JP2006242605A - Method for measuring runout of rotating tool and its measuring apparatus - Google Patents

Method for measuring runout of rotating tool and its measuring apparatus Download PDF

Info

Publication number
JP2006242605A
JP2006242605A JP2005055302A JP2005055302A JP2006242605A JP 2006242605 A JP2006242605 A JP 2006242605A JP 2005055302 A JP2005055302 A JP 2005055302A JP 2005055302 A JP2005055302 A JP 2005055302A JP 2006242605 A JP2006242605 A JP 2006242605A
Authority
JP
Japan
Prior art keywords
runout
cutting edge
tool
rotary tool
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005055302A
Other languages
Japanese (ja)
Inventor
Masami Masuda
正美 桝田
Takaaki Yazawa
孝哲 矢澤
Takashi Nomura
俊 野村
Kazuhide Kamiya
和秀 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata University NUC
Original Assignee
Niigata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata University NUC filed Critical Niigata University NUC
Priority to JP2005055302A priority Critical patent/JP2006242605A/en
Publication of JP2006242605A publication Critical patent/JP2006242605A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To highly accurately measure runout of cutting edges of rotary tools since runout of rotary tools rotating at high speed cause accuracy degradation in machining shape and correct the runout. <P>SOLUTION: A light source module; the center of a cutting edge of a rotary tool; two lenses having a confocal point; and an imaging element are sequentially arranged on one common optical axis. The center of a ball of the cutting edge is arranged at the focal point on the side of the light source module among other two focal points of the lenses, the imaging element is arranged at the other focal point, and an anti-pinhole filter is arranged at the confocal point. Electric signals acquired by the imaging element are introduced to a personal computer to improve clarity of edge images of the cutting edge. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、回転工具を用いた精密機械加工において、回転工具の振れの精密な測定に関するもので、この振れの測定結果に基づいて、振れを抑制することを目的としている. The present invention relates to precise measurement of runout of a rotary tool in precision machining using a rotary tool, and an object thereof is to suppress runout based on the measurement result of the runout.

回転工具を用いた精密機械加工が一般的に行われているが、回転工具の偏心誤差やチャッキング誤差に起因した振れがあると、加工形状精度の劣化や工具寿命の低下を来すなど、加工する上で障害となっている。
この課題に対して、例えば特開平10−141934号では、ボールエンドミルの切れ刃稜の形状精度や振れを、加工機の運動精度を基準としてレーザ光を用いた非接触測定により求めている。しかしこの方法では、逐次測定のため、測定に時間がかかるとともに、測定精度が加工機精度に依存するなどの課題がある。
Precise machining using a rotary tool is generally performed, but if there is runout due to eccentric error or chucking error of the rotary tool, it will cause deterioration in machining shape accuracy and tool life, etc. It is an obstacle to processing.
In response to this problem, for example, in Japanese Patent Laid-Open No. 10-141934, the shape accuracy and runout of the cutting edge of the ball end mill are obtained by non-contact measurement using laser light with reference to the motion accuracy of the processing machine. However, this method has problems such as time-consuming measurement and sequential measurement, and the measurement accuracy depends on the processing machine accuracy.

また特開2002−205246号では、ボールエンドミルの切れ刃稜線上の点を測定しアール精度を検出しており、この測定法を本発明で目的とした振れ測定に適用することも可能である。しかしこの測定方法においても、特開平10−141934号と同様に、逐次測定のため、高精度に測定するには時間がかかるという課題がある。上記のほかにも、レーザ光を回転工具に照射して、回転に伴う回転工具の位置の変動を逐一測定して、振れを求める多くの方法が提案されている。 In Japanese Patent Laid-Open No. 2002-205246, a point on a cutting edge ridge line of a ball end mill is measured to detect a radius accuracy, and this measurement method can also be applied to the shake measurement aimed at by the present invention. However, this measuring method also has a problem that it takes time to measure with high accuracy because of sequential measurement, as in JP-A-10-141934. In addition to the above, many methods have been proposed in which the laser beam is irradiated onto the rotary tool, and the fluctuations in the position of the rotary tool accompanying the rotation are measured one by one to obtain the deflection.

しかし、レーザ光を用いたこれら従来の振れ測定法では、いずれもレーザ光のコヒーレンスが非常に良いため、回転工具の切れ刃稜で発生する回折光と透過光との相互干渉により、切れ刃稜の境界が不鮮明で識別精度が低下するという問題がある。
また、このように切れ刃稜の境界の識別精度が低いと、ミクロンあるいはサブミクロンといった厳しい加工形状精度が要求される場合には、1回転工具の振れを測定し補正すること、および2補正した回転工具を用いて試し切削し、加工形状精度を測定評価することを、何度も繰り返し行わなければ、所要の加工形状精度が確保できない。
However, in these conventional shake measurement methods using laser light, the coherence of the laser light is very good, so that the cutting edge ridge is caused by the mutual interference between the diffracted light generated at the cutting edge of the rotary tool and the transmitted light. There is a problem that the boundary of the image is unclear and the identification accuracy is lowered.
In addition, when the discriminating accuracy of the edge of the cutting edge is low as described above, when a severe machining shape accuracy such as micron or submicron is required, the runout of the one-rotating tool is measured and corrected, and two corrections are made. If the trial cutting using the rotary tool and the measurement and evaluation of the machining shape accuracy are not repeated many times, the required machining shape accuracy cannot be ensured.

とくに、回転工具が小径になるほど、また加工形状精度が厳しくなるにつれ、該回転工具の切れ刃稜の振れの測定精度および補正精度を高める必要があり、加工形状精度の測定と振れの補正に多大な時間を費やさざるを得なくなる。また、回転工具が小径になるほど、工具の回転数を高くとる必要があるが、高回転になるほど、切れ刃稜の形状測定が難しくなるという問題もある。   In particular, as the rotary tool becomes smaller in diameter and the machining shape accuracy becomes more severe, it is necessary to increase the measurement accuracy and correction accuracy of the cutting edge ridge runout of the rotary tool, which greatly increases the measurement of the machining shape accuracy and the correction of runout. Will have to spend a lot of time. Moreover, it is necessary to increase the rotation speed of the tool as the diameter of the rotating tool becomes smaller. However, there is a problem that the shape measurement of the cutting edge ridge becomes more difficult as the rotation speed becomes higher.

