JP2006242606A - Method for measuring runout of rotating tool and its measuring apparatus - Google Patents

Method for measuring runout of rotating tool and its measuring apparatus Download PDF

Info

Publication number
JP2006242606A
JP2006242606A JP2005055303A JP2005055303A JP2006242606A JP 2006242606 A JP2006242606 A JP 2006242606A JP 2005055303 A JP2005055303 A JP 2005055303A JP 2005055303 A JP2005055303 A JP 2005055303A JP 2006242606 A JP2006242606 A JP 2006242606A
Authority
JP
Japan
Prior art keywords
lens
cutting edge
runout
tool
focal point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005055303A
Other languages
Japanese (ja)
Inventor
Masami Masuda
正美 桝田
Takaaki Yazawa
孝哲 矢澤
Takashi Nomura
俊 野村
Kazuhide Kamiya
和秀 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata University NUC
Original Assignee
Niigata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata University NUC filed Critical Niigata University NUC
Priority to JP2005055303A priority Critical patent/JP2006242606A/en
Publication of JP2006242606A publication Critical patent/JP2006242606A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure runout of cutting edges of rotary tools with accuracy of submicron order in a high-speed rotation range between extremely low-speed rotation and high-speed rotation at 100,000/min or faster. <P>SOLUTION: By arranging a lens B in such a way that a cutting edge of a rotary tool may be matched with a front focus point of the lens B, arranging a dimmer filter at a rear focal point of the lens B, matching a front focal point of a lens C with the rear focal point of the lens B, and arranging an imaging element at a rear focal point of the lens C, Fraunhofer images or shadow diffraction images of the cutting edge are acquired from the imaging element to improve accuracy in calculating the position of the center of a ball of the rotary tool and compute runout. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は,回転工具を用いた精密機械加工において,回転工具の振れの精密な測定に関するもので,この振れの測定結果に基づいて,振れを抑制することを目的としている. The present invention relates to precise measurement of runout of a rotary tool in precision machining using a rotary tool, and aims to suppress runout based on the measurement result of the runout.

回転工具を用いた精密機械加工が一般的に行われているが,回転工具の偏心誤差やチャッキング誤差に起因した振れがあると,加工形状精度の劣化や工具寿命の低下を来すなど,加工する上で障害となっている.
この課題に対して,例えば特開平10−141934号では,ボールエンドミルの切れ刃稜の形状精度や振れを,加工機の運動精度を基準としてレーザ光を用いた非接触測定により求めている.しかしこの方法では,逐次測定のため,測定に時間がかかるとともに,測定精度が加工機精度に依存するなどの課題がある.
Precision machining using a rotary tool is generally performed. However, if there is runout due to eccentric error or chucking error of the rotary tool, the machining shape accuracy deteriorates and the tool life decreases. This is an obstacle to machining.
In response to this problem, for example, in Japanese Patent Laid-Open No. 10-141934, the shape accuracy and run-out of the cutting edge of the ball end mill are obtained by non-contact measurement using laser light with reference to the motion accuracy of the processing machine. However, this method has problems such as sequential measurement, which takes time and makes the measurement accuracy dependent on the machine accuracy.

また特開2002−205246号では,ボールエンドミルの切れ刃稜線上の点を測定しアール精度を検出しており,この測定法を本発明で目的とした振れ測定に適用することも可能である.しかしこの測定方法においても,特開平10−141934号と同様に,逐次測定のため,測定に時間がかかるという課題がある.
上記のほかにも,レーザ光を回転工具に照射して,回転に伴う回転工具の位置の変動を逐一測定して,振れを求める多くの方法が提案されている。
In Japanese Patent Laid-Open No. 2002-205246, a point on a cutting edge ridge line of a ball end mill is measured to detect a radius accuracy, and this measurement method can also be applied to a runout measurement aimed at by the present invention. However, this measurement method also has a problem that it takes time for measurement because of sequential measurement, as in JP-A-10-141934.
In addition to the above, many methods have been proposed in which the laser beam is irradiated to the rotary tool, and the fluctuations in the position of the rotary tool that accompany the rotation are measured one by one to obtain the deflection.

しかし,レーザ光を用いたこれら従来の振れ測定法では,いずれもレーザ光のコヒーレンスが非常に良いため,回転工具の切れ刃稜で発生する回折光と透過光との相互干渉により,切れ刃稜の境界が不鮮明で識別精度が低下するという問題がある.
また,このように切れ刃稜の境界の識別精度が低いと,ミクロンあるいはサブミクロンといった厳しい加工形状精度が要求される場合には,
1.回転工具の振れを測定し補正すること,と
2.補正した回転工具で試し切削し,加工形状精度を測定評価すること,
とを,何度も繰り返し行わなければ,所要の加工形状精度が確保できない.
However, in all of these conventional vibration measurement methods using laser light, the coherence of the laser light is very good. Therefore, due to the mutual interference between the diffracted light generated at the cutting edge of the rotary tool and the transmitted light, the cutting edge There is a problem that the boundary of is unclear and the identification accuracy decreases.
In addition, when the identification accuracy of the edge of the cutting edge is low in this way, if severe machining shape accuracy such as micron or submicron is required,
1. 1. measure and correct for runout of the rotating tool; Trial cutting with the corrected rotating tool, and measuring and evaluating machining shape accuracy,
If it is not repeated many times, the required machining shape accuracy cannot be secured.

とくに,回転工具が小径になるほど,また加工形状精度が厳しくなるにつれ,該回転工具の切れ刃稜の振れの測定精度および補正精度を高める必要があり,加工形状精度の測定と振れの補正に多大な時間を費やさざるを得なくなる.また,回転工具が小径になるほど,工具の回転数を高くとる必要があるが,高回転になるほど,切れ刃稜の形状測定が難しくなるという問題もある.   In particular, as the rotary tool becomes smaller in diameter and the machining shape accuracy becomes more severe, it is necessary to increase the measurement accuracy and correction accuracy of the cutting edge ridge runout of the rotary tool. Will have to spend a lot of time. In addition, the smaller the diameter of the rotating tool, the higher the rotational speed of the tool, but the higher the speed, the more difficult it is to measure the shape of the cutting edge.

