JP2021156852A - Device and method for optical inner surface measurement - Google Patents

Device and method for optical inner surface measurement Download PDF

Info

Publication number
JP2021156852A
JP2021156852A JP2020060327A JP2020060327A JP2021156852A JP 2021156852 A JP2021156852 A JP 2021156852A JP 2020060327 A JP2020060327 A JP 2020060327A JP 2020060327 A JP2020060327 A JP 2020060327A JP 2021156852 A JP2021156852 A JP 2021156852A
Authority
JP
Japan
Prior art keywords
optical
peripheral surface
inner peripheral
hole
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020060327A
Other languages
Japanese (ja)
Inventor
大志 山崎
Hiroshi Yamazaki
大志 山崎
憲士 成田
Kenji Narita
憲士 成田
拓也 舘山
Takuya Tateyama
拓也 舘山
正人 森本
Masato Morimoto
正人 森本
隆文 淺田
Takafumi Asada
隆文 淺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adamant Namiki Precision Jewel Co Ltd
Original Assignee
Adamant Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adamant Namiki Precision Jewel Co Ltd filed Critical Adamant Namiki Precision Jewel Co Ltd
Priority to JP2020060327A priority Critical patent/JP2021156852A/en
Publication of JP2021156852A publication Critical patent/JP2021156852A/en
Pending legal-status Critical Current

Links

Images

Abstract

To precisely and rapidly measure the shape and the depth of irregular scratches of the inner periphery surface of a hole in a measurement target object.SOLUTION: Optical concentration information of the inner periphery surface of a hole in a measurement target object is acquired from a camera image as first measurement means, the position in a depth direction of irregular scratches of the inner periphery surface of the hole in the measurement target object is specified from the concentration information, a rotary light scan probe as second measurement means is caused to invade to near the specified position in an advanced manner, light reflected by the inner periphery surface is taken in three-dimensionally near the position, and the shape and the depth of irregular scratches are measured minutely.SELECTED DRAWING: Figure 1

Description

本発明は、光学式の内面測定装置および測定方法に関するものであって、特に、被測定物の穴の内周面における傷などの観察、及び形状・深さ寸法及び幾何学精度を高精度に測定するものである。 The present invention relates to an optical inner surface measuring device and a measuring method, and in particular, observes scratches and the like on the inner peripheral surface of a hole of an object to be measured, and makes shape / depth dimensions and geometric accuracy highly accurate. It is to measure.

例えば自動車用エンジンのシリンダーや、自動車ブレーキマスターシリンダ等の加工仕上がり寸法や幾何学精度の良否および表面傷や鋳巣の存在は自動車の動力性能と燃料消費効率に大きく影響するが、これらの検査は従来、内径測長機、真円度測定機、等の接触式測定機と目視による傷検査が行われていた。 For example, the finished dimensions and geometric accuracy of automobile engine cylinders and automobile brake master cylinders, as well as the presence of surface scratches and cavities, greatly affect the power performance and fuel consumption efficiency of automobiles. Conventionally, scratch inspection has been performed visually with a contact-type measuring machine such as an inner diameter measuring machine and a roundness measuring machine.

しかし近年、被測定物に傷を付けない目的から光学式の非接触式測定機が登場しており、光線を照射し反射光を光センサで捉え、反射光の到達時間や波長、または光干渉縞の発生状態の計測データを取得し、コンピュータで演算して、内周面の三次元形状を自動検査する方法が採用されている。また、このような非接触測定機は内周面全体を長時間かけて走査さえ行えば、内表面の凹凸傷の大きさと凹凸深さの測定も可能になっている。機械装置や機械部品の内周面に光線を照射して内周面の観察または測定を行う技術を適用した観察装置の代表的な構造は、例えば、特許文献1と2に示す通りである。 However, in recent years, optical non-contact measuring instruments have been introduced for the purpose of not damaging the object to be measured. They irradiate light rays and capture the reflected light with an optical sensor, and the arrival time and wavelength of the reflected light, or optical interference. A method is adopted in which measurement data of the state of occurrence of fringes is acquired, calculated by a computer, and the three-dimensional shape of the inner peripheral surface is automatically inspected. Further, such a non-contact measuring machine can measure the size and depth of unevenness on the inner surface as long as the entire inner peripheral surface is scanned for a long time. For example, Patent Documents 1 and 2 show typical structures of observation devices to which a technique of irradiating the inner peripheral surfaces of mechanical devices and mechanical parts with light rays to observe or measure the inner peripheral surfaces is applied.

特許文献1に示す走査型管内形状検査装置では、長さを有する管内に光ビームを螺旋状に回転放射し、全体を走査して凹凸を検出しつつ、検出する凹凸深さに一定の閾値を設け、これを超える測定値を欠陥と認識し(文献内図10)、欠陥と判定した領域近傍だけのデータをコンピュータに蓄積し、それ以外のデータを保存しないことでコンピュータへの保存データ量を減らすことに成功している。
しかしながら該文献の方法では、一般にスポット径が20μm程度と言われる微細な光線を管内全体に放射して欠陥の位置とその大きさおよび深さを検出するものである。しかしながら、管の長さが150mmで、光線のスポット径が20μmの場合、7500周分の回転走査が必要となってしまい測定に長時間かかってしまう。例えば1周の走査に1秒を要すると仮定すると7500秒(2時間)の、長時間の検査が必要であり、データをコンピュータに蓄積する容量を減少することは可能であるが、測定時間の点では全く実用に耐えなかった。
In the scanning tube shape inspection device shown in Patent Document 1, a light beam is spirally radiated into a tube having a length, and the entire surface is scanned to detect unevenness while setting a constant threshold value for the detected unevenness depth. The amount of data saved in the computer is increased by recognizing the measured value exceeding this as a defect (Fig. 10 in the document), storing the data only in the vicinity of the area determined to be defective in the computer, and not storing the other data. We have succeeded in reducing it.
However, in the method of the document, a fine light ray having a spot diameter of about 20 μm is emitted to the entire inside of the tube to detect the position of the defect and its size and depth. However, when the length of the tube is 150 mm and the spot diameter of the light beam is 20 μm, rotational scanning for 7500 laps is required and the measurement takes a long time. For example, assuming that it takes 1 second to scan one lap, a long inspection of 7500 seconds (2 hours) is required, and it is possible to reduce the capacity of storing data in the computer, but the measurement time In terms of points, it could not be put to practical use at all.

