JP2017186515A - ポリエチレン樹脂組成物、並びにその成形体及び容器 - Google Patents

ポリエチレン樹脂組成物、並びにその成形体及び容器 Download PDF

Info

Publication number
JP2017186515A
JP2017186515A JP2016243815A JP2016243815A JP2017186515A JP 2017186515 A JP2017186515 A JP 2017186515A JP 2016243815 A JP2016243815 A JP 2016243815A JP 2016243815 A JP2016243815 A JP 2016243815A JP 2017186515 A JP2017186515 A JP 2017186515A
Authority
JP
Japan
Prior art keywords
polyethylene
component
less
resin composition
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016243815A
Other languages
English (en)
Other versions
JP6699536B2 (ja
Inventor
福田 真樹
Maki Fukuda
真樹 福田
知己 平本
Tomoki Hiramoto
知己 平本
圭一 吉本
Keiichi Yoshimoto
圭一 吉本
安田 薫
Kaoru Yasuda
薫 安田
山本 和弘
Kazuhiro Yamamoto
和弘 山本
福田 哲朗
Tetsuro Fukuda
哲朗 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polyethylene Corp
Original Assignee
Japan Polyethylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polyethylene Corp filed Critical Japan Polyethylene Corp
Publication of JP2017186515A publication Critical patent/JP2017186515A/ja
Application granted granted Critical
Publication of JP6699536B2 publication Critical patent/JP6699536B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】中空成形性、耐環境応力亀裂性、耐衝撃性に優れ、外観に優れた成形品を製造することができるポリエチレン樹脂組成物及びそれよりなる成形体。【解決手段】特定のポリエチレン成分(A)を5質量%以上40質量%以下、特定のポリエチレン成分(B)を60質量%以上95質量%以下含有し、下記の特性(1)〜(4)を満足するポリエチレン樹脂組成物。特性(1):MFRが0.1g/10分以上、1g/10分以下である。特性(2):HLMFRが10g/10分以上、50g/10分以下である。特性(3):MFRに対するHLMFRの比であるメルトフローレート比(HLMFR/MFR)が40以上140以下である。特性(4):密度が0.950g/cm3以上0.970g/cm3以下である。【選択図】なし