透過光学系において、この光量を制限することにより、高精度に切れ刃稜の形状を測定できるようにした。   By limiting the amount of light in the transmission optical system, the shape of the cutting edge ridge can be measured with high accuracy.

図13,図14は,本発明の効果についての説明図である.
図13は,本発明の振れ測定装置を用いて測定したボールエンドミルの振れと,該ボールエンドミルにより切削された凹球面の三次元形状の測定データから求めた回転振れとの関係を示している.両者は,非常によい線形関係を示しており,該振れ測定装置を用いることにより,1μm以下まで精度良く工具の振れを測定でき,また測定された振れの補正を行うことで,良好な凹球面を加工できることが明らかである.
13 and 14 are explanatory diagrams for the effects of the present invention.
FIG. 13 shows the relationship between the run-out of the ball end mill measured using the run-out measuring device of the present invention and the rotational run-out obtained from the measurement data of the three-dimensional shape of the concave spherical surface cut by the ball end mill. Both show a very good linear relationship. By using the run-out measuring device, the run-out of the tool can be accurately measured to 1 μm or less, and a good concave spherical surface can be obtained by correcting the measured run-out. It is clear that can be processed.

図7に示した門型治具中ぐり盤35の傾斜加工ユニット39の自転する工具の回転軸心18に,単結晶ダイヤモンドの1枚刃のボールエンドミル17をチャッキングし,該ボールエンドミルを自転させながら,最初にダウンフィードを与えて切削し,次いで主軸周りに180°まで公転して切削し,そのあとリトラクトしたときの工作物1の加工面の顕微鏡写真を,図14に示す.図14(a)は,振れの補正を行わないで切削した結果で,振れが大きいため,
1)横方向に大径となっていること,また
2)最初の0°位置と180°の切削終了位置では,下半分に半径方向の顕著な境界が存在する,
ことが確認される.
The single-crystal diamond single-blade ball end mill 17 is chucked on the rotation axis 18 of the rotating tool of the inclined machining unit 39 of the portal jig boring machine 35 shown in FIG. 7, and the ball end mill rotates. Fig. 14 shows a micrograph of the machined surface of the workpiece 1 when it is first cut with a feed, then revolved to 180 ° around the spindle, and then retracted. FIG. 14A shows a result of cutting without correcting the shake, and the shake is large.
1) It has a large diameter in the lateral direction. 2) At the first 0 ° position and 180 ° end position, there is a marked radial boundary in the lower half.
This is confirmed.

ちなみにこのときの工具の振れを,本発明の振れ測定装置により測定したところ, 70.5μmとなっていた.一方,図14(a)の凹球面形状を三次元形状測定器により測定し,その測定データをもとに該凹球面の幾何学的な加工形状誤差を計算したところ,工具の振れが約70μmと求まり,本発明の振れ測定装置による測定結果と良い対応を示していた. By the way, the tool runout at this time was measured with the runout measuring device of the present invention and found to be 70.5 μm. On the other hand, when the concave spherical shape of FIG. 14A is measured with a three-dimensional shape measuring instrument and the geometric processing shape error of the concave spherical surface is calculated based on the measured data, the tool runout is about 70 μm. It was found that the measurement results with the shake measurement device of the present invention corresponded well.

この振れの測定結果をもとに,特開2002−361510に記載された自公転ユニットにより,工具の振れを1μm以下に補正した.この状態で切削した加工結果を,図14(b)に示す.凹球面には,振れに起因した境界も確認されず,工具の振れの僅少なることが明らかである.前述と同様に,該凹球面の三次元形状の測定データをもとに,幾何学的な加工形状誤差から工具の振れを計算したところ,振れが1μm以下に抑制されていることが確認された.   Based on the measurement result of the runout, the runout of the tool was corrected to 1 μm or less by the self-revolving unit described in JP-A-2002-361510. Fig. 14 (b) shows the processing result of cutting in this state. In the concave spherical surface, the boundary due to run-out is not confirmed, and it is clear that the run-out of the tool is small. As described above, when the tool runout was calculated from the geometric machining shape error based on the measurement data of the three-dimensional shape of the concave spherical surface, it was confirmed that the runout was suppressed to 1 μm or less. .

