JP7058869B2 - Optical imaging probe and optical measuring device - Google Patents

Optical imaging probe and optical measuring device Download PDF

Info

Publication number
JP7058869B2
JP7058869B2 JP2018085518A JP2018085518A JP7058869B2 JP 7058869 B2 JP7058869 B2 JP 7058869B2 JP 2018085518 A JP2018085518 A JP 2018085518A JP 2018085518 A JP2018085518 A JP 2018085518A JP 7058869 B2 JP7058869 B2 JP 7058869B2
Authority
JP
Japan
Prior art keywords
conversion means
optical path
path conversion
translucent member
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018085518A
Other languages
Japanese (ja)
Other versions
JP2019191050A (en
Inventor
大志 山崎
憲士 成田
拓也 舘山
隆文 淺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adamant Namiki Precision Jewel Co Ltd
Original Assignee
Adamant Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adamant Namiki Precision Jewel Co Ltd filed Critical Adamant Namiki Precision Jewel Co Ltd
Priority to JP2018085518A priority Critical patent/JP7058869B2/en
Publication of JP2019191050A publication Critical patent/JP2019191050A/en
Application granted granted Critical
Publication of JP7058869B2 publication Critical patent/JP7058869B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、略円筒形状機械部品等の内周面および外周面に、観察光を同時に照射し、被測定物の内外周面からの戻り光(反射光)を取り込んで機械部品の内外周面の形状観察および同軸度を測定するための光イメージング用プローブ及びこの光イメージング用プローブを用いた光学式測定装置に関するものである。 In the present invention, the inner peripheral surface and the outer peripheral surface of a substantially cylindrical machine component or the like are simultaneously irradiated with observation light, and the return light (reflected light) from the inner outer peripheral surface of the object to be measured is taken in to capture the inner peripheral surface of the machine component. The present invention relates to a probe for optical imaging for observing the shape of an object and measuring coaxiality, and an optical measuring device using the probe for optical imaging.

例えばボールベアリング内輪の内/外周面は、各面の直径と真円度の測定に加えて両面間の同軸度を高精度に保つことが要求される。また、DVDなど光ディスク装置の回転主軸部に用いられる滑り軸受は、内/外径の同軸度や軸受内周面の直径が高精度に要求される。また、これらの精度が悪い場合は、DVDなど電子機器製品の性能が得られないことがあった。 For example, the inner / outer peripheral surfaces of the inner ring of a ball bearing are required to maintain high accuracy in coaxiality between both sides in addition to measuring the diameter and roundness of each surface. Further, in a slide bearing used for a rotating spindle of an optical disk device such as a DVD, the coaxiality of the inner / outer diameter and the diameter of the inner peripheral surface of the bearing are required with high accuracy. In addition, if these accuracyes are poor, the performance of electronic device products such as DVDs may not be obtained.

従来、これら機械部品等の加工精度の測定は、一般に真円度測定機等の接触式測定機を用いて行われていた。しかし近年、被測定物に傷を付けない目的から光学式の非接触式測定機が要求されている。非接触式測定法で被測定物内面の形状データを取得する画像診断技術(光イメージング技術)の一例として、例えばレーザ光や白色光等を照射してその戻り光から干渉縞を捉え、その波長(周波数)または位相差データをコンピュータ解析することで形状の数値データに変換し画像を得る方法等がある。 Conventionally, the measurement of the processing accuracy of these machine parts and the like has generally been performed by using a contact type measuring machine such as a roundness measuring machine. However, in recent years, an optical non-contact measuring machine has been demanded for the purpose of not damaging the object to be measured. As an example of diagnostic imaging technology (optical imaging technology) that acquires shape data of the inner surface of the object to be measured by a non-contact measurement method, for example, laser light, white light, etc. are irradiated to capture interference fringes from the return light, and the wavelength thereof. There is a method of obtaining an image by converting (frequency) or phase difference data into numerical data of shape by computer analysis.

しかしながら、これら機械部品の同軸度を非接触で高精度に計測するためには、内周面と外周面に同時に光線を照射し、これらからの戻り光を同時に捉える必要があるが、従来、このように同軸度が測定できる光プローブおよび光学式測定機が市場に提供されていなかった。 However, in order to measure the coaxiality of these mechanical parts with high accuracy without contact, it is necessary to irradiate the inner peripheral surface and the outer peripheral surface at the same time and capture the return light from them at the same time. Optical probes and optical measuring instruments capable of measuring coaxiality have not been provided on the market.

機械部品等の表面に光線を照射して内面の観察または測定を行う技術を適用した観察装置の代表的な従来の構造は、例えば、特許文献1及び特許文献2に示されている。 For example, Patent Document 1 and Patent Document 2 show typical conventional structures of an observation device to which a technique of irradiating the surface of a mechanical part or the like with a light beam to observe or measure the inner surface is applied.

特許文献1には、第1照射部が第1の光線を略直角方向に照射し、第2照射部が第2の光線を先端で光線を略直角方向に放射し、かつミラーの角度を可変させて少しの範囲で光線の放射方向を変え、立体的にデータを収集し、内周面2箇所からの戻り光を得ている光プローブが示されている。
しかしながら、この光プローブは略直角方向に2カ所の計測は行えるが、被測定物の外周面および、内外周面間の同軸度を計測することはできなかった。
In Patent Document 1, the first irradiation unit emits a first light ray in a substantially right-angle direction, the second irradiation unit emits a second light ray at a tip in a substantially right-angle direction, and the angle of the mirror is variable. An optical probe is shown in which the direction of radiation of light rays is changed within a small range, data is collected three-dimensionally, and return light is obtained from two points on the inner peripheral surface.
However, although this optical probe can measure two points in a substantially right-angled direction, it cannot measure the coaxiality between the outer peripheral surface and the inner outer peripheral surface of the object to be measured.