本発明が対象としている加工形状を、図1、図2および図3に示す。図1は、中心軸3周りに回転対称形状をした、曲率半径Rの凹球面2である。また、図2に示す断面が円6の一部からなる凹円筒面5、図3では楕円8の一部からなる凹楕円筒面7を、加工対象としている。これら凹球面2や、凹円筒面5あるいは凹楕円筒面7を加工するとき、回転工具としてボールエンドミルが用いられる。   The processed shapes targeted by the present invention are shown in FIG. 1, FIG. 2 and FIG. FIG. 1 shows a concave spherical surface 2 having a radius of curvature R and having a rotationally symmetric shape around a central axis 3. Further, the concave cylindrical surface 5 whose cross section shown in FIG. 2 is a part of the circle 6 and the concave elliptic cylindrical surface 7 which is a part of the ellipse 8 in FIG. When machining these concave spherical surface 2, concave cylindrical surface 5 or concave elliptic cylindrical surface 7, a ball end mill is used as a rotating tool.

図1におけるA−A断面を、図4に示す。ここで、ボール半径Rをもつボールエンドミルのボール中心Q’は、ボールエンドミルの切れ刃稜の偏心やチャッキング誤差により、厳密には工具の回転軸心4上には存在せず、わずかに誤差をもっている。ここで、工具の回転軸心4からボール中心Q’までの距離、すなわち工具の振れεが存在すると、ボールエンドミルは回転軸心4の周りを振れ回ることになる。その結果、曲率半径が設計値Rとは異なるR’、および形状誤差Δeをもった凹球面の加工形状になる。なお、図4では、説明のためにこれらの関係を誇張して描いている。同様に、図2に示した凹円筒面5ないし図3に示した凹楕円筒面7においても、工具に振れがあると、類似した曲率半径誤差や形状誤差をもたらすという問題がある。   The AA cross section in FIG. 1 is shown in FIG. Here, the ball center Q ′ of the ball end mill having the ball radius R does not exist strictly on the rotational axis 4 of the tool due to the eccentricity of the cutting edge of the ball end mill or a chucking error. Have Here, if there is a distance from the rotation axis 4 of the tool to the ball center Q ′, that is, a tool runout ε, the ball end mill swings around the rotation axis 4. As a result, a concave spherical processed shape having a radius of curvature R ′ different from the design value R and a shape error Δe is obtained. In FIG. 4, these relationships are exaggerated for the sake of explanation. Similarly, the concave cylindrical surface 5 shown in FIG. 2 to the concave elliptic cylindrical surface 7 shown in FIG. 3 also have a problem that if the tool is shaken, a similar curvature radius error or shape error is caused.

このように、凹球面や凹円筒面あるいは凹楕円筒面を精密に加工するには、工具の振れεを精度良く測定し、振れεを限りなく0に補正して加工することが不可欠である。
上記の課題に対処するために、本発明の目的は、ごく低速から毎分数10万回転といった広い回転速度範囲において、回転工具の切れ刃稜の振れを、ミクロンないしサブミクロンレベルの高い精度で測定できる測定法を提供し、回転工具の切れ刃稜の振れの補正を可能にすることにある。
As described above, in order to precisely process the concave spherical surface, the concave cylindrical surface, or the concave elliptical cylindrical surface, it is indispensable to measure the tool runout ε with high accuracy and correct the runout ε to 0 as much as possible. .
In order to cope with the above-mentioned problems, the object of the present invention is to measure the runout of the cutting edge of a rotating tool with high accuracy on the micron or submicron level in a wide rotational speed range from very low speed to several hundred thousand revolutions per minute. It is to provide a measurement method that can be used and to enable correction of runout of a cutting edge of a rotary tool.

透過光学系を用いて、高精度に切れ刃稜の形状を測定できるようにした。 By using a transmission optical system, the shape of the cutting edge ridge can be measured with high accuracy.

図9は、本発明の効果についての説明図である。
図7に示した門型治具中ぐり盤35の傾斜加工ユニット39の自転する工具の回転軸心18に、単結晶ダイヤモンドの1枚刃のボールエンドミル17をチャッキングし、該ボールエンドミルを自転させながら、最初にダウンフィードを与えて切削し、次いで主軸周りに180°まで公転して切削し、そのあとリトラクトしたときの工作物1の加工面の顕微鏡写真を、図9に示す。図9(a)は、振れの補正を行わないで切削した結果で、振れが大きいため、
1)横方向に大径となっていること、また
2)最初の0°位置と180°の切削終了位置では、下半分に半径方向の顕著な境界が存在する、
ことが確認される。
FIG. 9 is an explanatory diagram of the effect of the present invention.
The single-crystal diamond single-blade ball end mill 17 is chucked on the rotation axis 18 of the rotating tool of the inclined machining unit 39 of the portal jig boring machine 35 shown in FIG. 7, and the ball end mill rotates. FIG. 9 shows a micrograph of the processed surface of the workpiece 1 when the workpiece 1 is first cut by applying a down feed, then revolved to 180 ° around the main axis, and then retracted. FIG. 9A is a result of cutting without correcting the shake, and the shake is large.
1) It has a large diameter in the lateral direction, and 2) At the first 0 ° position and the 180 ° cutting end position, there is a marked radial boundary in the lower half.
That is confirmed.