なお, 100,000/minで回転するボール半径0.5mmの1枚刃ボールエンドミルにおいても,該振れ測定装置を用いることによって,振れ測定が可能なことを確認している.
上述したように,本発明の振れ測定装置を用いることにより,高速に回転する回転工具であっても,回転工具の振れ測定が可能となる.また,図8に示すようなフラウンフォーファ像あるいは図9に示す陰影回折像を見ながら,振れεが減少する方向に補正することで,回転工具の振れ補正を行うことができる.
このように,本発明の減光フィルタを用いる振れの測定法では,
1)コントラストの高い同心円状のフランフォーファ像または陰影回折像が得られること,
2)同心円状のフランフォーファ像または陰影回折像の個々の縞より,回転工具のボール中心の位置を求め,その位置を平均することによる平均化効果により,図15に示すように像が乱れた状態であっても中心位置の算出精度を向上できること,
などの特長がある.
本発明が対象としている加工形状を,図1,図2および図3に示す.図1は,中心軸3周りに回転対称形状をした,曲率半径Rの凹球面2である.また,図2に示す断面が円6の一部からなる凹円筒面5,図3では楕円8の一部からなる凹楕円筒面7を,加工対象としている.これら凹球面2や,凹円筒面5あるいは凹楕円筒面7を加工するとき,回転工具としてボールエンドミルが用いられる.
In addition, it has been confirmed that even with a single blade ball end mill with a ball radius of 0.5 mm rotating at 100,000 / min, the deflection measurement is possible by using the deflection measuring device.
As described above, by using the run-out measuring device of the present invention, it is possible to measure run-out of a rotating tool even with a rotating tool that rotates at high speed. In addition, while seeing the Fraunhofer image as shown in FIG. 8 or the shadow diffraction image as shown in FIG.
Thus, in the shake measurement method using the neutral density filter of the present invention,
1) A high-contrast concentric francopha image or shadow diffraction image can be obtained.
2) The position of the center of the ball of the rotating tool is obtained from the individual fringes of the concentric francophor image or shadow diffraction image, and the image is distorted as shown in FIG. The center position calculation accuracy can be improved even in
It has the following features.
The machining shapes targeted by the present invention are shown in FIGS. FIG. 1 shows a concave spherical surface 2 having a radius of curvature R and having a rotationally symmetric shape around a central axis 3. Further, the processing object is a concave cylindrical surface whose cross section shown in FIG. 2 is a part of a circle 6 and a concave elliptic cylindrical surface 7 which is a part of an ellipse 8 in FIG. When machining these concave spherical surface 2, concave cylindrical surface 5 or concave elliptic cylindrical surface 7, a ball end mill is used as a rotating tool.

図1におけるA−A断面を,図4に示す.ここで,ボール半径Rをもつボールエンドミルのボール中心Q‘は,ボールエンドミルの切れ刃稜の偏心やチャッキング誤差により,厳密には工具の回転軸心4上には存在せず,わずかに誤差をもっている.ここで,工具の回転軸心4からボール中心Q’までの距離,すなわち工具の振れεが存在すると,ボールエンドミルは回転軸心4の周りを振れ回ることになる.その結果,曲率半径が設計値Rとは異なるR‘,および形状誤差Δeをもった凹球面の加工形状になる.なお,図4では,説明のためにこれらの関係を誇張して描いている.同様に,図2に示した凹円筒面5ないし図3に示した凹楕円筒面7においても,工具に振れがあると,類似した曲率半径誤差や形状誤差をもたらすという問題がある.   Fig. 4 shows the AA cross section in Fig. 1. Here, the ball center Q ′ of the ball end mill having the ball radius R does not exist strictly on the rotational axis 4 of the tool due to the eccentricity of the cutting edge of the ball end mill or a chucking error. Have Here, if there is a distance from the rotation axis 4 of the tool to the ball center Q ′, that is, a tool runout ε, the ball end mill swings around the rotation axis 4. As a result, a concave spherical processed shape having a radius of curvature R ′ different from the design value R and a shape error Δe is obtained. In FIG. 4, these relationships are exaggerated for the sake of explanation. Similarly, the concave cylindrical surface 5 shown in FIG. 2 to the concave elliptic cylindrical surface 7 shown in FIG. 3 have a problem that if the tool is shaken, a similar curvature radius error or shape error is caused.

このように,凹球面や凹円筒面あるいは凹楕円筒面を精密に加工するには,工具の振れεを精度良く測定し,振れεを限りなく0に補正して加工することが不可欠である.
上記の課題に対処するために,本発明の目的は,ごく低速から毎分数10万回転といった広い回転速度範囲において,回転工具の切れ刃稜の振れを,ミクロンないしサブミクロンレベルの高い精度で測定できる測定法を提供し,回転工具の切れ刃稜の振れの補正を可能にすることにある.
Thus, in order to precisely machine a concave spherical surface, a concave cylindrical surface, or a concave elliptical cylindrical surface, it is indispensable to measure the tool runout ε with high accuracy and correct the runout ε to zero as much as possible. .
In order to deal with the above problems, the object of the present invention is to measure the runout of the cutting edge of a rotating tool with a high accuracy on the micron or submicron level in a wide rotational speed range from very low speed to several hundred thousand revolutions per minute. The purpose of this is to provide a measurement method that can be used to compensate for the fluctuation of the cutting edge of a rotating tool.

この課題に対し,入射光学系の中に,0次光および高次光の光量を制限する減光フィルタを挿入して,光源から発した透過光の一部が撮像素子に到達しないように制限し,回転工具の切れ刃稜のフランフォーファ像または陰影回折像が得られるようにしている.これにより,回転工具のボール中心の算出精度が向上でき,回転工具の切れ刃稜の振れを高精度に求めることができる.   In response to this problem, a neutral density filter that limits the amount of zero-order light and high-order light is inserted in the incident optical system so that a part of the transmitted light emitted from the light source does not reach the image sensor. A Francophor image or a shadow diffraction image of the cutting edge of a rotating tool is obtained. As a result, the calculation accuracy of the ball center of the rotating tool can be improved, and the runout of the cutting edge of the rotating tool can be obtained with high accuracy.

本発明の一実施例を,図5〜図7を用いて説明する.図5には本発明の振れ測定装置の一実施例を,図6にはその原理を説明するための図,図7には図5に示した振れ測定装置を搭載した門型治具中ぐり盤35を示す.   An embodiment of the present invention will be described with reference to FIGS. FIG. 5 shows an embodiment of the shake measuring apparatus of the present invention, FIG. 6 is a diagram for explaining the principle thereof, and FIG. 7 is a portal jig boring machine equipped with the shake measuring apparatus shown in FIG. The board 35 is shown.