特許文献2には、光ファイバー(1,2)に導かれた光線を集光レンズ(20)が前方に少しの角度を持って回転放射し、その光線を回転プリズムミラー(3)が側方に回転放射することで、側方については1点ではなく全周スキャンを行うことで三次元データを収集する光イメージング用プローブが示されている。
しかしながらこの構成では、略直角方向の1カ所の観察しか行えず、内/外周面の同軸度を計測することができなかった。
In Patent Document 2, a condensing lens (20) radiates a light beam guided by an optical fiber (1, 2) at a slight angle forward, and a rotating prism mirror (3) laterally radiates the light beam. An optical imaging probe that collects three-dimensional data by performing a full-circle scan instead of one point on the side by rotating radiation is shown.
However, in this configuration, it was possible to observe only one place in a substantially right-angled direction, and it was not possible to measure the coaxiality of the inner / outer peripheral surfaces.

特許第4864662号公報Japanese Patent No. 4864662 特許第5961891号公報Japanese Patent No. 5961891

本発明はこのような上記従来の事情に鑑みてなされたものであり、その課題とするところは、観察光を略円筒形状機械部品等被測定物の内周面および外周面に同時に照射し、戻り光(反射光)を取り込んで内/外周面の寸法形状の測定、および内/外周面間の同軸度を測定することにある。 The present invention has been made in view of the above-mentioned conventional circumstances, and the subject thereof is to simultaneously irradiate the inner peripheral surface and the outer peripheral surface of the object to be measured such as a substantially cylindrical machine component with observation light. The purpose is to take in the return light (reflected light) to measure the dimensions and shape of the inner / outer peripheral surfaces and to measure the coaxiality between the inner / outer peripheral surfaces.

上記課題を解決するための一手段は、光イメージング用プローブ及び、この光イメージング用プローブを用いた光学式測定装置を次のように構成したものである。
光イメージング用プローブは、光線の方向を変える複数の光路変換手段と、中空円筒状で互いに径サイズの異なる内側透光性部材と外側透光性部材とを備える。そして、複数ある光路変換手段の少なくとも1つは、光線を複数の方向に分岐する機能を有し、内側透光性部材と前記外側透光性部材とは略同軸上に配置する。そして、内側透光性部材の外周面と外側透光性部材の内周面との間に被測定物を挿入し、被測定物に対して、内側透光性部材側からと外側透光性部材側からの両方向から光を照射できる。光学式測定装置は、この光イメージング用プローブにより得られた被測定物からの戻り光から、コンピュータにより被測定物の形状データを得るものである。
One means for solving the above problems is to configure a probe for optical imaging and an optical measuring device using the probe for optical imaging as follows.
The probe for photoimaging includes a plurality of optical path conversion means for changing the direction of light rays, and an inner translucent member and an outer translucent member which are hollow cylinders and have different diameter sizes. At least one of the plurality of optical path conversion means has a function of branching a light ray in a plurality of directions, and the inner translucent member and the outer translucent member are arranged substantially coaxially. Then, the object to be measured is inserted between the outer peripheral surface of the inner translucent member and the inner peripheral surface of the outer translucent member, and the object to be measured is translucent from the inner translucent member side to the outer translucent member. Light can be emitted from both directions from the member side. The optical measuring device obtains shape data of the measured object by a computer from the return light from the measured object obtained by this optical imaging probe.

円筒形状の被測定物の内周面および外周面に、同時に光線を照射し、被測定物の内/外周面からの戻り光(反射光)を取り込んで、被測定物の寸法/形状観察および内/外周面間の同軸度データを得ることができる。 Simultaneously irradiate the inner and outer peripheral surfaces of the cylindrical object to be measured with light rays, and take in the return light (reflected light) from the inner / outer surface of the object to be measured to observe the dimensions / shape of the object to be measured. Coaxiality data between inner / outer surfaces can be obtained.

本発明の光イメージング用プローブ前方走査時の第1回転角状態の断面図Cross-sectional view of the first rotation angle state during forward scanning of the probe for optical imaging of the present invention. 同プローブの第2回転角状態の断面図Cross-sectional view of the probe in the second rotation angle state 同プローブによる同軸度測定説明図Explanatory diagram of coaxiality measurement using the same probe 同プローブの取得波形と透光性パイプ基準測定の説明図Explanatory diagram of acquired waveform of the probe and reference measurement of translucent pipe 同プローブによる同軸度の説明図Explanatory diagram of coaxiality by the same probe 同プローブの軸方向スライド状態説明図Axial slide state explanatory diagram of the probe 同プローブによる三次元測定説明図Explanatory diagram of 3D measurement by the same probe 同プローブによる透光性パイプ基準測定説明図Explanatory drawing of translucent pipe reference measurement by the same probe 同プローブの第2の実施例断面図Second embodiment sectional view of the probe 本発明の光イメージング用プローブを用いた光学式測定装置の説明図Explanatory drawing of an optical measuring apparatus using the probe for optical imaging of this invention.