また、特許文献2に記載される発明では、被測定物(軸受9)の内周面を計測するために、パイプ状の透光部材(21)の内部に光線(26)を放射および集光するレンズ(24)と回転ミラーからなる第1光路変換部材(3)を内蔵している。そして図8と図9に示すように回転時の振動を検出し補正して内周面の高精度な測定を行っている。
しかしながら、特許文献2に記載される構成も特許文献1と同様であり、一般にスポット径が20μm程度と言われる微細な光線を管内全体に放射して欠陥を検出できないものである。その為長時間の検査が必要であり工業的に実用的ではなかった。
Further, in the invention described in Patent Document 2, in order to measure the inner peripheral surface of the object to be measured (bearing 9), a light ray (26) is emitted and condensed inside a pipe-shaped translucent member (21). It has a built-in first optical path conversion member (3) consisting of a lens (24) and a rotating mirror. Then, as shown in FIGS. 8 and 9, vibration during rotation is detected and corrected to perform highly accurate measurement of the inner peripheral surface.
However, the configuration described in Patent Document 2 is the same as that in Patent Document 1, and defects cannot be detected by radiating fine light rays having a spot diameter of about 20 μm over the entire tube. Therefore, long-term inspection was required and it was not industrially practical.

特許第3066813号Patent No. 3066813 特許第6232550号Patent No. 6232550

本発明は上記従来事情に鑑みてなされたものであり、その課題とするところは、被測定物の設けられた穴の内周面における傷などを、高精度且つ短時間で測定することにある。 The present invention has been made in view of the above-mentioned conventional circumstances, and an object of the present invention is to measure scratches on the inner peripheral surface of a hole provided with an object to be measured with high accuracy and in a short time. ..

上記課題を解決するための一手段は、光学式内面測定方法として、被測定物に設けられた穴の内周面を照明してあらわれる陰影画像を取得して、この陰影画像の濃淡情報から内周面にある凹凸傷の位置を特定する。そして、特定した位置の近傍に光走査プローブを配置し、光走査プローブから内周面に向けて照射した光線の反射光を立体的に取り込んで、凹凸傷の形状寸法及び深さを測定するものである。 One means for solving the above problem is to acquire a shadow image that appears by illuminating the inner peripheral surface of a hole provided in the object to be measured as an optical inner surface measurement method, and to obtain a shadow image that appears from the shading information of the shadow image. Identify the location of uneven scratches on the peripheral surface. Then, an optical scanning probe is placed in the vicinity of the specified position, and the reflected light of the light beam emitted from the optical scanning probe toward the inner peripheral surface is three-dimensionally captured to measure the shape dimension and depth of the uneven scratch. Is.

また、この測定方法を用いることのできる光学式測定装置として、照明されている被測定物の穴の内面にできる陰影画像を取得する第一測定手段と、干渉光学法により当該穴の内面を測定する第二測定手段とを備えるようにしたものである。 Further, as an optical measuring device that can use this measuring method, the inner surface of the hole is measured by the first measuring means for acquiring a shadow image formed on the inner surface of the hole of the object to be illuminated and the interference optical method. It is provided with a second measuring means.

本発明によれば、被測定物の穴内周面の状態を詳細に測定する場合の測定時間を、従来よりも大幅に短縮することができる。
例えば、従来は被測定物穴内周面の凹凸傷の形状と深さを詳細に高精度で測定する場合に、回転式光走査プローブで内周面全体を例えば2時間かけて検出し精密測定していたのに比べ、約1分以内に測定することが可能となる。
According to the present invention, the measurement time when measuring the state of the inner peripheral surface of the hole of the object to be measured in detail can be significantly shortened as compared with the conventional case.
For example, conventionally, when the shape and depth of uneven scratches on the inner peripheral surface of a hole to be measured are measured in detail with high accuracy, the entire inner peripheral surface is detected and precisely measured by a rotary optical scanning probe, for example, over 2 hours. It is possible to measure within about 1 minute compared to what was done.

本発明光学式内面測定装置のカメラ一体光プローブ構成図Configuration diagram of the camera-integrated optical probe of the optical inner surface measuring device of the present invention 本発明光学式内面測定装置のカメラ部Camera unit of the optical inner surface measuring device of the present invention 本発明光学式内面測定装置の全体構成図Overall configuration diagram of the optical inner surface measuring device of the present invention 本発明光学式内面測定装置の動作ブロック図Operation block diagram of the optical inner surface measuring device of the present invention 本発明光学式内面測定装置のカメラ濃淡データ立体取得例Example of camera shading data stereoscopic acquisition of the optical inner surface measuring device of the present invention 本発明光学式内面測定装置の内周面濃淡イメージ展開図Development view of the inner peripheral surface shading image of the optical inner surface measuring device of the present invention 本発明光学式内面測定装置の内周面濃淡位置解析図Inner peripheral surface shading position analysis diagram of the optical inner surface measuring device of the present invention 本発明光学式内面測定装置の第二測定手段による三次元形状取得データ図Three-dimensional shape acquisition data diagram by the second measuring means of the optical inner surface measuring device of the present invention 本発明光学式内面測定装置の第一および第二測定手段動作説明図Explanatory drawing of operation of the first and second measuring means of the optical inner surface measuring apparatus of this invention 本発明光学式内面測定装置のカメラとライトの位置関係図Positional relationship diagram of the camera and the light of the optical inner surface measuring device of the present invention 本発明光学式内面測定装置の第2の実施例構成図2nd Example block diagram of the optical inner surface measuring apparatus of this invention