振れ測定装置は,振れ測定ユニット9,光源モジュール11,およびパソコン20より構成されている.振れ測定ユニット9では,ベース10の上に,光源モジュール11,レンズ鏡筒モジュール13および検出モジュール14が,この順に,共通な光軸16をもって配置されており,これら全体がカバー15にて覆われている.該カバーの上面の一部には窓が開いており,被測定対象であるボールエンドミル17がその窓を貫いており,該ボールエンドミルのボール中心がほぼ光軸16上に一致するように,組み立てられている.また原点角度検出器19の検出端は,ボールエンドミル17の外周に接近して配置され,他端はベース10に立てられたスタンドに固定されており,ボールエンドミル17 の回転角度方向の原点を検出可能にしている.   The shake measuring device is composed of a shake measuring unit 9, a light source module 11, and a personal computer 20. In the shake measurement unit 9, a light source module 11, a lens barrel module 13, and a detection module 14 are arranged on a base 10 in this order with a common optical axis 16, and these are covered by a cover 15 as a whole. ing. A window is opened on a part of the upper surface of the cover, and a ball end mill 17 to be measured passes through the window, and the ball center of the ball end mill is assembled so as to substantially coincide with the optical axis 16. It has been. Further, the detection end of the origin angle detector 19 is arranged close to the outer periphery of the ball end mill 17 and the other end is fixed to a stand standing on the base 10 to detect the origin of the ball end mill 17 in the rotation angle direction. It is possible.

光源用電源12は,光源モジュール11に電気的に接続され,該光源モジュールにパワーを供給している.また検出モジュール14からの画像信号および原点角度検出器19からの原点信号は,パソコン20に電気的に接続されている.
なお図7は,該振れ測定装置の光軸16を,門型治具中ぐり盤35のX軸方向に平行に採った場合を示しており,上述のボールエンドミル17のボール中心を,該振れ測定装置の所定位置には,門型治具中ぐり盤35のX軸,Y軸およびZ軸方向のNC制御指令を用いて一致させる.
The light source power source 12 is electrically connected to the light source module 11 and supplies power to the light source module. The image signal from the detection module 14 and the origin signal from the origin angle detector 19 are electrically connected to the personal computer 20.
FIG. 7 shows a case where the optical axis 16 of the shake measuring device is taken in parallel to the X-axis direction of the portal jig boring machine 35, and the center of the ball of the ball end mill 17 described above is shown in FIG. The predetermined position of the measuring device is matched with NC control commands in the X-axis, Y-axis and Z-axis directions of the portal jig boring machine 35.

次に,本発明の測定原理について説明する.
図6は,本発明の測定原理を説明するために,図5に示した振れ測定ユニット9のキーパーツを平面上に配置した光学系である.光源モジュール11に内蔵されたレーザ発振器21とレンズ群A,レンズ鏡筒モジュール13に内蔵されたレンズB,減光フィルタ25およびレンズC,検出モジュール14の一端に内蔵された撮像素子26がこの順序で,該レーザ発振器21から出射されたレーザ光と共通な光軸16上に,配置されている.ここで,レンズBの後側焦点28は,レンズCの前側焦点28’と一致しており,これをここでは共焦点と呼んでいる.この共焦点位置には,レンズBを通って後側焦点28に集光する透過光30いわゆる0次光の光量と,これより高次の回折光29の光量を,1:1に減光できる減光フィルタ25が配置されている.またレンズCの後側焦点26’は,撮像素子26の検出面に一致している.また,レンズBの前側焦点27’と,被測定対象であるボールエンドミル17の切れ刃稜27を一致させている.
Next, the measurement principle of the present invention is described.
FIG. 6 shows an optical system in which key parts of the shake measurement unit 9 shown in FIG. 5 are arranged on a plane in order to explain the measurement principle of the present invention. The laser oscillator 21 and the lens group A built in the light source module 11, the lens B built in the lens barrel module 13, the neutral density filter 25 and the lens C, and the image pickup device 26 built in one end of the detection module 14 are arranged in this order. Therefore, it is arranged on the optical axis 16 common to the laser beam emitted from the laser oscillator 21. Here, the rear focal point 28 of the lens B coincides with the front focal point 28 ′ of the lens C, which is called confocal here. At this confocal position, the amount of transmitted light 30 that converges on the rear focal point 28 through the lens B, the so-called zero-order light amount, and the light amount of higher-order diffracted light 29 can be reduced to 1: 1. A neutral density filter 25 is arranged. The rear focal point 26 ′ of the lens C coincides with the detection surface of the image sensor 26. Further, the front focal point 27 ′ of the lens B and the cutting edge ridge 27 of the ball end mill 17 to be measured are made to coincide.

このような光学系の構成とすることにより,レーザ発振器21から出射されたレーザ光31が,レンズ群Aを通ってコリメートされ,ボールエンドミル17の切れ刃稜27に照射されると,該切れ刃稜27において多次数の回折光29が発生する.また,レーザ光31のうち切れ刃稜27から離れた箇所を通過する0次光成分の透過光30は,平行光としてレンズBに入射する.切れ刃稜27は,該レンズBの前側焦点27’に一致しているので,切れ刃稜27の周辺を通る透過光30や回折光29は,レンズBのフーリェ変換作用により,該レンズBの後側焦点28で,空間周波数に分解される.すなわち透過光30を集光するが,回折光29を集光しない.このレンズBの後側焦点28の位置に,0次光と高次光の光量を1:1に減光するフィルタ機能をもった減光フィルタ25が設置されているので,集光された透過光30は減光され、該レンズCの後側焦点26’に配置された撮像素子26上に到達する. With this configuration of the optical system, when the laser beam 31 emitted from the laser oscillator 21 is collimated through the lens group A and irradiated onto the cutting edge ridge 27 of the ball end mill 17, the cutting edge Multi-order diffracted light 29 is generated at the edge 27. In addition, the transmitted light 30 of the 0th-order light component that passes through the portion of the laser light 31 away from the cutting edge ridge 27 enters the lens B as parallel light. Since the cutting edge ridge 27 coincides with the front focal point 27 ′ of the lens B, the transmitted light 30 and the diffracted light 29 that pass through the periphery of the cutting edge ridge 27 are reflected by the lens B by a Fourier transform action. At the rear focal point 28, it is decomposed into spatial frequencies. That is, the transmitted light 30 is collected, but the diffracted light 29 is not collected. At the position of the rear focal point 28 of the lens B, a neutral density filter 25 having a filter function for reducing the amount of zero-order light and high-order light to 1: 1 is installed. Is dimmed and reaches the image sensor 26 disposed at the rear focal point 26 'of the lens C.