ちなみにこのときの工具の振れを、本発明の振れ測定装置により測定したところ、 70。5μmとなっていた。一方、図9(a)の凹球面形状を三次元形状測定器により測定し、その測定データをもとに該凹球面の幾何学的な加工形状誤差を計算したところ、工具の振れが約70μmと求まり、本発明の振れ測定装置による測定結果と良い対応を示していた。 Incidentally, the tool runout at this time was measured by the runout measuring apparatus of the present invention and found to be 70.5 μm. On the other hand, when the concave spherical shape in FIG. 9A is measured with a three-dimensional shape measuring instrument and the geometric processing shape error of the concave spherical surface is calculated based on the measurement data, the tool runout is about 70 μm. Thus, the measurement results obtained by the shake measuring device of the present invention are in good correspondence.

この振れの測定結果をもとに、特開2002−361510に記載された自公転ユニットにより、工具の振れを1μm以下に補正した。この状態で切削した加工結果を、図9(b)に示す。凹球面には、振れに起因した境界も確認されず、工具の振れの僅少なることが明らかである。前述と同様に、該凹球面の三次元形状の測定データをもとに、幾何学的な加工形状誤差から工具の振れを計算したところ、振れが1μm以下に抑制されていることが確認された。   Based on the measurement result of the runout, the runout of the tool was corrected to 1 μm or less by a self-revolving unit described in JP-A-2002-361510. The processing result cut in this state is shown in FIG. It is clear that the concave spherical surface does not have a boundary due to run-out, and the tool run-out is small. As described above, when the tool runout was calculated from the geometric processing shape error based on the measurement data of the three-dimensional shape of the concave spherical surface, it was confirmed that the runout was suppressed to 1 μm or less. .

図10は、本発明の振れ測定装置を用いて測定したボールエンドミルの振れと、該ボールエンドミルにより切削された凹球面の三次元形状の測定データから求めた回転振れとの関係を示している。両者は、非常によい線形関係を示しており、該振れ測定装置を用いることにより、1μm以下まで精度良く工具の振れを測定でき、また測定された振れの補正を行うことで、良好な凹球面を加工できることが明らかである。   FIG. 10 shows the relationship between the run-out of the ball end mill measured using the run-out measuring device of the present invention and the rotational run-out obtained from the measurement data of the three-dimensional shape of the concave spherical surface cut by the ball end mill. Both show a very good linear relationship. By using the run-out measuring device, the run-out of the tool can be accurately measured to 1 μm or less, and a good concave spherical surface can be obtained by correcting the measured run-out. It is clear that can be processed.

なお、 100、000/minで回転するボール半径0。5mmの1枚刃ボールエンドミルにおいても、該振れ測定装置を用いることによって、振れ測定が可能なことを確認している。
上述したように、本発明の振れ測定装置を用いることにより、高速に回転する回転工具であっても、回転工具の振れ測定が可能となる。また、図11に示すような可視化されたエッジ像を見ながら、振れεが減少する方向に補正することで、回転工具の振れ補正を行うことができる。
なお回折像により振れを測定する場合に比べて、上述したようなアンチピンホールを用いて振れを測定する場合には、
1)前者の回折像による場合には、図12に示すように、複数の明暗の縞が現れ、求めるエッジ像がどれかが判別できない乱れた像であるのに対し、後者のアンチピンホールによる場合には、図13に示すように、内側に回りこんだ縞が観測されず、エッジ像が1本の線として得られること、回折像による場合には、回折像を構成する干渉縞が縞幅方向に正弦波状の輝度分布を示すため、2値化や2値化後の円弧フィットをする際に、形状誤差を来し易い。一方、アンチピンホールによる場合には、図11のような鮮明な1本のエッジ像が得られるため、測定誤差を生じにくいこと、回折像による場合には、図12に示すように複数の明暗縞が現れるため、可視化された工具の像を見ながら工具のズレを調整しようすると工具とともに複数の明暗縞が移動し、図14に示すように縞が工具エッジに吸い込まれる、あるいは湧き出すように見えてしまい、微調整には熟練と感が必要になる。一方、アンチピンホールによる場合には、図13に示すような鮮明な1本のエッジ像が得られるため、工具のズレを微調整することが容易になること、振れを求める計算量が少ないこと、などの有利な点がある。
In addition, it has been confirmed that, even in a single blade ball end mill with a radius of 0.5 mm rotating at 100,000 / min, the deflection measurement is possible by using the deflection measuring device.
As described above, by using the runout measurement apparatus of the present invention, it is possible to measure runout of a rotary tool even with a rotary tool that rotates at high speed. Further, by correcting the runout ε in the direction in which the runout ε decreases while viewing the visualized edge image as shown in FIG. 11, the runout of the rotary tool can be corrected.
In addition, when measuring shake using an anti-pinhole as described above, compared to when measuring shake using a diffraction image,
1) In the case of the former diffraction image, as shown in FIG. 12, a plurality of bright and dark stripes appear, and the edge image to be obtained is a disordered image in which it cannot be distinguished, whereas the latter anti-pinhole is used. In this case, as shown in FIG. 13, the fringes that wrap around inward are not observed, and the edge image is obtained as one line. In the case of the diffraction image, the interference fringes constituting the diffraction image are fringes. Since a sinusoidal luminance distribution is shown in the width direction, shape errors are likely to occur when binarizing or arc fitting after binarization. On the other hand, in the case of anti-pinholes, a sharp single edge image as shown in FIG. 11 is obtained, so that a measurement error is unlikely to occur. In the case of a diffraction image, a plurality of bright and dark images are provided as shown in FIG. Since stripes appear, when adjusting the tool displacement while viewing the visualized image of the tool, a plurality of light and dark stripes move with the tool so that the stripes are sucked into the tool edge or spring out as shown in FIG. Skill and feeling are required for fine adjustment. On the other hand, in the case of using anti-pinholes, a sharp single edge image as shown in FIG. 13 is obtained, so that it is easy to finely adjust the tool displacement and the amount of calculation for calculating runout is small. There are advantages such as.