Description

本発明は、ポリエチレン樹脂組成物、並びに、それよりなる成形体及び容器に関する。
ポリエチレンの中空成形、射出成形、インフレーション成形、押出成形においては、一般に成形加工性、及び物性の良好な材料が求められている。特に化粧品容器、洗剤、シャンプー及びリンス用容器、或いは食用油等の食品用容器等として一般的に使用されている中空ボトルには、成形加工性、物理的特性及び化学的特性に優れたポリエチレン樹脂が広く用いられている。
更に、近年ではコストダウンを図るため中空ボトルの軽量化、薄肉化が求められており、これらの中空ボトル用途においては、特に優れた耐環境応力亀裂性、耐衝撃強度等の特性が要求されている。このような要求を満たすポリエチレンとしては、分子量が比較的高く、かつ分子量分布が広いものが適している。
クロム系触媒を用いて重合されたポリエチレンは、比較的分子量分布が広く、かつ長鎖の分岐構造を有する分子構造から、中空成形し易い特性、具体的には溶融張力やスウェル比が大きいといった特徴を有しており、また、中空ボトルのピンチオフ部を均一に厚肉化し易いため、中空成形用材料として、一般的に広く利用されている。
また、チタン系触媒を用いて二段重合されたポリエチレンは、高分子量の成分に選択的にコモノマーを共重合させることにより、優れた耐環境応力亀裂性を付与することが可能であり、かつ低分子量成分の制御により分子量及び分子量分布を調節することも可能なことから、中空成形に適した高環境応力亀裂性グレードとして、一般的に広く利用されている。
そして、チタン系触媒を用いて二段重合したポリエチレンと、クロム系触媒を用いて重合したポリエチレンとを混合し、相互の長所を生かしたポリエチレン重合体組成物が開示されている(例えば、特許文献1〜7参照。)。
しかしながら、容器の軽量化及び意匠の多様化が益々進む中で、容器を薄肉化したまま容器の剛性を確保しようとすると、ポリエチレンの密度を高くする必要が生じ、即ちコモノマー共重合量を抑制する必要が生じ、耐環境応力亀裂性の維持とは相反するため、依然として、剛性と耐環境応力亀裂性のバランスに優れ、薄肉化に対応できる材料が求められている。
そのため、メタロセン系触媒を用いたポリエチレンを含み、剛性と耐環境応力亀裂性バランスを向上させた、多成分から成るポリエチレン樹脂組成物が開示されている(例えば、特許文献8〜13参照。)。
しかしながら、メタロセン系触媒を用いたポリエチレンは、比較的分子量分布が狭く、かつ均一なコモノマー分布を有する分子構造から、耐環境応力亀裂性に関しては極めて優れるものの、中空成形性に乏しく、具体的には溶融張力やスウェル比が小さいといった特徴を有していることから、特定の内容液を貯蔵する目的や、特定形状の容器としての利用に留まっている。
更には、特許文献8にも記載されるように、メタロセン系触媒を用いたポリエチレンは、同一密度見合いの融点や結晶化温度が低く、即ち、剛性見合いで溶けやすく、結晶化しにくいため、結晶化速度が遅くなるという現象が認められており、高速成形化のために、更に結晶化速度を早くする必要性を有している。
そして、メタロセン系触媒を用いたポリエチレンを含み、更にクロム系触媒を用いて重合したポリエチレンを混合し、互いの長所を生かし剛性と耐環境応力亀裂性のバランスに優れ中空成形性にも適することを目的としたポリエチレン重合体組成物が開示されている(例えば、特許文献14〜16)。
しかしながら、特許文献14には、高分子量のメタロセン系触媒を用いたポリエチレンとクロム系触媒を用いて重合したポリエチレンとを混合することにより機械強度と成形性、各成分の相溶性が良好で低ゲル性をも両立した組成物が開示されているが、当該組成物は、粘度が非常に高く、高速成形性には適さず、大型の中空成形容器などに用途が限定される。
また、特許文献15、16には、高分子量のメタロセン系触媒を用いたポリエチレンを含む組成物とクロム系触媒を用いて重合したポリエチレンとを混合することにより、機械強度と成形性を両立した組成物が開示されているが、当該組成物は、各成分の相溶性に関する検討は十分になされておらず、高分子量のメタロセン系触媒を用いたポリエチレンの分子量が高過ぎたり、相溶性に寄与するクロム系触媒を用いて重合したポリエチレンの配合量が少ないため、十分な相溶性が得られず、成形品の外観などが必ずしも十分でない。
他方、メタロセン系触媒を用いたポリエチレンの耐環境応力亀裂性を更に高める目的として、分子量の増加は極めて有効である一方、他のポリエチレンとの相溶性は悪化するため、メタロセン系触媒を用いたポリエチレンを含むポリエチレン樹脂組成物においては相溶性と耐環境応力亀裂性を両立させる樹脂設計が重要である。
このような事情に鑑み、従来の容器用ポリエチレン樹脂組成物に求められた中空成形性、高剛性、耐衝撃性等を有しながら、結晶化速度が速く、高速成形ハイサイクル化を達成でき、更には、成形品の外観に特に優れるポリエチレン材料が求められている。
そのため、本出願人は、中空成形性、高剛性、耐衝撃性等を有しながら、更なる高速成形ハイサイクル化を達成できる結晶化速度の速いポリエチレン材料等を見出し、先に、出願を行った(特許文献17〜19)。特許文献17〜19には、特定のポリエチレン60〜90質量%に対し、Ti、Zr又はHfを含有するメタロセン系触媒を用いて重合され、HLMFR及び密度がそれぞれ特定の値であり、長鎖分岐構造を有する特定のエチレン系重合体10〜40質量%を含有してなり、かつ、特定の特性を満足する容器用ポリエチレン樹脂組成物が開示されている。
また、本出願人は、特許文献20において、特定の特性を満足するポリエチレン系樹脂と特定のエチレン・α−オレフィン共重合体とをそれぞれ特定量含有するポリエチレン樹脂組成物及びそれよりなる成形体を開示している。
しかしながら、製品に求められる要求性能は日々高まっており、上記従来技術の問題点において更なる性能改善が求められている。
特開昭59−196345号公報 特開昭59−196346号公報 特開昭60−036547号公報 特開2004−059650号公報 特開2004−091739号公報 特開2004−168817号公報 特開2005−298811号公報 特開平08−283476号公報 特開平08−283477号公報 特開2006−83370号公報 特開平11−106574号公報 特開平11−199719号公報 特開2009−7579号公報 特開2003−213053号公報 特開平11−138618号公報 特表2009−506163号公報 特開2013−204015号公報 特開2014−208749号公報 特開2014−208750号公報 特開2014−208817号公報
本発明の目的は、上記従来技術の問題点等に鑑み、中空成形性、耐環境応力亀裂性、耐衝撃性に優れ、より薄く、軽量にて成形することができ、結晶化速度が速く、高速成形性に優れ、成形ハイサイクル化が可能であり、溶融張力が高く耐ドローダウン性に優れ、ピンチオフ特性も良好で、複雑形状の中空成形が可能である上に、樹脂成分の相溶性が高く、成形体の外観に特に優れるポリエチレン樹脂組成物及びそれよりなる成形体を提供することにある。
本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、特定のポリエチレン成分(A)、及びポリエチレン成分(B)を特定量含有し、特定の特性を満足するポリエチレン樹脂組成物により、中空成形性、耐環境応力亀裂性、耐衝撃性に優れ、より薄く、軽量にて成形することができ、結晶化速度が速く、高速成形性に優れ、成形ハイサイクル化が可能であり、溶融張力が高く耐ドローダウン性に優れ、ピンチオフ特性も良好で、複雑形状の中空成形が可能である上に、樹脂成分の相溶性が高く、成形体の外観に特に優れるポリエチレン樹脂組成物及びそれよりなる成形体が得られることを見出し、本発明を完成するに至った。
即ち、本発明の第1の発明によれば、下記ポリエチレン成分(A)を5質量%以上40質量%以下、下記ポリエチレン成分(B)を60質量%以上95質量%以下含有し、下記の特性(1)〜(4)を満足するポリエチレン樹脂組成物が提供される。
ポリエチレン成分(A);特性(a1):温度190℃、荷重21.6Kgにおけるメルトフローレート(HLMFR)が0.2g/10分以上、5g/10分未満であり、特性(a2):密度が0.915g/cm以上0.945g/cm以下であるポリエチレン。
ポリエチレン成分(B);少なくとも2成分から構成され、特性(b1):温度190℃、荷重2.16Kgにおけるメルトフローレート(MFR)が0.1g/10分以上、10g/10分以下であり、特性(b2):密度が0.950g/cm以上0.980g/cm以下を満たすポリエチレン。
特性(1):MFRが0.1g/10分以上、1g/10分以下である。
特性(2):HLMFRが10g/10分以上、50g/10分以下である。
特性(3):MFRに対するHLMFRの比であるメルトフローレート比(HLMFR/MFR)が40以上140以下である。
特性(4):密度が0.950g/cm以上0.970g/cm以下である。
また、本発明の第2の発明によれば、第1の発明において、ポリエチレン成分(B)は、下記の特性(c1)及び(c1)を満足する高分子量の成分(C)を、ポリエチレン成分(B)全量に対し10質量%以上50質量%以下、含むことを特徴とするポリエチレン樹脂組成物が提供される。
特性(c1):温度190℃、荷重21.6Kgにおけるメルトフローレート(HLMFR)が0.5g/10分以上、5g/10分未満。
特性(c2):密度が0.9460g/cm以上0.9490g/cm以下である。
また、本発明の第3の発明によれば、第1又は第2の発明において、更に下記の特性(7)を満足するポリエチレン樹脂組成物が提供される。
特性(7):190℃で測定される溶融張力(MT)が、40mN以上である。
また、本発明の第4の発明によれば、第1〜第3のいずれかの発明において、更にポリエチレン成分(A)は下記の特性(a3)を満足するポリエチレン樹脂組成物が提供される。
特性(a3):温度190℃において周波数ωが0.01rad/秒のとき測定される動的溶融粘度ηH・0.01(単位:Pa・秒)が100,000超過、1,000,000未満。
また、本発明の第5の発明によれば、第1〜第4のいずれかの発明において、ポリエチレン成分(A)は下記の特性(a4)を満足するポリエチレン樹脂組成物が提供される。
特性(a4):MFRに対するHLMFRの比であるメルトフローレート比(HLMFR/MFR)が10以上35以下である。
また、本発明の第6の発明によれば、第1〜第5のいずれかの発明において、ポリエチレン成分(B)は下記の特性(b3)及び(b4)を満足するポリエチレン樹脂組成物が提供される。
特性(b3):温度190℃、荷重11.1Kgにおけるメルトフローレート(MLMFR)が1g/10分以上、100g/10分以下である。
特性(b4):MFRに対するMLMFRの比であるメルトフローレート比(MLMFR/MFR)が8以上50以下である。
また、本発明の第7の発明によれば、第1〜第6のいずれかの発明のポリエチレン樹脂組成物を用いて作成された成形体が提供される。
また、本発明の第8の発明によれば、第1〜第6のいずれかの発明のポリエチレン樹脂組成物を用いて作成された容器が提供される。
本発明によれば、中空成形性、耐環境応力亀裂性、耐衝撃性に優れ、より薄く、軽量にて成形することができ、結晶化速度が速く、高速成形性に優れ、成形ハイサイクル化が可能であり、溶融張力が高く耐ドローダウン性に優れ、ピンチオフ特性も良好で、複雑形状の中空成形が可能である上に、樹脂成分の相溶性が高く、成形体の外観に特に優れるポリエチレン樹脂組成物を提供することができるという効果を奏する。
また、本発明によれば、耐環境応力亀裂性、耐衝撃性に優れ、表面性状が優れ、外観が良好である成形体及び容器を提供することができるという効果を奏する。
図1は典型的な伸長粘度のプロット図であり、伸長粘度の変曲点が観測される場合を説明する図である。 図2は典型的な伸長粘度のプロット図であり、伸長粘度の変曲点が観測されない場合を説明する図である。
本発明のポリエチレン樹脂組成物は、下記ポリエチレン成分(A)を5質量%以上40質量%以下、下記ポリエチレン成分(B)を60質量%以上95質量%以下含有し、下記の特性(1)〜(4)を満足するものである。
ポリエチレン成分(A);特性(a1):温度190℃、荷重21.6Kgにおけるメルトフローレート(HLMFR)が0.2g/10分以上、5g/10分未満であり、特性(a2):密度が0.915g/cm以上0.945g/cm以下であるポリエチレン。
ポリエチレン成分(B);少なくとも2成分から構成され、特性(b1):温度190℃、荷重2.16Kgにおけるメルトフローレート(MFR)が0.1g/10分以上、10g/10分以下であり、特性(b2):密度が0.950g/cm以上0.980g/cm以下を満たすポリエチレン。
特性(1):MFRが0.1g/10分以上、1g/10分以下である。
特性(2):HLMFRが10g/10分以上、50g/10分以下である。
特性(3):MFRに対するHLMFRの比であるメルトフローレート比(HLMFR/MFR)が40以上140以下である。
特性(4):密度が0.950g/cm以上0.970g/cm以下である。
以下、本発明を、項目毎に、詳細に説明する。
1.ポリエチレン成分(A)
特性(a1)
本発明に用いられるポリエチレン成分(A)は、本発明の効果を奏する点から、HLMFRが0.2g/10分以上、5g/10分未満であるものを選択する。ポリエチレン成分(A)のHLMFRは、好ましくは0.3g/10分以上、1.0g/10分以下、更に好ましくは0.4g/10分以上、0.7g/10分以下の範囲である。このHLMFRが0.2g/10分未満であれば、最終の樹脂組成物において、HLMFRが規定の範囲内を達成できず、流動性が低下するおそれや、相溶性が低下するため、成形品の外観を損なうおそれがある。一方、このHLMFRが5g/10分以上であれば、最終樹脂組成物において、耐環境応力亀裂性が達成できず、成形品の長期耐久性が低下するおそれがある。
HLMFRは、JIS K6922−2:1997に準拠して測定することができる。
HLMFRは、主にポリエチレン成分(A)の重合時の水素量及び重合温度により調整することができる。
特性(a2)
本発明に用いられるポリエチレン成分(A)は、本発明の効果を奏する点から、密度が0.915g/cm以上0.945g/cm以下であるものを選択する。ポリエチレン成分(A)の密度は、好ましくは0.920g/cm以上0.935g/cm以下、更に好ましくは0.924g/cm以上0.930g/cm以下である。密度が0.915g/cm未満であれば、最終の樹脂組成物における密度範囲を達成できず、剛性が不足し、かつ結晶化速度が低下し、その結果、成形サイクルが低下するおそれがある。一方、密度が0.945g/cmを超えた場合には、最終樹脂組成物において耐環境応力亀裂性能が低下するおそれがある。
密度は、JIS K6922−1,2:1997に準拠して測定することができる。
密度は、主にポリエチレン成分(A)の重合時のα−オレフィンの量により調整することができる。
特性(a3)
本発明に用いられるポリエチレン成分(A)は、下記の特性(a3)を満足することが好ましい。
特性(a3):温度190℃において周波数ωが0.01rad/秒で測定される動的溶融粘度ηH・0.01(単位:Pa・秒)が100,000超過、1,000,000未満。
本発明に用いられるポリエチレン成分(A)は、特性(a3)において、周波数ωが0.01rad/秒の動的溶融粘度ηH・0.01(単位:Pa・秒)が、1,000,000未満が好ましいが、800,000未満がより好ましく、600,000未満がより更に好ましい。一方、下限は、特に限定されないが、好ましくは、最終樹脂組成物において高い耐環境応力亀裂性能を維持するため適度な分子量が求められる理由により、100,000超過が好ましく、200,000以上がより好ましく、300,000以上がより更に好ましい。上記動的溶融粘度が1,000,000未満だと、ポリエチレン成分(A)の粘度が低く抑えられ、低分子量成分のポリエチレン成分(B)と高分子量成分のポリエチレン成分(A)との粘度比とを小さく抑えることができ、相溶性に優れた組成物とすることができる。そのため、成形品の外観を良好にしやすく、耐衝撃性などの物性の低下を抑制しやすい。
動的溶融粘度は、試料に酸化防止剤(BASFジャパン社製IRGANOX B225)2000ppmを配合し溶融混練したものを熱プレスにより厚さ1.0mmのシートに成形し、レオメータ(Rheometrics社製Ares)を用い、パラレルプレートを用いて試料をプレートに密着させて溶融した後、温度210〜220℃で応力を緩和させて、試料をプレート間に隙間ができないようプレート間隔を調整しながら温度190℃まで降温させ、プレート間隔約1.0mm、歪み0.2ないし1%の範囲で測定を行い、周波数ωが0.01rad/秒で測定することができる。
ポリエチレン成分(A)の動的溶融粘度は、一般的に分子量、分子量分布及び長鎖分岐構造などにより制御することができる。従って、該動的溶融粘度が特定範囲であるポリエチレン成分(A)を得るためには、特定の分子量及び分子量分布を有し適度の長鎖分岐構造のポリエチレンとすることにより、また、特定の触媒を用いて重合することにより、好適に得ることができる。
特性(a4)
本発明に用いられるポリエチレン成分(A)は、下記の特性(a4)を満足することが好ましい。
特性(a4):MFRに対するHLMFRの比であるメルトフローレート比(HLMFR/MFR)が10以上35以下である。
特性(a4)によれば、HLMFR/MFRは、好ましくは、30以下、更に好ましくは、25以下、一方、好ましくは、15以上、更に好ましくは、20以上である。
HLMFR/MFRは、分子量分布との相関が強く、HLMFR/MFRが大きな値をとる場合、分子量分布は広くなり、HLMFR/MFR小さな値をとる場合、分子量分布は狭くなる。HLMFR/MFRが35を超えると、長鎖分岐構造による影響が強く表れることを示唆しており、HLMFR/MFRが35以下であれば、各成分の相溶性が良好になり易い。即ち、ポリエチレン成分(B)との相溶性が良好になり易く、成形体の表面性状が平滑になり易く外観に優れ、成形品の耐衝撃性などの物性の低下を抑制しやすい。一方、下限は、特に限定されないが、好ましくは、耐衝撃性や耐環境応力亀裂性能(ESCR)が求められる理由により、10以上が好ましい。
MFRは、JIS K6922−2:1997に準拠して測定することができる。
また、HLMFR/MFRの制御方法は、主に分子量分布の制御方法に準じて行うことができる。
特性(a5)
更に、本発明に用いられるポリエチレン成分(A)は、長鎖分岐構造を有することが好ましい。ポリエチレン成分(A)が長鎖分岐構造を有すると、ポリエチレン樹脂組成物において歪硬化に起因する伸長粘度の変曲点が観測されることが容易となる。即ち、本発明のポリエチレン成分(A)が長鎖分岐構造を有する場合、本発明のポリエチレン樹脂組成物は、温度170℃、伸長歪速度0.1(単位:1/秒)で測定される伸長粘度η(t)(単位:Pa・秒)と伸長時間t(単位:秒)の両対数プロットにおいて、歪硬化に起因する伸長粘度の変曲点が観測されることが容易となる。該変曲点が観測されることにより、ポリエチレン樹脂組成物において、結晶化速度を極めて有効に速くすることができる、成形サイクルが向上する等の効果がある。
ポリエチレン成分(A)の長鎖分岐構造とHLMFR/MFRとの関係は、以下のように考えられる。一般に、ポリエチレンが長鎖分岐構造を有する場合、長鎖分岐の絡み合いに由来する緩和時間の長い成分が増大する。そのことにより、同じ分子量及び分子量分布を有しても、低剪断速度領域における粘度が増大するため、η(ゼロ剪断粘度)が大きな値を示し、MFRが小さくなり、HLMFR/MFRが増大する。即ち、HLMFR/MFRが大きな値をとることは、長鎖分岐の絡み合いの増加を示唆する指標の一つとしてとらえられる。よって、ポリエチレン樹脂組成物において伸長粘度の変曲点が観測され、かつポリエチレン成分(A)においてHLMFR/MFRが10以上35以下であることは、ポリエチレン成分(A)が制御された特定の長鎖分岐構造を有することを示唆している。
本明細書において、歪硬化に起因する伸長粘度の変曲点の有無は、歪硬化度の測定において観察できるものである。
上記歪硬化度の測定方法に関しては、一軸伸長粘度を測定できれば、どのような方法でも原理的に同一の値が得られ、例えば、公知文献:Polymer 42(2001)8663に測定方法及び測定機器の詳細が記載されている。
本発明に係るポリエチレンの測定に当り、好ましい測定方法及び測定機器として、以下を挙げることができる。
測定方法:
・装置:Rheometrics社製Ares
・冶具:ティーエーインスツルメント社製 Extentional Viscosity Fixture
・測定温度:170℃
・歪み速度:0.1/秒
・試験片の作成:プレス成形して18mm×10mm、厚さ0.7mm、のシートを作成する。
算出方法:
170℃、歪み速度0.1/秒における伸長粘度を、横軸に時間t(秒)、縦軸に伸長粘度η(t)(Pa・秒)を両対数グラフでプロットする。その両対数グラフ上で、歪硬化後、歪量が4.0となるまでの最大伸長粘度をηMax(t1)(t1は最大伸長粘度を示す時の時間)とし、歪硬化前の伸長粘度の近似直線をηLinear(t)としたとき、ηMax(t1)/ηLinear(t1)として算出される値を歪硬化度(λmax)と定義する。なお、歪硬化の有無は、時間の経過と共に伸長粘度が上に凸の曲線から下に凸の曲線へと変わる変曲点を有するか、否かによって、判断される。
図1、図2は典型的な伸長粘度のプロット図である。図1は伸長粘度の変曲点が観測される場合であり、図中にηMax(t1)、ηLinear(t1)を示した。図2は伸長粘度の変曲点が観測されない場合である。
ポリエチレン成分(A)が、長鎖分岐構造を有するためには、適当な重合触媒を適用して重合することが好ましく、後述するような重合触媒の中から選択することが好ましい。
特性(a6)
本発明に用いられるポリエチレン成分(A)は、下記の特性(a6)を満足することが好ましい。
特性(a6):温度190℃において周波数ωが100rad/秒〜0.01rad/秒の範囲で測定した動的溶融粘度η(Pa・秒)を下記の関係式(2)で近似したときのゼロ剪断粘度η(Pa・秒)が100,000以上1,000,000以下である。
η/η=1/{1+(τω)} 関係式(2)
(関係式(2)中、τは緩和時間を表すパラメーター、nは高剪断速度領域における溶融粘度の剪断速度依存性を示すパラメーターである。)
本発明に用いられるポリエチレン成分(A)は、特性(a6)において、ゼロ剪断粘度η(単位:Pa・秒)が1,000,000以下であることが好ましいが、800,000未満がより好ましく、600,000未満がより更に好ましい。一方、下限は、特に限定されないが、好ましくは、最終樹脂組成物において高い耐環境応力亀裂性能を維持するため適度な分子量が求められる理由により、100,000以上が好ましい。より好ましくは200,000以上、更に好ましくは400,000以上である。上記ゼロ剪断粘度が1,000,000以下であると、ポリエチレン成分(A)の粘度が低く抑えられ、低分子量成分のポリエチレン成分(B)と高分子量成分のポリエチレン成分(A)との粘度比とを小さく抑えることができ、相溶性に優れた組成物とすることができる点から好ましい。そのため、成形品の外観を良好にしやすく、耐衝撃性などの物性の低下を抑制しやすい。
ゼロ剪断粘度η(単位:Pa・秒)は、剪断流動ゼロにおける剪断粘度として定義され、本明細書においては、緩和時間τ(秒)と共に、ANTEC’94(The Society of Plastics Engineers, 1994), 1814ページ(S. Lai等著)に従って、動的溶融粘度η(単位:Pa・秒)をクロスの粘度式(下記の関係式(2))で近似して求められる値をいう。ここで動的溶融粘度ηは、190℃においてパラレルプレートを用いてプレート間隔1.0mm、歪み0.2ないし1%で、周波数ωが100〜0.01(単位:rad/秒)の範囲で測定した際に得られる値であって、レオメータ(Rheometrics社製Ares)で得ることができ、その結果の下記の関係式(2)への近似は回帰法により市販されているコンピュータープログラムを用いて計算することができる。
η/η=1/{1+(τω)} 関係式(2)
上記の関係式(2)中、nは高剪断速度領域における溶融粘度の剪断速度依存性を示すパラメーターであり、τは緩和時間を表すパラメーターである。
なお、一般的に、分子量の異なるポリエチレン同士、言い換えれば、粘度の異なるポリエチレン同士を溶融混合する場合、両者の粘度比が小さいほうが混ざりやすく、粘度比が大きくなり過ぎると、粘度の高い高分子量の成分が分散不良により偏在化、ゲルとなり、外観不良の原因となることが知られている。例えば、ニュートン流体においてはより詳細な研究が行われており、粘度比の異なる液体同士を混合する場合において、高粘度液体が分散するための条件:キャピラリー数が、混練様式と両者の粘度比によって整理できることが報告されている(H.P.Grace: Chem. Eng. Commun., 14, 225(1982))。また、粘度比が異なる液体同士が混在する系に同じ歪を加えた場合、粘度比が大きい系ほど、高粘度液体の歪速度は小さくなり、分散不良の要因となることも報告されている(A.Biswas et al.:SPE−ANTEC, 336(1994))。
一方、ポリエチレン樹脂等は、非ニュートン流体であり、粘度が剪断速度に依存するため上記知見を単純に適用することはできないが、上記知見を参考にすることができると考えられ、これらの知見からも、粘度比の大きなポリエチレン同士の分散においては、高粘度成分の歪速度の小さな領域の粘度が重要な因子であると考えられ、樹脂の歪速度の小さな領域の粘度が本発明の範囲内であると、ポリエチレン成分(A)がポリエチレン樹脂組成物中に高度に分散されることになるものと推測される。
また、上記のポリエチレン成分(A)のゼロ剪断粘度ηの値は、一般的に分子量、分子量分布及び長鎖分岐などにより調整することができる。従って、該ゼロ剪断粘度ηが特定の範囲のものを得るには特定の分子量及び分子量分布を有し、適度に制御された長鎖分岐構造とすればよいが、以下に説明するとおり、特定の触媒を用いることにより、好適に製造することができる。
なお、上述より、長鎖分岐構造を有する成分を含有する樹脂組成物においては、相溶性が劣るおそれがあると考えられている。ところが、長鎖分岐構造を有していても、特定のメルトフローレート比(HLMFR/MFR)、更には、特定の粘度特性を持つ成分を用いることによって、長鎖分岐の長さ及び/又は数が制御されていると推測され、樹脂組成物において、上記の相溶性が改善されつつ、長鎖分岐構造を有することによる効果も発揮され、上記したとおりの本発明の効果が発揮されることが見出された。
本発明に用いられる長鎖分岐構造を有するポリエチレン成分(A)は、製造方法としては特に限定されないが、好ましくは、重合触媒として、特定のメタロセン系触媒、即ち、特定構造のメタロセン錯体を有する触媒を使用して、重合することにより製造することができる。
また、長鎖分岐構造を有するポリエチレン成分(A)は、エチレンへの連鎖移動によって末端ビニル基を有するポリエチレン(マクロモノマー)を生成させ、マクロモノマーとエチレンの共重合を経て得ることができる。
メタロセン系触媒の中では、特定構造のメタロセン錯体を有する触媒が好ましく、特にシクロペンタジエニル環及び複素環式芳香族基を有するメタロセン錯体、又はシクロペンタジエニル環及びフルオレニル環を有するメタロセン錯体が好ましい。
ポリエチレン成分(A)は、Ti、Zr又はHfを含有するメタロセン系触媒により重合されることが重要である。メタロセン系触媒としては、メタロセン錯体と呼ばれる、シクロペンタジエン骨格を有する配位子が遷移金属に配位してなる錯体と助触媒とを組み合わせたものが例示される。具体的なメタロセン系触媒としては、Ti、Zr、Hfなどを含む遷移金属に、メチルシクロペンタジエン、ジメチルシクロペンタジエン、インデン等のシクロペンタジエン骨格を有する配位子が配位してなるメタロセン錯体と、助触媒として、アルミノキサン等の周期表第1族〜第3族元素の有機金属化合物とを、組み合わせたものや、これらの錯体触媒をシリカ等の担体に担持させた担持型のものが挙げられる。
本発明で用いられるメタロセン系触媒は、以下の触媒成分(i)及び触媒成分(ii)を含むものであり、必要に応じて触媒成分(iii)と組み合わせてなる触媒である。
触媒成分(i):メタロセン錯体
触媒成分(ii):触媒成分(i)と反応して、カチオン性メタロセン化合物を形成する化合物
触媒成分(iii):微粒子担体
(1)触媒成分(i)
触媒成分(i)は、周期表第4族遷移金属のメタロセン化合物が用いられる。具体的には、下記の一般式(I)〜(VII)で表される化合物が使用される。
(C5−a )(C5−b )MXY 一般式(I)
(C4−c )(C4−d )MXY 一般式(II)
(C4−e )ZMXY 一般式(III)
(C5−f )ZMXY 一般式(IV)
(C5−f )MXYW 一般式(V)
(C5−g )(C5−h )MXY 一般式(VI)
(C3−i )(C3−j )MXY 一般式(VII)
ここで、Q、Q、Qは二つの共役五員環配位子を架橋する結合性基を、Qは共役五員環配位子とZ基を架橋する結合性基を、QはRとRを架橋する結合性基を、Mは周期表第3〜12族遷移金属を、X、Y及びWはそれぞれ独立して、水素、ハロゲン、炭素数1〜20の炭化水素基、炭素数1〜20の酸素含有炭化水素基、炭素数1〜20の窒素含有炭化水素基、炭素数1〜20のリン含有炭化水素基又は炭素数1〜20の珪素含有炭化水素基を、Zは酸素、イオウを含む配位子、炭素数1〜40の珪素含有炭化水素基、炭素数1〜40の窒素含有炭化水素基又は炭素数1〜40のリン含有炭化水素基を示す。MはTi、Zr、Hf等の第4族遷移金属である。
〜Rはそれぞれ独立して、炭素数1〜20の炭化水素基、ハロゲン基、炭素数1〜20のハロゲン含有炭化水素基、アルコキシ基、アリールオキシ基、酸素含有炭化水素基、珪素含有炭化水素基、リン含有炭化水素基、窒素含有炭化水素基又はホウ素含有炭化水素基を示す。これらの中で、R〜Rの少なくとも1つが複素環式芳香族基であることが好ましい。複素環式芳香族基の中でも、フリル基、ベンゾフリル基、チエニル基、ベンゾチエニル基が好ましく、更には、フリル基、ベンゾフリル基が好ましい。これらの複素環式芳香族基は、炭素数1〜20の炭化水素基、ハロゲン基、炭素数1〜20のハロゲン含有炭化水素基、酸素含有炭化水素基、珪素含有炭化水素基、リン含有炭化水素基、窒素含有炭化水素基又はホウ素含有炭化水素基を有していても良いが、その場合、炭素数1〜20の炭化水素基、珪素含有炭化水素基が好ましい。また、隣接する2個のR、2個のR、2個のR、2個のR、2個のR、2個のR、又は2個のRが、それぞれ結合して炭素数4〜10個の環を形成していてもよい。a、b、c、d、e、f、g、h、i及びjは、それぞれ0≦a≦5、0≦b≦5、0≦c≦4、0≦d≦4、0≦e≦4、0≦f≦5、0≦g≦5、0≦h≦5、0≦i≦3、0≦j≦3を満足する整数である。
2個の共役五員環配位子の間を架橋する結合性基Q、Q、Q、共役五員環配位子とZ基とを架橋する結合性基Q、及び、RとRを架橋するQは、具体的には下記のようなものが挙げられる。メチレン基、エチレン基のようなアルキレン基、エチリデン基、プロピリデン基、イソプロピリデン基、フェニルメチリデン基、ジフェニルメチリデン基のようなアルキリデン基、ジメチルシリレン基、ジエチルシリレン基、ジプロピルシリレン基、ジフェニルシリレン基、メチルエチルシリレン基、メチルフェニルシリレン基、メチル−t−ブチルシリレン基、ジシリレン基、テトラメチルジシリレン基のような珪素含有架橋基、ゲルマニウム含有架橋基、アルキルフォスフィン、アミン等である。これらのうち、アルキレン基、アルキリデン基、珪素含有架橋基、及びゲルマニウム含有架橋基が特に好ましく用いられる。