一方,減光フィルタ25を透過した高周波成分の回折光29は,減光された後レンズCの逆フーリエ変換作用によって,該レンズCの後側焦点26’に配置された撮像素子26上に結像する.このとき,回折光29と透過光30は撮像素子26において同程度の光量になるため,図8または図9に示すように,切れ刃稜27により生じたコントラストのよい同心円状の干渉像が、ボールエンドミル17の切れ刃稜27の境界の外側に図8のようなフランフォーファ像32,あるいは内側に図9のような陰影回折像33として抽出される. On the other hand, the high-frequency component diffracted light 29 transmitted through the neutral density filter 25 is coupled onto the image pickup device 26 disposed at the rear focal point 26 'of the lens C by the inverse Fourier transform action of the lens C after being attenuated. Image. At this time, since the diffracted light 29 and the transmitted light 30 have the same amount of light in the image sensor 26, as shown in FIG. 8 or FIG. 9, a concentric interference image having a good contrast generated by the cutting edge ridge 27 is obtained. A Francophor image 32 as shown in FIG. 8 is extracted outside the boundary of the cutting edge ridge 27 of the ball end mill 17 or a shadow diffraction image 33 as shown in FIG. 9 is extracted inside.

次に,回転する切れ刃稜27の振れの最大値と,振れが最大値をとる回転角度の求め方について,フランフォーファ像の場合について,図8,図10,図11を用いて説明する.先ず,一定の時間間隔で検出される陰影回折像のうち,振れが最大となる最大値をとる陰影回折像32’,およびこれに対して回転角度180°の位置にある陰影回折像32”を抽出する.次いで,同心円群40に理想化し,左右の同心円群を重ね合わせることにより生じた例えば図10に示すようなモアレ縞41を,その縞数を減ずる方向にボールエンドミル17を補正することで,切れ刃稜27の位置を高精度に算出・補正することができる.図11は,モアレ縞がない状態,すなわち切れ刃稜27の位置を高精度に算出・補正した状態を示している.なお,陰影回折像に対しても,同様の方法で算出・補正することができる. Next, how to obtain the maximum value of the deflection of the rotating cutting edge ridge 27 and the rotation angle at which the deflection takes the maximum value will be described with reference to FIGS. . First, out of the shadow diffraction images detected at regular time intervals, a shadow diffraction image 32 ′ having a maximum shake value and a shadow diffraction image 32 ″ at a rotation angle of 180 ° relative to this are obtained. Next, it is idealized as a concentric circle group 40, and for example, moire fringes 41 such as those shown in Fig. 10 generated by superimposing the left and right concentric circle groups are corrected by correcting the ball end mill 17 in a direction to reduce the number of the fringes. 11 can calculate and correct the position of the cutting edge ridge 27. Fig. 11 shows a state where there is no moire fringes, that is, a state where the position of the cutting edge ridge 27 is calculated and corrected with high precision. The shadow diffraction image can also be calculated and corrected in the same way.

なお,ボールエンドミルの回転方向の原点を原点角度検出器19により検出されているので,振れが最大値をとる陰影回折像32’ないし陰影回折像32”までの回転角度は,該原点信号から振れが最大値に至るまでの時間より算出できる.   Since the origin in the rotation direction of the ball end mill is detected by the origin angle detector 19, the rotation angle from the shadow diffraction image 32 ′ to the shadow diffraction image 32 ″ where the shake is the maximum is determined from the origin signal. Can be calculated from the time to reach the maximum value.

また,撮像素子からの陰影回折像を,電子シャッターで1μs以下の高速のサンプリングレートで取り込みができ,サンプリング間隔ごとの間欠的なデジタルデータに起因した振れ測定誤差は,無視しうる.
なおサンプリングレートが遅い場合であっても,サンプリング間隔ごとの間欠的なデジタルデータをもとに正弦波近似し,データを補間することで,振れの演算誤差を低減できる.
In addition, the shadow diffraction image from the image sensor can be captured at a high sampling rate of 1 μs or less with an electronic shutter, and shake measurement errors caused by intermittent digital data at each sampling interval can be ignored.
Even if the sampling rate is slow, the sine wave approximation based on intermittent digital data at each sampling interval and interpolation of the data can reduce the calculation error.

図5に示した振れ測定装置を,門型治具中ぐり盤35に搭載した例を,図7に示す.振れ測定ユニット9は,X軸テーブル36に,光軸16がX軸方向に平行になるように固定されている.
一方,門型治具中ぐり盤35の主軸37には,特開2002−361510に記載と同様の1μm以内の精度でアライメント補正が可能な傾斜加工ユニット39が結合されており,該主軸軸心38周りの公転を可能にしている.また該傾斜加工ユニットには,主軸軸心38に対して傾斜した工具の回転軸心18をもち自転可能な工具回転軸18’を内蔵しており,該工具回転軸の一端に,1枚刃単結晶ダイヤモンド製の切れ刃稜27をもつボールエンドミル17がチャッキングされており,該工具回転軸18’に直角方向に微小なアライメント補正が可能である.
FIG. 7 shows an example in which the run-out measuring device shown in FIG. 5 is mounted on a portal jig boring board 35. The shake measurement unit 9 is fixed to the X-axis table 36 so that the optical axis 16 is parallel to the X-axis direction.
On the other hand, an inclination machining unit 39 capable of alignment correction with an accuracy within 1 μm is coupled to the main shaft 37 of the portal jig boring machine 35 as described in JP-A-2002-361510. Revolution around 38 is possible. In addition, the inclined machining unit has a built-in tool rotation shaft 18 ′ having a rotation axis 18 of the tool inclined with respect to the main shaft axis 38 and capable of rotating, and a single blade at one end of the tool rotation shaft. A ball end mill 17 having a cutting edge ridge 27 made of single crystal diamond is chucked, and minute alignment correction can be made in a direction perpendicular to the tool rotation axis 18 '.