入射光学系の中に0次光の光量を遮光するアンチピンホールフィルタを挿入して、光源から発した透過光が直かに撮像素子に到達しないように制限し、回転工具の切れ刃稜のフラウンフォファ像が得られるようにしている。これにより、回転工具の切れ刃稜の境界の判別精度が著しく向上でき、回転工具の切れ刃稜の振れを高精度に求めることができる   Insert an anti-pinhole filter that blocks the amount of 0th-order light into the incident optical system so that the transmitted light emitted from the light source does not reach the image sensor directly. A Fraunhofer image is obtained. Thereby, the discrimination accuracy of the boundary of the cutting edge of the rotary tool can be remarkably improved, and the runout of the cutting edge of the rotary tool can be obtained with high accuracy.

本発明の一実施例を、図5〜図7を用いて説明する。図5には本発明の振れ測定装置の一実施例を、図6にはその原理を説明するための図、図7には図5に示した振れ測定装置を搭載した門型治具中ぐり盤35を示す。   An embodiment of the present invention will be described with reference to FIGS. FIG. 5 shows an embodiment of the shake measuring device of the present invention, FIG. 6 is a diagram for explaining the principle thereof, and FIG. 7 is a portal jig boring machine equipped with the shake measuring device shown in FIG. A board 35 is shown.

振れ測定装置は、振れ測定ユニット9、光源モジュール11、およびパソコン20より構成されている。振れ測定ユニット9では、ベース10の上に、光源モジュール11、レンズ鏡筒モジュール13および検出モジュール14が、この順に、共通な光軸16をもって配置されており、これら全体がカバー15にて覆われている。該カバーの上面の一部には窓が開いており、被測定対象であるボールエンドミル17がその窓を貫いており、該ボールエンドミルのボール中心がほぼ光軸16上に一致するように、組み立てられている。また原点角度検出器19の検出端は、ボールエンドミル17の外周に接近して配置され、他端はベース10に立てられたスタンドに固定されており、ボールエンドミル17 の回転角度方向の原点を検出可能にしている。   The shake measuring device includes a shake measuring unit 9, a light source module 11, and a personal computer 20. In the shake measurement unit 9, a light source module 11, a lens barrel module 13, and a detection module 14 are arranged on a base 10 in this order with a common optical axis 16, and these are covered with a cover 15 as a whole. ing. A window is opened in a part of the upper surface of the cover, and a ball end mill 17 to be measured passes through the window, and the ball center of the ball end mill is assembled so as to substantially coincide with the optical axis 16. It has been. Further, the detection end of the origin angle detector 19 is arranged close to the outer periphery of the ball end mill 17 and the other end is fixed to a stand standing on the base 10 to detect the origin of the ball end mill 17 in the rotation angle direction. It is possible.

光源用電源12は、光源モジュール11に電気的に接続され、該光源モジュールにパワーを供給している。また検出モジュール14からの画像信号および原点角度検出器19からの原点信号は、パソコン20に電気的に接続されている。
なお図7は、該振れ測定装置の光軸16を、門型治具中ぐり盤35のX軸方向に平行に採った場合を示しており、上述のボールエンドミル17のボール中心を、該振れ測定装置の所定位置には、門型治具中ぐり盤35のX軸、Y軸およびZ軸方向のNC制御指令を用いて一致させる。
The light source power source 12 is electrically connected to the light source module 11 and supplies power to the light source module. The image signal from the detection module 14 and the origin signal from the origin angle detector 19 are electrically connected to the personal computer 20.
FIG. 7 shows a case where the optical axis 16 of the shake measuring device is taken parallel to the X-axis direction of the portal jig boring machine 35, and the center of the ball of the ball end mill 17 described above is shown in FIG. The predetermined position of the measuring device is matched with NC control commands in the X-axis, Y-axis, and Z-axis directions of the portal jig boring machine 35.

次に、本発明の測定原理について説明する。
図6は、本発明の測定原理を説明するために、図5に示した振れ測定ユニット9のキーパーツを平面上に配置した光学系である。光源モジュール11に内蔵されたレーザ発振器21とレンズ群A、レンズ鏡筒モジュール13に内蔵されたレンズB、アンチピンホールフィルタ25およびレンズC、検出モジュール14の一端に内蔵された撮像素子26がこの順序に、該レーザ発振器21から出射されたレーザ光と共通な光軸16上に、配置されている。ここで、レンズBの後側焦点28は、レンズCの前側焦点28’と一致しており、これをここでは共焦点と呼んでいる。この共焦点位置には、レンズBを通って後側焦点28に集光された透過光30を遮光するフィルタ機能をもったアンチピンホールフィルタ25が配置されている。またレンズCの後側焦点26’は、撮像素子26の検出面と一致している。また、レンズBの前側焦点27’に、被測定対象であるボールエンドミル17の切れ刃稜27を一致させている。
Next, the measurement principle of the present invention will be described.
FIG. 6 shows an optical system in which key parts of the shake measurement unit 9 shown in FIG. 5 are arranged on a plane in order to explain the measurement principle of the present invention. A laser oscillator 21 and a lens group A built in the light source module 11, a lens B built in the lens barrel module 13, an anti-pinhole filter 25 and a lens C, and an image pickup device 26 built in one end of the detection module 14. In order, they are arranged on the optical axis 16 common to the laser light emitted from the laser oscillator 21. Here, the rear focal point 28 of the lens B coincides with the front focal point 28 ′ of the lens C, which is called confocal here. At this confocal position, an anti-pinhole filter 25 having a filter function for shielding the transmitted light 30 that has been focused on the rear focal point 28 through the lens B is disposed. The rear focal point 26 ′ of the lens C coincides with the detection surface of the image sensor 26. Further, the cutting edge ridge 27 of the ball end mill 17 to be measured is made to coincide with the front focal point 27 ′ of the lens B.