上述の一般式(I)、(II)、(III)、(IV)、(V)、(VI)及び(VII)で表される具体的なZr錯体を下記に例示するが、ZrをHf又はTiに置き換えた化合物も同様に使用可能である。また、一般式(I)、(II)、(III)、(IV)、(V)、(VI)及び(VII)で示されるメタロセン錯体は、同一の一般式で示される化合物、又は異なる一般式で示される化合物の二種以上の混合物として用いることができる。
一般式(I)の化合物
ビスシクロペンタジエニルジルコニウムジクロリド、ビス(n−ブチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(2−メチルインデニル)ジルコニウムジクロリド、ビス(2−メチル−4,5−ベンゾインデニル)ジルコニウムジクロリド、ビスフルオレニルジルコニウムジクロリド、ビス(4H−アズレニル)ジルコニウムジクロリド、ビス(2−メチル−4H−アズレニル)シクロペンタジエニルジルコニウムジクロリド、ビス(2−メチルビスシクロペンタジエニルジルコニウムジクロリド、ビス(2−メチル−4−フェニル−4H−アズレニル)ジルコニウムジクロリド、ビス(2−メチル−4−(4−クロロフェニル)−4H−アズレニル)ジルコニウムジクロリド、ビス(2−フリルシクロペンタジエニル)ジルコニウムジクロリド、ビス(2−フリルインデニル)ジルコニウムジクロリド、ビス(2−フリル−4,5−ベンゾインデニル)ジルコニウムジクロリド。
一般式(II)の化合物
ジメチルシリレンビス(1,1’−シクロペンタジエニル)ジルコニウムジクロリド、ジメチルシリレンビス[1,1’−(2−メチルインデニル)]ジルコニウムジクロリド、ジメチルシリレンビス[1,1’−(2−メチル−4−フェニル−インデニル)]ジルコニウムジクロリド、エチレンビス[1,1’−(2−メチル−4,5−ベンゾインデニル)]ジルコニウムジクロリド、ジメチルシリレンビス[1,1’−(2−メチル−4H−アズレニル)]ジルコニウムジクロリド、ジメチルシリレンビス[1,1’−(2−メチル−4−フェニル−4H−アズレニル)]ジルコニウムジクロリド、ジメチルシリレンビス{1,1’−[2−メチル−4−(4−クロロフェニル)−4H−アズレニル]}ジルコニウムジクロリド、ジメチルシリレンビス[1,1’−(2−エチル−4−フェニル−4H−アズレニル)]ジルコニウムジクロリド、エチレンビス[1,1’−(2−メチル−4H−アズレニル)]ジルコニウムジクロリド。
ジメチルシリレンビス[1,1’−(2−フリルシクロペンタジエニル)]ジルコニウムジクロリド、ジメチルシリレンビス{1,1’−[2−(2−フリル)−4,5−ジメチル−シクロペンタジエニル]}ジルコニウムジクロリド、ジメチルシリレンビス{1,1’−{2−[2−(5−トリメチルシリル)フリル]−4,5−ジメチル−シクロペンタジエニル}}ジルコニウムジクロリド、ジメチルシリレンビス{1,1’−[2−(2−フリル)インデニル]}ジルコニウムジクロリド、ジメチルシリレンビス{1,1’−[2−(2−フリル)−4−フェニル−インデニル]}ジルコニウムジクロリド、ジメチルシリレンビス{1,1’−[2−(2−(5−メチル)フリル)−4−フェニル−インデニル]}ジルコニウムジクロリド、ジメチルシリレンビス{1,1’−[2−(2−(5−メチル)フリル)−4−(4−イソプロピル)フェニル−インデニル]}ジルコニウムジクロリド、ジメチルシリレンビス{1,1’−[2−(2−(5−メチル)フリル)−4−(4−t−ブチル)フェニル−インデニル]}ジルコニウムジクロリド、イソプロピリデン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、イソプロピリデン(シクロペンタジエニル)[9−(2,7−t−ブチル)フルオレニル]ジルコニウムジクロリド、ジフェニルメチレン(シクロペンタジエニル)[9−(2,7−t−ブチル)フルオレニル]ジルコニウムジクロリド、ジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(シクロペンタジエニル)[9−(2,7−t−ブチル)フルオレニル]ジルコニウムジクロリド、ジメチルシリレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルシリレン(シクロペンタジエニル)[9−(2,7−t−ブチル)フルオレニル]ジルコニウムジクロリド。
一般式(III)の化合物
(t−ブチルアミド)(テトラメチル−η−シクロペンタジエニル)−1,2−エタンジイルジルコニウムジクロライド、(メチルアミド)−(テトラメチル−η−シクロペンタジエニル)−1,2−エタンジイル−ジルコニウムジクロライド、(エチルアミド)(テトラメチル−η−シクロペンタジエニル)−メチレンジルコニウムジクロライド、(t−ブチルアミド)ジメチル−(テトラメチル−η−シクロペンタジエニル)シランジルコニウムジクロライド、(t−ブチルアミド)ジメチル(テトラメチル−η−シクロペンタジエニル)シランジルコニウムジベンジル、(ベンジルアミド)ジメチル(テトラメチル−η−シクロペンタジエニル)シランジルコニウムジクロライド、(フエニルホスフィド)ジメチル(テトラメチル−η−シクロペンタジエニル)シランジルコニウムジベンジル。
一般式(IV)の化合物
(シクロペンタジエニル)(フェノキシ)ジルコニウムジクロリド、(2,3−ジメチルシクロペンタジエニル)(フェノキシ)ジルコニウムジクロリド、(ペンタメチルシクロペンタジエニル)(フェノキシ)ジルコニウムジクロリド、(シクロペンタジエニル)(2,6−ジ−t−ブチルフェノキシ)ジルコニウムジクロリド、(ペンタメチルシクロペンタジエニル)(2,6−ジ−i−プロピルフェノキシ)ジルコニウムジクロリド。
一般式(V)の化合物
(シクロペンタジエニル)ジルコニウムトリクロリド、(2,3−ジメチルシクロペンタジエニル)ジルコニウムトリクロリド、(ペンタメチルシクロペンタジエニル)ジルコニウムトリクロリド、(シクロペンタジエニル)ジルコニウムトリイソプロポキシド、(ペンタメチルシクロペンタジエニル)ジルコニウムトリイソプロポキシド。
一般式(VI)の化合物
エチレンビス(7,7’−インデニル)ジルコニウムジクロリド、ジメチルシリレンビス{7,7’−(1−メチル−3−フェニルインデニル)}ジルコニウムジクロリド、ジメチルシリレンビス{7,7’−[1−メチル−4−(1−ナフチル)インデニル]}ジルコニウムジクロリド、ジメチルシリレンビス[7,7’−(1−エチル−3−フェニルインデニル)]ジルコニウムジクロリド、ジメチルシリレンビス{7,7’−[1−イソプロピル−3−(4−クロロフェニル)インデニル]}ジルコニウムジクロリド。
一般式(VII)の化合物
(i)2級炭素を含む錯体の例示:
(MeSi){η−CH−3,5−(CHMeZrCl、(MeSi){η−CH−3,5−(CHMeZrMe、(MeSi){η−CH−3,5−(CHMeZr(n−C、(MeSi){η−CH−3,5−(CHMeZr(CH、rac−(MeSi){η−CH−3−(CHMe)−5−Me}ZrCl、rac−(MeSi){η−CH−3−(CHMe)−5−Me}ZrMe、rac−(MeSi){η−CH−3−(CHMe)−5−Me}Zr(n−C、rac−(MeSi){η−CH−3−(CHMe)−5−Me}Zr(CH、meso−(MeSi){η−CH−3−(CHMe)−5−Me}ZrCl、meso−(MeSi){η−CH−3−(CHMe)−5−Me}ZrMe、meso−(MeSi){η−CH−3−(CHMe)−5−Me}Zr(n−C、meso−(MeSi){η−CH−3−(CHMe)−5−Me}Zr(CH、(MeSi){η−CH−3,5−(2−アダマンチル)ZrCl、(MeSi){η−CH−3,5−(2−アダマンチル)ZrMe、(MeSi){η−CH−3,5−(2−アダマンチル)Zr(n−C、(MeSi){η−CH−3,5−(2−アダマンチル)Zr(CH、rac−(MeSi){η−CH−3−(2−アダマンチル)−5−Me}ZrCl、rac−(MeSi){η−CH−3−(2−アダマンチル)−5−Me}ZrMe、rac−(MeSi){η−CH−3−(2−アダマンチル)−5−Me}Zr(n−C、rac−(MeSi){η−CH−3−(2−アダマンチル)−5−Me}Zr(CH
meso−(MeSi){η−CH−3−(2−アダマンチル)−5−Me}ZrCl、meso−(MeSi){η−CH−3−(2−アダマンチル)−5−Me}ZrMe、meso−(MeSi){η−CH−3−(2−アダマンチル)−5−Me}Zr(n−C、meso−(MeSi){η−CH−3−(2−アダマンチル)−5−Me}Zr(CH、(MeSi){η−CH−3,5−(シクロヘキシル)ZrCl、(MeSi){η−CH−3,5−(シクロヘキシル)ZrMe、(MeSi){η−CH−3,5−(シクロヘキシル)Zr(n−C、(MeSi){η−CH−3,5−(シクロヘキシル)Zr(CH、rac−(MeSi){η−CH−3−(シクロヘキシル)−5−Me}ZrCl、rac−(MeSi){η−CH−3−(シクロヘキシル)−5−Me}ZrMe、rac−(MeSi){η−CH−3−(シクロヘキシル)−5−Me}Zr(n−C、rac−(MeSi){η−CH−3−(シクロヘキシル)−5−Me}Zr(CH、meso−(MeSi){η−CH−3−(シクロヘキシル)−5−Me}ZrCl、meso−(MeSi){η−CH−3−(シクロヘキシル)−5−Me}ZrMe、meso−(MeSi){η−CH−3−(シクロヘキシル)−5−Me}Zr(n−C、meso−(MeSi){η−CH−3−(シクロヘキシル)−5−Me}Zr(CH、である。
(ii)3級炭素を含む化合物の例示:
(MeSi){η−CH−3,5−(CMeZrCl、(MeSi){η−CH−3,5−(CMeZrMe、(MeSi){η−CH−3,5−(CMeZr(n−C、(MeSi){η−CH−3,5−(CMeZr(CH、rac−(MeSi){η−CH−3−(CMe)−5−Me}ZrCl、rac−(MeSi){η−CH−3−(CMe)−5−Me}ZrMe、rac−(MeSi){η−CH−3−(CMe)−5−Me}Zr(n−C、rac−(MeSi){η−CH−3−(CMe)−5−Me}Zr(CH、meso−(MeSi){η−CH−3−(CMe)−5−Me}ZrCl、meso−(MeSi){η−CH−3−(CMe)−5−Me}ZrMe、meso−(MeSi){η−CH−3−(CMe)−5−Me}Zr(n−C、meso−(MeSi){η−CH−3−(CMe)−5−Me}Zr(CH、(MeSi){η−CH−3,5−(1−アダマンチル)ZrCl、(MeSi){η−CH−3,5−(1−アダマンチル)ZrMe、(MeSi){η−CH−3,5−(1−アダマンチル)Zr(n−C、(MeSi){η−CH−3,5−(1−アダマンチル)Zr(CH、rac−(MeSi){η−CH−3−(1−アダマンチル)−5−Me}ZrCl、rac−(MeSi){η−CH−3−(1−アダマンチル)−5−Me}ZrMe、rac−(MeSi){η−CH−3−(1−アダマンチル)−5−Me}Zr(n−C、rac−(MeSi){η−CH−3−(1−アダマンチル)−5−Me}Zr(CH、meso−(MeSi){η−CH−3−(1−アダマンチル)−5−Me}ZrCl、meso−(MeSi){η−CH−3−(1−アダマンチル)−5−Me}ZrMe、meso−(MeSi){η−CH−3−(1−アダマンチル)−5−Me}Zr(n−C、meso−(MeSi){η−CH−3−(1−アダマンチル)−5−Me}Zr(CH、(MeSi){η−CH−3,5−(1,1−ジメチルプロピル)ZrCl、(MeSi){η−CH−3,5−(1,1−ジメチルプロピル)ZrMe、(MeSi){η−CH−3,5−(1,1−ジメチルプロピル)Zr(n−C、(MeSi){η−CH−3,5−(1,1−ジメチルプロピル)Zr(CH、rac−(MeSi){η−CH−3−(1,1−ジメチルプロピル)−5−Me}ZrCl、rac−(MeSi){η−CH−3−(1,1−ジメチルプロピル)−5−Me}ZrMe、rac−(MeSi){η−CH−3−(1,1−ジメチルプロピル)−5−Me}Zr(n−C、rac−(MeSi){η−CH−3−(1,1−ジメチルプロピル)−5−Me}Zr(CH、meso−(MeSi){η−CH−3−(1,1−ジメチルプロピル)−5−Me}ZrCl、meso−(MeSi){η−CH−3−(1,1−ジメチルプロピル)−5−Me}ZrMe、meso−(MeSi){η−CH−3−(1,1−ジメチルプロピル)−5−Me}Zr(n−C、meso−(MeSi){η−CH−3−(1,1−ジメチルプロピル)−5−Me}Zr(CH、である。
(iii)アルキルシリル基を含む化合物の例示:
(MeSi){η−CH−3,5−(ジメチルシリル)ZrCl、(MeSi){η−CH−3,5−(ジメチルシリル)ZrMe、(MeSi){η−CH−3,5−(ジメチルシリル)Zr(n−C、(MeSi){η−CH−3,5−(ジメチルシリル)Zr(CH、rac−(MeSi){η−CH−3−(ジメチルシリル)−5−Me}ZrCl、rac−(MeSi){η−CH−3−(ジメチルシリル)−5−Me}ZrMe、rac−(MeSi){η−CH−3−(ジメチルシリル)−5−Me}Zr(n−C、rac−(MeSi){η−CH−3−(ジメチルシリル)−5−Me}Zr(CH、meso−(MeSi){η−CH−3−(ジメチルシリル)−5−Me}ZrCl、meso−(MeSi){η−CH−3−(ジメチルシリル)−5−Me}ZrMe、meso−(MeSi){η−CH−3−(ジメチルシリル)−5−Me}Zr(n−C、meso−(MeSi){η−CH−3−(ジメチルシリル)−5−Me}Zr(CH、(MeSi){η−CH−3,5−(トリメチルシリル)ZrCl、(MeSi){η−CH−3,5−(トリメチルシリル)ZrMe、(MeSi){η−CH−3,5−(トリメチルシリル)Zr(n−C、(MeSi){η−CH−3,5−(トリメチルシリル)Zr(CH、rac−(MeSi){η−CH−3−(トリメチルシリル)−5−Me}ZrCl、rac−(MeSi){η−CH−3−(トリメチルシリル)−5−Me}ZrCl、rac−(MeSi){η−CH−3−(トリメチルシリル)−5−Me}ZrMe、rac−(MeSi){η−CH−3−(トリメチルシリル)−5−Me}Zr(n−C、rac−(MeSi){η−CH−3−(トリメチルシリル)−5−Me}Zr(CH、meso−(MeSi){η−CH−3−(トリメチルシリル)−5−Me}ZrCl、meso−(MeSi){η−CH−3−(トリメチルシリル)−5−Me}ZrMe、meso−(MeSi){η−CH−3−(トリメチルシリル)−5−Me}Zr(n−C、meso−(MeSi){η−CH−3−(トリメチルシリル)−5−Me}Zr(CH、(MeSi){η−CH−3,5−(ジフェニルシリル)ZrCl、(MeSi){η−CH−3,5−(ジフェニルシリル)ZrMe、(MeSi){η−CH−3,5−(ジフェニルシリル)Zr(n−C、(MeSi){η−CH−3,5−(ジフェニルシリル)Zr(CH、rac−(MeSi){η−CH−3−(ジフェニルシリル)−5−Me}ZrCl、rac−(MeSi){η−CH−3−(ジフェニルシリル)−5−Me}ZrMe、rac−(MeSi){η−CH−3−(ジフェニルシリル)−5−Me}Zr(n−C、rac−(MeSi){η−CH−3−(ジフェニルシリル)−5−Me}Zr(CH、meso−(MeSi){η−CH−3−(ジフェニルシリル)−5−Me}ZrCl、meso−(MeSi){η−CH−3−(ジフェニルシリル)−5−Me}ZrMe、meso−(MeSi){η−CH−3−(ジフェニルシリル)−5−Me}Zr(n−C、meso−(MeSi){η−CH−3−(ジフェニルシリル)−5−Me}Zr(CH、(MeSi){η−CH−3,5−(フェニルメチルシリル)ZrCl、(MeSi){η−CH−3,5−(フェニルメチルシリル)ZrMe、(MeSi){η−CH−3,5−(フェニルメチルシリル)Zr(n−C、(MeSi){η−CH−3,5−(フェニルメチルシリル)Zr(CH、rac−(MeSi){η−CH−3−(フェニルメチルシリル)−5−Me}ZrCl、rac−(MeSi){η−CH−3−(フェニルメチルシリル)−5−Me}ZrMe、rac−(MeSi){η−CH−3−(フェニルメチルシリル)−5−Me}Zr(n−C、rac−(MeSi){η−CH−3−(フェニルメチルシリル)−5−Me}Zr(CH、meso−(MeSi){η−CH−3−(フェニルメチルシリル)−5−Me}ZrCl、meso−(MeSi){η−CH−3−(フェニルメチルシリル)−5−Me}ZrMe、meso−(MeSi){η−CH−3−(フェニルメチルシリル)−5−Me}Zr(n−C、meso−(MeSi){η−CH−3−(フェニルメチルシリル)−5−Me}Zr(CH、である。
これらの中で好ましいのは、2級炭素と1級炭素の組み合わせの化合物であり、更に好ましいのは、rac−(MeSi){η−CH−3−(CHMe)−5−Me}ZrCl、rac−(MeSi){η−CH−3−(CHMe)−5−Me}ZrMe、meso−(MeSi){η−CH−3−(CHMe)−5−Me}ZrCl、meso−(MeSi){η−CH−3−(CHMe)−5−Me}ZrMe、rac−(MeSi){η−CH−3−(ジメチルシリル)−5−Me}ZrCl、rac−(MeSi){η−CH−3−(ジメチルシリル)−5−Me}ZrMe、meso−(MeSi){η−CH−3−(ジメチルシリル)−5−Me}ZrCl、meso−(MeSi){η−CH−3−(ジメチルシリル)−5−Me}ZrMe、である。
なお、これら具体例の化合物のシリレン基をゲルミレン基に置き換えた化合物も好適な化合物として例示される。
メタロセン錯体の特殊な例として、特開平7−188335号公報やJounal of American Chemical Society,1996、Vol.11 8,2291に開示されている5員環あるいは6員環に炭素以外の元素を一つ以上含む配位子を有する遷移金属化合物も使用可能である。
また、複素環式炭化水素基を置換基として有するメタロセン錯体の例としては、特許第3674509号公報に開示されている。
以上において記載した触媒成分(i)の中で、ポリエチレン成分(A)を製造するための好ましいメタロセン錯体としては、一般式(I)又は一般式(II)で表されるメタロセン錯体が好ましく、なかでも、シクロペンタジエニル環及び複素環式芳香族基を有するメタロセン錯体が好ましく、更には、インデニル環骨格を有するメタロセン錯体が好ましい。高分子量のポリマーを生成可能であり、エチレンと他のα−オレフィンとの共重合において共重合性に優れるという観点から、一般式(II)で表されるメタロセン錯体が好ましく、一般式(II)で表されインデニル環骨格を有するメタロセン錯体が最も好ましい。高分子量体を製造可能ということは、後述するような種々のポリマーの分子量の調整手法により、様々な分子量のポリマーの設計が行えるという利点がある。
更に、高分子量でかつ長鎖分岐を有するポリエチレンを製造可能という観点から、一般式(II)で表されるメタロセン錯体の中でも、以下の化合物群が好ましい。
好ましい態様の一例として、化合物群は、R〜Rとして、化合物内に少なくとも一つ、複素環式芳香族基を含有している架橋メタロセン錯体である。好ましい複素環式芳香族基としては、フリル基、ベンゾフリル基、チエニル基、ベンゾチエニル基よりなる群が挙げられる。これらの置換基は、更に珪素含有基等の置換基を有していてもよい。フリル基、ベンゾフリル基、チエニル基、ベンゾチエニル基よりなる群から選択される置換基の中で、フリル基、ベンゾフリル基が更に好ましい。更には、これらの置換基が、置換シクロペンタジエニル基又は置換インデニル基の2位に導入されていることが好ましく、少なくとも1つ、他に縮環構造を有しない置換シクロペンタジエニル基を有している化合物であることが特に好ましい。
これらの化合物をメタロセン錯体として用いることにより、更には、特定の重合条件を採用することにより、本発明において好ましいポリエチレン成分(A)を容易に製造することができる。
これらのメタロセン錯体は、後述するような担持触媒として用いることが好ましい。第一の化合物群においては、フリル基やチエニル基に含有されるいわゆるヘテロ原子と担体上の固体酸などの相互作用により、活性点構造に不均一性が生じ、長鎖分岐が生成しやすくなったものと考えている。また、第二の化合物群においても、担持触媒にすることで、活性点まわりの空間が変化するため、長鎖分岐が生成しやすくなったものと考えている。
(2)触媒成分(ii)
本発明に係るポリエチレン成分(A)の製造方法は、オレフィン重合用触媒の必須成分として、上記触媒成分(i)以外に、触媒成分(i)のメタロセン化合物と反応してカチオン性メタロセン化合物を形成する化合物(触媒成分(ii))、必要に応じて微粒子担体(触媒成分(iii))を含むことに、特徴がある。
触媒成分(ii)の一つとして、有機アルミニウムオキシ化合物が挙げられる。
上記有機アルミニウムオキシ化合物は、分子中に、Al−O−Al結合を有し、その結合数は通常1〜100個、好ましくは1〜50個の範囲にある。このような有機アルミニウムオキシ化合物は、通常、有機アルミニウム化合物と水とを反応させて得られる生成物である。
有機アルミニウムと水との反応は、通常、不活性炭化水素(溶媒)中で行われる。不活性炭化水素としては、ペンタン、ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、ベンゼン、トルエン、キシレン等の脂肪族炭化水素、脂環族炭化水素及び芳香族炭化水素が使用できるが、脂肪族炭化水素又は芳香族炭化水素を使用することが好ましい。
有機アルミニウムオキシ化合物の調製に用いる有機アルミニウム化合物は、下記の一般式(VIII)で表される化合物がいずれも使用可能であるが、好ましくはトリアルキルアルミニウムが使用される。
AlX 3−t 一般式(VIII)
(一般式(VIII)中、Rは、炭素数1〜18、好ましくは1〜12のアルキル基、アルケニル基、アリール基、アラルキル基等の炭化水素基を示し、Xは、水素原子又はハロゲン原子を示し、tは、1≦t≦3の整数を示す。)
トリアルキルアルミニウムのアルキル基は、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基等のいずれでも差し支えないが、メチル基であることが特に好ましい。
上記有機アルミニウム化合物は、2種以上混合して使用することもできる。
水と有機アルミニウム化合物との反応比(水/Alモル比)は、0.25/1〜1.2/1、特に、0.5/1〜1/1であることが好ましく、反応温度は、通常−70〜100℃、好ましくは−20〜20℃の範囲にある。反応時間は、通常5分〜24時間、好ましくは10分〜5時間の範囲で選ばれる。反応に要する水として、単なる水のみならず、硫酸銅水和物、硫酸アルミニウム水和物等に含まれる結晶水や反応系中に水が生成しうる成分も利用することもできる。
なお、上記した有機アルミニウムオキシ化合物のうち、アルキルアルミニウムと水とを反応させて得られるものは、通常、アルミノキサンと呼ばれ、特にメチルアルミノキサン(実質的にメチルアルミノキサン(MAO)からなるものを含む)は、有機アルミニウムオキシ化合物として、好適である。
もちろん、有機アルミニウムオキシ化合物として、上記した各有機アルミニウムオキシ化合物の2種以上を組み合わせて使用することもでき、また、前記有機アルミニウムオキシ化合物を前述の不活性炭化水素溶媒に溶液又は分散させた溶液としたものを用いても良い。
また、触媒成分(ii)の他の具体例として、ボラン化合物やボレート化合物が挙げられる。
上記ボラン化合物をより具体的に表すと、トリフェニルボラン、トリ(o−トリル)ボラン、トリ(p−トリル)ボラン、トリ(m−トリル)ボラン、トリ(o−フルオロフェニル)ボラン、トリス(p−フルオロフェニル)ボラン、トリス(m−フルオロフェニル)ボラン、トリス(2,5−ジフルオロフェニル)ボラン、トリス(3,5−ジフルオロフェニル)ボラン、トリス(4−トリフルオロメチルフェニル)ボラン、トリス(3,5―ジトリフルオロメチルフェニル)ボラン、トリス(2,6−ジトリフルオロメチルフェニル)ボラン、トリス(ペンタフルオロフェニル)ボラン、トリス(パーフルオロナフチル)ボラン、トリス(パーフルオロビフェニル)、トリス(パーフルオロアントリル)ボラン、トリス(パーフルオロビナフチル)ボランなどが挙げられる。
これらの中でも、トリス(3,5―ジトリフルオロメチルフェニル)ボラン、トリス(2,6−ジトリフルオロメチルフェニル)ボラン、トリス(ペンタフルオロフェニル)ボラン、トリス(パーフルオロナフチル)ボラン、トリス(パーフルオロビフェニル)ボラン、トリス(パーフルオロアントリル)ボラン、トリス(パーフルオロビナフチル)ボランがより好ましく、更に好ましくはトリス(2,6−ジトリフルオロメチルフェニル)ボラン、トリス(ペンタフルオロフェニル)ボラン、トリス(パーフルオロナフチル)ボラン、トリス(パーフルオロビフェニル)ボランが好ましい化合物として例示される。
また、ボレート化合物を具体的に表すと、第1の例は、次の一般式(IX)で示される化合物である。
[L−H][BR 一般式(IX)
一般式(IX)中、Lは、中性ルイス塩基であり、Hは、水素原子であり、[L−H]は、アンモニウム、アニリニウム、ホスフォニウム等のブレンステッド酸である。
アンモニウムとしては、トリメチルアンモニウム、トリエチルアンモニウム、トリプロピルアンモニウム、トリブチルアンモニウム、トリ(n−ブチル)アンモニウムなどのトリアルキル置換アンモニウム、ジ(n−プロピル)アンモニウム、ジシクロヘキシルアンモニウムなどのジアルキルアンモニウムを例示できる。
また、アニリニウムとしては、N,N−ジメチルアニリニウム、N,N−ジエチルアニリニウム、N,N−2,4,6−ペンタメチルアニリニウムなどのN,N−ジアルキルアニリニウムが例示できる。
更に、ホスフォニウムとしては、トリフェニルホスフォニウム、トリブチルホスホニウム、トリ(メチルフェニル)ホスフォニウム、トリ(ジメチルフェニル)ホスフォニウムなどのトリアリールホスフォニウム、トリアルキルホスフォニウムが挙げられる。
また、一般式(IX)中、R及びRは、6〜20、好ましくは6〜16の炭素原子を含む、同じか又は異なる芳香族又は置換芳香族炭化水素基で、架橋基によって互いに連結されていてもよく、置換芳香族炭化水素基の置換基としては、メチル基、エチル基、プロピル基、イソプロピル基等に代表されるアルキル基やフッ素、塩素、臭素、ヨウ素等のハロゲンが好ましい。
更に、X及びXは、ハイドライド基、ハライド基、1〜20の炭素原子を含む炭化水素基、1個以上の水素原子がハロゲン原子によって置換された1〜20の炭素原子を含む置換炭化水素基である。
上記一般式(IX)で表される化合物の具体例としては、トリブチルアンモニウムテトラ(ペンタフルオロフェニル)ボレート、トリブチルアンモニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トリブチルアンモニウムテトラ(3,5−ジトリフルオロメチルフェニル)ボレート、トリブチルアンモニウムテトラ(2,6−ジフルオロフェニル)ボレート、トリブチルアンモニウムテトラ(パーフルオロナフチル)ボレート、ジメチルアニリニウムテトラ(ペンタフルオロフェニル)ボレート、ジメチルアニリニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、ジメチルアニリニウムテトラ(3,5−ジトリフルオロメチルフェニル)ボレート、ジメチルアニリニウムテトラ(2,6−ジフルオロフェニル)ボレート、ジメチルアニリニウムテトラ(パーフルオロナフチル)ボレート、トリフェニルホスホニウムテトラ(ペンタフルオロフェニル)ボレート、トリフェニルホスホニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トリフェニルホスホニウムテトラ(3,5−ジトリフルオロメチルフェニル)ボレート、トリフェニルホスホニウムテトラ(2,6−ジフルオロフェニル)ボレート、トリフェニルホスホニウムテトラ(パーフルオロナフチル)ボレート、トリメチルアンモニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トリエチルアンモニウムテトラ(ペンタフルオロフェニル)ボレート、トリエチルアンモニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トリエチルアンモニウムテトラ(パーフルオロナフチル)ボレート、トリプロピルアンモニウムテトラ(ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トリプロピルアンモニウムテトラ(パーフルオロナフチル)ボレート、ジ(1−プロピル)アンモニウムテトラ(ペンタフルオロフェニル)ボレート、ジシクロヘキシルアンモニウムテトラフェニルボレートなどを例示することができる。
これらの中でも、トリブチルアンモニウムテトラ(ペンタフルオロフェニル)ボレート、トリブチルアンモニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トリブチルアンモニウムテトラ(3,5−ジトリフルオロメチルフェニル)ボレート、トリブチルアンモニウムテトラ(パーフルオロナフチル)ボレート、ジメチルアニリニウテトラ(ペンタフルオロフェニル)ボレート、ジメチルアニリニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、ジメチルアニリニウムテトラ(3,5−ジトリフルオロメチルフェニル)ボレート、ジメチルアニリニウムテトラ(パーフルオロナフチル)ボレートが好ましい。
また、ボレート化合物の第2の例は、次の一般式(X)で表される。
[L[BR 一般式(X)
一般式(X)中、Lは、カルボカチオン、メチルカチオン、エチルカチオン、プロピルカチオン、イソプロピルカチオン、ブチルカチオン、イソブチルカチオン、tert−ブチルカチオン、ペンチルカチオン、トロピニウムカチオン、ベンジルカチオン、トリチルカチオン、ナトリウムカチオン、プロトン等が挙げられる。また、R、R、X及びXは、前記一般式(IX)における定義と同じである。
上記化合物の具体例としては、トリチルテトラフェニルボレート、トリチルテトラ(o−トリル)ボレート、トリチルテトラ(p−トリル)ボレート、トリチルテトラ(m−トリル)ボレート、トリチルテトラ(o−フルオロフェニル)ボレート、トリチルテトラ(p−フルオロフェニル)ボレート、トリチルテトラ(m−フルオロフェニル)ボレート、トリチルテトラ(3,5−ジフルオロフェニル)ボレート、トリチルテトラ(ペンタフルオロフェニル)ボレート、トリチルテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トリチルテトラ(3,5−ジトリフルオロメチルフェニル)ボレート、トリチルテトラ(パーフルオロナフチル)ボレート、トロピニウムテトラフェニルボレート、トロピニウムテトラ(o−トリル)ボレート、トロピニウムテトラ(p−トリル)ボレート、トロピニウムテトラ(m−トリル)ボレート、トロピニウムテトラ(o−フルオロフェニル)ボレート、トロピニウムテトラ(p−フルオロフェニル)ボレート、トロピニウムテトラ(m−フルオロフェニル)ボレート、トロピニウムテトラ(3,5−ジフルオロフェニル)ボレート、トロピニウムテトラ(ペンタフルオロフェニル)ボレート、トロピニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トロピニウムテトラ(3,5−ジトリフルオロメチルフェニル)ボレート、トロピニウムテトラ(パーフルオロナフチル)ボレート、NaBPh、NaB(o−CH−Ph)、NaB(p−CH−Ph)、NaB(m−CH−Ph)、NaB(o−F−Ph)、NaB(p−F−Ph)、NaB(m−F−Ph)、NaB(3,5−F−Ph)、NaB(C、NaB(2,6−(CF−Ph)、NaB(3,5−(CF−Ph)、NaB(C10、HBPh・2ジエチルエーテル、HB(3,5−F−Ph)・2ジエチルエーテル、HB(C・2ジエチルエーテル、HB(2,6−(CF−Ph)・2ジエチルエーテル、HB(3,5−(CF−Ph)・2ジエチルエーテル、HB(C10・2ジエチルエーテルを例示することができる。