本実施の形態に係わる光学式内面測定装置の第1の特徴は、被測定物に設けられた穴にプローブを挿入して該穴の内面を測定するものであって、照明された穴の内面にできる陰影画像を取得する第一測定手段と、干渉光学法(光干渉法、分光干渉法等)により穴の内面を測定する第二測定手段とを備えることにある。
この構成により、第一の測定手段で検出した凹凸傷等の陰影画像位置を、第二の測定手段で詳細に測定できるので、第二測定手段のプローブは穴の全長に渡って内周面を測定する必要が無くなる。したがって、第一測定手段が特定した凹凸傷の位置まで第二測定手段のプローブを早送り移動して、精密測定が必要な位置のみの精密測定を行うので測定時間が飛躍的に短くすむ。
The first feature of the optical inner surface measuring device according to the present embodiment is that a probe is inserted into a hole provided in an object to be measured to measure the inner surface of the hole, and the inner surface of the illuminated hole is measured. It is provided with a first measuring means for acquiring a shadow image that can be formed and a second measuring means for measuring the inner surface of a hole by an interferometric method (optical interference method, spectroscopic interference method, etc.).
With this configuration, the position of the shadow image such as uneven scratches detected by the first measuring means can be measured in detail by the second measuring means, so that the probe of the second measuring means covers the inner peripheral surface over the entire length of the hole. There is no need to measure. Therefore, the probe of the second measuring means is fast-forwarded to the position of the uneven scratch specified by the first measuring means, and the precision measurement is performed only at the position where the precision measurement is required, so that the measurement time can be dramatically shortened.

第2の特徴としては、第一測定手段は被測定物穴内周面の光学的濃淡情報をカメラ画像から取得し、この濃淡情報を画像解析して被測定物穴内周面凹凸傷の奥行き方向位置を特定する。
これにより、被測定物穴の内周面の凹凸傷位置を極めて短時間に発見し、その位置を特定することができる。
The second feature is that the first measuring means acquires the optical shading information of the inner peripheral surface of the hole to be measured from the camera image, analyzes the shading information, and analyzes the image to determine the position in the depth direction of the uneven scratch on the inner peripheral surface of the hole to be measured. To identify.
As a result, the position of the uneven scratch on the inner peripheral surface of the hole to be measured can be found in an extremely short time, and the position can be specified.

第3の特徴としては、第一測定手段を構成するカメラを前記プローブの端部に固定配置したことにある。
この構成によれば、測定対象の穴に挿入するプローブに関して、挿入側端部にカメラを一体的に配置しているので、装置のセッティングと測定の作業が容易になる。また、LEDライト等の照明手段も挿入側端部に合わせて配置してもよい。
The third feature is that the camera constituting the first measuring means is fixedly arranged at the end of the probe.
According to this configuration, with respect to the probe to be inserted into the hole to be measured, the camera is integrally arranged at the insertion side end portion, so that the work of setting and measuring the device becomes easy. Further, a lighting means such as an LED light may be arranged according to the insertion side end portion.

第4の特徴としては、プローブの端部に円錐ミラーを取り付けていることにある。
この構成によれば、カメラは測定対象の穴の外側に配置した状態で、円錐ミラーに映る測定対象穴内周面の画像を取り込むことができる。
The fourth feature is that a conical mirror is attached to the end of the probe.
According to this configuration, the camera can capture an image of the inner peripheral surface of the measurement target hole reflected on the conical mirror in a state where the camera is arranged outside the measurement target hole.

第5の特徴としては、第二測定手段は、先端から光線を放射させる光ファイバーと、透光性で略円筒状のパイプと、光ファイバーの先端側であって透光性パイプの内側に配置される光路変換手段と、光路変換手段を回転駆動させるモータとを備える。そして、光路変換手段を介して光線を穴の内周面に対して回転放射し、この反射光から干渉光を作り出し三次元的に距離測定を行うようにした。
この構成によれば、三次元形状データの取得において透光性パイプを基準とすることができるので、内周面に回転放射する回転軸または回転部の振れまたは非再現振れが引き起こしている機械的回転振動やノイズを除去し、正しい内周面の三次元形状データが取得できる。
As a fifth feature, the second measuring means is arranged in an optical fiber that radiates a light beam from the tip, a translucent and substantially cylindrical pipe, and a translucent pipe on the tip side of the optical fiber and inside the translucent pipe. It includes an optical path conversion means and a motor for rotationally driving the optical path conversion means. Then, a light beam is rotationally radiated to the inner peripheral surface of the hole via an optical path conversion means, and interference light is generated from this reflected light to measure the distance three-dimensionally.
According to this configuration, since the translucent pipe can be used as a reference in the acquisition of the three-dimensional shape data, the mechanical runout or non-reproducible runout of the rotating shaft or rotating portion that radiates on the inner peripheral surface is caused. Rotational vibration and noise can be removed, and correct 3D shape data of the inner peripheral surface can be obtained.

第6の特徴としては、第二測定手段が測定を行う際に、透光性パイプの断面形状寸法データを予め校正段階で計測してコンピュータに記憶させておく。そして、被測定物の寸法測定を行う際は、回転放射した反射光を捉えて、透光性パイプ内周面または外周表面から被測定物の内周面までの半径距離(ΔR1,ΔR2)と、予めコンピュータに記憶させておいた、透光性パイプ三次元形状の直径数値(D0)から、直径(D=D0+ΔR1+ΔR2)を計算することにより、光路変換手段の回転振れおよび回転振動の影響を除外した、補正後の三次元形状データを収集し計算するものである。
これにより、第二測定手段の内周面測定は常に寸法が精密に校正された、透光性パイプを基準にとの比較測定を行う事が可能になり、測定繰り返し再現性が大変良好な測定機が得られる。
The sixth feature is that when the second measuring means performs the measurement, the cross-sectional shape and dimensional data of the translucent pipe is measured in advance at the calibration stage and stored in the computer. Then, when measuring the dimensions of the object to be measured, the reflected light radiated by rotation is captured and the radius distance (ΔR1, ΔR2) from the inner peripheral surface or outer peripheral surface of the translucent pipe to the inner peripheral surface of the object to be measured. By calculating the diameter (D = D0 + ΔR1 + ΔR2) from the diameter value (D0) of the three-dimensional shape of the translucent pipe stored in the computer in advance, the effects of rotational runout and rotational vibration of the optical path conversion means are excluded. The corrected three-dimensional shape data is collected and calculated.
As a result, the inner peripheral surface measurement of the second measuring means can always be compared with the translucent pipe whose dimensions have been precisely calibrated, and the measurement repeatability is very good. You get the opportunity.