このような光学系の構成とすることにより、レーザ発振器21から出射されたレーザ光31が、レンズ群Aを通ってコリメートされ、ボールエンドミル17の切れ刃稜27に照射されると、切れ刃稜27からはいろんな次数の回折光29が発生する。また、レーザ光31のうち切れ刃稜27から離れた箇所を通過する0次光成分の透過光30は、平行光としてレンズBに入射する。切れ刃稜27は、該レンズBの前側焦点27’に一致しているので、切れ刃稜27の周辺を通る透過光30や回折光29は、レンズBのフーリエ変換作用により、該レンズBの後側焦点28で、空間周波数に分解される。すなわち透過光30を集光するが、回折光29を集光しない。このレンズBの後側焦点28の位置に、0次光成分のみを遮るフィルタ機能をするアンチピンホール25が設置されているので、集光された透過光30は完全に遮断される。 With the configuration of such an optical system, when the laser beam 31 emitted from the laser oscillator 21 is collimated through the lens group A and irradiated onto the cutting edge ridge 27 of the ball end mill 17, the cutting edge ridge is obtained. From 27, diffracted light 29 of various orders is generated. In addition, the transmitted light 30 of the 0th-order light component that passes through the portion of the laser light 31 away from the cutting edge ridge 27 is incident on the lens B as parallel light. Since the cutting edge ridge 27 coincides with the front focal point 27 ′ of the lens B, the transmitted light 30 and the diffracted light 29 passing through the periphery of the cutting edge ridge 27 are reflected by the lens B by the Fourier transform action of the lens B. At the rear focal point 28, it is resolved into spatial frequencies. That is, the transmitted light 30 is collected, but the diffracted light 29 is not collected. Since the anti-pinhole 25 that functions as a filter that blocks only the zero-order light component is provided at the position of the rear focal point 28 of the lens B, the collected transmitted light 30 is completely blocked.

一方、アンチピンホール25を透過した高周波成分の回折光29は、レンズCの逆フーリエ変換作用によって、該レンズCの後側焦点26’に配置された撮像素子26上に結像する。このとき、切れ刃稜27により生じた同心円状の干渉像のうち、アンチピンホールにより、干渉像の1次回折光すなわち該切れ刃稜27の形状を与えるエッジ像32のみが抽出される。このような光学系の構成としたことにより、ボールエンドミル17の切れ刃稜27の境界がシャープなエッジ像32を、干渉像の影響を受けることがなく高精度に識別できる。 On the other hand, the high-frequency component diffracted light 29 that has passed through the anti-pinhole 25 forms an image on the image sensor 26 disposed at the rear focal point 26 ′ of the lens C by the inverse Fourier transform action of the lens C. At this time, from the concentric interference image generated by the cutting edge ridge 27, only the first-order diffracted light of the interference image, that is, the edge image 32 giving the shape of the cutting edge ridge 27 is extracted by the anti-pinhole. With such an optical system configuration, the edge image 32 having a sharp boundary between the cutting edge ridges 27 of the ball end mill 17 can be identified with high accuracy without being affected by the interference image.

次に、回転する切れ刃稜27の振れの最大値と、振れが最大値をとる回転角度の求め方について、1〜3の手順により説明する。
1一定の時間間隔で検出されるエッジ像の32’、およびこれに対して回転角度180°の位置にあるエッジ像32”を抽出する。
2二つのエッジ像の円弧部に対して、それぞれ最小二乗法により最もフィットした基礎円41’、41”を求める。
3これら2つボール中心間の距離を求める。
このように1から3の手順で、一定の回転角度ごとのボール中心間の距離を順次求めていき、該ボール中心間の距離が最大となる値すなわち振れと、振れが最大となるときの回転角度を求める。
Next, how to obtain the maximum value of the deflection of the rotating cutting edge ridge 27 and the rotation angle at which the deflection becomes the maximum value will be described with reference to procedures 1 to 3.
An edge image 32 ′ detected at a certain time interval and an edge image 32 ″ at a rotation angle of 180 ° are extracted.
For the arc portions of the two edge images, base circles 41 ′ and 41 ″ that are best fitted by the least square method are obtained.
3 Find the distance between these two ball centers.
In this way, the distance between the ball centers for each fixed rotation angle is sequentially obtained in steps 1 to 3, and the value at which the distance between the ball centers becomes the maximum, that is, the shake and the rotation at which the shake becomes the maximum. Find the angle.

なお、ボールエンドミルの回転方向の原点が、原点角度検出器19により検出されているので、振れが最大値をとるエッジ像32’および32”までの回転角度は、原点から振れが最大値に達するまでの回転工具の回転時間により算出できる。   Since the origin in the rotational direction of the ball end mill is detected by the origin angle detector 19, the rotational angle from the origin reaches the maximum value for the rotation angle to the edge images 32 ′ and 32 ″ where the maximum value of the shake is detected. It can be calculated from the rotation time of the rotating tool up to.

ここで、撮像素子26から得られるエッジ像を、サンプリングレート1μs以下の高速の電子シャッターで取り込んでおり、デジタル化に伴う振れの測定誤差は無視できる。
なおサンプリングレートが遅い場合であっても、間欠的なエッジ像のデジタルデータをもとに、サンプリング間隔で得られた振れを正弦波近似し、振れのデータを補間することで、振れの最大値を演算できる。
Here, the edge image obtained from the image sensor 26 is captured by a high-speed electronic shutter having a sampling rate of 1 μs or less, and the measurement error of shake due to digitization can be ignored.
Even when the sampling rate is slow, the maximum value of the shake is obtained by approximating the shake obtained at the sampling interval with a sine wave and interpolating the shake data based on the digital data of the intermittent edge image. Can be calculated.