これらの中でも、トリチルテトラ(ペンタフルオロフェニル)ボレート、トリチルテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トリチルテトラ(3,5−ジトリフルオロメチルフェニル)ボレート、トリチルテトラ(パーフルオロナフチル)ボレート、トロピニウムテトラ(ペンタフルオロフェニル)ボレート、トロピニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トロピニウムテトラ(3,5−ジトフルオロメチルフェニル)ボレート、トロピニウムテトラ(パーフルオロナフチル)ボレート、NaB(C、NaB(2,6−(CF−Ph)、NaB(3,5−(CF−Ph)、NaB(C10、HB(C・2ジエチルエーテル、HB(2,6−(CF−Ph)・2ジエチルエーテル、HB(3,5−(CF−Ph)・2ジエチルエーテル、HB(C10・2ジエチルエーテルが好ましい。
更に好ましくは、これらの中でもトリチルテトラ(ペンタフルオロフェニル)ボレート、トリチルテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トロピニウムテトラ(ペンタフルオロフェニル)ボレート、トロピニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、NaB(C、NaB(2,6−(CF−Ph)、HB(C・2ジエチルエーテル、HB(2,6−(CF−Ph)・2ジエチルエーテル、HB(3,5−(CF−Ph)・2ジエチルエーテル、HB(C10・2ジエチルエーテルが挙げられる。
更に特に好ましい触媒成分(ii)としては、有機アルミニウムオキシ化合物である。
これらの化合物を触媒成分(ii)として用いることにより、更には、特定の重合条件を採用することにより、本発明において好ましいポリエチレン成分(A)を容易に製造することができる。
(3)触媒成分(iii)
触媒成分(iii)である微粒子担体としては、無機物担体、粒子状ポリマー担体又はこれらの混合物が挙げられる。無機物担体は、金属、金属酸化物、金属塩化物、金属炭酸塩、炭素質物、又はこれらの混合物が使用可能である。
無機物担体に用いることができる好適な金属としては、例えば、鉄、アルミニウム、ニッケルなどが挙げられる。
また、金属酸化物としては、周期表1〜14族の元素の単独酸化物又は複合酸化物が挙げられ、例えば、SiO、Al、MgO、CaO、B、TiO、ZrO、Fe、Al・MgO、Al・CaO、Al・SiO、Al・MgO・CaO、Al・MgO・SiO、Al・CuO、Al・Fe、Al・NiO、SiO・MgOなどの天然又は合成の各種単独酸化物又は複合酸化物を例示することができる。
ここで、上記の式は、分子式ではなく、組成のみを表すものであって、本発明において用いられる複合酸化物の構造及び触媒成分比率は特に限定されるものではない。
また、本発明において用いる金属酸化物は、少量の水分を吸収していても差し支えなく、少量の不純物を含有していても差し支えない。
金属塩化物としては、例えば、アルカリ金属、アルカリ土類金属の塩化物が好ましく、具体的にはMgCl、CaClなどが特に好適である。
金属炭酸塩としては、アルカリ金属、アルカリ土類金属の炭酸塩が好ましく、具体的には、炭酸マグネシウム、炭酸カルシウム、炭酸バリウムなどが挙げられる。
炭素質物としては、例えば、カーボンブラック、活性炭などが挙げられる。
以上の無機物担体は、いずれも本発明に好適に用いることができるが、特に金属酸化物、シリカ、アルミナなどの使用が好ましい。
これら無機物担体は、通常、200〜800℃、好ましくは400〜600℃で空気中又は窒素、アルゴン等の不活性ガス中で焼成して、表面水酸基の量を0.8〜1.5mmol/gに調節して用いるのが好ましい。
これら無機物担体の性状としては、特に制限はないが、通常、平均粒径は5〜200μm、好ましくは10〜150μm、平均細孔径は20〜1000Å、好ましくは50〜500Å、比表面積は150〜1000m/g、好ましくは200〜700m/g、細孔容積は0.3〜2.5cm/g、好ましくは0.5〜2.0cm/g、見掛比重は0.10〜0.50g/cmを有する無機物担体を用いるのが好ましい。
上記した無機物担体は、もちろんそのまま用いることもできるが、予備処理としてこれらの担体をトリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリヘキシルアルミニウム、トリプロピルアルミニウム、トリブチルアルミニウム、トリオクチルアルミニウム、トリデシルアルミニウム、ジイソブチルアルミニウムハイドライドなどの有機アルミニウム化合物やAl−O−Al結合を含む有機アルミニウムオキシ化合物に接触させた後、用いることができる。
更に特に好ましい触媒成分(iii)としては、SiO、Al、Al・SiOが挙げられる。
これらの化合物を触媒成分(iii)として用いることにより、更には、特定の重合条件を採用することにより、本発明において好ましいポリエチレン成分(A)を容易に製造することができる。
(4)接触方法等
本発明に係るメタロセン系触媒は、触媒成分(i)と、触媒成分(ii)、及び必要に応じて触媒成分(iii)からなる触媒を得る際の各成分の接触方法は、特に限定されず、例えば、以下の方法が任意に採用可能である。
接触方法(1):触媒成分(i)と、触媒成分(ii)とを接触させた後、触媒成分(iii)を接触させる。
接触方法(2):触媒成分(i)と、触媒成分(iii)とを接触させた後、触媒成分(ii)を接触させる。
接触方法(3):触媒成分(ii)と、触媒成分(iii)とを接触させた後、触媒成分(i)を接触させる。
これらの接触方法の中で接触方法(1)及び(3)が好ましく、更に接触方法(1)が最も好ましい。いずれの接触方法においても、通常は窒素又はアルゴンなどの不活性雰囲気中、一般にベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素(通常炭素数は6〜12)、ヘプタン、ヘキサン、デカン、ドデカン、シクロヘキサンなどの脂肪族あるいは脂環族炭化水素(通常炭素数5〜12)等の液状不活性炭化水素の存在下、撹拌下又は非撹拌下に各成分を接触させる方法が採用される。
この接触は、通常−100℃〜200℃、好ましくは−50℃〜100℃、更に好ましくは0℃〜50℃の温度にて、5分〜50時間、好ましくは30分〜24時間、更に好ましくは30分〜12時間で行うことが望ましい。
また、触媒成分(i)、触媒成分(ii)と触媒成分(iii)の接触に際しては、上記した通り、ある種の成分が可溶ないしは難溶な芳香族炭化水素溶媒と、ある種の成分が不溶ないしは難溶な脂肪族又は脂環族炭化水素溶媒とがいずれも使用可能である。
各成分同士の接触反応を段階的に行う場合にあっては、前段で用いた溶媒などを除去することなく、これをそのまま後段の接触反応の溶媒に用いてもよい。また、可溶性溶媒を使用した前段の接触反応後、ある種の成分が不溶もしくは難溶な液状不活性炭化水素(例えば、ペンタン、ヘキサン、デカン、ドデカン、シクロヘキサン、ベンゼン、トルエン、キシレンなどの脂肪族炭化水素、脂環族炭化水素あるいは芳香族炭化水素)を添加して、所望生成物を固形物として回収した後に、あるいは一旦可溶性溶媒の一部又は全部を、乾燥等の手段により除去して所望生成物を固形物として取り出した後に、この所望生成物の後段の接触反応を、上記した不活性炭化水素溶媒のいずれかを使用して実施することもできる。本発明では、各成分の接触反応を複数回行うことを妨げない。
本発明において、触媒成分(i)と、触媒成分(ii)と、触媒成分(iii)の使用割合は、特に限定されないが、以下の範囲が好ましい。
触媒成分(ii)として、有機アルミニウムオキシ化合物を用いる場合、触媒成分(i)中の遷移金属(M)に対する有機アルミニウムオキシ化合物のアルミニウムの原子比(Al/M)は、通常、1〜100,000、好ましくは5〜1,000、更に好ましくは50〜200の範囲が望ましく、また、ボラン化合物やボレート化合物を用いる場合、メタロセン化合物中の遷移金属(M)に対する、ホウ素の原子比(B/M)は、通常、0.01〜100、好ましくは0.1〜50、更に好ましくは0.2〜10の範囲で選択することが望ましい。
更に、触媒成分(ii)として、有機アルミニウムオキシ化合物と、ボラン化合物、ボレート化合物との混合物を用いる場合にあっては、混合物における各化合物について、遷移金属(M)に対して上記と同様な使用割合で選択することが望ましい。
触媒成分(iii)の使用量は、触媒成分(i)中の遷移金属0.0001〜5mmol当たり、好ましくは0.001〜0.5mmol当たり、更に好ましくは0.01〜0.1mmol当たり、1gである。
触媒成分(i)と、触媒成分(ii)と、触媒成分(iii)とを、前記接触方法(1)〜(3)のいずれかで相互に接触させ、しかる後、溶媒を除去することで、オレフィン重合用触媒を固体触媒として得ることができる。溶媒の除去は、常圧下又は減圧下、0〜200℃、好ましくは20〜150℃で1分〜50時間、好ましくは10分〜10時間で行うことが望ましい。
なお、メタロセン系触媒は、以下の方法によっても得ることができる。
接触方法(4):触媒成分(i)と触媒成分(iii)とを接触させて溶媒を除去し、これを固体触媒成分とし、重合条件下で有機アルミニウムオキシ化合物、ボラン化合物、ボレート化合物又はこれらの混合物と接触させる。
接触方法(5):有機アルミニウムオキシ化合物、ボラン化合物、ボレート化合物又はこれらの混合物と触媒成分(iii)とを接触させて溶媒を除去し、これを固体触媒成分とし、重合条件下で触媒成分(i)と接触させる。
上記接触方法(4)、(5)の場合も、成分比、接触条件及び溶媒除去条件は、前記と同様の条件が使用できる。
また、本発明に係るポリエチレン成分(A)の製造方法の必須成分である触媒成分(ii)と触媒成分(iii)とを兼ねる成分として、層状珪酸塩を用いることもできる。
層状珪酸塩とは、イオン結合等によって構成される面が互いに弱い結合力で平行に積み重なった結晶構造をとる珪酸塩化合物である。
大部分の層状珪酸塩は、天然には主に粘土鉱物の主成分として産出するが、これら、層状珪酸塩は特に天然産のものに限らず、人工合成物であってもよい。
これらの中では、モンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スチーブンサイト、ベントナイト、テニオライト等のスメクタイト族、バーミキュライト族、雲母族が好ましい。
一般に、天然品は、非イオン交換性(非膨潤性)であることが多く、その場合は好ましいイオン交換性(ないし膨潤性)を有するものとするために、イオン交換性(ないし膨潤性)を付与するための処理を行うことが好ましい。そのような処理のうちで特に好ましいものとしては、次のような化学処理が挙げられる。
ここで化学処理とは、表面に付着している不純物を除去する表面処理と層状珪酸塩の結晶構造、化学組成に影響を与える処理のいずれをも用いることができる。
具体的には、(イ)塩酸、硫酸等を用いて行う酸処理、(ロ)NaOH、KOH、NH等を用いて行うアルカリ処理、(ハ)周期表第2族〜第14族から選ばれた少なくとも1種の原子を含む陽イオンとハロゲン原子又は無機酸由来の陰イオンからなる群より選ばれた少なくとも1種の陰イオンからなる塩類を用いた塩類処理、(ニ)アルコール、炭化水素化合物、ホルムアミド、アニリン等の有機物処理等が挙げられる。これらの処理は、単独で行ってもよいし、2つ以上の処理を組み合わせてもよい。
前記層状珪酸塩は、全ての工程の前、間、後のいずれの時点においても、粉砕、造粒、分粒、分別等によって、粒子性状を制御することができる。その方法は、合目的的な任意のものであり得る。特に、造粒法について示せば、例えば、噴霧造粒法、転動造粒法、圧縮造粒法、撹拌造粒法、ブリケッティング法、コンパクティング法、押出造粒法、流動層造粒法、乳化造粒法及び液中造粒法等が挙げられる。特に好ましい造粒法は、上記の内、噴霧造粒法、転動造粒法及び圧縮造粒法である。
上記した層状珪酸塩は、もちろんそのまま用いることもできるが、これらの層状珪酸塩をトリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリプロピルアルミニウム、トリブチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウム、トリデシルアルミニウム、ジイソブチルアルミニウムハイドライドなどの有機アルミニウム化合物やAl−O−Al結合を含む有機アルミニウムオキシ化合物と組み合わせて用いることができる。
本発明に係るメタロセン系触媒において、触媒成分(i)を、層状珪酸塩に担持するには、触媒成分(i)と層状珪酸塩を相互に接触させる、あるいは触媒成分(i)、有機アルミニウム化合物、層状珪酸塩を相互に接触させてもよい。
各成分の接触方法は、特に限定されず、例えば、以下の方法が任意に採用可能である。
接触方法(6):触媒成分(i)と有機アルミニウム化合物を接触させた後、層状珪酸塩担体と接触させる。
接触方法(7):触媒成分(i)と層状珪酸塩担体を接触させた後、有機アルミニウム化合物と接触させる。
接触方法(8):有機アルミニウム化合物と層状珪酸塩担体を接触させた後、触媒成分(i)と接触させる。
これらの接触方法の中で接触方法(6)と(8)が好ましい。いずれの接触方法においても、通常は窒素又はアルゴンなどの不活性雰囲気中、一般にベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素(通常炭素数は6〜12)、ヘプタン、ヘキサン、デカン、ドデカン、シクロヘキサンなどの脂肪族あるいは脂環族炭化水素(通常炭素数5〜12)等の液状不活性炭化水素の存在下、撹拌下又は非撹拌下に各成分を接触させる方法が採用される。
触媒成分(i)と、有機アルミニウム化合物、層状珪酸塩担体の使用割合は、特に限定されないが、以下の範囲が好ましい。
触媒成分(i)の担持量は、層状珪酸塩担体1gあたり、0.0001〜5mmol、好ましくは0.001〜0.5mmol、更に好ましくは0.01〜0.1mmolである。
また、有機アルミニウム化合物を用いる場合のAl担持量は、0.01〜100mol、好ましくは0.1〜50mol、更に好ましくは0.2〜10molの範囲であることが望ましい。
担持及び溶媒除去の方法は、前記の無機物担体と同様の条件が使用できる。
触媒成分(ii)と触媒成分(iii)とを兼ねる成分として、層状珪酸塩を用いると、重合活性が高く、長鎖分岐を有するエチレン系重合体の生産性が向上する。
こうして得られるオレフィン重合用触媒は、必要に応じてモノマーの予備重合を行った後に使用しても差し支えない。
メタロセン系触媒の製造例として、例えば、特表2002−535339号公報や特開2004−189869号公報に記載の「触媒」及び「原料の配合比や条件」を参酌することにより、製造することができる。また、重合体のインデックスは、各種重合条件により制御することができ、例えば、特開平2−269705号公報や特開平3−21607号公報記載の方法により制御することができる。
ポリエチレン成分(A)は、エチレンの単独重合体又はエチレンと炭素数3〜12のα−オレフィン、例えば、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン、1−オクテン等との共重合により得られる。また、改質を目的とする場合のジエンとの共重合も可能である。このとき使用されるジエン化合物の例としては、ブタジエン、1,4−ヘキサジエン、エチリデンノルボルネン、ジシクロペンタジエン等を挙げることができる。なお、重合の際のコモノマー含有率は、任意に選択することができるが、例えば、エチレンと炭素数3〜12のα−オレフィンとの共重合の場合には、エチレン・α−オレフィン共重合体中のα−オレフィン含有量は、0〜40mol%、好ましくは0〜30mol%である。
なお、本発明のポリエチレン樹脂組成物に用いられる各ポリエチレン成分に使用されるエチレンは、通常の化石原料由来の原油から製造されるエチレンであってもよいし、植物由来のエチレンであってもよい。植物由来のエチレン及びポリエチレンとしては、例えば、特表2010−511634号公報に記載のエチレンやそのポリマーが挙げられる。植物由来のエチレンやそのポリマーは、カーボンニュートラル(化石原料を使わず大気中の二酸化炭素の増加につながらない)の性質を持ち、環境に配慮した製品の提供が可能である。
生成重合体の分子量は、重合温度、触媒のモル比等の重合条件を変えることによってもある程度調節可能であるが、重合反応系に水素を添加することで、より効果的に分子量調節を行うことができる。
また、重合系中に、水分除去を目的とした成分、いわゆるスカベンジャーを加えても何ら支障なく実施することができる。
なお、かかるスカベンジャーとしては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウムなどの有機アルミニウム化合物、前記有機アルミニウムオキシ化合物、分岐アルキルを含有する変性有機アルミニウム化合物、ジエチル亜鉛、ジブチル亜鉛などの有機亜鉛化合物、ジエチルマグネシウム、ジブチルマグネシウム、エチルブチルマグネシウムなどの有機マグネシウム化合物、エチルマグネシウムクロリド、ブチルマグネシウムクロリドなどのグリニヤ化合物などが使用される。これらのなかでは、トリエチルアルミニウム、トリイソブチルアルミニウム、エチルブチルマグネシウムが好ましく、トリエチルアルミニウムが特に好ましい。
水素濃度、モノマー量、重合圧力、重合温度等の重合条件が互いに異なる2段階以上の多段階重合方式にも、支障なく適用することができる。
ポリエチレン成分(A)は、気相重合法、溶液重合法、スラリー重合法などの製造プロセスにより製造することができ、好ましくはスラリー重合法が望ましい。ポリエチレン成分(A)の重合条件のうち重合温度としては、0〜200℃の範囲から選択することができる。スラリー重合においては、生成ポリマーの融点より低い温度で重合を行う。重合圧力は、大気圧〜約10MPaの範囲から選択することができる。実質的に酸素、水等を断った状態で、ヘキサン、ヘプタン、イソブタン等の脂肪族炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素、シクロヘキサン、メチルシクロヘキサン等の脂環族炭化水素等から選ばれる不活性炭化水素溶媒の存在下でエチレン及びα−オレフィンのスラリー重合を行うことにより製造することができる。
ポリエチレン成分(A)は、本発明で規定の範囲を満たせば、単一の重合器、直列もしくは並列に接続した複数の反応器で順次連続して重合、及び複数のエチレン重合体を別々に重合した後に混合したものでもよい。
3.ポリエチレン成分(B)
ポリエチレン成分(B)は、少なくとも2成分から構成され、当該2成分を含む成分(B)全体として、下記特性(b1)及び特性(b2)を満たすものである。
特性(b1)
本発明に用いられるポリエチレン成分(B)は、本発明の効果を奏する点から、温度190℃、荷重2.16Kgにおけるメルトフローレート(MFR)が0.1g/10分以上10g/10分以下であるものを選択する。ポリエチレン成分(B)のMFRは、好ましくは0.2g/10分以上8g/10分以下、更に好ましくは0.5g/10分以上5g/10分以下の範囲である。
このMFRが0.1g/10分未満であれば、分子量が増大し、流動性及び成形性が確保できなくなるおそれがある。また、最終の樹脂組成物において、HLMFRが規定の範囲内を達成できず、流動性が低下することにより、シャークスキンやメルトフラクチャーなどの流動不安定現象が発生しやくすなるため、成形品の外観を損なうおそれがある。
一方、このMFRが10g/10分を超えると、低分子量の成分量が増加する影響により、最終樹脂組成物において、耐衝撃性が達成できず、成形品の落下衝撃耐性が低下するおそれがある。
MFRは、前記と同様にして測定することができる。
MFRは、主にポリエチレン成分(B)の重合時の水素量及び重合温度により調整することができる。
特性(b2)
本発明に用いられるポリエチレン成分(B)は、本発明の効果を奏する点から、密度が0.950g/cm以上0.980g/cm以下であるものを選択する。ポリエチレン成分(B)の密度は、好ましくは0.951g/cm以上0.975g/cm以下、更に好ましくは0.953g/cm以上0.970g/cm以下である。
密度が0.950g/cm未満であれば、最終の樹脂組成物における密度範囲を達成できず、剛性が不足し、かつ結晶化速度が低下し、その結果、成形サイクルが低下するおそれがある。また、容器の剛性が劣り高温時に変形しやすくなり、容器内圧等の影響により、容器が変形し漏れの原因となるおそれがある。
一方、密度が0.980g/cmを超えた場合には、最終樹脂組成物において耐衝撃性能が低下するおそれがあり、容器の落下衝撃耐性が劣るおそれがある。
密度は、前記と同様にして測定することができる。
密度は、主にポリエチレン成分(B)の重合時のα−オレフィンの量により調整することができる。
特性(b3)及び特性(b4)
ポリエチレン成分(B)は、更に、下記の特性(b3)及び(b4)を満足することが好ましい。
特性(b3):温度190℃、荷重11.1Kgにおけるメルトフローレート(MLMFR)が1g/10分以上、100g/10分以下である。
ポリエチレン成分(B)のMLMFRが当該範囲内であると、混ざりの改良効果が向上する。ポリエチレン成分(B)のMLMFRは更に好ましくは、2g/10分以上、70g/10分以下である。
このMLMFRが1g/10分未満であれば、分子量が増大し、流動性及び成形性が確保できなくなるおそれがある。また、最終の樹脂組成物において、HLMFRが規定の範囲内を達成できず、流動性が低下することにより、シャークスキンやメルトフラクチャーなどの流動不安定現象が発生しやくすなり成形品の外観を損なうおそれがある。
一方、このMLMFRが100g/10分を超えると、低分子量の成分量が増加する影響により、最終樹脂組成物において、耐衝撃性が達成できず、成形品の落下衝撃性が低下するおそれがある。
MLMFRは、JIS K6922−2:1997に準拠して測定することができる。
MLMFRは、主にポリエチレン成分(B)の重合時の水素量及び重合温度により調整することができる。
特性(b4):MFRに対するMLMFRの比であるメルトフローレート比(MLMFR/MFR)が8以上50以下である。ポリエチレン成分(B)のMLMFR/MFRは更に好ましくは、10以上45以下である。
MLMFR/MFRは、分子量分布との相関が強く、MLMFR/MFRが大きな値をとる場合、分子量分布は広くなり、MLMFR/MFRが小さな値をとる場合、分子量分布は狭くなる。ポリエチレン成分(B)のMLMFR/MFRが50を超えると、分子量分布が広がりすぎて低分子量の成分量が増加する影響により、最終樹脂組成物において耐衝撃性が低下する恐れがある。一方、このMLMFR/MFRが8より小さいと、分子量分布が狭すぎる影響により、押出成形時にシャークスキンなどの流動不安定現象を生じやすくなるおそれがある。MLMFR/MFRが50以下であれば、成形品のピンチオフ形状が悪化することを抑制し易く、中空成形品としての衝撃強度を良好にしやすい。一方、8以上であると、ポリエチレン成分(B)の低ひずみ速度域における粘度が高くなり、最終樹脂組成物の低ひずみ速度域における粘度を高くすることができるため、各成分の相溶性が良好になり易い。即ち、ポリエチレン成分(A)との相溶性が良好になり易く、成形体の表面性状が平滑になり易く外観に優れ、成形品の耐衝撃性などの物性の低下を抑制しやすい。
また、ポリエチレン成分(B)は、下記の特性(b5)を満足することが好ましい。
特性(b5):ゲルパーミエーションクロマトグラフィー(GPC)により測定される分子量分布(Mw/Mn)が10以上30以下である。
GPCにより測定される分子量分布(Mw/Mn)は、重合体の各種物性、成形性の改良に関わり、成形品の外観等の改良にも関係する。
本発明に用いられるポリエチレン成分(B)の分子量分布(Mw/Mn)が前記範囲内にあると、より優れた中空成形加工性を発揮することができる。また、前記分子量分布(Mw/Mn)が10以上であると、ポリエチレン成分(B)の低ひずみ速度域における粘度が高くなり、最終樹脂組成物の低ひずみ速度域における粘度を高くすることができるため、ポリエチレン成分(A)との相溶性がより良好になって製品外観が優れる点、押出成形時の樹脂圧力が適切になって、シャークスキンなどの流動不安定現象を生じ難くなり、外観不良を抑制しやすい点から好ましい。一方、前記分子量分布(Mw/Mn)が30以下であると、成形品のピンチオフ形状が悪化することを抑制し易く、中空成形品としての衝撃強度を良好にしやすい。
分子量分布を所定の範囲とするには、分子量分布を制御できる触媒や適当な重合条件を採用することにより達成することができる。また、バイモーダル又はマルチモーダルの重合体の場合は、各成分の分子量を調整することにより制御することができる。
ゲルパーミエーションクロマトグラフィー(GPC)による分子量及び分子量分布の測定は、下記の条件により測定することができる。
[測定条件]
使用機種:日本ウォーターズ社製Alliance GPCV2000型
測定温度:145℃
溶媒:オルトジクロロベンゼン(ODCB)
カラム:昭和電工社製Shodex HT−806M×2本+同 HT−G
流速:1.0mL/分
注入量:0.3mL
[試料の調製]
4mLバイアル瓶に試料3mg及びオルトジクロロベンゼン(0.1mg/mLの1,2,4−トリメチルフェノールを含む)3mLを秤り採り、樹脂製スクリューキャップ及びテフロン(登録商標)製セプタムで蓋をした後、温度150℃に設定したセンシュー科学社製SSC−9300型高温振とう機を用いて2時間溶解を行う。溶解終了後、不溶成分がないことを目視で確認する。
[較正曲線の作成]
4mLガラス瓶を4本用意し、それぞれに下記(1)〜(4)の組み合わせの単分散ポリスチレン標準試料又はn−アルカンを0.2mgずつ秤り採り、続いてオルトジクロロベンゼン(0.1mg/mLの1,2,4−トリメチルフェノールを含む)3mLを秤り採り、樹脂製スクリューキャップ及びテフロン(登録商標)製セプタムで蓋をした後、温度150℃に設定したセンシュー科学社製SSC−9300型高温振とう機を用いて2時間溶解を行う。
(1)Shodex S−1460,同S−66.0,n−エイコサン
(2)Shodex S−1950,同S−152,n−テトラコンタン
(3)Shodex S−3900,同S−565,同S−5.05
(4)Shodex S−7500,同S−1010,同S−28.5
試料溶液が入ったバイアル瓶を装置にセットし、前述の条件にて測定を行い、サンプリング間隔1秒でクロマトグラム(保持時間とび示差屈折計検出器の応答のデータセット)を記録する。得られたクロマトグラムから各ポリスチレン標準試料の保持時間(ピーク頂点)を読み取り、分子量の対数値に対してプロットする。ここで、n−エイコサン及びn−テトラコンタンの分子量は、それぞれ600及び1200とする。このプロットに非線形最小自乗法を適用し、得られた4次曲線を較正曲線とする。
[分子量の計算]
前述の条件にて測定を行い、サンプリング間隔1秒でクロマトグラムを記録する。
このクロマトグラムから、森定雄著「サイズ排除クロマトグラフィー」(共立出版)第4章p.51〜60に記載の方法で微分分子量分布曲線及び平均分子量値(Mn、Mw及びMz)を算出する。但し、dn/dcの分子量依存性を補正するため、クロマトグラムにおけるベースラインからの高さHを下記の式にて補正する。クロマトグラムの記録(データ取り込み)及び平均分子量計算は、Microsoft社製OS Windows(登録商標)XPをインストールしたPC上で自社製プログラム(Microsoft製Visual Basic6.0で作成)を用いて行う。
H’=H/[1.032+189.2/M(PE)]
なお、ポリスチレンからポリエチレンへの分子量変換は、下記の式を用いる。
M(PE)=0.468×M(PS)
また、本発明においてポリエチレン成分(B)は、少なくとも2成分から構成される。ポリエチレン成分(B)を構成する各成分は、上記特性(b1)及び特性(b2)を満たす範囲で適宜調整すればよく、特に限定されないが、少なくとも1成分が、下記の特性(c1)及び(c2)を満足するように高分子量の成分(C)を含むことが好ましい。
特性(c1):温度190℃、荷重21.6Kgにおけるメルトフローレート(HLMFR)が0.5g/10分以上、5g/10分未満である。
HLMFRが0.5g/10分未満の場合には、高分子量の成分(C)の低ひずみ速度域における粘度が高くなりすぎることにより、高分子量の成分(C)が十分に分散されず、成形体の表面性状が平滑になりにくく外観に劣る恐れがある。一方、5g/10分以上の場合には、ポリエチレン成分(B)の低ひずみ速度域における粘度が低くなり、前記ポリエチレン成分(A)の分散促進効果が低下し、結果として前記ポリエチレン成分(A)が十分に分散されず、成形体の外観に劣る恐れがある。このような観点から、高分子量の成分(C)のHLMFRは0.52g/10分以上4.8g/10分以下であることが好ましく、0.55g/10分以上4.5g/10分以下であることがより好ましい。
ポリエチレン成分(B)に含まれる高分子量の成分(C)のHLMFRは、JIS K6922−2:1997に準拠して測定することができる。
ポリエチレン成分(B)を多段重合により製造する場合には、高分子量の成分(C)を重合する工程から、当該成分(C)を採取し、そのHLMFRを測定する。
HLMFRは、主にポリエチレン成分(C)の重合時の水素量及び重合温度により調整することができる。
特性(c2):密度が0.9460g/cm以上0.9490g/cm以下である。
本発明に用いられるポリエチレン成分(C)は、本発明の効果を奏する点から、密度が0.9460g/cm以上0.9490g/cm以下であるものから選択されるのが好ましい。ポリエチレン成分(C)の密度は、好ましくは0.9460g/cm以上0.9480g/cm以下、更に好ましくは0.9460g/cm以上0.9470g/cm以下である。
密度が0.9460g/cm未満であれば、最終の樹脂組成物における密度範囲を達成できず、剛性が不足し、かつ結晶化速度が低下し、その結果、成形サイクルが低下するおそれがある。また、容器の剛性が劣り高温時に変形しやすくなり、容器内圧等の影響により、容器が変形し漏れの原因となるおそれがある。
一方、密度が0.9490g/cmを超えた場合には、最終樹脂組成物において耐衝撃性能が低下するおそれがあり、容器の落下衝撃耐性が劣るおそれがある。
密度は、前記と同様にして測定することができる。
密度は、主にポリエチレン成分(C)の重合時のα−オレフィンの量により調整することができる。
さらに、高分子量成分の分散不良によるゲルの発生を抑制する観点から、上記高分子量の成分(C)のメルトフローレート(HLMFR)に対する前記ポリエチレン成分(A)のメルトフローレート(HLMFR)の比(HLMFR/HLMFR)が0.1以上1以下であることが好ましい。当該比の値が0.1未満の場合、前記ポリエチレン成分(A)とポリエチレン成分(B)の低せん断域における粘度比が小さくなり、ポリエチレン成分(A)の分散促進効果が低下する恐れがある。一方、比の値が1を超えると、高分子量の成分(C)が最も粘度の高い成分となり、高分子量成分(C)の分散不良により、成形体の表面性状が平滑になりにくく外観に劣る恐れがある。
ポリエチレン成分(B)中の高分子量の成分(C)の含有割合は、本発明の効果を損なわない範囲で適宜調整すればよいものであるが、ポリエチレン成分(A)の分散不良によるゲルの発生を抑制する観点から、ポリエチレン成分(B)全量に対し10質量%以上50質量%以下であることが好ましく、15質量%以上45質量%以下であることがより好ましい。
ポリエチレン成分(B)中の高分子量の成分(C)の含有割合は、さらに好ましくは、20重量%以上、40重量%以下、特に好ましくは、25重量%以上、35重量%以下である。