本実施の形態の光イメージング用プローブの第一の特徴は、光線の方向を変える複数の光路変換手段と、中空円筒状で互いに径サイズの異なる内側透光性部材と外側透光性部材とを備え、複数ある前記光路変換手段の少なくとも1つは、光線を複数の方向に分岐する機能を有し、前記内側透光性部材と前記外側透光性部材とは略同軸上に配置されており、前記内側透光性部材の外周面と前記外側透光性部材の内周面との間に被測定物を挿入し、前記被測定物に対して、前記内側透光性部材側からと前記外側透光性部材側からの両方向から光を照射できることにある。
この構成によれば、円筒形状の被測定物の内周面および外周面に対して、同時に光線を照射し、被測定物の内/外周面からの戻り光(反射光)を取り込むことができる。
The first feature of the optical imaging probe of the present embodiment is a plurality of optical path conversion means for changing the direction of light rays, and an inner translucent member and an outer translucent member which are hollow cylinders and have different diameter sizes. At least one of the plurality of the optical path conversion means has a function of branching a light beam in a plurality of directions, and the inner translucent member and the outer translucent member are arranged substantially coaxially. An object to be measured is inserted between the outer peripheral surface of the inner translucent member and the inner peripheral surface of the outer translucent member, and the object to be measured is viewed from the inner translucent member side and the above. It is possible to irradiate light from both directions from the outer translucent member side.
According to this configuration, the inner peripheral surface and the outer peripheral surface of the cylindrical object to be measured can be simultaneously irradiated with light rays, and the return light (reflected light) from the inner / outer peripheral surface of the object to be measured can be taken in. ..

第二の特徴としては、より具体的な態様として、次のように構成している。前記内側透光性部材には、略チューブ状のケースが連結されるとともに、前記外側透光性部材が外側ケースを介して一体に固定されており、前記内側透光性部材又は前記ケースの内部には、非回転状態に固定された固定側光ファイバーが配置されており、前記固定側光ファイバーの先端側には、モータユニットにより回転駆動させられる回転側光ファイバーが配置されている。そして、複数の前記光路変換手段として第1~第4の光路変換手段が有り、第1光路変換手段と第2光路変換手段は、前記回転側光ファイバーと一体に配置されており、第3光路変換手段と第4光路変換手段は、前記外側ケースと一体に配置されている。そして、前記第1光路変換手段は、光線を略直角方向と回転軸方向に分岐し、前記第2光路変換手段は、前記第1光路変換の前方であって略同一線上に位置し、前記第1光路変換手段から回転軸方向に放出された光線を略直角方向に角度を変換して、前記内側透光性部材の内周側から該内側透光性部材を通過して放出する。そして、前記第3光路変換手段は、前記第1光路変換手段から略直角方向に放出された光線を軸平行に光路変換し、前記第4光路変換手段は、前記第3光路変換手段から放出された光線を略直角方向に角度を変換して、前記外側透光性部材の外周側から該外側透光性部材を通過して放出する。そして、中空円筒形状の前記被測定物の内周面からの戻り光を前記第2光路変換手段から前記回転側光ファイバーと前記第1光路変換手段を経由して前記固定側光ファイバーに導くとともに、前記被測定物の外周面からの戻り光を前記第4光路変換手段から前記第3光路変換手段、前記第1光路変換手段を経由して前記固定側光ファイバーに導くことができる。
この構成によれば、観察光を第1から第4の複数の光路変換手段により、円筒形状の機械部品等の被測定物の内周面および外周面に、同時に光線を照射し、被測定物の内/外周面からの戻り光(反射光)を取り込むことができる。
As a second feature, as a more specific embodiment, it is configured as follows. A substantially tubular case is connected to the inner translucent member, and the outer translucent member is integrally fixed via the outer case, so that the inner translucent member or the inside of the case is integrally fixed. A fixed-side optical fiber fixed in a non-rotating state is arranged in, and a rotating-side optical fiber driven to rotate by a motor unit is arranged on the tip side of the fixed-side optical fiber. There are first to fourth optical path conversion means as the plurality of the optical path conversion means, and the first optical path conversion means and the second optical path conversion means are integrally arranged with the rotating side optical fiber, and the third optical path conversion is performed. The means and the fourth optical path conversion means are arranged integrally with the outer case. Then, the first optical path conversion means branches the light beam in a substantially perpendicular direction and a rotation axis direction, and the second optical path conversion means is located in front of the first optical path conversion and on substantially the same line, and the first (1) The light beam emitted from the optical path conversion means in the direction of the rotation axis is changed in angle in a substantially perpendicular direction, and is emitted from the inner peripheral side of the inner translucent member through the inner translucent member. Then, the third optical path conversion means converts the light rays emitted from the first optical path conversion means in a direction substantially perpendicular to the axis in parallel with the axis, and the fourth optical path conversion means is emitted from the third optical path conversion means. The light beam is converted into an angle in a substantially perpendicular direction, and is emitted from the outer peripheral side of the outer translucent member through the outer translucent member. Then, the return light from the inner peripheral surface of the hollow cylindrical object to be measured is guided from the second optical path conversion means to the fixed side optical fiber via the rotating side optical fiber and the first optical path conversion means, and the said. The return light from the outer peripheral surface of the object to be measured can be guided from the fourth optical path conversion means to the fixed optical fiber via the third optical path conversion means and the first optical path conversion means.
According to this configuration, the observation light is simultaneously irradiated with light rays on the inner peripheral surface and the outer peripheral surface of the object to be measured such as a cylindrical mechanical component by a plurality of optical path conversion means of the first to fourth objects to be measured. It is possible to capture the return light (reflected light) from the inner / outer peripheral surface of the.

第三の特徴としては、光線を複数の方向に分岐する機能を有する前記第1光路変換を複数枚の回転プリズムから構成した偏光ビームスプリッタとしたことにある。
この構成であれば、光線を直角方向と前斜方向に安定して分岐することができ、また、軽量であるためモータユニットの回転負荷を小さく抑えることができる。
A third feature is that the first optical path conversion having a function of branching a light ray in a plurality of directions is a polarization beam splitter composed of a plurality of rotating prisms.
With this configuration, the light beam can be stably branched in the perpendicular direction and the forward oblique direction, and since it is lightweight, the rotational load of the motor unit can be kept small.