ここで,振れを測定し補正する手順を,図12に示す.
最初に,門型治具中ぐり盤35のX軸テーブル36上に,振れ測定ユニット9を設置する.次に,該振れ測定ユニットの光軸のレンズBの前焦点に,ボールエンドミル17のボール中心を合わせる.それに続いて,該回転工具の切れ刃稜の投影像と原点角度をパソコンに取り込む.これら投影像のデータおよび原点角度のデータをもとに,振れが最大値をとる回転角度およびそのときの振れの最大値を解析により求め,得られた回転角度位置で振れが0となるように,振れを補正する.
Figure 12 shows the procedure for measuring and correcting the shake.
First, the runout measurement unit 9 is installed on the X-axis table 36 of the portal jig boring board 35. Next, the ball center of the ball end mill 17 is aligned with the front focal point of the lens B on the optical axis of the shake measuring unit. Subsequently, the projected image of the cutting edge and the origin angle of the rotary tool are taken into the personal computer. Based on these projection image data and origin angle data, the rotation angle at which the shake is at its maximum value and the maximum value of the shake at that time are obtained by analysis, and the shake is zero at the obtained rotation angle position. , To correct the shake.

なお,図2の凹円筒面5は,図1に示した凹球面2の加工と同じ回転工具と門型治具中ぐり盤との段取り状態にして,これに送りを与えることで加工できる.また図3の凹楕円筒面7は,図1に示した凹球面の加工と同様の回転工具と門型治具中ぐり盤との段取り状態のうち,工具の回転軸心4を送り方向に傾斜させて,これに送りを与えることで加工できる.これは,例えば,門型軸中ぐり盤の主軸に取り付けた傾斜加工ユニットを公転方向にある角度回転した位置でこの角度を固定した状態で,自転する回転工具に送りを与えることで可能となる.   The concave cylindrical surface 5 shown in FIG. 2 can be machined by setting the same rotary tool and portal jig boring machine as the concave spherical surface 2 shown in FIG. Further, the concave elliptic cylindrical surface 7 in FIG. 3 is arranged so that the rotation axis 4 of the tool in the feed direction in the set-up state of the rotary tool and the portal jig boring machine similar to the processing of the concave spherical surface shown in FIG. It can be machined by tilting and feeding it. This can be achieved, for example, by feeding a rotating tool that rotates in a state where the inclined machining unit attached to the main shaft of the portal type boring machine is rotated at a certain angle in the revolution direction. .

回転工具として,ボールエンドミル17の代わりに,スクエアエンドミルや,砥石あるいはドリルであっても,本発明が適用でき,同様の振れ測定,振れ補正が可能となる. The present invention can be applied to a square end mill, a grindstone, or a drill instead of the ball end mill 17 as a rotating tool, and the same runout measurement and runout correction can be performed.

原点角度検出器19の代わりに,エンコーダを使用しても,振れの最大値をとる回転角度を検出することが可能で,同様の効果を得ることができる. Even if an encoder is used instead of the origin angle detector 19, it is possible to detect the rotation angle at which the maximum value of the shake is obtained, and the same effect can be obtained.

本発明の振れ測定装置は,上述した門型治具中ぐり盤35だけでなく,汎用フライス盤や多軸加工機,治具研削盤などにも搭載可能で,上記と同様の効果が得られる. The run-out measuring device of the present invention can be mounted not only on the portal jig boring machine 35 described above but also on a general-purpose milling machine, a multi-axis machine, a jig grinder, etc., and the same effects as described above can be obtained.

加工対象の凹球面の例Example of concave spherical surface to be processed 加工対象の凹円筒面の例Example of concave cylindrical surface to be machined 加工対象の凹楕円筒面の例Example of concave elliptic cylinder surface to be machined 回転工具の振れによる形状誤差の説明図Illustration of shape error due to runout of rotating tool 本発明の振れ測定装置の一実施例を示す図The figure which shows one Example of the shake measuring apparatus of this invention 本発明の原理を示す説明図Explanatory drawing showing the principle of the present invention 図5の一実施例を搭載した門型治具中ぐり盤の説明図FIG. 5 is an explanatory diagram of a gate-type jig boring machine equipped with the embodiment of FIG. フラウンフォーファ像の例Fraunforfa example 陰影回折像の例Example of shadow diffraction image 切れ刃稜位置の調整前に生じるモアレ縞の例Example of moire fringes that occur before adjusting the edge position 切れ刃稜位置調整後のモアレ縞が生じていない例Example of no moire fringe after cutting edge ridge position adjustment 振れの測定・補正の手順を示すフローチャートFlow chart showing run-out measurement / correction procedure 本測定の効果を示す図Diagram showing the effect of this measurement 振れの相違による凹球面の比較図Comparison of concave spherical surfaces due to runout differences 乱れた像からボール中心位置を高精度に求める手順Procedure for obtaining the ball center position with high accuracy from a distorted image