このポリエチレン成分(B)中の高分子量の成分(C)の含有割合が10重量%未満であれば、低せん断域におけるポリエチレン成分(A)とポリエチレン成分(B)の粘度比が小さくなり、最終の樹脂組成物において、ポリエチレン成分(A)の良好な分散状態が確保できなくなり、成形品の外観を損なう恐れがある。
一方、このポリエチレン成分(B)中のポリエチレン成分(C)の含有割合が45重量%を超えると、最終の樹脂組成物において、HLMFRが規定の範囲内を達成できず、流動性が低下することにより、シャークスキンやメルトフラクチャーなどの流動不安定現象が発生しやくすなり成形品の外観を損なう恐れや、含有される高分子量の成分量が多くなりすぎるため、ピンチオフ成形性が維持できなくなり、成形体としての耐衝撃性が達成できず、成形品の落下衝撃性が低下するおそれがある。
また、本発明においてポリエチレン成分(B)は、少なくとも2成分から構成され、少なくとも1成分が、下記の特性(d1)及び(d2)を満足するように低分子量のポリエチレン成分(D)を含むことが好ましい。
特性(d1):温度190℃、荷重2.16Kgにおけるメルトフローレート(MFR)が3.5g/10分以上、54.0g/10分未満である。
MFRが3.5g/10分未満の場合には、低分子量成分が少ない事により、押出時にメルトフラクチャーが発生する恐れがある事や、ピンチオフ特性が低下する恐れがある。一方、MFRが54.0g/10分以上の場合には、ポリエチレン成分(A)に対する粘度差が大きくなる事により、ゲルが増加する恐れがある事や、低分子量成分が多くなる事により、引張衝撃強さが低下する恐れがある。このような観点から、低分子量のポリエチレン成分(D)のMFRは4.0g/10分以上30.0g/10分以下であることが好ましく、5.0g/10分以上16.0g/10分以下であることがより好ましい。
ポリエチレン成分(B)に含まれる低分子量のポリエチレン成分(D)のMFRは、JIS K6922−2:1997に準拠して測定することができる。
MFRは、主にポリエチレン成分(D)の重合時の水素量及び重合温度により調整することができる。
特性(d2):密度が0.9655g/cm以上0.9765g/cm以下である。
本発明に用いられるポリエチレン成分(D)は、本発明の効果を奏する点から、密度が0.9655g/cm以上0.9765g/cm以下であるものから選択されるのが好ましい。ポリエチレン成分(D)の密度は、好ましくは0.9700g/cm以上0.9765g/cm以下、更に好ましくは0.9730g/cm以上0.9765g/cm以下である。
密度が0.9655g/cm未満であれば、最終の樹脂組成物における密度範囲を達成できず、剛性が不足し、かつ結晶化速度が低下し、その結果、成形サイクルが低下するおそれがある。また、容器の剛性が劣り高温時に変形しやすくなり、容器内圧等の影響により、容器が変形し漏れの原因となるおそれがある。
一方、密度が0.9765g/cmを超えた場合には、最終樹脂組成物において耐衝撃性能が低下するおそれがあり、容器の落下衝撃耐性が劣るおそれがある。
密度は、前記と同様にして測定することができる。
密度は、主にポリエチレン成分(D)の重合時のα−オレフィンの量により調整することができる。
ポリエチレン成分(B)中の低分子量のポリエチレン成分(D)の含有割合は、本発明の効果を損なわない範囲で適宜調整すればよいものであるが、ポリエチレン成分(A)の分散不良によるゲルの発生を抑制する観点から、ポリエチレン成分(B)全量に対し50質量%以上90質量%以下であることが好ましく、55質量%以上85質量%以下であることがより好ましい。
ポリエチレン成分(B)中の低分子量のポリエチレン成分(D)の含有割合は、さらに好ましくは、60質量%以上、80質量%以下、特に好ましくは、65質量%以上、75質量%以下である。
このポリエチレン成分(B)中の低分子量のポリエチレン成分(D)の含有割合が50質量%未満であれば、低分子量成分が少ない事により、押出時にメルトフラクチャーが発生する恐れがある事や、ピンチオフ特性が低下する恐れがある。
一方、このポリエチレン成分(B)中のポリエチレン成分(D)の含有割合が90質量%を超えると、ポリエチレン成分(A)に対する粘度差が大きくなる事により、ゲルが増加する恐れがある事や、低分子量成分が多くなる事により、引張衝撃強さが低下する恐れがある。
本発明に用いられるポリエチレン成分(B)は、エチレン単独重合体又はエチレン−α−エチレン共重合体であり、上記の特性を満たすことができれば、各種の重合触媒を用いて重合することができる。本発明に用いられるポリエチレン成分(B)は、チーグラーナッタ触媒やメタロセン触媒を使用して重合することにより製造することができ、好ましくはチーグラーナッタ触媒を使用して重合することができる。チーグラーナッタ触媒由来のポリエチレンは、適度に広い分子量分布を有し、優れた溶融成形加工特性と、機械的強度を有するためである。
チーグラーナッタ触媒は、チタニウムを活性種とする重合触媒であって、従来公知のものの中から、適宜選択して用いることができる。チーグラーナッタ触媒としては、中でも、マグネシウム・チタニウム複合型チーグラーナッタ触媒が好ましい。マグネシウム・チタニウム複合型チーグラーナッタ触媒は、粒子形状に優れると共に優れた重合活性を有する。
マグネシウム・チタニウム複合型チーグラーナッタ触媒は、更に有機アルミニウム化合物により改質されたものであることが好ましい。このような改質されたチーグラーナッタ触媒を用いることにより、短鎖分岐が少ないポリエチレンを製造することができる。有機アルミニウム化合物により改質されたマグネシウム・チタニウム複合型チーグラーナッタ触媒は、特開2012−72229号公報を参考に製造することができる。
チーグラーナッタ触媒を用いたポリエチレン成分(B)の重合方法は従来公知の方法を適宜用いることができる。例えば、スラリー重合、溶液重合のような液相重合法あるいは気相重合法など、いずれの方法を採用することができるが、特にスラリー重合法が好ましく、パイプループ型反応器を用いるスラリー重合法、オートクレーブ型反応器を用いるスラリー重合法、いずれも用いることができる。なかでもパイプループ型反応器を用いるスラリー重合法が好ましい(パイプループ型反応器とこれを用いるスラリー重合の詳細は、松浦一雄・三上尚孝編著、「ポリエチレン技術読本」、148頁、2001年、工業調査会に記載されている)。
なお、原料となるエチレンは前記ポリエチレン成分(A)におけるものと同様のものとすることができる。
液相重合法は、通常炭化水素溶媒中で行う。炭化水素溶媒としては、プロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、ヘキサン、ヘプタン、オクタン、デカン、シクロヘキサン、ベンゼン、トルエン、キシレンなどの不活性炭化水素の単独または混合物が用いられる。気相重合法は、不活性ガス共存下にて、流動床、攪拌床等の通常知られる重合法を採用でき、場合により重合熱除去の媒体を共存させる、いわゆるコンデンシングモードを採用することもできる。
液相重合法における重合温度は、一般的には0〜300℃であり、実用的には20〜200℃、好ましくは40〜180℃、さらに好ましくは50〜150℃、特に好ましくは70〜110℃である。反応器中の触媒濃度およびエチレン濃度は重合を進行させるのに十分な任意の濃度でよい。例えば、触媒濃度は、液相重合の場合、反応器内容物の重量を基準にして約0.0001〜約5重量%の範囲とすることができる。同様にエチレン濃度は、液相重合の場合、反応器内容物の重量を基準にして約1%〜約10%の範囲とすることができる。同様にエチレン濃度は、気相重合の場合、全圧として0.1〜10MPaの範囲とすることができる。また、水素を共存させて重合を行うことも可能であり、耐久性、耐衝撃性、剛性のバランスに優れたエチレン系重合体を製造するためには、水素とエチレンを特定の比率とした条件下で重合させるのがよい。水素は、一般的には分子量を調節するためのいわゆる連鎖移動剤としての働きを有する。
重合方法としては、反応器を一つ用いてエチレン系重合体を製造する単段重合だけでなく、生産量を向上させるため、または分子量分布やコモノマー組成分布を広げるため、少なくとも二つ以上の反応器を直列あるいは/および並列に連結させて多段重合を行うこともできる。多段重合の場合、複数の反応器を連結させ、第一段の反応器で重合して得られた反応混合物を続いて第二段以降の反応器に連続して供給する直列多段重合が好ましい。直列多段重合法では、前段の反応器での重合反応混合物が後段以降の反応器に連結管を通して連続的排出により移送される。
上記多段重合の具体的実施形態を、二つの反応器を使用する二段重合を例に説明する。
二段重合の場合、第一段反応器および第二段反応器で同一の重合条件で製造してもよいし、あるいは第一段反応器および第二段反応器で同一のMFR、密度のエチレン系重合体を製造してもよいが、分子量分布を広げる場合には、両反応器で製造するエチレン系重合体の分子量に差をつけるのが好ましい。第一段反応器で高分子量成分、第二段反応器で低分子量成分を、または第一段反応器で低分子量成分、第二段反応器で高分子量成分をそれぞれ製造するいずれの製造方法でもよいが、第一段反応器で高分子量成分、第二段反応器で低分子量成分を製造する方法の方が、第一段から第二段への移行にあたり中間の水素のフラッシュタンクを必要としないため生産性の面でより好ましい。
第一段においては、エチレン単独または必要に応じて他のエチレンをコモノマーとした共重合を、水素濃度のエチレン濃度に対する比、重合温度または両者により分子量を調節しながら、またコモノマー濃度のエチレン濃度に対する重量比で密度を調節しながら重合反応を行う。
第二段においては、第一段から流れ込む反応混合物中の水素および同じく流れ込むエチレンがあるが、必要に応じてそれぞれ新たな水素、エチレンを加えることができる。従って、第二段においても、水素濃度のエチレン濃度に対する比、重合温度または両者により分子量を調節しながら、またコモノマー濃度のエチレン濃度に対する比により密度を調節しながら重合反応を行うことができる。触媒や有機アルミニウム化合物のような有機金属化合物についても、第一段から流れ込む触媒により二段目で引き続き重合反応を行うだけでなく、第二段で新たに触媒、有機アルミニウム化合物のような有機金属化合物またはその両者を供給してもよい。
上述の通り、上記二段重合によって製造する場合、例えば、高分子量成分と低分子量成分の2成分を得ることができ、当該高分子量成分が前記成分(C)の特性を満たすように調整することができる。
3.ポリエチレン樹脂組成物
本発明のポリエチレン樹脂組成物は、前記ポリエチレン成分(A)を5質量%以上40質量%以下、前記ポリエチレン成分(B)を60質量%以上95質量%以下含有するポリエチレン樹脂組成物である。好ましくは、ポリエチレン成分(A)を6質量%以上30質量%以下、ポリエチレン成分(B)を70質量%以上94質量%以下含有する組成物である。
本発明のポリエチレン樹脂組成物は、以下の特性(1)〜(4)を満足することが重要である。
特性(1):MFRが0.1g/10分以上、1g/10分以下である。
特性(2):HLMFRが10g/10分以上、50g/10分以下である。
特性(3):MFRに対するHLMFRの比であるメルトフローレート比(HLMFR/MFR)が40以上140以下である。
特性(4):密度が0.950g/cm以上0.970g/cm以下である。
前記特性(1)〜(4)は、前記と同様にして測定することができる。
特性(1)
本発明のポリエチレン樹脂組成物は、MFRが0.1g/10分以上、1g/10分以下である。当該MFRは、好ましくは0.15g/10分以上0.8g/10分以下、更に好ましくは0.2g/10分以上0.6g/10分以下の範囲、特に好ましくは0.25g/10分以上0.50g/10分以下の範囲である。
このMFRが0.1g/10分未満であれば、流動性が低下することにより、シャークスキンやメルトフラクチャーなどの流動不安定現象が発生しやすくなるため成形品の外観を損なうおそれがある。
一方、このMFRが1g/10分を超えると、耐衝撃性や耐環境応力亀裂性が達成できず、成形品の落下衝撃耐性や長期耐久性が低下するおそれがある。
ポリエチレン樹脂組成物のMFRは、ポリエチレン成分(A)、及びポリエチレン成分(B)の重合時のそれぞれの水素量及び温度、並びに各成分の配合量により調整することができる。
MFRは、前記と同様にして測定することができる。
特性(2)
本発明のポリエチレン樹脂組成物は、HLMFRが10g/10分以上、50g/10分以下である。当該HLMFRは、好ましくは12g/10分以上、48g/10分以下、更に好ましくは15g/10分以上、45g/10分以下の範囲である。
このHLMFRが10g/10分未満であれば、流動性が低下することにより成形時における押出機モーター負荷やせん断による樹脂発熱量が増大するおそれや、シャークスキンやメルトフラクチャーなどの流動性不安定現象が発生しやすくなるため成形品の外観を損なうおそれがある。
一方、このHLMFRが50g/10分を超えると、耐衝撃性や耐環境応力亀裂性が達成できず、成形品の落下衝撃耐性や長期耐久性が低下するおそれがある。
ポリエチレン樹脂組成物のHLMFRは、ポリエチレン成分(A)、ポリエチレン成分(B)及びポリエチレン成分(C)の重合時のそれぞれの水素量及び温度、並びに各成分の配合量により調整することができる。
HLMFRは、前記と同様にして測定することができる。
特性(3)
本発明のポリエチレン樹脂組成物は、MFRに対するHLMFRの比であるメルトフローレート比(HLMFR/MFR)が40以上140以下である。当該メルトフローレート比は、好ましくは41以上135以下、更に好ましくは42以上130以下の範囲である。
HLMFR/MFRは、分子量分布との相関が強く、HLMFR/MFRが大きな値をとる場合、分子量分布が広くなり、HLMFR/MFRが小さな値をとる場合、分子量分布が狭くなる。HLMFR/MFRが140を超えると各成分の相溶性の悪化やピンチオフ成形性の低下、耐衝撃性が低下するおそれがあり、HLMFR/MFRが40未満では溶融張力の低下やシャークスキンなどの流動不安定現象が発生しやすくなるおそれやESCRが低下するおそれがある。
HLMFR/MFRの制御方法は、主に分子量分布の制御方法に準じて行うことができる。
特性(4)
本発明のポリエチレン樹脂組成物は、密度が0.950g/cm以上0.970g/cm以下である。当該密度は、好ましくは0.952g/cm以上0.968g/cm以下、更に好ましくは0.955g/cm以上0.965g/cm以下の範囲である。
密度が0.950g/cm未満であれば、剛性が不足し、かつ結晶化速度が低下し、その結果、成形サイクルが低下するおそれがある。一方、密度が0.970g/cmを超えた場合には、耐環境応力亀裂性能が低下するおそれがある。
密度は、主にポリエチレン成分(A)、及びポリエチレン成分(B)の重合時のα−オレフィンの量により調整することができ、また、各成分の配合量により調整することができる。
密度は、前記と同様にして測定することができる。
特性(5)
本発明のポリエチレン樹脂組成物は、更に、下記の特性(5)を満足することが、中空成形時において耐ドローダウン性や成形容器の均一な肉厚分布を達成しやすい点から好ましい。
特性(5):温度170℃、伸長歪速度0.1(単位:1/秒)で測定される伸長粘度η(t)(単位:Pa・秒)と伸長時間t(単位:秒)の両対数プロットにおいて、歪硬化に起因する伸長粘度の変曲点が観測される。
歪硬化に起因する伸長粘度の変曲点の有無は、歪硬化度の測定において観察できるものであり、上記したポリエチレン成分(A)の歪硬化度の測定方法と同様の方法で測定することができる。
ポリエチレン樹脂組成物が、長鎖分岐構造を有するためには、長鎖分岐構造を有するポリエチレン成分(B)を所定量使用することが好ましく、更に長鎖分岐構造を有するポリエチレン成分(A)と長鎖分岐構造を有するポリエチレン成分(B)とを所定の配合割合で混合することが好ましい。。
特性(6)
本発明のポリエチレン樹脂組成物は、更に下記の特性(6)を満足することが、成形ハイサイクル化の点から好ましい。
特性(6):示差走査熱量計(DSC)にて測定される121.5℃での等温結晶化におけるピークトップ時間(T)と融点(Tm)が下記の関係式(1)を満たす。
T[秒]≦−147.7×Tm[℃]+20010 関係式(1)
121.5℃での等温結晶化におけるピークトップ時間(T)は、示差走査熱量計(DSC)にて、試料を190℃にて5分放置後、120℃/分の速度にて121.5℃まで冷却し、保持とし、121.5℃の等温下にて結晶化が終了した時点にてピークトップを検出し、測定し、結晶化時間として求めることができる。
また、融点(Tm)は、示差走査熱量計(DSC)にて測定することができ、0.2mmの厚さのプレスシートを円形に切り出した試料約5mgをアルミパンに詰め、窒素雰囲気下、200℃まで昇温後、5分間同温度で保持し、10℃/分で30℃まで冷却し、その後同温度で5分間保持した後、10℃/分で200℃まで昇温し、その後同温度で5分間保持した後、10℃/分で30℃まで降温し、融解に伴う熱量の変化が極大となる温度を融点(Tm)として求めることができる。
本発明のポリエチレン樹脂組成物が特性(6)を満足するためには、特定の物性を有するポリエチレン成分(A)とポリエチレン成分(B)とを所定の配合割合で混合することが好ましい。
特性(7)
本発明のポリエチレン樹脂組成物は、更に、下記の特性(7)を満足することが、耐ドローダウン性などの中空成形性の点から好ましい。
特性(7):190℃で測定される溶融張力(MT)が、40mN以上である。溶融張力は、更に好ましくは65mN以上である。また、HLMFR見合いの溶融張力が高く、下記の関係式(3)を満足するものが好ましく、更に下記の関係式(4)を満足するものが好適である。
MT>−22.45×ln(HLMFR)+137.82 関係式(3)
MT>−22.45×ln(HLMFR)+157.82 関係式(4)
ここで、MT(mN)は溶融張力、HLMFR(g/10分)は温度190℃、荷重21.6Kgにおけるメルトフローレートである。
本発明において、横軸にHLMFR、縦軸に溶融張力をとり、本発明の実施例データをプロットした場合、関係式(3)は、本発明の好ましい範囲を従来技術と区別するための数式であり、関係式(4)は、本発明の更に好ましい範囲を規定するための数式である。
溶融張力は、溶融させたエチレン系重合体を一定速度で延伸したときの応力を測定することにより決定され、下記条件により測定することができる。
[測定条件]
使用機種:東洋精機製作所社製、キャピログラフ1B
ノズル径:2.095mm
ノズル長さ:8.0mm
流入角度:180°(flat)
押出速度:15mm/分
引き取り速度:6.5m/分
測定温度:190℃
本発明のポリエチレン樹脂組成物が特性(7)を満足するためには、特定の物性を有するポリエチレン成分(A)、及びポリエチレン成分(B)を所定の配合割合で混合することが好ましい。
特性(8)
本発明のポリエチレン樹脂組成物は、更に、下記の特性(8)を満足することが、ポリエチレン成分(A)の良好な分散の点から好ましい。ポリエチレン成分(A)のポリエチレン成分(B)への高度な分散が可能となると、成形品において、表面性状が平滑になり、外観に特に優れるものとなる。
特性(8):温度190℃において周波数ωが0.01rad/秒で測定される動的溶融粘度η0.01(単位:Pa・秒)が20,000超過、100,000未満。
動的溶融粘度ηW・0.01は、熱プレスにより厚さ2.0mmのシートに成形した試料を用い、レオメータ(Rheometrics社製Ares)を用い、温度190℃においてパラレルプレートを用いてプレート間隔1.7mm、歪み10%、周波数ωが0.01rad/秒で測定したたときの動的溶融粘度(単位:Pa・秒)を、低歪速度における動的溶融粘度(ηW・0.01)とした。
[測定条件]
装置:Rheometrics社製Ares
冶具:直径25mmパラレルプレート、プレート間隔約1.7mm
測定温度:190℃
周波数範囲:0.01〜100(単位:rad/秒)
歪み:10%
本発明のポリエチレン樹脂組成物が特性(8)を満足するためには、特定の物性を有するポリエチレン成分(A)とポリエチレン成分(B)とを所定の配合割合で混合することが好ましい。
特性(9)
本発明のポリエチレン樹脂組成物は、更に、下記の特性(9)を満足することが、ポリエチレン成分(A)の良好な分散の点から好ましい。
特性(9):温度190℃において周波数ωが0.01rad/秒のとき測定されるポリエチレン樹脂組成物の動的溶融粘度ηW・0.01に対するポリエチレン成分(A)の動的溶融粘度ηH・0.01の比ηH・0.01/ηW・0.01が1超過、14未満、より好ましくは1超過、10未満、よりさらに好ましくは1超過、8未満。
本発明のポリエチレン樹脂組成物が特性(9)を満足するためには、特定の物性を有するポリエチレン成分(A)とポリエチレン成分(B)とを所定の配合割合で混合することが好ましい。
特性(10)
本発明のポリエチレン樹脂組成物は、更に下記の関係式(5)を満足することが、剛性(密度)と耐環境応力亀裂性のような長期耐久性のバランスに特に優れる点から好ましい。
log(FNCT) ≧ −257.5×(密度)+ 247.9 関係式(5)
ここで、FNCT(時間)は下記に示す全ノッチ付クリープ試験の破断時間である。全ノッチ付クリープ試験(FNCT)の時間が長いほど、耐環境応力亀裂性のような長期耐久性が優れている。
全ノッチ付クリープ試験は、ISO DIS 16770に準拠して行うことができる。試料は、6mm×6mm×11mmの大きさの角柱の全周囲にカミソリ刃にて1mmのノッチが付けられ、4mm×4mmの大きさの断面を有した試験片を用意し、80℃の純水中で、3.7MPaに相当する引張応力を検体に与え、検体が破断するまでの時間を計測して、FNCTの破断時間とする。
なお、本発明のポリエチレン樹脂組成物が特性(10)を満足するためには、特定の物性を有するポリエチレン成分(A)及びポリエチレン成分(B)を所定の配合割合で混合することが好ましい。また、ポリエチレン成分(B)に含まれるポリエチレン成分(C)及びポリエチレン成分(D)は、ポリエチレン成分(B)を製造する際に、多段重合法により製造することができる。
本発明のポリエチレン樹脂組成物によれば、上記特性(1)〜(4)を備えたポリエチレン材料であるため、中空成形性、耐環境応力亀裂性、耐衝撃性に優れ、より薄く、軽量にて成形することが可能であることができ、結晶化速度が速く、高速成形性に優れ、成形ハイサイクル化が可能であり、ピンチオフ特性が良好である上に、樹脂成分の相溶性が高く、成形体の外観に特に優れる成形体とすることが可能である。
更に、好ましくは、上記特性(1)〜(4)に加え、上記特性(5)〜(10)のうち一つ以上を備えたポリエチレン樹脂組成物は、上記効果を更に良く奏するものとなる。
上記効果について、以下に更に説明する。
前記特定のポリエチレン成分(A)、及び前記特定のポリエチレン成分(B)を混合して用いることにより、長鎖分岐構造を有する成分の効果により、結晶化速度を極めて有効に速くすることができ、いわゆる結晶核剤を添加したと同様な効果を発揮し、結晶化時間を短くすることができ、容器用ポリエチレン樹脂組成物としての高速成形ハイサイクル化を達成できる。
また、前記特定のポリエチレン成分(A)を前記特定のポリエチレン成分(B)とともに使用することにより、従来のクロム系触媒を用いたエチレン系重合体組成物や、チーグラー系触媒を用いたエチレン系重合体組成物、またそれらが混合されたエチレン系重合体組成物より、更に耐環境応力亀裂性を向上させることができる。
一般に、ポリエチレンは、フィルム成形、ブロー成形、発泡成形等の溶融状態を経由する附型方法により工業製品へと加工されるが、この際、上記伸長粘度や歪硬化度に代表される伸長流動特性が成形のし易さに大きな影響を与えることはよく知られている。
即ち、分子量分布が狭く、長鎖分岐を持たないポリエチレンは、溶融強度が低いので成形性が悪く、一方、超高分子量成分や長鎖分岐成分を有するポリエチレンは、溶融伸長時に歪硬化(ストレイン・ハードニング)、即ち、高歪み側で伸長粘度が急激に上昇する特性を有し、この特性を顕著に示すポリエチレンは、成形性に優れると言われている。このような伸長流動特性を有するポリエチレン樹脂は、例えば、フィルム成形や中空成形における製品の偏肉や吹き破れを防止したり、高速成形が可能となったり、発泡成形時の独立気泡率を高くできる効果があり、成形品の強度向上、意匠性向上、軽量化、成形サイクルの向上、断熱性向上等のメリットが得られるが、一方で、ポリエチレンの伸長流動特性が強過ぎると、成形時の分子配向が原因と推定される強度異方性によって成形体の衝撃強度の低下が生じたりする等の不都合が発生する。
それに対して、ポリエチレンの伸長流動特性がもたらす成形加工面での向上及び成形体の機械的特性面での不都合の克服を、該伸長粘度特性の主な支配因子である長鎖分岐構造を工夫することで解決すべくポリエチレン樹脂組成物について鋭意検討を行なった。本発明によれば、上述のように、前記特定の物性バランスを満足するポリエチレン成分(B)を使用し、特定の物性を有するポリエチレン成分(A)を該組成物の低メルトフロー成分即ち高分子量成分として使用することにより、剛性と耐環境応力亀裂性、耐衝撃性向上への寄与に優れるとともに、成型加工特性、特に耐ドローダウン性やピンチオフ成形性などの中空成形性にも優れ、より薄く、軽量にて成形することが可能であり、溶融張力が高く耐ドローダウン性に優れ、複雑形状の中空成形が可能である上に、更には結晶化速度の向上にも優れることが考えられる。
前記特定の物性バランスを満足するポリエチレン成分(B)を使用していることから、樹脂組成物中の各樹脂成分の相溶性に優れ、成形体の外観に特に優れるポリエチレン樹脂組成物となる。また、前記特定の物性バランスを満足するポリエチレン成分(B)は外観不良を抑制しやすく成形体の外観に特に優れると推定される。なお、ポリエチレン成分(C)がポリエチレン成分(B)に含まれる場合、ポリエチレン成分(C)は高分子量成分と低分子量成分の相溶化剤として作用するので、より好ましい。
中でも、ポリエチレン成分(A)が長鎖分岐構造を有する場合、メルトフローレート比が特定のものとなり、これにより、ポリエチレン成分(A)のポリエチレン成分(B)への高度な分散が可能であることから、相溶性が良好となる。そのため、成形品において、表面性状が平滑になり、外観に特に優れるものとなる。
本発明のポリエチレン樹脂組成物は、前記物性を有するものであるポリエチレン樹脂組成物であることから、成形性、高流動性、匂い、食品安全性、剛性、耐熱性などにも優れる。
4.ポリエチレン樹脂組成物の製造方法
本発明のポリエチレン樹脂組成物は、前記ポリエチレン成分(A)と、前記ポリエチレン成分(B)とを所定の配合割合で溶融混合することにより、また必要に応じて他の成分を添加して溶融混合することにより製造することができる。
本発明におけるポリエチレン樹脂組成物は、その必須成分である前記ポリエチレン成分(A)及び前記ポリエチレン成分(B)以外に、本発明の目的を損なわない範囲で、下記物質を任意成分として配合することができる。
例えば、高密度ポリエチレン、低密度ポリエチレン、高圧法ポリエチレン、極性モノマーグラフト変性ポリエチレン、エチレン系ワックス、超高分子量ポリエチレン、エチレン系エラストマー等の各種エチレン系重合体及びその変性体を使用できる。高密度ポリエチレンの添加は、剛性、耐熱性、衝撃強度等を向上するのに好ましい。低密度ポリエチレンの添加は、柔軟性、衝撃強度、易接着性、透明性、低温強度等を向上するのに好ましい。高圧法ポリエチレンの添加は、柔軟性、易接着性、透明性、低温強度、成形加工性等を向上するのに好ましい。マレイン酸変性ポリエチレンやエチレン・アクリル酸誘導体共重合体、エチレン・酢酸ビニル共重合体等の極性モノマーグラフト変性ポリエチレンの添加は、柔軟性、易接着性、着色性、各種材料親和性、ガスバリア性等を向上するのに好ましい。エチレン系ワックスの添加は、着色性、各種材料親和性、成形加工性等を向上するのに好ましい。超高分子量ポリエチレンの添加は、機械的強度、耐摩耗性等を向上するのに好ましい。エチレン系エラストマーの添加は、柔軟性、機械的強度、衝撃強度等を向上するのに好ましい。
また、上記の重合体以外に、各種樹脂を使用できる。具体的には、各種ナイロン樹脂、各種ポリアミド、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、各種ポリエステル、ポリカーボネート樹脂、EVOH、EVA、PMMA、PMA、各種エンジニアリングプラスチック、ポリ乳酸等、セルロース類、天然ゴム類、ポリウレタン、塩ビ、テフロン(登録商標)等のフッ素系樹脂、シリコン樹脂等の無機系重合体、等である。
本発明のポリエチレン樹脂組成物は、常法に従い、ペレタイザーやホモジナイザー等による機械的な溶融混合によりペレット化した後、各種成形機により成形を行って所望の成形品とすることができる。
また、上記の方法により得られるポリエチレン樹脂組成物には、常法に従い、他のオレフィン系重合体やゴム等のほか、酸化防止剤、紫外線吸収剤、光安定剤、滑剤、帯電防止剤、防曇剤、ブロッキング防止剤、加工助剤、着色顔料、架橋剤、発泡剤、無機又は有機充填剤、難燃剤等の公知の添加剤を配合することができる。
添加剤として、例えば、酸化防止剤(フェノール系、リン系、イオウ系)、滑剤、帯電防止剤、光安定剤、紫外線吸収剤等を1種又は2種以上、適宜併用することができる。充填材としては、炭酸カルシウム、タルク、金属粉(アルミニウム、銅、鉄、鉛など)、珪石、珪藻土、アルミナ、石膏、マイカ、クレー、アスベスト、グラファイト、カーボンブラック、酸化チタン等が使用可能であり、なかでも炭酸カルシウム、タルク及びマイカ等を用いるのが好ましい。いずれの場合でも、上記ポリエチレン樹脂組成物に、必要に応じ各種添加剤を配合し、混練押出機、バンバリーミキサー等にて混練し、成形用材料とすることができる。
本発明において、ポリエチレン樹脂組成物の結晶化速度を更に促進するために、核剤を用いることも、有効な手法である。
該核剤としては、一般に知られているものを使用することができ、一般的な有機系又は無機系の造核剤を用いることができる。例えば、ジベンジリデンソルビトールもしくはその誘導体、有機リン酸化合物もしくはその金属塩、芳香族スルホン酸塩もしくはその金属塩、有機カルボン酸もしくはその金属塩、ロジン酸部分金属塩、タルク等の無機微粒子、イミド類、アミド類、キナクリドンキノン類、又はこれらの混合物が挙げられる。
中でもジベンジリデンソルビトール誘導体、有機リン酸金属塩、有機カルボン酸金属塩等は、透明性に優れるなど好適である。
ジベンジリデンソルビトール誘導体の具体例としては、1,3:2,4−ビス(o−3,4−ジメチルベンジリデン)ソルビトール、1,3:2,4−ビス(o−2,4−ジメチルベンジリデン)ソルビトール、1,3:2,4−ビス(o−4−エチルベンジリデン)ソルビトール、1,3:2,4−ビス(o−4−クロロベンジリデン)ソルビトール、1,3:2,4−ジベンジリデンソルビトールが挙げられ、安息香酸金属塩の具体例としては、ヒドロキシ−ジ(t−ブチル安息香酸)アルミニウム等が挙げられる。
本発明のポリエチレン樹脂組成物に核剤を配合する場合、核剤の配合量は、該組成物100質量部に対して、0.01〜5質量部が好ましく、より好ましくは0.01〜3質量部、更に好ましくは0.01〜1質量部、特に好ましくは0.01〜0.5質量部である。核剤が0.01質量部未満では、高速成形性の改良効果が十分でなく、一方、5質量部を超えると、核剤が凝集してブツになり易いといった問題が生じる。
6.成形体、及び容器
本発明の成形体は、前記本発明に係るポリエチレン樹脂組成物を用いて作成された成形体である。
また、本発明の容器は、前記本発明に係るポリエチレン樹脂組成物を用いて作成された容器である。
本発明のポリエチレン樹脂組成物を原料として、各種成形法により成形体を製造することができる。好ましくは、主に中空成形法等により成形され、好適には中空容器などの各種成形品が得られる。