図5に示した振れ測定装置を、門型治具中ぐり盤35に搭載した例を、図7に示す。振れ測定ユニット9は、X軸テーブル36に、光軸16がX軸方向に平行になるように固定されている。
一方、門型治具中ぐり盤35の主軸37には、特開2002−361510に記載と同様の1μm以内の精度でアライメント補正が可能な傾斜加工ユニット39が結合されており、該主軸軸心38周りの公転を可能にしている。また該傾斜加工ユニットには、主軸軸心38に対して傾斜した工具の回転軸心18をもち自転可能な工具回転軸18’を内蔵しており、該工具回転軸の一端に、1枚刃単結晶ダイヤモンド製の切れ刃稜27をもつボールエンドミル17がチャッキングされており、該工具回転軸18’に直角方向に微小なアライメント補正が可能である。
FIG. 7 shows an example in which the run-out measuring device shown in FIG. 5 is mounted on the portal jig boring board 35. The shake measurement unit 9 is fixed to the X-axis table 36 so that the optical axis 16 is parallel to the X-axis direction.
On the other hand, an inclination machining unit 39 capable of alignment correction with an accuracy within 1 μm is coupled to the main shaft 37 of the portal jig boring machine 35 as described in JP-A-2002-361510. Revolution around 38 is possible. In addition, the inclined machining unit has a built-in tool rotation shaft 18 ′ having a rotation axis 18 of the tool inclined with respect to the main shaft axis 38 and capable of rotating, and one blade at one end of the tool rotation shaft. A ball end mill 17 having a cutting edge ridge 27 made of single crystal diamond is chucked, and minute alignment correction is possible in a direction perpendicular to the tool rotation axis 18 ′.

ここで、振れを測定し補正する手順を、図8に示す。
最初に、門型治具中ぐり盤35のX軸テーブル36上に、振れ測定ユニット9を設置する。次に、該振れ測定ユニットの光軸のレンズBの前焦点に、ボールエンドミル17のボール中心を合わせる。それに続いて、該回転工具の切れ刃稜の投影像と原点角度をパソコンに取り込む。これら投影像のデータおよび原点角度のデータをもとに、振れが最大値をとる回転角度およびそのときの振れの最大値を解析により求め、得られた回転角度位置で振れが0となるように、振れを補正する。
Here, a procedure for measuring and correcting the shake is shown in FIG.
First, the runout measurement unit 9 is installed on the X-axis table 36 of the portal jig boring board 35. Next, the ball center of the ball end mill 17 is aligned with the front focal point of the lens B on the optical axis of the shake measuring unit. Subsequently, the projected image and origin angle of the cutting edge of the rotary tool are taken into a personal computer. Based on the projection image data and the origin angle data, the rotation angle at which the shake is at a maximum value and the maximum shake value at that time are obtained by analysis, and the shake is zero at the obtained rotation angle position. Correct the shake.

なお、図2の凹円筒面5は、図1に示した凹球面2の加工と同じ回転工具と門型治具中ぐり盤との段取り状態にして、これに送りを与えることで加工できる。また図3の凹楕円筒面7は、図1に示した凹球面の加工と同様の回転工具と門型治具中ぐり盤との段取り状態のうち、工具の回転軸心4を送り方向に傾斜させて、これに送りを与えることで加工できる。これは、例えば、門型軸中ぐり盤の主軸に取り付けた傾斜加工ユニットを公転方向にある角度回転した位置でこの角度を固定した状態で、自転する回転工具に送りを与えることで可能となる。   The concave cylindrical surface 5 in FIG. 2 can be processed by applying a feed to the rotary tool and portal jig boring machine that are the same as the processing of the concave spherical surface 2 shown in FIG. Further, the concave elliptic cylindrical surface 7 in FIG. 3 is arranged so that the rotational axis 4 of the tool in the feed direction in the set-up state between the rotary tool and the portal jig boring machine similar to the processing of the concave spherical surface shown in FIG. It can be processed by tilting and feeding it. This can be achieved, for example, by feeding a rotating tool that rotates in a state where the inclined machining unit attached to the main shaft of the portal type boring machine is rotated at a certain angle in the revolving direction. .

回転工具として、ボールエンドミル17の代わりに、スクエアエンドミルや、砥石あるいはドリルであっても、本発明が適用でき、同様の振れ測定、振れ補正が可能となる。 The present invention can be applied to a square end mill, a grindstone, or a drill instead of the ball end mill 17 as a rotating tool, and the same runout measurement and runout correction are possible.

原点角度検出器19の代わりに、エンコーダを使用しても、振れの最大値をとる回転角度を検出することが可能で、同様の効果を得ることができる。 Even if an encoder is used instead of the origin angle detector 19, it is possible to detect the rotation angle at which the maximum value of the shake is obtained, and the same effect can be obtained.

本発明の振れ測定装置は、上述した門型治具中ぐり盤35だけでなく、汎用フライス盤や多軸加工機、治具研削盤などにも搭載可能で、上記と同様の効果が得られる。 The run-out measuring apparatus of the present invention can be mounted not only on the portal jig boring machine 35 described above but also on a general-purpose milling machine, a multi-axis machine, a jig grinder, etc., and the same effects as described above can be obtained.

加工対象の凹球面の例Example of concave spherical surface to be processed 加工対象の凹円筒面の例Example of concave cylindrical surface to be machined 加工対象の凹楕円筒面の例Example of concave elliptic cylinder surface to be machined 回転工具の振れによる形状誤差の説明図Illustration of shape error due to runout of rotating tool 本発明の振れ測定装置の一実施例を示す図The figure which shows one Example of the shake measuring apparatus of this invention 本発明の原理を示す説明図Explanatory drawing showing the principle of the present invention 図5の一実施例を搭載した門型治具中ぐり盤の説明図FIG. 5 is an explanatory diagram of a gate-type jig boring machine equipped with the embodiment of FIG. 振れの測定・補正の手順を示すフローチャートFlow chart showing run-out measurement / correction procedure 振れの相違による凹球面の比較図Comparison of concave spherical surfaces due to runout differences 本発明の効果を示す説明図Explanatory drawing which shows the effect of this invention 可視化されたエッジ像の例Visualized edge image example 回折像により乱れたエッジ像の一例An example of an edge image disturbed by a diffraction image 本発明による鮮明なエッジ像の一例An example of a sharp edge image according to the present invention 明暗縞の移動による工具のズレ調整の難しさの説明図Explanatory drawing of the difficulty of adjusting the tool displacement due to the movement of light and dark stripes