第7の特徴としては、モータの回転軸部を中空形状とし、回転軸の中空穴には光ファイバーを、該回転軸に対して相対回転自在に挿通した。
この構成によれば、モータの回転により光線を三次元的に放射し、三次元的の形状データが収集でき、光線を放射して走査する範囲内に、モータの通電線が存在しないので光線に陰ができない為、収集データに欠落がないためコンピュータによる高精度な計算が可能である。
As a seventh feature, the rotating shaft portion of the motor has a hollow shape, and an optical fiber is inserted into the hollow hole of the rotating shaft so as to be rotatable relative to the rotating shaft.
According to this configuration, light rays are emitted three-dimensionally by the rotation of the motor, and three-dimensional shape data can be collected. Since there is no shadow, there is no omission in the collected data, so high-precision calculation by computer is possible.

本実施の形態に係わる光学式測定方法の特徴の一つは、被測定物に設けられた穴の内周面を照明してあらわれる陰影画像を取得して、この陰影画像の濃淡情報から内周面にある凹凸傷の位置を特定する。そして、特定した位置の近傍に光走査プローブを配置し、光走査プローブから内周面に向けて照射した光線の反射光を立体的に取り込んで、凹凸傷の形状寸法及び深さを測定することにある。
この方法により、被測定物の設けられた穴の内周面における傷などを、高精度且つ従来よりも短時間で測定することができる。
One of the features of the optical measurement method according to the present embodiment is to acquire a shadow image that appears by illuminating the inner peripheral surface of a hole provided in the object to be measured, and obtain an inner circumference from the shading information of the shadow image. Identify the location of uneven scratches on the surface. Then, an optical scanning probe is placed in the vicinity of the specified position, and the reflected light of the light beam emitted from the optical scanning probe toward the inner peripheral surface is three-dimensionally captured to measure the shape, dimension and depth of the uneven scratch. It is in.
By this method, it is possible to measure scratches on the inner peripheral surface of the hole provided with the object to be measured with high accuracy and in a shorter time than before.

次に本発明の好適な実施形態について図面を参照しながら説明する。 Next, a preferred embodiment of the present invention will be described with reference to the drawings.

本発明に関わる光学式内面測定装置の第1の実施例について説明する。
図1〜図3は本発明に係る光学式内面測定装置の実施形態を示している。
A first embodiment of the optical inner surface measuring device according to the present invention will be described.
1 to 3 show an embodiment of an optical inner surface measuring device according to the present invention.

図1は本発明光学式内面測定装置のカメラ一体光プローブの構成図である。
モータ10は、軸受9a、9b、モータコイル7、中空回転軸5、中空回転軸5に固定されたロータ磁石8からなり、図3に示すモータドライバ回路86から電線12を通して電力が供給され回転する。図1において、チューブ6に内蔵された光ファイバー1には光線13が導かれている。光ファイバー1の先端には、必要に応じて、球形状のレンズ等からなる集光レンズ2が設けられ、光線13が光路変換手段3に向けて放出される。光ファイバー1の先端側にはモータ10により回転駆動され光路変換手段3を有し、光路変換手段3は、透光性のパイプ4に内蔵され、この透光性のパイプ4と光路変換手段3は略円筒形状の被測定物61の内周面61aに挿入される。
FIG. 1 is a configuration diagram of a camera-integrated optical probe of the optical inner surface measuring device of the present invention.
The motor 10 includes bearings 9a and 9b, a motor coil 7, a hollow rotating shaft 5, and a rotor magnet 8 fixed to the hollow rotating shaft 5. Power is supplied from the motor driver circuit 86 shown in FIG. 3 through an electric wire 12 to rotate the motor 10. .. In FIG. 1, a light ray 13 is guided to an optical fiber 1 built in a tube 6. If necessary, a condensing lens 2 made of a spherical lens or the like is provided at the tip of the optical fiber 1, and light rays 13 are emitted toward the optical path conversion means 3. The tip side of the optical fiber 1 is rotationally driven by a motor 10 and has an optical path conversion means 3. The optical path conversion means 3 is built in a translucent pipe 4, and the translucent pipe 4 and the optical path conversion means 3 are It is inserted into the inner peripheral surface 61a of the object to be measured 61 having a substantially cylindrical shape.

図2は本発明光学式内面測定装置のカメラ部であり、カメラ部は、魚眼レンズ14が取り付けられたカメラ15が、図1の光プローブ11の例えば下方端面に固定される。またカメラ15には必要に応じて電池16も光プローブ11に一体的に取付けられる。 FIG. 2 shows a camera unit of the optical inner surface measuring device of the present invention. In the camera unit, a camera 15 to which a fisheye lens 14 is attached is fixed to, for example, a lower end surface of the optical probe 11 of FIG. A battery 16 is also integrally attached to the optical probe 11 of the camera 15 if necessary.