本発明のポリエチレン樹脂組成物は、上記特性を満足するものであるので、これを用いた本発明の成形体は、耐環境応力亀裂性、耐衝撃性に優れ、匂い、食品安全性、剛性、耐熱性にも優れる上に、樹脂成分の相溶性が高く、成形体の表面性状が優れ、外観が特に良好である。また、より薄く、軽量にて成形することができ、結晶化速度が速く、高速成形性に優れ、成形ハイサイクル化が可能であり、ピンチオフ特性が良好である。
従って、このような特性を必要とする容器などの用途に適し、特に、外観が良好であることが求められる、化粧品容器、洗剤、シャンプー及びリンス用容器、或いは食用油等の食品用容器等の用途に好適に用いることができる。
特に、本発明のポリエチレン樹脂組成物を用いた成形体である容器は、高速成形化、ハイサイクル化が可能であり、製品特性が優れる上に、経済的に有利な、洗剤、シャンプー及びリンス等の容器として好適である。
以下に、実施例を挙げて、本発明を更に具体的に説明するが、本発明は、その要旨を越えない限り、これらの実施例に制約されるものではない。
1.測定方法
実施例で用いた測定方法は以下の通りである。
(1)温度190℃、荷重2.16kgにおけるメルトフローレート(MFR):
JIS K6922−2:1997に準拠して測定した。
(2)温度190℃、荷重11.1kgにおけるメルトフローレート(MLMFR):
JIS K6922−2:1997に準拠して測定した。
(3)温度190℃、荷重21.6kgにおけるメルトフローレート(HLMFR):
JIS K6922−2:1997に準拠して測定した。
(4)密度:
JIS K6922−1,2:1997に準拠して測定した。
(5)ポリエチレン成分(B)に含まれる高分子成分(C)のHLMFR
後述するポリエチレン成分(B)の製造工程において、第1段反応器の重合生成物を一部採取し、パウダ状の重合物(高分子量の成分(C))を回収した。回収した高分子量の成分(C)に、酸化防止剤(BASFジャパン株式会社製:IRGANOX1010)約0.5wt%を十分に混合させ、JIS K6922−2:1997に準拠して測定した。
(6)HLMFR/HLMFR
ポリエチレン成分(B)に含まれる高分子成分(C)のHLMFR(HLMFR)に対するポリエチレン成分(A)のHLMFR(HLMFR)の比を計算した。
(7)ポリエチレン成分(B)に含まれる高分子成分(C)の密度
第1段反応器の重合生成物である高分子量の成分(C)の密度は、JIS K6922−1,2:1997に準拠して測定した。
(8)ポリエチレン成分(B)に含まれる高分子成分(C)の含有割合
後述するポリエチレン成分(B)の製造工程において、第1段反応器、および第2段反応器で消費された原料であるエチレンおよびコモノマー量の比からポリエチレン成分(B)に含まれる高分子成分(C)の含有割合を計算した、
(9)ゲルパーミエーションクロマトグラフィー(GPC)による分子量及び分子量分布の測定:
下記条件のゲルパーミエーションクロマトグラフィー(GPC)により測定した。
[測定条件]
使用機種:日本ウォーターズ社製Alliance GPCV2000型
測定温度:145℃
溶媒:オルトジクロロベンゼン(ODCB)
カラム:昭和電工社製Shodex HT−806M×2本+同 HT−G
流速:1.0mL/分
注入量:0.3mL
[試料の調製]
4mLバイアル瓶に試料3mg及びオルトジクロロベンゼン(0.1mg/mLの1,2,4−トリメチルフェノールを含む)3mLを秤り採り、樹脂製スクリューキャップ及びテフロン(登録商標)製セプタムで蓋をした後、温度150℃に設定したセンシュー科学製SSC−9300型高温振とう機を用いて2時間溶解を行った。溶解終了後、不溶成分がないことを目視で確認した。
[較正曲線の作成]
4mLガラス瓶を4本用意し、それぞれに下記(1)〜(4)の組み合わせの単分散ポリスチレン標準試料又はn−アルカンを0.2mgずつ秤り採り、続いてオルトジクロロベンゼン(0.1mg/mLの1,2,4−トリメチルフェノールを含む)3mLを秤り採り、樹脂製スクリューキャップ及びテフロン(登録商標)製セプタムで蓋をした後、温度150℃に設定したセンシュー科学製SSC−9300型高温振とう機を用いて2時間溶解を行った。
(1)Shodex S−1460,同S−66.0,n−エイコサン
(2)Shodex S−1950,同S−152,n−テトラコンタン
(3)Shodex S−3900,同S−565,同S−5.05
(4)Shodex S−7500,同S−1010,同S−28.5
試料溶液が入ったバイアル瓶を装置にセットし、前述の条件にて測定を行い、サンプリング間隔1sでクロマトグラム(保持時間とび示差屈折計検出器の応答のデータセット)を記録した。得られたクロマトグラムから各ポリスチレン標準試料の保持時間(ピーク頂点)を読み取り、分子量の対数値に対してプロットした。ここで、n−エイコサン及びn−テトラコンタンの分子量は、それぞれ600及び1200とした。このプロットに非線形最小自乗法を適用し、得られた4次曲線を較正曲線とした。
[分子量の計算]
前述の条件にて測定を行い、サンプリング間隔1sでクロマトグラムを記録した。このクロマトグラムから、森定雄著「サイズ排除クロマトグラフィー」(共立出版)第4章p.51〜60に記載の方法で微分分子量分布曲線及び平均分子量値(Mn、Mw及びMz)を算出した。ただし、dn/dcの分子量依存性を補正するため、クロマトグラムにおけるベースラインからの高さHを下記の式にて補正した。クロマトグラムの記録(データ取り込み)及び平均分子量計算は、Microsoft社製OS Windows(登録商標)XPをインストールしたPC上で自社製プログラム(Microsoft製Visual Basic6.0で作成)を用いて行った。
H′=H/[1.032+189.2/M(PE)]
なお、ポリスチレンからポリエチレンへの分子量変換は、下記の式を用いた。
M(PE)=0.468×M(PS)
(10)長鎖分岐構造の有無(伸長粘度の立上りの有無):
プレス成形して18mm×10mm、厚さ0.7mm、のシート状に作成した試験片を用い、レオメータ(Rheometrics社製Ares)を用い、170℃、歪み速度0.1/秒における伸長粘度の測定を行い、伸長粘度の立ち上がりの有無(歪硬化の有無)により、長鎖分岐構造の有無の確認を行った。
[測定条件]
装置:Rheometrics社製Ares
冶具:ティーエーインスツルメント社製 Extentional Viscosity Fixture
測定温度:170℃
歪み速度:0.1/秒
試験片の作成:プレス成形して18mm×10mm、厚さ0.7mm、のシートを作成した。
[算出方法]
170℃、歪み速度0.1/秒における伸長粘度を、横軸に時間t(単位:秒)、縦軸に伸長粘度η(t)(単位:Pa・秒)を両対数グラフでプロットした。その両対数グラフ上で、歪硬化後、歪量が4.0となるまでの最大伸長粘度をηMax(t1)(t1は最大伸長粘度を示す時の時間)とし、歪硬化前の伸長粘度の近似直線をηLinear(t)としたとき、ηMax(t1)/ηLinear(t1)として算出される値を歪硬化度(λmax)と定義した。なお、歪硬化の有無は、時間の経過と共に伸長粘度が上に凸の曲線から下に凸の曲線へと変わる変曲点を有するか、否かによって、判断した。
図1、図2は典型的な伸長粘度のプロット図である。図1は伸長粘度の変曲点が観測される場合であり、図中にηMax(t1)、ηLinear(t1)を示した。図2は伸長粘度の変曲点が観測されない場合である。
(11)溶融張力:
溶融張力(MT)は、溶融させたエチレン系重合体を一定速度で延伸したときの応力を測定することにより決定され、下記条件により測定した。
[測定条件]
使用機種:東洋精機製作所社製、キャピログラフ1B
ノズル径:2.095mm
ノズル長さ:8.0mm
流入角度:180°(flat)
押出速度:15mm/分
引き取り速度:6.5m/分
測定温度:190℃
(12)結晶化時間(結晶化速度):
示差走査熱量計(パーキンエルマー社製DSC−7)にて、試料を190℃にて5分放置後、120℃/分の速度にて121.5℃まで冷却し、保持とした。121.5℃の等温下にて結晶化が終了した時点にてピークトップを検出し、測定し、結晶化時間とした。
(13)融点及び結晶化温度:
融点及び結晶化温度は、示差走査熱量計(パーキンエルマー社製DSC−7)にて測定した。即ち、0.2mmの厚さのプレスシートを円形に切り出した試料約5mgをアルミパンに詰め、窒素雰囲気下、200℃まで昇温後、5分間同温度で保持し、10℃/分で30℃まで冷却し、結晶化に伴う熱量の変化が極大となる温度を結晶化温度(Tc)とした。その後同温度で5分間保持した後、10℃/分で200℃まで昇温し、融解に伴う熱量の変化が極大となる温度を融点(Tm)とした。
(14)動的溶融粘度(ηH・0.01):
試料に酸化防止剤(BASFジャパン社製IRGANOX B225)2000ppmを配合し溶融混練したものを熱プレスにより厚さ1.0mmのシートに成形し、レオメータ(Rheometrics社製Ares)を用い、パラレルプレートを用いて試料をプレートに密着させて溶融した後、温度210〜220℃で応力を緩和させて、試料をプレート間に隙間ができないようプレート間隔を調整しながら温度190℃まで降温させ、プレート間隔約1.0mm、歪み0.2ないし1%の範囲で測定を行った。周波数ωが0.01rad/秒で測定したときの動的溶融粘度(単位:Pa・秒)を、低歪速度における動的溶融粘度(ηH・0.01)とした。
[測定条件]
装置:Rheometrics社製Ares
冶具:直径25mmパラレルプレート、プレート間隔約1.0mm
測定温度:190℃
周波数範囲:0.01〜100(単位:rad/秒)
歪範囲:0.2〜1%
(15)ポリエチレン組成物の動的溶融粘度(ηW・0.01):
熱プレスにより厚さ2.0mmのシートに成形した試料を用い、レオメータ(Rheometrics社製Ares)を用い、温度190℃においてパラレルプレートを用いてプレート間隔1.7mm、歪み10%で、周波数ωが0.01rad/秒で測定したときの動的溶融粘度(単位:Pa・秒)を、低歪速度における動的溶融粘度(ηW・0.01)とした。
[測定条件]
装置:Rheometrics社製Ares
冶具:直径25mmパラレルプレート、プレート間隔約1.7mm
測定温度:190℃
周波数範囲:0.01〜100(単位:rad/秒)
歪み:10%
(16)結晶化速度:DSCの等温結晶化時間が下記関係式(1)を満たすものを良好とした。
T[秒]≦−147.7×Tm[℃]+20010 関係式(1)
(T[秒]:示差走査熱量計(DSC)にて測定される121.5℃での等温結晶化におけるピークトップ時間、Tm[℃]:融点)
(17)表面性状:
以下の混ざり性評価法によってフィッシュアイの面積率を測定し、これを以って表面性状の評価とした。
[混ざり性評価法]
測定するサンプルを、厚さ0.35mmのモールドと、圧縮加工用及び冷却用の2つのプレス成形機により、第1の工程で180℃の温度、100kgf/cmの圧力にて圧縮加工し、第2の工程で30℃の温度、50kgf/cmの圧力で冷却して厚さ0.4mmのプレスシートを成形する。このプレスシートをカットし、50×50×0.4mmの試験片とした。
次に、当該試験片を、二軸延伸装置で延伸した。二軸延伸装置は、柴山科学器械製作所社製二軸延伸装置SS−60型を使用し、温度150℃、延伸速度60mm/分にて当該試験片を2倍に延伸した。延伸の手順は、当該試験片の端四方1cm部分を二軸延伸装置の4点のチャック部でチャックし、プレスシートのチャックしていない中央部分が30×30mmの正方形となるようにセットした。その後、この試験片を130〜170℃の温度に加熱し、対角し合うチャック間の距離が60mmとなるまで二軸延伸し、チャックをしていない中央部が約2倍に延伸したシートを作成した。
二軸延伸されたシートのほぼ中央に位置する30×30mmの正方形の範囲の表面を、反射式の3D顕微鏡を用いて画像撮影を行なった。3D顕微鏡の倍率は、10倍であり、撮影されるシートの範囲(一視野)は、10×10mmである。測定の信頼性を高めるため、当該測定は、1つのサンプルに対し、上記シート中央に位置する30×30mmの正方形の範囲で、各撮影視野が重ならないように、4回撮影を行なった。撮影された画像をフィッシュアイ部分、及び非フィッシュアイ部分(均一なマトリックス部分)に2値化処理した。2値化処理の条件は、測定者が設定し、その条件を全ての測定に用いた。
2値化処理された画像をスキャナーで読み込んでデジタル化し、画像データとした。
スキャナーの解像度は、600dpi以上であり、好ましくは900dpi以上である。スキャナーは、スキャナーGT−F670(EPSON社製、解像度:4800dpi)を用いた。
画像データの解析は、パーソナルコンピュータとその上で実行されるソフトウェアプログラムにより実現され、画像データは、パーソナルコンピュータで処理することにより、粒子個々の面積、周囲長、長短径比、粒径、円形度などの特徴パラメーターの算出を行った。この場合の特徴パラメーターの算出は、一般に市販されている画像処理ソフトウェアなどを利用でき、市販の画像解析ソフトウェアとして、三谷商事社製のWinROOF等を用いた。
画像データは、画像の黒色部分及び白色部分の配色のしきい値を定め、ある適当なレベルで2値化され処理される。2値化処理の条件は、測定者が設定し、その条件を全ての測定に用いた。
画像解析は、公知の手段により、各粒子の面積、周囲長、最大長、最大長垂直長(最大長に垂直な方向における長さ)などを算出し、それらから粒子の各種のパラメーターを粒子ごとに算出することができ、算出されるパラメーターには、粒子の円相当径(粒子の画像の面積に等しい面積の円の直径)、円形度(粒子の画像の面積に等しい面積の円の周囲長と画像の周囲長の比)、アスペクト比(粒子の画像の最大長と最大長垂直長の比)などとした。
なお、円相当径は、円相当径=(粒子の画像の面積値/π)1/2×2、円形度は、円形度=(粒子の画像の面積値を持つ円の周囲長)/(粒子の画像の周囲長)、アスペクト比は、アスペクト比=(粒子の画像の最大長)/(粒子の画像の最大長垂直長)により算出される。
本発明においては、フィッシュアイの測定として、画像中に占めるフィッシュアイの面積率を求めた。1サンプルのフィッシュアイの面積率は、1つの試験片上で撮影された4視野で、それぞれ得られた測定値の平均値を算出した。
そして、画像中に占めるフィッシュアイの面積率が0.2%以下の場合を「1」、0.2超〜0.5%の場合を「2」、0.5超〜3.0%の場合を「3」、3.0超〜5.0%の場合を「4」、5%超の場合を「5」として、評価した。評価結果を表1に記載した。
(18)ピンチオフ特性:
レオメータにて測定される150℃、100rad/秒におけるtanδの測定は、熱プレスにより調整した試料を用い、レオメータ(Rheometrics社製Ares)を用い、150℃、角速度100rad/秒おける貯蔵弾性率G’と損失弾性率G”の測定を行い、tanδ(=G”/G’)を算出した。測定時の条件は下記に記す。tanδが0.50〜0.80のものをピンチオフ特性が良好(○)とした。
[測定条件]
装置:Rheometrics社製Ares
冶具:直径25mmパラレルプレート、プレート間隔約1.7mm
測定温度:150℃
歪み:10%
(19)耐ドローダウン特性:
溶融張力(MT)が40mN以上のものを良好とした。
(20)伸長粘度の立ち上がり
伸長粘度の立ち上がりが確認されたものを良好とした。
(21)曲げ弾性率(FM)
JIS K6922−2に準拠して、4mmの圧縮成形シートの作成、および試験片の作成を行い、JIS K7171の「プラスチック−曲げ特性の求め方」に準拠して、23℃、50%RH、試験速度2mm/minの条件で、曲げ弾性率(単位:MPa)の測定を行った。
曲げ弾性率が1400MPa以上だったものを「良好(○)」、1400MPa未満だったものを「不良(×)」とした。
(22)引張衝撃強さ(TIS)
JIS K6922−2に準拠して、1.5mmの圧縮成形シートを作成し、ASTM D1822に準拠して、S型ダンベルで打ち抜いた試験片を作成し、23℃、50%RHの条件で、引張衝撃強さ(単位:kJ/m)測定を行った。
引張衝撃強さが100kJ/m以上だったものを「良好(○)」、100kJ/m未満だったものを「不良(×)」とした。
(23)ボトルESCR
前記中空成形機で成形されたボトルに100mlのノニオン界面活性剤(日本油脂社製:ノニオンNS210)を33容量%に希釈した液を充填し、温度60℃の恒温槽内でボトル内に34.5kPaの圧力をかけ、ボトルが破損し圧力が低下するまでの時間を測定した。この測定をボトル5本につき行い、その平均値をボトルESCR値とした。
ボトルESCR値が2時間以上だったものを「良好(○)」、2時間未満だったものを「不良(×)」とした。
(24)中空成形性
単層ダイレクトブロー成形機(株式会社ブレンズ製、スクリュー径=φ70mm、L/D=24、圧縮比(CR)=3.0)にて、一定のピンチオフ幅になる様に任意のダイコア径のストレートダイを使用し、スクリュー回転数10rpmの条件で成形樹脂温度を約210℃に調整し、パリソンを押出し約400mlの偏平容器形状(縦約19cm、幅約7cm、最大奥行き約5cmであって、外径約2cm、高さ約2cmのネジ形状口部を有する容器)のブロー金型(キャビティー面ブラスト仕上げ、キャビティー面粗さRa値0.7μmの金型)、金型温度20℃、ブロー圧力6kg/cm2、容器重量約30g、成形サイクルおよそ10〜12秒の範囲でブロー成形を行なった。上記条件内の容器の成形ができたものを中空成形性「良好(○)」、ブローアップ時に融着界面などに穴が開いたり、著しいドローダウン等により均一な肉厚分布の成形品取得が困難だったものを「不良(×)」とした。
(25)製品外観
上記中空成形評価で取得したブロー成形品である容器の外観を目視判定により、その状態を評価し、ムラがなく均一な肌感の良いもの又はそれに近いものを「良好(○)」、それ以外のもの、例えば、フローマークがあるもの又は均一な肌感のないもの、金型キャビティーでのエアー抜きの悪いもの、パリソンにメルトフラクチャーが発生したもの及びパリソンの表面が細かく肌荒れしたもの、金型キャビティー面を転写し透明性が低下したもの等を「不良(×)」とした。
(26)総合評価
エチレン・α−オレフィン共重合体としての中空成形性及び中空成形品としての適性を総合的に評価した。即ち、以下のいずれの項目も満足するものを「良好(○)」、それ以外のものを「不良(×)」とした。
1)ピンチオフ特性の評価において、tanδが0.50〜0.80である。
2)曲げ弾性率が1400MPa以上である。
3)引張衝撃強さが100kJ/m以上である。
4)ボトルESCRが2時間以上である。
5)中空成形性が良好である。
6)成形品外観が良好である。
2.実施例及び比較例
<メタロセン系触媒の合成>
十分に窒素置換した、誘導撹拌機を装着した円筒状フラスコに、平均粒径11μmのシリカ(平均粒径11μm、表面積313m/g、細孔容積1.6cm/g)を3g充填し、トルエンを75ml添加し、オイルバスにより75℃に加熱した。別のフラスコにメチルアルミノキサンのトルエン溶液(アルベマール社製、3.0mol−Al/L)を8.0ml分取した。ジメチルシリレンビス[1,1’−{2−(2−(5−メチル)フリル)−4−(p−イソプロピルフェニル)−インデニル}]ジルコニウムジクロリド(63.4mg、75μmol)のトルエン溶液(15ml)をメチルアルモキサンのトルエン溶液に室温で添加し、75℃に昇温した後、1時間撹拌した。次いで、75℃に加熱したシリカのトルエンスラリーに、このトルエン溶液を、撹拌しながら添加し1時間保持した。その後、23℃において攪拌しながらn−ヘキサンを175ml添加し、10分後、攪拌を停止し静置した。触媒を十分沈降させた後、上澄みを除去し、n−ヘキサンを200ml添加した。一旦攪拌した後、再度、静置し上澄みを除去した。この操作を3回繰り返して、n−ヘキサンに遊離してくる成分を除去した。更に、40℃加熱した状態で、減圧により溶媒を留去した。減圧度が0.8mmHg以下となってから、更に15分間減圧乾燥を継続しメタロセン系触媒を得た。
<ファウリング防止成分の製造>
100mLのキシレンに、ポリエチレンイミン(分子量10,000)から誘導されたn−オクチル化ポリエチレンイミン(ポリエチレンイミンのモノマー単位当たり0.5個のn−オクチル基が導入されたもの)3gとリン酸エステル化合物であるフィチン酸1gを室温で混合、撹拌し、塩を形成させた。その後、ジオクチルスルホコハク酸エステルマグネシウム塩6gを混合し、ファウリング防止成分を得た。
<チーグラーナッタ触媒の製造>
固体触媒成分として、溶解析出法によるTi系触媒を使用した。その製造方法は、以下の通りである。
攪拌機および冷却器を取り付けた容量1リットルの三つ口フラスコの内部を十分に窒素置換した後、乾燥ヘキサン250ml、あらかじめ3リットル振動ミルで1時間粉砕処理を行った無水塩化マグネシウム11.4gおよびn−ブタノール110mlを入れ、68℃で2時間加熱し均一な溶液(1a)とした。
この溶液(1a)を室温まで冷却した後、25℃の運動粘度が25cStであるメチルポリシロキサン8gを添加し、1時間攪拌して均一な溶液(1b)を得た。
次に、溶液(1b)を水で冷却した後、この中へ四塩化チタン50mlおよび乾燥ヘキサン50mlを、滴下漏斗を用い1時間を費やして滴下し、溶液(1c)を得た。溶液(1c)は均一であり、反応生成物の錯体は析出していなかった。
溶液(1c)を還流しながら、68℃で2時間加熱処理を行った。加熱を開始して約30分後に反応生成物錯体(1d)の析出が見られた。これを採取して、乾燥ヘキサン250mlで6回洗浄し、さらに窒素ガスで乾燥して、反応生成物錯体(1d)19gを回収した。
反応生成物錯体(1d)を分析したところ、Mg14.5質量%、n−ブタノール44.9質量%およびTi0.3質量%を含有しており、その比表面積は、17m/gであった。
次に、反応生成物錯体(1d)4.5gを窒素雰囲気下で攪拌機および冷却器を取り付けた容量1リットルの三つ口フラスコに採取し、これに乾燥ヘキサン250mlおよび四塩化チタン25mlを加えて還流下に68℃で2時間加熱処理を行い、室温まで冷却した後、乾燥ヘキサン250mlで6回洗浄し、窒素ガスで乾燥して固体触媒成分(1e)4.6gを回収した。
この固体触媒成分(1e)を分析したところ、Mg12.5質量%、n−ブタノール17.0質量%およびTi9.0質量%を含有しており、その比表面積は、29m/gであった。この固体触媒成分(1e)をSEMで観察したところ、粒径は均一であり、球に近い形状であった。
<ポリエチレン成分(A1)の製造>
上記メタロセン系触媒によるエチレン・1−ヘキセン共重合を行なうことにより、ポリエチレン成分(A1)を製造した。即ち、内容積290Lのループ型スラリー反応器に、脱水精製イソブタン115L/h、トリイソブチルアルミニウムを0.13mol/h、ファウリング防止成分Bを6ml/h供給し、反応器内の温度を80℃として、圧力を4.2MPaGに保つように反応器から間欠的に排出しながら、エチレン、1−ヘキセン、水素を供給して、重合中の液中の1−ヘキセンとエチレンのモル比(C6/C2)が0.010、水素とエチレンのモル比(H2/C2)が3.4×10−4になるように調節した。次に、ヘキサンで0.3g/Lに希釈した触媒Aのヘキサンスラリーを3L/hで反応器に供給して重合を開始し、反応器内のエチレン濃度が10vol%になるようにエチレンを供給した。生成したポリエチレンはイソブタンとともに間欠的に排出され、フラッシュさせた後、製品サイロに送った。
この時得られたポリエチレン成分(A1)のHLMFRは0.57g/10分であり、密度は0.9242g/cm、分子量分布Mw/Mnは3.42、HLMFR/MFRは23であった。ポリエチレン成分(A1)は、分子量分布見合いで比較的大きなHLMFR/MFRを示すことから、長鎖分岐構造を有していた。
<ポリエチレン成分(A2)の製造>
上記ポリエチレン成分(A1)の製造において、表1−1に示す重合体となるようコモノマーである1−ヘキセン量および連鎖移動剤である水素量について条件を変更した以外は、上記ポリエチレン成分(A1)の製造と同様にして、ポリエチレン成分(A2)を得た。
この時得られたポリエチレン成分(A2)のHLMFRは0.38g/10分であり、密度は0.9174g/cm、HLMFR/MFRは24であった。ポリエチレン成分(A2)は、分子量分布見合いで比較的大きなHLMFR/MFRを示すことから、長鎖分岐構造を有していた。
<ポリエチレン成分(B1)の製造>
内容積145リットルの液体充填ループ型第1段反応器に、触媒供給ラインから上記触媒の製造で得られた固体触媒成分(1e)0.94g/hrを、またトリイソブチルアルミニウム(TIBAL)を有機金属化合物供給ラインから0.2mmol/hrの速度にて、連続的に供給して、重合内容物を所要速度で排出しながら、80℃において、脱水精製したイソブタンを110(l/hr)、水素を0.80(g/hr)、エチレンを5.0(kg/hr)の速度で供給し、全圧4.2MPa、平均滞留時間0.8Hrの条件下で連続的に第1段重合を行った。
第1段反応器の重合生成物を一部採取し、パウダ状の重合物(高分子量の成分(C))を回収した。回収した高分子量の成分(C)の物性を測定した結果、HLMFRは0.83g/10分、密度(D)は0.9485kg/mであった。
第1段反応器で生成したスラリー状重合生成物を、そのまま内容積290リットルの第2段反応器へ全量導入し、触媒を追加することなく、重合器内容物を所要速度にて排出しながら、90℃にて、脱水精製したイソブタン60(l/hr)、水素14.2(g/hr)、エチレン14.4(kg/hr)の速度で供給し、全圧4.2MPa、平均滞留時間0.8Hrの条件下で、連続的に第2段重合を行った。
第2段反応器から排出される重合生成物をフラッシング槽へ導入し、重合生成物を連続的に抜き出し、脱気ラインから未反応ガスを除去した。
得られたポリエチレン成分(B1)を物性評価した結果は、表1に記載したとおりであり、MFRは0.69g/10分、MLMFRは8.8g/10分、HLMFRは52.6g/10分、密度は0.9614kg/mであった。
またポリエチレン成分(B1)全体に対する高分子量成分(C)の含まれる割合は25.3質量%であった。
また、第2段重合で得られた低分子量成分(D)の物性値は、ポリエチレン成分(B1)の物性値と高分子量成分(C)の物性値から加成則に基づいて算出され、MFRが3.6g/10分、密度が0.9658g/cmであり、ポリエチレン成分(B1)全体に対する低分子量成分(D)が含まれる割合は75質量%であった。
<ポリエチレン成分(B2)〜(B13)の製造>
上記ポリエチレン成分(B1)の製造において、表1−1及び表1−2に示す重合体となるよう主原料であるエチレン量および連鎖移動剤である水素量について条件を変更した以外は、上記ポリエチレン成分(B1)の製造と同様にして、ポリエチレン成分(B2)〜(B13)を得た。ただし、ポリエチレン成分(B11)及び(B12)は二段重合せず単段重合で製造した。
[実施例1]
<ポリエチレン樹脂組成物の製造>
上記ポリエチレン成分(A)である(A1)及びポリエチレン成分(B)であるポリエチレン成分(B1)を下記の混練条件において表1−1に示す割合で溶融混合し、ポリエチレン樹脂組成物を製造した。
[混練条件]
使用機器:東洋精機製作所社製ラボプラストミル ローラミキサ(ミキサ型式:R100/ブレード形状:ローラ型R100B)
添加剤配合:BASFジャパン社製IRGANOX B225を2,000ppm及び 淡南化学工業社製ステアリン酸カルシウムを1,000ppm使用
充填量:70g/batch
混練温度:190℃
ブレード回転速度:40rpm
予熱時間:5分
混練時間:2分
<成形評価用ポリエチレン樹脂組成物の製造>
表1−1の実施例1に記載の配合比率の組成物に、添加剤として、BASFジャパン社製IRGANOX B225を1,000ppm、及び淡南化学工業社製ステアリン酸カルシウムを500ppm配合し、東芝機械株式会社製TEM26SX(スクリュー径:26mm、L/D=64)を用い、設定温度:200℃、スクリュー回転数:200rpm、吐出量:15kg/hrの条件でペレット化を行った。
当該ポリエチレン樹脂組成物の物性及び評価結果を表2−1に示した。得られた組成物は、各成分の相溶性が良好で、適切な流動性と高い溶融張力により、中空成形性にも優れ、なおかつ耐衝撃性などの機械物性に優れ、特に剛性と耐環境応力亀裂性バランスに優れていた。
[実施例2〜10]
表1−1に示す組成物となるように条件設定した以外は、実施例1と同様に行った。得られたポリエチレン樹脂組成物の評価結果を表2−1に示した。得られたポリエチレン樹脂組成物は、各成分の相溶性が良好で、溶融張力が高く、、かつ、耐衝撃性などの機械物性に優れ、特に剛性と耐環境応力亀裂性バランスに優れていた。
[比較例1]
表1−2に示す組成物となるように条件設定した以外は、実施例1と同様に行った。ただし、比較例1で用いたポリエチレン成分(B11)は二段重合せず単段重合で製造した。得られたポリエチレン樹脂組成物の評価結果を表2−2に示した。得られたポリエチレン樹脂組成物は、ポリエチレン成分(B1)相当の成分がMFR(特性(b1))、MLMFR/MFR(特性(b4))、および分子量分布(特性(b5))などの特性を満足しておらず、溶融張力が低く、混ざりと物性のバランスが良好でなかった。
[比較例2]
表1−2に示す組成物となるように条件設定した以外は、実施例1と同様に行った。ただし、比較例2で用いたポリエチレン成分(B12)は二段重合せず単段重合で製造した。得られたポリエチレン樹脂組成物の評価結果を表2−2に示した。得られたポリエチレン樹脂組成物は、ポリエチレン成分(B1)相当の成分がMFR(特性(b1))、MLMFR/MFR(特性(b4))、および分子量分布(特性(b5))などの特性を満足しておらず、溶融張力が低く、混ざりと物性のバランスが良好でなかった。
[比較例3]
ポリエチレン成分(A)を用いず、また、ポリエチレン成分(B)相当の成分(ポリエチレン(B13))のみを用いた以外は、実施例1と同様に行った。得られたポリエチレン樹脂組成物の評価結果を表2−2に示した。得られたポリエチレン樹脂組成物は、伸長粘度の立ち上がりがなく、ポリエチレン成分(A)を含まないため、剛性と耐環境応力亀裂性のバランスが十分ではなかった。
[比較例4]
ポリエチレン成分(A)を用いず、また、ポリエチレン成分(B)相当の成分として市販品のポリエチレン(日本ポリエチレン株式会社製、ノバテックHD:HB532N)を用いた以外は、実施例1と同様に行った。得られたポリエチレン樹脂組成物の評価結果を表2−2に示した。得られたポリエチレン樹脂組成物は、伸長粘度の立ち上がりがなく、ポリエチレン成分(A)を含まないため、剛性と耐環境応力亀裂性のバランスが十分ではなかった。
Figure 2017186515
Figure 2017186515
Figure 2017186515
Figure 2017186515
本発明によれば、中空成形性、耐環境応力亀裂性、耐衝撃性に優れ、より薄く、軽量にて成形することができ、結晶化速度が速く、高速成形性に優れ、成形ハイサイクル化が可能であり、ピンチオフ特性が良好である上に、樹脂成分の相溶性が高く、成形体の外観に特に優れるポリエチレン樹脂組成物及びそれよりなる成形体を提供できる。
更に、本発明のポリエチレン樹脂組成物は、成形時の高流動性に優れ、本発明の成形体は、匂い、食品安全性、剛性、耐熱性などにも優れる。
従って、本発明のポリエチレン樹脂組成物及びその成形体は、このような特性を必要とする容器などの用途に適し、特に、外観に優れる化粧品容器、洗剤、シャンプー及びリンス用容器、或いは食用油等の食品用容器等の用途に好適に用いることができる。
更に、本発明のポリエチレン樹脂組成物を用いた容器は、高速成形化、ハイサイクル化が可能であり、製品特性が優れる上に、経済的に有利な、化粧品容器、洗剤、シャンプー及びリンス等の容器として好適である。
また、本発明のポリエチレン樹脂組成物は、上記のように、性能が優れているので、上記容器以外に、このような特性を必要とする灯油缶、薬品容器等にも、好適に用いることができるため、産業上大いに有用である。

