをチューブ内に有し、
前記モータより先端側から取り込んだ気体はチューブ内を通して前記モータよりも手前側から排気し、
前記チューブの先端部は硬質の透光性パイプが取り付けられ、
被測定物の内径に前記透光性パイプを挿入し、
前記光路変換手段が前記光ファイバーから導いた光線は前記透光性パイプを通して円周方向に光線を放射し、その放射を受けた被測定物からの反射光を、再び前記透光性パイプを通して検出し、
前記チューブ又は前記透光性パイプの少なくともいずれか一方は摺動部材に固定され、前記透光性パイプ又は前記チューブが被測定物に当接した時、一定以上の当接荷重により前記摺動部材が前記透光性パイプと共に摺動し損傷を防止することを特徴とする光学式内面測定装置。
In an optical inner surface measuring device that observes and measures an object to be measured,
With the optical fiber built into the tube,
At least one optical path conversion means is provided at the tip of the optical fiber.
A motor for rotationally driving the optical path conversion means is provided in the tube.
The gas taken in from the tip side of the motor is exhausted from the front side of the motor through the tube.
A hard translucent pipe is attached to the tip of the tube.
Insert the translucent pipe into the inner diameter of the object to be measured,
The light beam guided from the optical fiber by the optical path conversion means emits a light ray in the circumferential direction through the translucent pipe , and the reflected light from the object to be measured that receives the emitted light is detected again through the translucent pipe. ,
At least one of the tube and the translucent pipe is fixed to the sliding member, and when the translucent pipe or the tube abuts on the object to be measured, the sliding member is subjected to a contact load of a certain level or more. Is an optical inner surface measuring device characterized by sliding together with the translucent pipe to prevent damage.
JP2018524689A 2016-06-30 2016-06-30 Optical inner surface measuring device Active JP6865441B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/069540 WO2018003097A1 (en) 2016-06-30 2016-06-30 Optical inner-surface measurement device

Publications (2)

Publication Number Publication Date
JPWO2018003097A1 JPWO2018003097A1 (en) 2019-04-18
JP6865441B2 true JP6865441B2 (en) 2021-04-28

Family

ID=60786782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018524689A Active JP6865441B2 (en) 2016-06-30 2016-06-30 Optical inner surface measuring device

Country Status (2)

Country Link
JP (1) JP6865441B2 (en)
WO (1) WO2018003097A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11796741B2 (en) 2021-06-03 2023-10-24 Canon U.S.A., Inc. Fiber optic rotary joint employing hollow shaft motor
CN113455993B (en) * 2021-07-05 2022-09-27 南宁市第一人民医院 Endoscope performance inspection device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612119A (en) * 1984-06-14 1986-01-08 Hitachi Cable Ltd Optical fiberscope
FR2749390B1 (en) * 1996-05-30 1998-07-31 Pyrolyse De Marienau Centre ENDOSCOPIC INSPECTION PROBE FOR COKE OVEN BATTERIES
WO2011132664A1 (en) * 2010-04-23 2011-10-27 コニカミノルタオプト株式会社 Probe and use method therefor
WO2013155192A1 (en) * 2012-04-10 2013-10-17 Conmed Corporation 360 degree panning stereo endoscope

Also Published As

Publication number Publication date
JPWO2018003097A1 (en) 2019-04-18
WO2018003097A1 (en) 2018-01-04

Similar Documents

Publication Publication Date Title
JP6739780B2 (en) Optical inner surface measuring device
US10066931B2 (en) Optical inner-surface measurement device
JP6232550B2 (en) Optical inner surface measuring device
EP3029415B1 (en) Optical inner surface measuring device
JP6755553B2 (en) Optical measuring device
JP6074580B2 (en) Optical imaging probe
US10401157B2 (en) Optical inner surface measurement device
US20140221747A1 (en) Apparatus, systems and methods which include and/or utilize flexible forward scanning catheter
CN106289055B (en) Gauge in optical profile type
JP6865441B2 (en) Optical inner surface measuring device
US20100041948A1 (en) Optical probe and three-dimensional image acquisition apparatus
JP2015008995A (en) Optical imaging probe
JP6980266B2 (en) Probe for optical imaging
JP7223457B2 (en) Optical inner surface measuring device and optical inner surface measuring method
JP7058869B2 (en) Optical imaging probe and optical measuring device
JP2021156852A (en) Device and method for optical inner surface measurement
JP6980267B2 (en) Probe for optical imaging
JP2017215211A (en) Inner face measuring machine-purpose calibration device
JP2019191417A (en) Optical imaging probe
JP2017044606A (en) Contactless inner surface shape measurement device
Suparta et al. Metal roughness profile inspection using a micro-displacement fiber optic bundled sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210329

R150 Certificate of patent or registration of utility model

Ref document number: 6865441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250