符号の説明Explanation of symbols

1 工作物
2 凹球面
3 凹球面の中心軸
4 工具の回転軸心
5 凹円筒面
6 円
7 凹楕円筒面
8 楕円
9 振れ測定ユニット
10 ベース
11 光源モジュール
12 光源用電源
13 レンズ鏡筒
14 検出モジュール
15 カバー
16 光軸
17 ボールエンドミル
18 工具の回転軸心
18’工具回転軸
19 原点角度検出器
20,20’パソコン
21 レーザ発振器
22 レンズ群A
23 レンズB
24 レンズC
25 減光フィルタ
26 撮像素子
26’レンズCの後側焦点
27 切れ刃稜
27’レンズBの前側焦点
28 レンズBの後側焦点
28’レンズCの前側焦点
29 回折光
30 透過光
31 レーザ光
32, 32’,32” フランフォーファ像
33, 33’,33” 陰影回折像
35 門型治具中ぐり盤
36 X軸テーブル
37 主軸
38 主軸軸心
39 傾斜加工ユニット
40’, 40” 同心円群
41 モアレ縞
42 凹楕円筒面の軸心を通り工作物面に垂直な断面
43 送り方向

O 凹球面の投影円の中心
P 偏心誤差をもつ場合の見かけ上の凹球面の曲率中心
Q 凹球面の曲率中心
Q’,Q” 工具のボール中心
R 凹球面の曲率半径
R’ 偏心誤差をもつ場合の見かけ上の凹球面の曲率半径
ε 工具の回転軸心に対する工具のボール中心の偏心,すなわち振れ
Δe 形状誤差
θ 断面42内における回転軸心の傾斜角

DESCRIPTION OF SYMBOLS 1 Workpiece 2 Concave spherical surface 3 Center axis of concave spherical surface 4 Tool rotation axis 5 Concave cylindrical surface 6 Circle 7 Concave elliptical cylindrical surface 8 Ellipse 9 Shaking measurement unit 10 Base 11 Light source module 12 Power source for light source 13 Lens barrel 14 Detection Module 15 Cover 16 Optical axis 17 Ball end mill 18 Tool rotation axis 18 ′ Tool rotation axis 19 Origin angle detector 20, 20 ′ PC 21 Laser oscillator 22 Lens group A
23 Lens B
24 Lens C
25 Neutral filter 26 Imaging element 26 ′ Rear focus 27 of lens C Cutting edge ridge 27 ′ Front focus 28 of lens B Rear focus 28 ′ of lens B Front focus 29 of lens C Diffracted light 30 Transmitted light 31 Laser light 32 , 32 ′, 32 ″ Francophor image 33, 33 ′, 33 ″ shadow diffraction image 35 Gate-type jig boring machine 36 X-axis table 37 Spindle 38 Spindle axis 39 Inclined machining unit 40 ′, 40 ″ Concentric circle group 41 Moire fringe 42 Cross section 43 passing through the axis of the concave elliptic cylinder surface and perpendicular to the workpiece surface 43

O The center of the projection circle of the concave sphere P The apparent center of curvature of the concave sphere with an eccentric error
Q Center of curvature of concave sphere Q ', Q "Ball center of tool R Radius of curvature of concave sphere R' Apparent radius of curvature of concave sphere with eccentric error ε Eccentricity of tool ball center relative to tool rotation axis , That is, runout Δe shape error θ inclination angle of rotation axis in cross section 42

Claims (2)

平行光を発する光源モジュールと,該平行光の光軸と軸心を共通にするレンズ鏡筒および撮像素子と,演算処理機能を有するマイコンから構成され,該平行光を遮る位置に置かれた回転工具の振れを測定する測定系において,
該レンズ鏡筒が,共焦点を有する少なくとも2個のレンズと,該共焦点近傍に配置された入射光のうちの0次光の光量を制限する減光フィルタからなり,これら2個のレンズの残り2つの焦点のうちの光源モジュール側の焦点には,回転工具の切れ刃稜を配置し,もう一方の焦点位置には光軸に直交するように撮像素子を配置したこと,および
2)該マイコンにより,撮像素子上に投影された該切れ刃稜のフランフォーファ像または陰影回折像の電気信号を取り込み,互いに180°異なる回転角度位置にある最大の振れを示す二つの該フランフォーファ像の差または該陰影回折像の差から,回転工具の切れ刃稜の振れを演算できるようにしたこと,
を特徴とする回転工具の振れ測定法および測定装置
A light source module that emits parallel light, a lens barrel and an image sensor that share the optical axis and axis of the parallel light, and a microcomputer having an arithmetic processing function, and a rotation placed at a position that blocks the parallel light In a measurement system that measures tool runout,
The lens barrel includes at least two lenses having a confocal point and a neutral density filter for limiting the amount of zero-order light of incident light disposed in the vicinity of the confocal point. Of the remaining two focal points, the cutting edge of the rotary tool is disposed at the focal point on the light source module side, and the imaging element is disposed at the other focal point so as to be orthogonal to the optical axis, and 2) Two Francophor images showing the maximum shake at rotational angles different from each other by taking an electrical signal of the Francophor image or shadow diffraction image of the cutting edge ridge projected on the image sensor by a microcomputer The runout of the cutting edge of the rotary tool can be calculated from the difference between the two or the shadow diffraction image,
Measuring method and measuring device of rotating tool characterized by
請求項1に記載の測定系において,角度検出器ないしは原点角度検出器を有し,回転工具の回転角度を検知できるようにしたことを特徴とする回転工具の振れ測定法および測定装置
The measuring system according to claim 1, further comprising an angle detector or an origin angle detector, wherein the rotational angle of the rotary tool can be detected.
JP2005055303A 2005-03-01 2005-03-01 Method for measuring runout of rotating tool and its measuring apparatus Pending JP2006242606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005055303A JP2006242606A (en) 2005-03-01 2005-03-01 Method for measuring runout of rotating tool and its measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005055303A JP2006242606A (en) 2005-03-01 2005-03-01 Method for measuring runout of rotating tool and its measuring apparatus

Publications (1)

Publication Number Publication Date
JP2006242606A true JP2006242606A (en) 2006-09-14

Family

ID=37049186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005055303A Pending JP2006242606A (en) 2005-03-01 2005-03-01 Method for measuring runout of rotating tool and its measuring apparatus