Claims (8)

  1. 下記ポリエチレン成分(A)を5質量%以上40質量%以下、下記ポリエチレン成分(B)を60質量%以上95質量%以下含有し、下記の特性(1)〜(4)を満足するポリエチレン樹脂組成物。
    ポリエチレン成分(A);特性(a1):温度190℃、荷重21.6Kgにおけるメルトフローレート(HLMFR)が0.2g/10分以上、5g/10分未満であり、特性(a2):密度が0.915g/cm以上0.945g/cm以下であるポリエチレン。
    ポリエチレン成分(B);少なくとも2成分から構成され、特性(b1):温度190℃、荷重2.16Kgにおけるメルトフローレート(MFR)が0.1g/10分以上、10g/10分以下であり、特性(b2):密度が0.950g/cm以上0.980g/cm以下を満たすポリエチレン。
    特性(1):MFRが0.1g/10分以上、1g/10分以下である。
    特性(2):HLMFRが10g/10分以上、50g/10分以下である。
    特性(3):MFRに対するHLMFRの比であるメルトフローレート比(HLMFR/MFR)が40以上140以下である。
    特性(4):密度が0.950g/cm以上0.970g/cm以下である。
  2. ポリエチレン成分(B)は、下記の特性(c1)及び(c1)を満足する高分子量の成分(C)を、ポリエチレン成分(B)全量に対し10質量%以上50質量%以下、含むことを特徴とする請求項1に記載のポリエチレン樹脂組成物。
    特性(c1):温度190℃、荷重21.6Kgにおけるメルトフローレート(HLMFR)が0.5g/10分以上、5g/10分未満。
    特性(c2):密度が0.9460g/cm以上0.9490g/cm以下である。
  3. 更に、下記の特性(7)を満足する請求項1又は2に記載のポリエチレン樹脂組成物。
    特性(7):190℃で測定される溶融張力(MT)が、40mN以上である。
  4. ポリエチレン成分(A)は下記の特性(a3)を満足する請求項1〜3のいずれか一項に記載のポリエチレン樹脂組成物。
    特性(a3):温度190℃において周波数ωが0.01rad/秒のとき測定される動的溶融粘度ηH・0.01(単位:Pa・秒)が100,000超過 、1,000,000未満。
  5. ポリエチレン成分(A)は下記の特性(a4)を満足する請求項1〜4のいずれか一項に記載のポリエチレン樹脂組成物。
    特性(a4):MFRに対するHLMFRの比であるメルトフローレート比(HLMFR/MFR)が10以上35以下である。
  6. ポリエチレン成分(B)は下記の特性(b3)及び(b4)を満足する請求項1〜5のいずれか一項に記載のポリエチレン樹脂組成物。
    特性(b3):温度190℃、荷重11.1Kgにおけるメルトフローレート(MLMFR)が1g/10分以上、100g/10分以下である。
    特性(b4):MFRに対するMLMFRの比であるメルトフローレート比(MLMFR/MFR)が8以上50以下である。
  7. 請求項1〜6のいずれか一項に記載のポリエチレン樹脂組成物を用いて作成された成形体。
  8. 請求項1〜6のいずれか一項に記載のポリエチレン樹脂組成物を用いて作成された容器。
JP2016243815A 2016-03-31 2016-12-15 ポリエチレン樹脂組成物、並びにその成形体及び容器 Active JP6699536B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016072762 2016-03-31
JP2016072762 2016-03-31