第四の特徴としては、前記第2光路変換手段を、中心軸に対して略直角で略平面からなる回転ミラーとしたことにある。
この構成によれば、よりコンパクトな構造で、プローブから被測定物に対して観察光を側方に放射することができる。
The fourth feature is that the second optical path conversion means is a rotating mirror formed at a substantially right angle to the central axis and a substantially plane.
According to this configuration, the observation light can be radiated laterally from the probe to the object to be measured with a more compact structure.

第五の特徴としては、前記第3および第4光路変換手段は、非回転に取り付けられた略円錐状ミラーであることにある。
この構成によれば、よりコンパクトな構造で、光線を被測定物に放射できる。
A fifth feature is that the third and fourth optical path conversion means are substantially conical mirrors attached in a non-rotating manner.
According to this configuration, a light beam can be emitted to the object to be measured with a more compact structure.

他の特徴としては、少なくとも第一から第五の特徴の何れかを備える光イメージング用プローブにより得られた被測定物からの戻り光を、コンピュータで処理することにより、被測定物の形状データを得ることのできる光学式測定装置を構成したことにある。
この構成によれば、円筒形状の機械部品等の被測定物の寸法/形状観察および内/外周面間の同軸度データを得ることができる。
As another feature, the shape data of the measured object is obtained by processing the return light from the measured object obtained by the optical imaging probe having at least one of the first to fifth features with a computer. It is in the construction of an optical measuring device that can be obtained.
According to this configuration, it is possible to observe the dimensions / shape of an object to be measured such as a cylindrical machine part and obtain coaxiality data between inner / outer peripheral surfaces.

次に本発明の好適な実施形態について図面を参照しながら説明する。 Next, a preferred embodiment of the present invention will be described with reference to the drawings.

図1及び図2は、本発明における第1の実施例の光イメージング用プローブの構造を示す断面図である。 1 and 2 are cross-sectional views showing the structure of the optical imaging probe of the first embodiment of the present invention.

図1に示すように光イメージング用プローブは、金属等からなる内側ケース6と、透光性部材として、石英等熱膨張が少ない材料からなる内側透光性パイプ7が連結されている。また、同様に石英等からなる外側透光性パイプ10が、金属等からなる外側ケース13によって連結され、一体的に設けられている。 As shown in FIG. 1, in the optical imaging probe, an inner case 6 made of a metal or the like and an inner translucent pipe 7 made of a material having a small thermal expansion such as quartz are connected as a translucent member. Similarly, the outer translucent pipe 10 made of quartz or the like is connected by the outer case 13 made of metal or the like and is integrally provided.

非回転の固定側光ファイバー1は固定具14により内側ケース6に固定され、モータユニット8は内側ケース6に内蔵固定され、モータユニット8は回転側光ファイバー2を回転させる。固定側光ファイバー1と、回転光側光ファイバー2は対向するそれぞれの端面は直角かつ平滑に加工され、微小隙間を設けて対向し、光回転ジョイント3を構成している。 The non-rotating fixed-side optical fiber 1 is fixed to the inner case 6 by the fixture 14, the motor unit 8 is built-in and fixed in the inner case 6, and the motor unit 8 rotates the rotating-side optical fiber 2. The fixed-side optical fiber 1 and the rotating light-side optical fiber 2 face each other with a right-angled and smoothed end face, and face each other with a minute gap to form an optical rotating joint 3.

回転側光ファイバー2のモータユニット8から遠い側には、例えば偏光ビームスプリッタ等、複数のプリズムや偏光板等から構成され、光線を複数の方向に分岐する機能を有する第1光路変換手段4が取り付けられている。そして、さらにその先端側には第2光路変換手段が取りつけられ、固定側光ファイバー1から導かれた光線は略直角方向に回転放出される。ここで「先端側」とは、プローブの先端により近い側を指している。軸受9は回転側光ファイバー2の回転を支持する軸受である。 On the side of the rotating optical fiber 2 far from the motor unit 8, a first optical path conversion means 4 composed of, for example, a polarizing beam splitter, a plurality of prisms, a polarizing plate, and the like and having a function of branching light rays in a plurality of directions is attached. Has been Further, a second optical path conversion means is attached to the tip side thereof, and the light beam guided from the fixed side optical fiber 1 is rotationally emitted in a substantially right angle direction. Here, the "tip side" refers to the side closer to the tip of the probe. The bearing 9 is a bearing that supports the rotation of the rotating side optical fiber 2.

外側ケース13の内側には、円周上に傾斜を持つ反射面からなるミラー等からなる第3光路変換手段11と第4光路変換手段が取付けられている。第1光路変換手段4で分岐され、直角方向に放射された光線は、第3光路変換手段11により回転軸と略平行に光路変換されて、さらに、第4光路変換手段で再度光路は変換され、固定側光ファイバー1から導かれた光線は外側透光性パイプ10の外周面から、このパイプ10を透過して回転軸方向に放射される。 Inside the outer case 13, a third optical path conversion means 11 and a fourth optical path conversion means, which are formed of a mirror or the like having a reflecting surface having an inclination on the circumference, are attached. The light rays branched by the first optical path conversion means 4 and emitted in the perpendicular direction are optical path-converted substantially parallel to the rotation axis by the third optical path conversion means 11, and further, the optical path is converted again by the fourth optical path conversion means. The light beam guided from the fixed-side optical fiber 1 is transmitted from the outer peripheral surface of the outer translucent pipe 10 through the pipe 10 and radiated in the direction of the rotation axis.

図2はこの光イメージング用プローブのモータユニット8が回転して図1とは180度反対側に光線が放射されている状態を示している。 FIG. 2 shows a state in which the motor unit 8 of the optical imaging probe is rotated and light rays are emitted to the opposite side of FIG. 1 by 180 degrees.

本発明光イメージング用プローブの動作について図3から図8を用いて以下に説明する。 The operation of the probe for optical imaging of the present invention will be described below with reference to FIGS. 3 to 8.