図3は本発明の実施の形態に係る光学式内面測定装置の全体構成図である。ベース80にスタンド81が固定され、スライダ用モータ83によりスライダ82が光プローブ11と共に上下に移動する。被測定物61はベース80に固定された芯合わせ冶具79にセットされており、光プローブ11は被測定物61の深穴61aに出入りする。プローブ11の光路変換手段3(ミラー又はプリズム)に入光した光線は、チューブ6内を通過し、さらに測定機本体85の接続部84を通過して、光干渉解析部88に入り、コンピュータ89で解析して計算結果をモニタ90に表示する。 FIG. 3 is an overall configuration diagram of the optical inner surface measuring device according to the embodiment of the present invention. The stand 81 is fixed to the base 80, and the slider 82 moves up and down together with the optical probe 11 by the slider motor 83. The object to be measured 61 is set in a centering jig 79 fixed to the base 80, and the optical probe 11 goes in and out of the deep hole 61a of the object to be measured 61. The light beam entering the optical path conversion means 3 (mirror or prism) of the probe 11 passes through the tube 6, further passes through the connection portion 84 of the measuring machine main body 85, enters the optical interference analysis unit 88, and enters the computer 89. The calculation result is displayed on the monitor 90.

以下に本発明の動作作用について図4〜図9を用いて説明する。 Hereinafter, the operation and operation of the present invention will be described with reference to FIGS. 4 to 9.

図4は、本実施例における測定方法及び測定装置の動作ブロック図である。
測定は以下の手順で行われる。
FIG. 4 is an operation block diagram of the measuring method and the measuring device in this embodiment.
The measurement is performed according to the following procedure.

〔1〕ワークセット
図3において、芯合わせ治具79に被測定物61をセットする。
[1] Work set In FIG. 3, the object to be measured 61 is set on the centering jig 79.

〔2〕カメラ画像取得
図3において、スライダ用モータ83を動作させる事で、光プローブ11の透光性パイプ4の部分を、被測定物61の穴の内周面61aに挿入させる。図1において、魚眼レンズ14とカメラ15は、内周面61aを撮影し、その中で図中ΔZ=1〜5mmに示す範囲の画像データを取得する。スライダ用モータ83を連続的に動作させるとカメラは図5に示す画像を取得するが、このデータは図6の展開図データに変換する。図10は内周面61aと凹傷61bと下方照明22の位置関係を示しており、図中ΔLに示す部分が陰影部になり、これをカメラ15が検出する。尚、内周面61a、凹傷61bへの照明は図1のLEDライト17または図9の下方照明22により行われる。
[2] Camera image acquisition In FIG. 3, by operating the slider motor 83, the portion of the translucent pipe 4 of the optical probe 11 is inserted into the inner peripheral surface 61a of the hole of the object to be measured 61. In FIG. 1, the fisheye lens 14 and the camera 15 photograph the inner peripheral surface 61a, and acquire image data in the range shown in ΔZ = 1 to 5 mm in the drawing. When the slider motor 83 is continuously operated, the camera acquires the image shown in FIG. 5, and this data is converted into the developed view data of FIG. FIG. 10 shows the positional relationship between the inner peripheral surface 61a, the concave scratch 61b, and the lower illumination 22, and the portion indicated by ΔL in the drawing becomes a shadow portion, which is detected by the camera 15. The inner peripheral surface 61a and the concave scratch 61b are illuminated by the LED light 17 in FIG. 1 or the downward illumination 22 in FIG.

〔3〕カメラ画像解析
図6に示すカメラ画像の展開図は、角度を例えば図中(A)から(D)のように4等分し、奥行き方向には例えばZ=0mmからZ=MAXまでの間を一定の幅で区分する事で、4×MAXの多数の枠に区分し、各枠内の陰影部の面積比率(%)を求め、図7に示すような内周面濃淡位置解析図を得る。図中ΣA〜D(360°)と示すグラフは、(A)〜(D)のグラフの、Z位置毎の合計値を示している。
[3] Camera image analysis In the developed view of the camera image shown in FIG. 6, the angle is divided into four equal parts as shown in the drawings (A) to (D), and in the depth direction, for example, from Z = 0 mm to Z = MAX. By dividing the space with a certain width, it is divided into a large number of frames of 4 × MAX, the area ratio (%) of the shaded area in each frame is obtained, and the inner peripheral surface shading position analysis as shown in FIG. Get the figure. The graphs shown as ΣA to D (360 °) in the figure show the total value for each Z position in the graphs (A) to (D).

〔4〕Zステージ早送り(1回目)
図3において、スライダ用モータ83は、先にカメラ画像の陰影部78から求め、図7の濃淡位置解析図に明らかに示された凹凸傷61bの第1位置(Z11〜Z12)、第2位置(Z21〜Z22)、また、必要に応じてその他の位置(Z31〜Z32)に、スライダ82を早送りで移動する。
[4] Z stage fast forward (1st time)
In FIG. 3, the slider motor 83 is obtained from the shaded portion 78 of the camera image first, and the first position (Z11 to Z12) and the second position of the uneven scratch 61b clearly shown in the shading position analysis diagram of FIG. The slider 82 is fast-forwarded to (Z21 to Z22) and, if necessary, to other positions (Z31 to Z32).