符号の説明Explanation of symbols

1 工作物
2 凹球面
3 凹球面の中心軸
4 工具の回転軸心
5 凹円筒面
6 円
7 凹楕円筒面
8 楕円
9 振れ測定ユニット
10 ベース
11 光源モジュール
12 光源用電源
13 レンズ鏡筒
14 検出モジュール
15 カバー
16 光軸
17 ボールエンドミル
18 回転工具の軸心
18’工具回転軸
19 原点角度検出器
20、20’パソコン
21 レーザ発振器
22 レンズ群A
23 レンズB
24 レンズC
25 アンチピンホールフィルタ
26 撮像素子
26’レンズCの後側焦点
27 切れ刃稜
27’レンズBの前側焦点
28 レンズBの後側焦点
28’レンズCの前側焦点
29 回折光
30 透過光
31 レーザ光
32、 32’、32” エッジ像
35 門型治具中ぐり盤
36 X軸テーブル
37 主軸
38 主軸軸心
39 傾斜加工ユニット
40 40’、40’’干渉縞
41 41’、41’’工具エッジ
42 実際の干渉縞の動き
43 人が錯覚して見える干渉縞の動き
44 工具の動き

O 凹球面の投影円の中心
P 偏心誤差をもつ場合の見かけ上の凹球面の曲率中心
Q 凹球面の曲率中心
Q’、Q” 工具のボール中心
R 凹球面の曲率半径
R’偏心誤差をもつ場合の見かけ上の凹球面の曲率半径
ε 工具の回転軸心に対する工具のボール中心の偏心、すなわち振れ
Δe 形状誤差
θ 断面42内における回転軸心の傾斜角
DESCRIPTION OF SYMBOLS 1 Workpiece 2 Concave spherical surface 3 Center axis of concave spherical surface 4 Rotation center 5 of a tool 5 Concave cylindrical surface 6 Circle 7 Concave elliptical cylindrical surface 8 Ellipse 9 Shaking measurement unit 10 Base 11 Light source module 12 Light source power supply 13 Lens barrel 14 Detection Module 15 Cover 16 Optical axis 17 Ball end mill 18 Rotating tool axis 18 ′ Tool rotating axis 19 Origin angle detector 20, 20 ′ PC 21 Laser oscillator 22 Lens group A
23 Lens B
24 Lens C
25 Anti-pinhole filter 26 Image sensor 26 ′ Rear focal point 27 of lens C Cutting edge ridge 27 ′ Front focal point 28 of lens B Rear focal point 28 ′ of lens B Front focal point 29 of lens C Diffracted light 30 Transmitted light 31 Laser light 32, 32 ′, 32 ″ edge image 35 portal jig boring machine 36 X-axis table 37 spindle 38 spindle axis 39 inclined machining unit 40 40 ′, 40 ″ interference fringe 41 41 ′, 41 ″ tool edge 42 Interference fringe movement 43 Interference fringe movement 44 seen by humans as an illusion 44 Tool movement

O The center of the projection circle of the concave sphere P The apparent center of curvature of the concave sphere with an eccentric error
Q Center of curvature of concave sphere Q ', Q "Tool ball center R Concentric radius of concave spherical surface R' Apparent radius of curvature of concave spherical surface with eccentric error ε Eccentricity of tool ball center with respect to tool rotation axis That is, the deflection Δe Shape error θ The inclination angle of the rotation axis in the cross section 42

Claims (2)

平行光を発する光源モジュールと、該平行光の光軸と軸心を共通にするレンズ鏡筒および撮像素子と、演算処理機能を有するマイコンから構成され、該平行光を遮る位置に置かれた回転工具の振れを測定する測定系において、該レンズ鏡筒が、共焦点を有する少なくとも2個のレンズと、該共焦点近傍に配置された入射光のうちの0次光の光量を遮光するアンチピンホールフィルタからなり、これら2個のレンズの残り2つの焦点のうちの光源モジュール側の焦点には回転工具の切れ刃稜を配置し、もう一方の焦点には光軸に直交するように撮像素子を配置したこと、および該マイコンにより、撮像素子上に投影された該切れ刃稜のエッジ像の電気信号を取り込み、互いに180°異なる回転角度位置にある最大の振れを示す二つのエッジ像の差から、回転工具の切れ刃稜の振れを計算できるようにしたことを特徴とする回転工具の振れ測定法および測定装置 A light source module that emits parallel light, a lens barrel and an image sensor that share the optical axis and axis of the parallel light, and a microcomputer having an arithmetic processing function, and a rotation placed at a position that blocks the parallel light In a measurement system for measuring tool deflection, the lens barrel includes at least two lenses having a confocal and an anti-pin that shields the amount of 0th-order light out of incident light disposed in the vicinity of the confocal. The image sensor is composed of a Hall filter, the cutting edge of the rotary tool is disposed at the focal point on the light source module side of the remaining two focal points of these two lenses, and the other focal point is orthogonal to the optical axis. The two edge images showing the maximum shake at the rotational angle positions different from each other by taking in the electric signal of the edge image of the cutting edge ridge projected on the image sensor by the microcomputer From the difference, runout measuring method and measuring apparatus of the rotary tool, characterized in that to be able to calculate the deflection of the cutting edge ridge of the rotary tool 請求項1に記載の測定系において、角度検出器ないしは原点角度検出器を有し、回転工具の回転角度を検知できるようにしたことを特徴とする回転工具の振れ測定法および測定装置
The measuring system according to claim 1, further comprising an angle detector or an origin angle detector, wherein the rotational angle of the rotary tool can be detected.
JP2005055302A 2005-03-01 2005-03-01 Method for measuring runout of rotating tool and its measuring apparatus Pending JP2006242605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005055302A JP2006242605A (en) 2005-03-01 2005-03-01 Method for measuring runout of rotating tool and its measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005055302A JP2006242605A (en) 2005-03-01 2005-03-01 Method for measuring runout of rotating tool and its measuring apparatus