図3は、略円筒形状の被測定物16の内/外周面に本発明光イメージング用プローブを挿入した状態を示している。図10に示す測定装置の光学ユニット本体85から放出された近赤外光等の光線は、固定側光ファイバー1を経て光イメージング用プローブに導かれる。光線は、光回転ジョイント3を通過して回転側光ファイバー2、第1光路変換手段4に導かれ、分岐された光線の内、前方に導かれた分は第2光路変換手段5から内側透光性パイプ7を透過して被測定物16の内周面16iに放射される。ここで「前方」は、プローブの先端側に向かう方向を指している。被測定物16の内周面からの戻り光は、内側透光性パイプ7、第2光路変換手段5、第1光路変換手段4、回転側光ファイバー2を経由して、固定側光ファイバー1から光学ユニット85に戻され、コンピュータ89により解析され、解析結果がモニタ90に表示される。84は偏光器、88は光干渉解析部、86はモータドライブ回路である。 FIG. 3 shows a state in which the probe for optical imaging of the present invention is inserted into the inner / outer peripheral surface of the object 16 having a substantially cylindrical shape. Light rays such as near-infrared light emitted from the optical unit main body 85 of the measuring device shown in FIG. 10 are guided to a probe for optical imaging via a fixed-side optical fiber 1. The light beam passes through the optical rotation joint 3 and is guided to the rotating side optical fiber 2 and the first optical path conversion means 4, and among the branched light rays, the portion guided forward is transmitted from the second optical path conversion means 5 inside. It passes through the sex pipe 7 and is radiated to the inner peripheral surface 16i of the object 16 to be measured. Here, "forward" refers to the direction toward the tip end side of the probe. The return light from the inner peripheral surface of the object 16 to be measured is optical from the fixed side optical fiber 1 via the inner translucent pipe 7, the second optical path conversion means 5, the first optical path conversion means 4, and the rotating side optical fiber 2. It is returned to the unit 85, analyzed by the computer 89, and the analysis result is displayed on the monitor 90. 84 is a polarizing device, 88 is an optical interference analysis unit, and 86 is a motor drive circuit.

また、第1光路変換手段4から回転軸に対し略直角に分岐し放射された光線は、第3光路変換手段11と第4光路変換手段12で反射され、外側透光性パイプ10を透過して被測定物16の外周面16oに放射される。外周面16oからの戻り光は、外側透光性パイプ10、第4、第3光路変換手段12,11、第1光路変換および分岐手段4と回転側光ファイバー2と固定側光ファイバー1を経て、光学ユニット本体85に戻される。 Further, the light rays radiated from the first optical path conversion means 4 at a substantially right angle to the rotation axis are reflected by the third optical path conversion means 11 and the fourth optical path conversion means 12 and pass through the outer translucent pipe 10. It is radiated to the outer peripheral surface 16o of the object 16 to be measured. The return light from the outer peripheral surface 16o passes through the outer translucent pipe 10, the fourth and third optical path conversion means 12, 11, the first optical path conversion and branching means 4, the rotating side optical fiber 2, and the fixed side optical fiber 1, and is optically optical. It is returned to the unit body 85.

図4は戻り光のコンピュータ89による解析データの一例を示す図であり、縦軸は半径距離を示し、横軸は回転放射の回転角度を示している。図4中に6本の半径距離データが示されているが、データ(a)は内側透光性パイプの内周面の半径、(b)は同外周面の半径、(c)は被測定物16の内周面16iの半径である。続いてデータ(d)は外側透光性パイプ10の外周面の半径、(e)は同内周面の半径、(f)は被測定物16の外周面16oの半径を示すデータである。 FIG. 4 is a diagram showing an example of analysis data of the return light by the computer 89, in which the vertical axis shows the radial distance and the horizontal axis shows the rotation angle of the rotational radiation. Six radius distance data are shown in FIG. 4, in which data (a) is the radius of the inner peripheral surface of the inner translucent pipe, (b) is the radius of the outer peripheral surface, and (c) is the measured object. It is the radius of the inner peripheral surface 16i of the object 16. Next, the data (d) is the radius of the outer peripheral surface of the outer translucent pipe 10, (e) is the radius of the inner peripheral surface, and (f) is the data showing the radius of the outer peripheral surface 16o of the object 16 to be measured.

実際の測定においては、測定開始前に校正を行うが、この測定機においては、(a)内側透光性パイプの内周面の半径と(d)外側透光性パイプ10の外周面の半径は、予め、数値が保証されたリングゲージとのとの比較測定を行って透光性パイプの真の半径(図中、Rp1-in)を求めてコンピュータ89にデータを予め記憶させ、さらに中空形状のピンゲージの外径を測定することで、外側透光性パイプ10の外周面の真の半径(図中、Rp2-Outer)を求めてコンピュータ89にデータを予め記憶させている。 In the actual measurement, calibration is performed before the start of measurement, but in this measuring machine, (a) the radius of the inner peripheral surface of the inner translucent pipe and (d) the radius of the outer peripheral surface of the outer translucent pipe 10. Performs comparative measurement with a ring gauge whose numerical value is guaranteed in advance to obtain the true radius of the translucent pipe (Rp1-in in the figure), stores the data in advance in the computer 89, and further hollows out. By measuring the outer diameter of the pin gauge of the shape, the true radius (Rp2-Outer in the figure) of the outer peripheral surface of the outer translucent pipe 10 is obtained, and the data is stored in advance in the computer 89.