〔5〕第1位置での光干渉による内周面測定
図9において、光プローブ11の光線13発光部は、図中Z=11〜12に位置(即ち、内周面濃淡位置解析図(図7)の傷検出位置)まで送られており、この位置近傍で光プローブ11は、凹傷61bを含む内周面61aを光干渉法により精密に走査し、立体データを取得する。
図1において、透光性パイプ4の内周面または外周面の直径(D0)と三次元形状データまたは二次元断面形状データは、校正という操作を行うことで予め求めてコンピュータに記憶させている。
被測定物の寸法測定を行う際は、図1において回転放射した反射光13を捉えて、透光性パイプ4の内周面または外周表面から被検査対象物の内周面までの半径距離(ΔR1とΔR2)と、予めコンピュータに記憶させておいた、透光性パイプ三次元形状データ(D0)から、直径(D=D0+ΔR1+ΔR2)を計算することにより、光路変換手段の回転振れおよび回転振動の影響を除外し正しい寸法データを収集する。
従来は、モータの回転軸が温度環境等により振れ量が変化するが、例えば0.1μm増減すると、その同等量だけ測定する内径測定値が変化してしまい、正しい測定が行えなかったが、本発明においては、常に透光性パイプ4を基準に測定する為、振れ変化が測定値に全く影響せず、正しい測定が可能になった。
[5] Measurement of inner peripheral surface by optical interference at the first position In FIG. 9, the light emitting portion of the light probe 11 of the optical probe 11 is located at Z = 11 to 12 in the figure (that is, the inner peripheral surface shading position analysis diagram (FIG.)). It is sent to the scratch detection position) of 7), and in the vicinity of this position, the optical probe 11 precisely scans the inner peripheral surface 61a including the concave scratch 61b by the optical interferometry to acquire three-dimensional data.
In FIG. 1, the diameter (D0) of the inner peripheral surface or the outer peripheral surface of the translucent pipe 4 and the three-dimensional shape data or the two-dimensional cross-sectional shape data are obtained in advance by an operation called calibration and stored in a computer. ..
When measuring the dimensions of the object to be measured, the reflected light 13 rotated and emitted in FIG. 1 is captured, and the radial distance from the inner peripheral surface or the outer peripheral surface of the translucent pipe 4 to the inner peripheral surface of the object to be inspected ( By calculating the diameter (D = D0 + ΔR1 + ΔR2) from ΔR1 and ΔR2) and the three-dimensional shape data (D0) of the translucent pipe stored in the computer in advance, the rotational runout and rotational vibration of the optical path conversion means Eliminate the effects and collect correct dimensional data.
In the past, the amount of runout of the rotating shaft of the motor changed depending on the temperature environment, etc. However, for example, if the amount increased or decreased by 0.1 μm, the measured inner diameter measured by the same amount changed, and correct measurement could not be performed. In the present invention, since the measurement is always based on the translucent pipe 4, the change in runout does not affect the measured value at all, and the correct measurement is possible.

〔6〕Zステージ早送り(2回目)
図3において、スライダ用モータ83は、先にカメラ画像の陰影部78から求めた凹凸傷61bの第2位置(Z21〜Z22)に向かって、スライダ82を再び早送りで移動する。
[6] Z stage fast forward (second time)
In FIG. 3, the slider motor 83 moves the slider 82 again in fast forward toward the second position (Z21 to Z22) of the uneven scratch 61b previously obtained from the shaded portion 78 of the camera image.

〔7〕第2位置での光干渉による内周面測定
図1において、光プローブ11の光線13発光部はスライドし、図7の内周面濃淡位置解析図Z=21〜Z=22の移動しており、この位置近傍で光プローブ11は、凹傷61bを含む内周面61aを光干渉法により精密に走査し、立体データを取得する。
[7] Measurement of inner peripheral surface by light interference at the second position In FIG. 1, the light emitting portion of the light beam 13 of the optical probe 11 slides, and the movement of the inner peripheral surface shading position analysis diagram Z = 21 to Z = 22 in FIG. In the vicinity of this position, the optical probe 11 precisely scans the inner peripheral surface 61a including the concave scratch 61b by the optical interferometry method to acquire three-dimensional data.

〔8〕光干渉データの解析
上記〔5〕と〔7〕の光干渉の内周面測定データは、図5の濃淡データ立体取得例に対応して図8に示す三次元形状取得データ図に示すことができる。
[8] Analysis of optical interference data The inner peripheral surface measurement data of the optical interferences in the above [5] and [7] are shown in the three-dimensional shape acquisition data diagram shown in FIG. Can be shown.

〔9〕結果表示1
取得した光干渉による測定データから、内周面61aの全体表面積に対する、凹凸欠陥部61bの面積比率(%)を表示する。
[9] Result display 1
From the acquired measurement data due to optical interference, the area ratio (%) of the uneven defect portion 61b to the total surface area of the inner peripheral surface 61a is displayed.

〔10〕結果表示2
取得した光干渉による測定データから、凹凸欠陥部61bの面積の大きさ、および凹部深さを表示する。
[10] Result display 2
From the acquired measurement data due to optical interference, the size of the area of the uneven defect portion 61b and the depth of the concave portion are displayed.

〔11〕終了
一連の測定を終了し、測定結果データをコンピュータ内の記憶装置に保存する。
[11] End The series of measurements is completed, and the measurement result data is stored in the storage device in the computer.

第2の実施例について説明する。
図11は本発明光学式内面測定装置の第2の実施例構成図であるが、図9の実施例に比べて、カメラ23の位置が異なっている。光プローブ11の下底面には円錐ミラー18が取り付けられ、カメラ23は円錐ミラー18に映る内周面61aの画像を取り込むことで、陰影部78を認識することができる。
その他の動作は図1及び図9に示す第1の実施例と同じであり説明を省略する。
A second embodiment will be described.
FIG. 11 is a configuration diagram of a second embodiment of the optical inner surface measuring device of the present invention, but the position of the camera 23 is different from that of the embodiment of FIG. A conical mirror 18 is attached to the lower bottom surface of the optical probe 11, and the camera 23 can recognize the shadow portion 78 by capturing an image of the inner peripheral surface 61a reflected on the conical mirror 18.
Other operations are the same as those of the first embodiment shown in FIGS. 1 and 9, and the description thereof will be omitted.

尚、図1において、D0は透光性パイプ内径寸法であり、Dは、光線13が放射されるその直径を示し、その範囲は半径約1〜100ミリメートル(mm)である。 In FIG. 1, D0 is the inner diameter dimension of the translucent pipe, D indicates the diameter at which the light beam 13 is emitted, and the range is a radius of about 1 to 100 mm (mm).

尚、チューブ6はその直径は約1〜10ミリメートル程度でありその内部に貫通する固定側光ファイバー1は、屈曲自在なグラスファイバーであり直径は0.1〜0.2ミリメートル程度のものを使っている。 The tube 6 has a diameter of about 1 to 10 mm, and the fixed-side optical fiber 1 penetrating inside the tube 6 is a flexible glass fiber having a diameter of about 0.1 to 0.2 mm. There is.