Publications (1)

Publication Number Publication Date
JP2006242605A true JP2006242605A (en) 2006-09-14

Family

ID=37049185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005055302A Pending JP2006242605A (en) 2005-03-01 2005-03-01 Method for measuring runout of rotating tool and its measuring apparatus

Country Status (1)

Country Link
JP (1) JP2006242605A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242606A (en) * 2005-03-01 2006-09-14 Niigata Univ Method for measuring runout of rotating tool and its measuring apparatus
JP2007232489A (en) * 2006-02-28 2007-09-13 Kyushu Institute Of Technology Precision tool measuring method and system using laser beam
JP2008304292A (en) * 2007-06-07 2008-12-18 Kyushu Institute Of Technology Rotating body measuring method and system using pulsed laser light
JP2009150865A (en) * 2007-11-30 2009-07-09 Waida Seisakusho:Kk Edge detection method, edge detector and working machine using the same
JP2010197171A (en) * 2009-02-24 2010-09-09 Waida Seisakusho:Kk Edge detector, machine tool using the same, and edge detection method
JP2017187335A (en) * 2016-04-04 2017-10-12 並木精密宝石株式会社 Optical inner face measurement device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109440A (en) * 1992-09-28 1994-04-19 Makino Furaisu Seiki Kk Tool measuring apparatus
JPH10141934A (en) * 1996-11-11 1998-05-29 Okuma Mach Works Ltd Method for measuring sphericity of ball end mill
JP2002205246A (en) * 2001-01-10 2002-07-23 Hitachi Tool Engineering Ltd Accuracy measuring method of ball end mill
JP2002361510A (en) * 2001-06-07 2002-12-18 Masami Masuda Milling method of fine recessed surface and its device
JP2004098213A (en) * 2002-09-09 2004-04-02 Sumitomo Metal Ind Ltd Tool position measuring method, nc machining method and nc machine tool
JP2006242606A (en) * 2005-03-01 2006-09-14 Niigata Univ Method for measuring runout of rotating tool and its measuring apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109440A (en) * 1992-09-28 1994-04-19 Makino Furaisu Seiki Kk Tool measuring apparatus
JPH10141934A (en) * 1996-11-11 1998-05-29 Okuma Mach Works Ltd Method for measuring sphericity of ball end mill
JP2002205246A (en) * 2001-01-10 2002-07-23 Hitachi Tool Engineering Ltd Accuracy measuring method of ball end mill
JP2002361510A (en) * 2001-06-07 2002-12-18 Masami Masuda Milling method of fine recessed surface and its device
JP2004098213A (en) * 2002-09-09 2004-04-02 Sumitomo Metal Ind Ltd Tool position measuring method, nc machining method and nc machine tool
JP2006242606A (en) * 2005-03-01 2006-09-14 Niigata Univ Method for measuring runout of rotating tool and its measuring apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242606A (en) * 2005-03-01 2006-09-14 Niigata Univ Method for measuring runout of rotating tool and its measuring apparatus
JP2007232489A (en) * 2006-02-28 2007-09-13 Kyushu Institute Of Technology Precision tool measuring method and system using laser beam
JP2008304292A (en) * 2007-06-07 2008-12-18 Kyushu Institute Of Technology Rotating body measuring method and system using pulsed laser light
JP2009150865A (en) * 2007-11-30 2009-07-09 Waida Seisakusho:Kk Edge detection method, edge detector and working machine using the same
JP2010197171A (en) * 2009-02-24 2010-09-09 Waida Seisakusho:Kk Edge detector, machine tool using the same, and edge detection method
JP2017187335A (en) * 2016-04-04 2017-10-12 並木精密宝石株式会社 Optical inner face measurement device

Similar Documents

Publication Publication Date Title
KR102637460B1 (en) Method and apparatus for gear skiving
US10073435B2 (en) Reducing errors of a rotatory device, in particular for the determination of coordinates of a workpiece or the machining of a workpiece
JP2006242605A (en) Method for measuring runout of rotating tool and its measuring apparatus
JP2004317159A (en) Reference holder for roundness measuring machines
CN1950669A (en) Device and method for optical precision measurement
JP7195277B2 (en) Measurement of characteristic parameters of finishing tools
CN107532886A (en) Tool shape determines device
JP2006242606A (en) Method for measuring runout of rotating tool and its measuring apparatus
JP2014532171A (en) Method for obtaining cutting edge preparation profile of a cutting tool
US20190063908A1 (en) Non-contact and optical measuring automation system for the profile accuracy of disk cams and method thereof
JP2022533695A (en) MACHINING MODULE AND MACHINE TOOL INCLUDING TOOL OUTER DETECTION UNIT AND TOOL OUTER DETECTION METHOD
CN112969900B (en) Tool shape measuring device and tool shape measuring method
JP2016040531A (en) Working tool measuring method and measuring device
JP6288280B2 (en) Surface shape measuring device
JP2014081279A (en) Three-dimensional shape measuring apparatus and three-dimensional shape measuring method
JP2008210179A (en) System for estimating cutting edge locus and machined surface condition
JP6303889B2 (en) Processing tool measuring apparatus and measuring method
JP2008304292A (en) Rotating body measuring method and system using pulsed laser light
JP2009068972A (en) Rotational deflection and shape measuring apparatus
JP5721508B2 (en) Tool holder for measuring tool, measuring device, and calibration method of the measuring device
JP6757391B2 (en) Measuring method
JP7120247B2 (en) SURFACE PROFILE MEASURING DEVICE, SURFACE PROFILE MEASURING METHOD, STRUCTURE MANUFACTURING SYSTEM, STRUCTURE MANUFACTURING METHOD, AND SURFACE PROFILE MEASURING PROGRAM
JP6858402B2 (en) Cutting edge information acquisition device and cutting edge information acquisition method
KR20170092534A (en) Method for orienting tube components
JP2014215130A (en) Linear body vibration measuring device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207