ここで、図4の(a)から(f)の各データは光イメージング用プローブのモータユニット8および軸受9の半径方向の1~3マイクロメートル程度の軸振れの影響を受けて再現性が非常に乏しいものであり、そのままでは高精度な測定に使うことができない。 Here, each of the data (a) to (f) in FIG. 4 is affected by the axial runout of about 1 to 3 micrometers in the radial direction of the motor unit 8 and the bearing 9 of the optical imaging probe, and the reproducibility is very high. It is scarce and cannot be used for high-precision measurement as it is.

そこで、図4において、被測定物16の内/外周面の毎回の測定は、内周面16iから内側透光性パイプ7の内周面までの距離(図中、R-inとRp1-inまでの半径距離)に予め校正で求めておいた内側透光性パイプ7の真の半径(図中、Rp1-in)を加えて求めている。
同様に、外周面16oの正しい半径測定値は、外周面16oから外側透光性パイプ10の内周面までの距離(図中、R-outerとRp2-outerまでの半径距離)に予め校正で求めておいた外側透光性パイプ7の真の外半径(図中、Rp2-outer)を加えて求めている。
Therefore, in FIG. 4, each measurement of the inner / outer peripheral surface of the object to be measured is the distance from the inner peripheral surface 16i to the inner peripheral surface of the inner translucent pipe 7 (R-in and Rp1-in in the figure). The true radius (Rp1-in in the figure) of the inner translucent pipe 7 obtained in advance by calibration is added to the radius distance to the distance.
Similarly, the correct radius measurement of the outer peripheral surface 16o is pre-calibrated to the distance from the outer peripheral surface 16o to the inner peripheral surface of the outer translucent pipe 10 (radial distance between R-outer and Rp2-outer in the figure). It is obtained by adding the true outer radius (Rp2-outer in the figure) of the outer translucent pipe 7 that has been obtained.

図5はこのようにして得られた被測定物16の内/外径測定データの一例である。 FIG. 5 is an example of the inner / outer diameter measurement data of the object 16 to be measured thus obtained.

図6に示すように、光イメージング用プローブは、図10の測定機の図83に示すZ軸昇降モータにより軸方向にスライドさせることで図7の内周面16iと外周面16oは三次元的に形状と寸法データが取得できる。図8は測定値の一事例である。 As shown in FIG. 6, the probe for optical imaging is slid in the axial direction by the Z-axis elevating motor shown in FIG. 83 of the measuring machine of FIG. 10, so that the inner peripheral surface 16i and the outer peripheral surface 16o of FIG. 7 are three-dimensional. Shape and dimension data can be obtained. FIG. 8 is an example of the measured value.

本発明によれば、被測定物16の内/外周面の直径は、内/外透光性パイプ7、10を基準に行うことで、モータユニット8と軸受9の振れの影響を完全に除外し、ナノメートルオーダーで繰返し再現性が良好な光イメージング用プローブと測定機を得ることが可能になる。
According to the present invention, the diameter of the inner / outer peripheral surface of the object 16 to be measured is set based on the inner / outer translucent pipes 7 and 10, so that the influence of the runout of the motor unit 8 and the bearing 9 is completely excluded. However, it becomes possible to obtain probes and measuring instruments for optical imaging with good repeatability on the order of nanometers.

図9は光イメージング用プローブの第2の実施例の断面図である。
第2の実施例においては、固定側光ファイバー21はモータユニット28の回転シャフトの中空穴の中に相対的に回転自在に挿入され、その先端には集光レンズ22aが一体的に構成されている。集光レンズ22aから放出された光線は第1光路変換および分光手段24に向けて放出され、光線は略直角方向と回転軸前方方向に分岐される。
FIG. 9 is a cross-sectional view of a second embodiment of the optical imaging probe.
In the second embodiment, the fixed-side optical fiber 21 is relatively rotatably inserted into the hollow hole of the rotating shaft of the motor unit 28, and the condenser lens 22a is integrally configured at the tip thereof. .. The light beam emitted from the condenser lens 22a is emitted toward the first optical path conversion and the spectroscopic means 24, and the light ray is branched in a substantially perpendicular direction and a direction forward of the rotation axis.

また、モータユニット28の回転シャフトと回転側光ファイバー22は、回転側ファイバー接続具23により連結され一体的に回転する。
これ以降の構成と動作は図1~図8に示した第1実施例と同じである。
Further, the rotating shaft of the motor unit 28 and the rotating side optical fiber 22 are connected by the rotating side fiber connector 23 and rotate integrally.
Subsequent configurations and operations are the same as those of the first embodiment shown in FIGS. 1 to 8.

このように、本発明の第2実施例によれば、光路中の減衰が少なく、より一層高精度な測定が行うことができる光イメージング用プローブを提供できる。
As described above, according to the second embodiment of the present invention, it is possible to provide a probe for photoimaging with less attenuation in the optical path and capable of performing more accurate measurement.

本発明の光イメージング用プローブは、複数の光路変換手段により観察光を機械部品等の略円筒形状被被測定物の内周面および外周面に、同時に光線を照射し、被測定物の内/外周面からの戻り光(反射光)を取り込んで機械部品の寸法/形状観察および内/外周面間の同軸度データが得られる光イメージング用プローブを提供でき、工業用および医療用の測定装置や検査装置への活用が期待される。
The probe for optical imaging of the present invention simultaneously irradiates the inner peripheral surface and the outer peripheral surface of a substantially cylindrical object to be measured, such as mechanical parts, with observation light by a plurality of optical path conversion means, and the inside of the object to be measured / We can provide optical imaging probes that can capture the return light (reflected light) from the outer peripheral surface to observe the dimensions / shapes of mechanical parts and obtain coaxiality data between the inner / outer peripheral surfaces, and can be used for industrial and medical measuring devices. It is expected to be used for inspection equipment.