図1において、中空回転軸5の穴は直径が0.2〜0.3ミリメートルあり、光ファイバー1の直径より十分大きくしているため、光ファイバー1が中空回転軸5に接触することは少なく、仮に軽く接触しても摩耗粉が発生するほどではない。また、回転摩擦トルクが変動する問題もない。 In FIG. 1, the hole of the hollow rotating shaft 5 has a diameter of 0.2 to 0.3 mm, which is sufficiently larger than the diameter of the optical fiber 1, so that the optical fiber 1 rarely comes into contact with the hollow rotating shaft 5, and is assumed to be. Even light contact does not generate wear debris. Further, there is no problem that the rotational friction torque fluctuates.

本発明によれば、従来は被測定物穴内周面の凹凸傷の形状と深さを詳細に測定する場合に、回転式光走査プローブで内周面全体を例えば2時間かけて検出し精密測定していたのに比べ、第一測定手段のカメラ画像解析装置が凹凸傷の位置を高速に特定し、第二測定手段の光学測定機の光プローブを、その特定位置近傍まで早送りで侵入させ、特定した位置に限定して、凹凸傷部の内部形状の観察、及び寸法及び幾何学精度および傷の深さを測定するため、凹凸傷の形状と深さを例えば約1分以内に微細に測定することができる。 According to the present invention, conventionally, when the shape and depth of uneven scratches on the inner peripheral surface of a hole to be measured are measured in detail, the entire inner peripheral surface is detected by a rotary optical scanning probe over, for example, 2 hours for precise measurement. The camera image analyzer of the first measuring means quickly identifies the position of the uneven scratch, and the optical probe of the optical measuring device of the second measuring means penetrates to the vicinity of the specific position at high speed. In order to observe the internal shape of the uneven scratches and measure the dimensions and geometric accuracy and the depth of the scratches only at the specified positions, the shape and depth of the uneven scratches are finely measured within, for example, about 1 minute. can do.

本発明のカメラによる凹凸傷位置検出機能一体型の、干渉光学法を用いた光学式内径測定装置は、工業用途では、エンジンシリンダボア、焼結軸受、動圧軸受等の高精度な測定や、製造現場での工程検査に広く活用される。 The optical inner diameter measuring device using the interference optical method, which is integrated with the uneven scratch position detection function by the camera of the present invention, is used for high-precision measurement and manufacturing of engine cylinder bores, sintered bearings, dynamic bearings, etc. in industrial applications. Widely used for on-site process inspection.

1 光ファイバー
2 集光レンズ
3 光路変換手段(ミラーまたはプリズム)
4 透光性パイプ
5 中空回転軸
5a ホルダー部
6 チューブ
7 モータコイル
8 ロータ磁石
9a、9b 軸受
10 モータ
11 光プローブ
12 電線
13 光線
14 魚眼レンズ
15 カメラ
16 電池
17 LEDライト
18 円錐ミラー
19 受信機
20 電波
21 カメラ通信線
22 下方ライト
61 被測定物
61a 内周面
61b 凹傷
78 陰影部
79 芯合わせ冶具
80 ベース
81 スタンド
82 スライダ
83 スライダ用モータ
84 接続部
85 測定機本体
86 モータドライバ回路
87 光干渉解析部
88 画像解析装置
89 コンピュータ
90 モニタ
1 Optical fiber 2 Condensing lens 3 Optical path conversion means (mirror or prism)
4 Translucent pipe 5 Hollow rotating shaft 5a Holder part 6 Tube 7 Motor coil 8 Rotor magnet 9a, 9b Bearing 10 Motor 11 Optical probe 12 Wire 13 Ray 14 Fish-eye lens 15 Camera 16 Battery 17 LED light 18 Conical mirror 19 Receiver 20 Radio wave 21 Camera communication line 22 Downward light 61 Object to be measured 61a Inner peripheral surface 61b Dent 78 Shading part 79 Centering jig 80 Base 81 Stand 82 Slider 83 Slider motor 84 Connection part 85 Measuring machine body 86 Motor driver circuit
87 Optical interference analysis unit 88 Image analyzer 89 Computer 90 Monitor

Claims (8)