Publications (2)

Publication Number Publication Date
JP2017186515A true JP2017186515A (ja) 2017-10-12
JP6699536B2 JP6699536B2 (ja) 2020-05-27

Family

ID=60045514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016243815A Active JP6699536B2 (ja) 2016-03-31 2016-12-15 ポリエチレン樹脂組成物、並びにその成形体及び容器

Country Status (1)

Country Link
JP (1) JP6699536B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164693A (ja) * 2019-03-29 2020-10-08 日本ポリエチレン株式会社 ポリエチレン樹脂組成物、成形体及び容器
KR20210089666A (ko) * 2018-11-28 2021-07-16 아부 다비 폴리머스 씨오. 엘티디 (보르쥬) 엘엘씨. 필름 적용용 폴리에틸렌 조성물
JP7456208B2 (ja) 2019-03-29 2024-03-27 日本ポリエチレン株式会社 ポリエチレン樹脂組成物、成形体及び容器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019404A (ja) * 2006-07-14 2008-01-31 Nippon Polyethylene Kk 容器用及び容器蓋用ポリエチレン系樹脂成形材料
JP2013204015A (ja) * 2012-03-29 2013-10-07 Japan Polyethylene Corp 容器用ポリエチレン樹脂組成物及びそれよりなる成形体
JP2014208749A (ja) * 2013-03-28 2014-11-06 日本ポリエチレン株式会社 容器用ポリエチレン樹脂組成物及びそれよりなる成形体
JP2014208750A (ja) * 2013-03-28 2014-11-06 日本ポリエチレン株式会社 容器用ポリエチレン樹脂組成物及びそれよりなる成形体
JP2015172210A (ja) * 2015-07-08 2015-10-01 日本ポリエチレン株式会社 ポリエチレン系樹脂組成物およびその成形体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019404A (ja) * 2006-07-14 2008-01-31 Nippon Polyethylene Kk 容器用及び容器蓋用ポリエチレン系樹脂成形材料
JP2013204015A (ja) * 2012-03-29 2013-10-07 Japan Polyethylene Corp 容器用ポリエチレン樹脂組成物及びそれよりなる成形体
JP2014208749A (ja) * 2013-03-28 2014-11-06 日本ポリエチレン株式会社 容器用ポリエチレン樹脂組成物及びそれよりなる成形体
JP2014208750A (ja) * 2013-03-28 2014-11-06 日本ポリエチレン株式会社 容器用ポリエチレン樹脂組成物及びそれよりなる成形体
JP2015172210A (ja) * 2015-07-08 2015-10-01 日本ポリエチレン株式会社 ポリエチレン系樹脂組成物およびその成形体

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210089666A (ko) * 2018-11-28 2021-07-16 아부 다비 폴리머스 씨오. 엘티디 (보르쥬) 엘엘씨. 필름 적용용 폴리에틸렌 조성물
US20210403657A1 (en) * 2018-11-28 2021-12-30 Abu Dhabi Polymers Co. Ltd. (Borouge) L.L.C Polyethylene composition for film applications
JP2022506122A (ja) * 2018-11-28 2022-01-17 アブ・ダビ・ポリマーズ・カンパニー・リミテッド・(ブルージュ)・リミテッド・ライアビリティ・カンパニー フィルム用途用ポリエチレン組成物
JP7138788B2 (ja) 2018-11-28 2022-09-16 アブ・ダビ・ポリマーズ・カンパニー・リミテッド・(ブルージュ)・リミテッド・ライアビリティ・カンパニー フィルム用途用ポリエチレン組成物
KR102553656B1 (ko) * 2018-11-28 2023-07-17 아부 다비 폴리머스 씨오. 엘티디 (보르쥬) 엘엘씨. 필름 적용용 폴리에틸렌 조성물
US11912838B2 (en) 2018-11-28 2024-02-27 Borealis Ag Polyethylene composition for film applications
JP2020164693A (ja) * 2019-03-29 2020-10-08 日本ポリエチレン株式会社 ポリエチレン樹脂組成物、成形体及び容器
JP7205350B2 (ja) 2019-03-29 2023-01-17 日本ポリエチレン株式会社 ポリエチレン樹脂組成物、成形体及び容器
JP7456208B2 (ja) 2019-03-29 2024-03-27 日本ポリエチレン株式会社 ポリエチレン樹脂組成物、成形体及び容器

Also Published As

Publication number Publication date
JP6699536B2 (ja) 2020-05-27

Similar Documents

Publication Publication Date Title
JP6065796B2 (ja) 容器用ポリエチレン樹脂組成物及びそれよりなる成形体
JP6065797B2 (ja) 容器用ポリエチレン樹脂組成物及びそれよりなる成形体
JP6187332B2 (ja) パイプ及び継手用ポリエチレン並びにその成形体
JP6743455B2 (ja) ポリエチレン樹脂組成物、並びにその成形体及び容器
JP5560161B2 (ja) 容器蓋用ポリエチレン樹脂組成物
JP5776602B2 (ja) 容器用ポリエチレン樹脂組成物及びそれよりなる成形体
JP2015172210A (ja) ポリエチレン系樹脂組成物およびその成形体
JP6699536B2 (ja) ポリエチレン樹脂組成物、並びにその成形体及び容器
JP6607125B2 (ja) ポリエチレン樹脂組成物、並びにその成形体及び容器
EP3438183B1 (en) Polyethylene and molded body thereof
JP2017179305A (ja) ポリエチレン樹脂用改質材、ポリエチレン樹脂組成物の製造方法、及び成形体の製造方法
JP5776603B2 (ja) ポリエチレン系樹脂組成物およびその成形体
JP2015227459A (ja) 容器用ポリエチレン樹脂組成物及びそれよりなる成形体
JP2017179300A (ja) ポリエチレン樹脂組成物、並びにその成形体及び容器
US10377886B2 (en) Polyethylene for pipe and joint, and molded body thereof
JP2017179304A (ja) ポリエチレン樹脂用改質材、並びに、それを用いたポリエチレン樹脂組成物の製造方法、及び、成形体の製造方法
JP5593202B2 (ja) 容器蓋用ポリエチレン
WO2013146944A1 (ja) ポリエチレン及びその成形体
JP2013204720A (ja) パイプ及び継手用ポリエチレン並びにその成形体及び薄肉ポリエチレン管
JP6878942B2 (ja) ポリエチレン樹脂組成物、並びにその成形体及び容器
JP7205350B2 (ja) ポリエチレン樹脂組成物、成形体及び容器
JP2020033574A (ja) ポリエチレン及びその成形体
JP7456208B2 (ja) ポリエチレン樹脂組成物、成形体及び容器
JP2018131570A (ja) ポリエチレン樹脂組成物、並びにその成形体及び容器
JP7452079B2 (ja) ポリエチレン樹脂組成物、及び、成形体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200413

R150 Certificate of patent or registration of utility model

Ref document number: 6699536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250