1、21 固定側光ファイバー
2、22 回転側光ファイバー
3 光回転ジョイント
4、24 第1光路変換手段(プリズム等)
5、25 第2光路変換手段(プリズム等)
6、26 内側ケース
7、27 内側透光性パイプ(キャップ)
8、28 モータユニット
9、29 軸受
10、30 外側透光性パイプ
11、31 第3光路変換手段
12、32 第4光路変換手段
13、33 外側ケース
14、34 固定側光ファイバー固定具
16 被測定物
22a 集光レンズ
23 回転側ファイバー接続具
80 測定台
81 Z軸スライダー
82 取付部
83 Z軸昇降モータ
84 偏光器
85 光学ユニット本体
86 モータドライブ回路
88 光干渉解析部
89 コンピュータ
90 モニタ
100 光線
1, 21 Fixed side optical fiber 2, 22 Rotating side optical fiber 3 Optical rotating joint 4, 24 First optical path conversion means (prism, etc.)
5, 25 Second optical path conversion means (prism, etc.)
6,26 Inner case 7,27 Inner translucent pipe (cap)
8, 28 Motor unit 9, 29 Bearing 10, 30 Outer translucent pipe 11, 31 Third optical path conversion means 12, 32 Fourth optical path conversion means 13, 33 Outer case 14, 34 Fixed side optical fiber fixture 16 Object to be measured 22a Condensing lens 23 Rotating side fiber connector 80 Measuring table
81 Z-axis slider 82 Mounting part 83 Z-axis elevating motor 84 Polarizer 85 Optical unit body 86 Motor drive circuit 88 Optical interference analysis unit 89 Computer 90 Monitor 100 Rays

Claims (6)

光線の方向を変える複数の光路変換手段と、
中空円筒状で互いに径サイズの異なる内側透光性部材と外側透光性部材とを備え、
複数ある前記光路変換手段の少なくとも1つは、光線を複数の方向に分岐する機能を有し、
前記内側透光性部材と前記外側透光性部材とは略同軸上に配置されており、
前記内側透光性部材の外周面と前記外側透光性部材の内周面との間に被測定物を挿入し、
前記被測定物に対して、前記内側透光性部材側からと前記外側透光性部材側からの両方向から光を照射できることを特徴とする光イメージング用プローブ。
Multiple optical path conversion means that change the direction of light rays,
It has an inner translucent member and an outer translucent member that are hollow and have different diameters.
At least one of the plurality of optical path conversion means has a function of branching a light ray in a plurality of directions.
The inner translucent member and the outer translucent member are arranged substantially coaxially.
An object to be measured is inserted between the outer peripheral surface of the inner translucent member and the inner peripheral surface of the outer translucent member.
A probe for photoimaging, characterized in that the object to be measured can be irradiated with light from both the inner translucent member side and the outer translucent member side.
前記内側透光性部材には、略チューブ状のケースが連結されるとともに、前記外側透光性部材が外側ケースを介して一体に固定されており、
前記内側透光性部材又は前記ケースの内部には、非回転状態に固定された固定側光ファイバーが配置されており、
前記固定側光ファイバーの先端側には、モータユニットにより回転駆動させられる回転側光ファイバーが配置されており、
複数の前記光路変換手段として第1~第4の光路変換手段が有り、
第1光路変換手段と第2光路変換手段は、前記回転側光ファイバーと一体に配置されており、
第3光路変換手段と第4光路変換手段は、前記外側ケースと一体に配置されており、
前記第1光路変換手段は、光線を略直角方向と回転軸方向に分岐し、
前記第2光路変換手段は、前記第1光路変換手段の前方であって略同一線上に位置し、前記第1光路変換手段から回転軸方向に放出された光線を略直角方向に角度を変換して、前記内側透光性部材の内周側から該内側透光性部材を通過して放出し、
前記第3光路変換手段は、前記第1光路変換手段から略直角方向に放出された光線を軸平行に光路変換し、
前記第4光路変換手段は、前記第3光路変換手段から放出された光線を略直角方向に角度を変換して、前記外側透光性部材の外周側から該外側透光性部材を通過して放出し、
中空円筒形状の前記被測定物の内周面からの戻り光を前記第2光路変換手段から前記回転側光ファイバーと前記第1光路変換手段を経由して前記固定側光ファイバーに導くとともに、前記被測定物の外周面からの戻り光を前記第4光路変換手段から前記第3光路変換手段、前記第1光路変換手段を経由して前記固定側光ファイバーに導くことを特徴とする請求項1記載の光イメージング用プローブ。
A substantially tubular case is connected to the inner translucent member, and the outer translucent member is integrally fixed via the outer case.
A fixed-side optical fiber fixed in a non-rotating state is arranged inside the inner translucent member or the case.
On the tip side of the fixed-side optical fiber, a rotating-side optical fiber that is rotationally driven by a motor unit is arranged.
There are first to fourth optical path conversion means as the plurality of optical path conversion means.
The first optical path conversion means and the second optical path conversion means are arranged integrally with the rotating side optical fiber.
The third optical path conversion means and the fourth optical path conversion means are arranged integrally with the outer case.
The first optical path conversion means branches a light ray in a substantially perpendicular direction and a rotation axis direction, and the light beam is branched.
The second optical path conversion means is located in front of the first optical path conversion means and on substantially the same line, and converts the angle of the light beam emitted from the first optical path conversion means in the rotation axis direction in a substantially perpendicular direction. Then, it is emitted from the inner peripheral side of the inner translucent member through the inner translucent member.
The third optical path conversion means converts the light rays emitted from the first optical path conversion means in a direction substantially perpendicular to the axis in parallel with the axis.
The fourth optical path conversion means converts the angle of the light beam emitted from the third optical path conversion means in a substantially right angle direction, and passes through the outer translucent member from the outer peripheral side of the outer translucent member. Release,
The return light from the inner peripheral surface of the hollow cylindrical object to be measured is guided from the second optical path conversion means to the fixed side optical fiber via the rotating side optical fiber and the first optical path conversion means, and is measured. The light according to claim 1, wherein the return light from the outer peripheral surface of the object is guided from the fourth optical path conversion means to the fixed side optical fiber via the third optical path conversion means and the first optical path conversion means. Probe for imaging.
前記第1光路変換手段は、複数枚の回転プリズムまたは偏光板から構成した偏光ビームスプリッタであることを特徴とする請求項2に記載の光イメージング用プローブ。 The probe for optical imaging according to claim 2, wherein the first optical path conversion means is a polarization beam splitter composed of a plurality of rotating prisms or polarizing plates. 前記第2光路変換手段を、中心軸に対して略直角で略平面からなる回転ミラーであり、中心軸を含む直角な投影面の少なくとも一部分は光線が当接しないように切欠いた形状としたことを特徴とする請求項2に記載の光イメージング用プローブ。 The second optical path conversion means is a rotating mirror that is substantially perpendicular to the central axis and is formed of a substantially plane, and at least a part of the right-angled projection surface including the central axis is notched so that light rays do not abut. 2. The probe for optical imaging according to claim 2. 前記第3光路変換手段および前記第4光路変換手段は、略円錐状であり、非回転に取り付けられたミラーであることを特徴とする請求項2に記載の光イメージング用プローブ。 The probe for optical imaging according to claim 2, wherein the third optical path conversion means and the fourth optical path conversion means are substantially conical and are mirrors attached in a non-rotating manner. 請求項1~5何れか1項に記載の光イメージング用プローブにより得られた、前記被測定物からの戻り光からコンピュータにより被測定物の形状データを得ることを特徴とする光学式測定装置。 An optical measuring device, characterized in that shape data of a measured object is obtained by a computer from the return light from the measured object obtained by the optical imaging probe according to any one of claims 1 to 5.
JP2018085518A 2018-04-26 2018-04-26 Optical imaging probe and optical measuring device Active JP7058869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018085518A JP7058869B2 (en) 2018-04-26 2018-04-26 Optical imaging probe and optical measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018085518A JP7058869B2 (en) 2018-04-26 2018-04-26 Optical imaging probe and optical measuring device