被測定物に設けられた穴にプローブを挿入して該穴の内周面を測定する光学式内面測定装置であって、
照明された前記穴の内周面にできる陰影画像を取得する第一測定手段と、
干渉光学法により前記穴の内周面を測定する第二測定手段と、を備える光学式内面測定装置。
An optical inner surface measuring device that measures the inner peripheral surface of a hole by inserting a probe into a hole provided in the object to be measured.
A first measuring means for acquiring a shadow image formed on the inner peripheral surface of the illuminated hole,
An optical inner surface measuring device including a second measuring means for measuring the inner peripheral surface of the hole by an interference optical method.
前記第一測定手段は、前記被測定物の前記穴の内周面の光学的濃淡情報をカメラ画像から取得し、該濃淡情報を画像解析して前記穴の内周面における凹凸傷の奥行き方向位置を特定する請求項1記載の光学式内面測定装置。 The first measuring means acquires optical shading information of the inner peripheral surface of the hole of the object to be measured from a camera image, analyzes the shading information, and analyzes the shading information in the depth direction of uneven scratches on the inner peripheral surface of the hole. The optical inner surface measuring device according to claim 1, wherein the position is specified. 前記第一測定手段を構成するカメラを前記プローブの端部に固定配置している請求項1又は2に記載の光学式内面測定装置。 The optical inner surface measuring device according to claim 1 or 2, wherein a camera constituting the first measuring means is fixedly arranged at an end portion of the probe. 前記プローブの端部に円錐ミラーを取り付けている請求項1又は2に記載の光学式内面測定装置。 The optical inner surface measuring device according to claim 1 or 2, wherein a conical mirror is attached to an end portion of the probe. 前記第二測定手段は、先端から光線を放射させる光ファイバーと、透光性で略円筒状のパイプと、前記光ファイバーの先端側であって前記透光性パイプの内側に配置される光路変換手段と、前記光路変換手段を回転駆動させるモータと、を備え、
前記光線を、前記光路変換手段を通して前記穴の内周面に対して回転放射し、この反射光から干渉光を作り出し三次元的に距離測定を行う請求項1〜4何れか1項に記載の光学式内面測定装置。
The second measuring means includes an optical fiber that radiates a light beam from the tip, a translucent and substantially cylindrical pipe, and an optical path conversion means that is located on the tip side of the optical fiber and is arranged inside the translucent pipe. A motor for rotationally driving the optical path conversion means,
The invention according to any one of claims 1 to 4, wherein the light beam is rotationally radiated from the reflected light to the inner peripheral surface of the hole through the optical path conversion means, and interference light is generated from the reflected light to measure the distance three-dimensionally. Optical inner surface measuring device.
前記透光性パイプの断面形状寸法データを予めコンピュータに記憶させておき、
前記第二測定手段が前記穴の内周面を測定する際、回転放射した反射光を捉えて、前記透光性パイプの内周面または外周表面から前記穴の内周面までの半径距離(ΔR1,ΔR2)と、予めコンピュータに記憶させておいた前記透光性パイプの三次元形状の直径数値(D0)から、直径(D=D0+ΔR1+ΔR2)を計算し、
前記光路変換手段の回転振れおよび回転振動の影響を除外した補正後の三次元形状データを収集し計算する請求項5記載の光学式内面測定装置。
The cross-sectional shape dimensional data of the translucent pipe is stored in a computer in advance, and then
When the second measuring means measures the inner peripheral surface of the hole, it captures the reflected light radiated by rotation, and the radial distance from the inner peripheral surface or the outer peripheral surface of the translucent pipe to the inner peripheral surface of the hole ( The diameter (D = D0 + ΔR1 + ΔR2) is calculated from ΔR1, ΔR2) and the diameter value (D0) of the three-dimensional shape of the translucent pipe stored in the computer in advance.
The optical inner surface measuring apparatus according to claim 5, wherein the corrected three-dimensional shape data excluding the influence of the rotational runout and the rotational vibration of the optical path conversion means is collected and calculated.
前記モータの回転軸を中空形状とし、前記回転軸の中空穴に前記光ファイバーを該回転軸に対して相対回転自在に挿通した請求項5又は6に記載の光学式内面測定装置。 The optical inner surface measuring device according to claim 5 or 6, wherein the rotating shaft of the motor has a hollow shape, and the optical fiber is inserted into the hollow hole of the rotating shaft so as to be rotatable relative to the rotating shaft. 被測定物に設けられた穴の内周面を照明してあらわれる陰影画像を取得して、前記陰影画像の濃淡情報から前記内周面にある凹凸傷の位置を特定し、
前記特定した位置の近傍に光走査プローブを配置し、前記光走査プローブから前記内周面に向けて光線を照射し、前記内周面からの反射光を立体的に取り込んで、前記凹凸傷の形状寸法及び深さを測定する光学式内面測定方法。

A shadow image that appears by illuminating the inner peripheral surface of the hole provided in the object to be measured is acquired, and the position of the uneven scratch on the inner peripheral surface is specified from the shading information of the shadow image.
An optical scanning probe is arranged in the vicinity of the specified position, light rays are irradiated from the optical scanning probe toward the inner peripheral surface, and the reflected light from the inner peripheral surface is taken in three-dimensionally to obtain the uneven scratch. An optical inner surface measuring method for measuring shape dimensions and depth.

JP2020060327A 2020-03-30 2020-03-30 Device and method for optical inner surface measurement Pending JP2021156852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020060327A JP2021156852A (en) 2020-03-30 2020-03-30 Device and method for optical inner surface measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020060327A JP2021156852A (en) 2020-03-30 2020-03-30 Device and method for optical inner surface measurement

Publications (1)

Publication Number Publication Date
JP2021156852A true JP2021156852A (en) 2021-10-07

Family

ID=77918163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020060327A Pending JP2021156852A (en) 2020-03-30 2020-03-30 Device and method for optical inner surface measurement

Country Status (1)

Country Link
JP (1) JP2021156852A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114964034B (en) * 2022-04-08 2024-01-02 南京农业大学 Plant phenotype image acquisition system and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114964034B (en) * 2022-04-08 2024-01-02 南京农业大学 Plant phenotype image acquisition system and control method thereof

Similar Documents

Publication Publication Date Title
US10066931B2 (en) Optical inner-surface measurement device
JP6739780B2 (en) Optical inner surface measuring device
JP6232550B2 (en) Optical inner surface measuring device
EP3029415B1 (en) Optical inner surface measuring device
US11199395B2 (en) Profile inspection system for threaded and axial components
CN107014321B (en) Rapid field flatness measuring device and measuring method
CN106289055B (en) Gauge in optical profile type
US10401157B2 (en) Optical inner surface measurement device
US20180356288A1 (en) Inspection system for estimating wall friction in combustion engines
JP2021156852A (en) Device and method for optical inner surface measurement
CN104132612A (en) Leading-screw dimension parameter detection method and device
Yoshizawa et al. Development of an inner profile measurement instrument using a ring beam device
US9581556B1 (en) Laser probe for use in an inspection system
WO2018003097A1 (en) Optical inner-surface measurement device
Whitehouse Surface metrology instrumentation
JP2020187052A (en) Optical measuring device and optical measuring method
JP2020085468A (en) Optical measurement device of surface pores on inner peripheral surface, and measurement method for porosity
WO2021100792A1 (en) Optical inner surface measurement device and optical inner surface measurement method
CN211824297U (en) Structured light detection device
TW202035945A (en) Non-contact measurement system for measuring object contour
JP2019191050A (en) Probe for optical imaging and optical measuring apparatus
JP2019191417A (en) Optical imaging probe
EP3916379A1 (en) Method for inspecting a medical container and system used therefor
ES2310433B1 (en) SCANNING PROCEDURE IN THREE DIMENSIONS FOR REVOLUTION PARTS AND DEVICES USED.
JP2017215211A (en) Inner face measuring machine-purpose calibration device