Country Status (1)

Country Link
JP (1) JP2006242606A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242605A (en) * 2005-03-01 2006-09-14 Niigata Univ Method for measuring runout of rotating tool and its measuring apparatus
JP2008197063A (en) * 2007-02-15 2008-08-28 Reyoon Kogyo:Kk Eccentricity measuring instrument
JP2009150865A (en) * 2007-11-30 2009-07-09 Waida Seisakusho:Kk Edge detection method, edge detector and working machine using the same
JP2010539475A (en) * 2007-09-17 2010-12-16 コノプチカ エイエス Method and apparatus for finding the position and change of rotating parts
JP2019002829A (en) * 2017-06-16 2019-01-10 国立大学法人北海道大学 Method, device and program for measuring crack width
CN111400908A (en) * 2020-03-16 2020-07-10 湖北文理学院 Method and device for determining cutting amount of three-tooth staggered disc milling cutter, storage medium and device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109440A (en) * 1992-09-28 1994-04-19 Makino Furaisu Seiki Kk Tool measuring apparatus
JPH10141934A (en) * 1996-11-11 1998-05-29 Okuma Mach Works Ltd Method for measuring sphericity of ball end mill
JP2002205246A (en) * 2001-01-10 2002-07-23 Hitachi Tool Engineering Ltd Accuracy measuring method of ball end mill
JP2002361510A (en) * 2001-06-07 2002-12-18 Masami Masuda Milling method of fine recessed surface and its device
JP2004098213A (en) * 2002-09-09 2004-04-02 Sumitomo Metal Ind Ltd Tool position measuring method, nc machining method and nc machine tool
JP2006242605A (en) * 2005-03-01 2006-09-14 Niigata Univ Method for measuring runout of rotating tool and its measuring apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109440A (en) * 1992-09-28 1994-04-19 Makino Furaisu Seiki Kk Tool measuring apparatus
JPH10141934A (en) * 1996-11-11 1998-05-29 Okuma Mach Works Ltd Method for measuring sphericity of ball end mill
JP2002205246A (en) * 2001-01-10 2002-07-23 Hitachi Tool Engineering Ltd Accuracy measuring method of ball end mill
JP2002361510A (en) * 2001-06-07 2002-12-18 Masami Masuda Milling method of fine recessed surface and its device
JP2004098213A (en) * 2002-09-09 2004-04-02 Sumitomo Metal Ind Ltd Tool position measuring method, nc machining method and nc machine tool
JP2006242605A (en) * 2005-03-01 2006-09-14 Niigata Univ Method for measuring runout of rotating tool and its measuring apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242605A (en) * 2005-03-01 2006-09-14 Niigata Univ Method for measuring runout of rotating tool and its measuring apparatus
JP2008197063A (en) * 2007-02-15 2008-08-28 Reyoon Kogyo:Kk Eccentricity measuring instrument
JP2010539475A (en) * 2007-09-17 2010-12-16 コノプチカ エイエス Method and apparatus for finding the position and change of rotating parts
JP2009150865A (en) * 2007-11-30 2009-07-09 Waida Seisakusho:Kk Edge detection method, edge detector and working machine using the same
JP2019002829A (en) * 2017-06-16 2019-01-10 国立大学法人北海道大学 Method, device and program for measuring crack width
CN111400908A (en) * 2020-03-16 2020-07-10 湖北文理学院 Method and device for determining cutting amount of three-tooth staggered disc milling cutter, storage medium and device
CN111400908B (en) * 2020-03-16 2023-04-18 湖北文理学院 Method and device for determining cutting amount of three-tooth staggered disc milling cutter, storage medium and device

Similar Documents

Publication Publication Date Title
KR102637460B1 (en) Method and apparatus for gear skiving
JP2006242606A (en) Method for measuring runout of rotating tool and its measuring apparatus
CN109070354A (en) The axis calibration of beam processing machine
JP2004317159A (en) Reference holder for roundness measuring machines
JP2014532171A (en) Method for obtaining cutting edge preparation profile of a cutting tool
JP2006242605A (en) Method for measuring runout of rotating tool and its measuring apparatus
JP2022533695A (en) MACHINING MODULE AND MACHINE TOOL INCLUDING TOOL OUTER DETECTION UNIT AND TOOL OUTER DETECTION METHOD
JP2010223915A (en) Method and device for measuring positional variation of center line of rotation
JP2016040531A (en) Working tool measuring method and measuring device
JP2014081279A (en) Three-dimensional shape measuring apparatus and three-dimensional shape measuring method
JP2008210179A (en) System for estimating cutting edge locus and machined surface condition
JP6303889B2 (en) Processing tool measuring apparatus and measuring method
US11187881B2 (en) Method and device for producing an optical component having at least three monolithically arranged optical functional surfaces and optical component
JP3768918B2 (en) 3D shape measurement method
JP2008304292A (en) Rotating body measuring method and system using pulsed laser light
JP6757391B2 (en) Measuring method
JP3396733B2 (en) Separation measuring method and measuring device of circumferential shape and motion accuracy of rotating body by combination of goniometer and displacement meter
JP7472079B2 (en) Method for measuring the center position of the rotating shaft of a machine tool
US11754390B2 (en) Method, system, and apparatus for optical measurement
JP2012218116A (en) Tool holder for adapting tool for measurement, measurement device and method for calibrating measurement device
JP7282362B2 (en) Automatic geometry measuring device and machine tool equipped with the same
JP2014215130A (en) Linear body vibration measuring device and method
JP2004223596A (en) Method for simply adjusting multi-shaft of three-dimensional laser machine, and measurement method on machine by guide laser
CN113510536B (en) On-machine detection device and method for machining center
JP2019018313A (en) Tip information acquisition device and tip information acquisition method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207