Publications (2)

Publication Number Publication Date
JP2019191050A JP2019191050A (en) 2019-10-31
JP7058869B2 true JP7058869B2 (en) 2022-04-25

Family

ID=68389998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018085518A Active JP7058869B2 (en) 2018-04-26 2018-04-26 Optical imaging probe and optical measuring device

Country Status (1)

Country Link
JP (1) JP7058869B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022149877A (en) * 2021-03-25 2022-10-07 株式会社東京精密 Optical rotary probe calibration method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064512A (en) 2004-08-26 2006-03-09 Mitsutoyo Corp Surface properties measuring apparatus
JP2011007587A (en) 2009-06-25 2011-01-13 Jfe Steel Corp Apparatus for measuring steel pipe dimensions
JP2016045107A (en) 2014-08-25 2016-04-04 新日鐵住金株式会社 Measuring device for distance to pipe surface, and pipe shape measuring device using the same
JP2017187335A (en) 2016-04-04 2017-10-12 並木精密宝石株式会社 Optical inner face measurement device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006064512A (en) 2004-08-26 2006-03-09 Mitsutoyo Corp Surface properties measuring apparatus
JP2011007587A (en) 2009-06-25 2011-01-13 Jfe Steel Corp Apparatus for measuring steel pipe dimensions
JP2016045107A (en) 2014-08-25 2016-04-04 新日鐵住金株式会社 Measuring device for distance to pipe surface, and pipe shape measuring device using the same
JP2017187335A (en) 2016-04-04 2017-10-12 並木精密宝石株式会社 Optical inner face measurement device

Also Published As

Publication number Publication date
JP2019191050A (en) 2019-10-31

Similar Documents

Publication Publication Date Title
JP6739780B2 (en) Optical inner surface measuring device
JP6480720B2 (en) Hole measuring apparatus and hole measuring method using non-rotating CPS pen
JP6232552B2 (en) Optical inner surface measuring device
JP6232550B2 (en) Optical inner surface measuring device
JP2009133630A (en) Optical connector and optical tomographic imaging apparatus using the same
Berger et al. Non-contact metrology of aspheric surfaces based on MWLI technology
US10401157B2 (en) Optical inner surface measurement device
JP2020051892A (en) Measurement system and method for manufacturing shaft with hole
JP7434535B2 (en) Non-contact optical measurement equipment and replaceable optical probes
CN111141767A (en) X-ray CT apparatus for measurement and CT reconstruction method using the same
CN102607472A (en) Measuring device and measuring method of wide-range flatness
JP7058869B2 (en) Optical imaging probe and optical measuring device
JP2008268122A (en) Non-contact form measuring apparatus
JP2010243241A (en) Instrument and method for measuring refractive index
JP6865441B2 (en) Optical inner surface measuring device
JP2012002548A (en) Light wave interference measurement device
US20100284023A1 (en) Device and method for measuring the shape of freeform surfaces
JP6980266B2 (en) Probe for optical imaging
JP2019191417A (en) Optical imaging probe
JP2020187052A (en) Optical measuring device and optical measuring method
JP6980304B2 (en) Non-contact inner surface shape measuring device
JP6445755B2 (en) Surface shape measuring device or wavefront aberration measuring device
US20240085170A1 (en) Method for assessing a depression, in particular a bore, in a workpiece
JP2022156224A (en) Optical type inner surface measuring device
JP2017215211A (en) Inner face measuring machine-purpose calibration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220406

R150 Certificate of patent or registration of utility model

Ref document number: 7058869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350